Fabrication and characterization of electrodeposited nanocrystalline

合集下载

Fabrication and characterization of electric field tunable Bi1.5MgNb1.5O7 transparent capacitors

Fabrication and characterization of electric field tunable Bi1.5MgNb1.5O7 transparent capacitors

Fabrication and characterization of electricfield tunable Bi1.5MgNb1.5O7 transparent capacitorsShihui Yu,Lingxia Li n,Heilei Dong,Dan Xu,Yuxin JinSchool of Electronic and Information Engineering,Tianjin University,Tianjin300072,PR Chinaa r t i c l e i n f oArticle history:Received17August2013Accepted17October2013Available online24October2013Keywords:SputteringThinfilmsElectrical propertiesStructuralDielectricsa b s t r a c tTwo hundred and twenty nanometer-thick Bi1.5MgNb1.5O7(BMN)thinfilms were grown on Sn-dopedIn2O3(ITO)/glass substrates at5001C by rf magnetron sputtering.The crystallinity,microstructure,optical and electrical properties of BMN thinfilms with various post-annealing conditions wereinvestigated.X-ray diffraction patterns and scanning electron microscope analysis reveal that the BMNthinfilms post-annealed in oxygen ambient had the best crystalline quality,and showed the bestelectrical properties,with a dielectric constant of99at1MHz,dielectric tunability of29%at1.8MV/cm,and an average optical transmittance of about85%in the visible range(400–800nm).&2013Elsevier B.V.All rights reserved.1.IntroductionRecently,electricfield tunable capacitors for frequency agilemicrowave applications have attracted much attention for theirsimple structure,low power consumption,high speed operation,and high density integration[1–3].The importance of a highperformance and electric-field tunable transparent capacitor isthat this enables another set of transparent electronic deviceapplications such as better solar energy storage,photovoltaicdevices,and intelligent windows,among many others.Bi1.5MgNb1.5O7(BMN)and Bi1.5ZnNb1.5O7(BZN)have attractedresearcher's interest as a potential candidate[4,5],due to theirvery low dielectric loss and moderate pared toBi1.5ZnNb1.5O7,the Bi1.5MgNb1.5O7composition is found to exhibita greater dielectric nonlinearity,which is important attributes forthe fabrication and operation of tunable microwave devices[6–8].The fabrication of dielectric oxidefilms combined with indiumoxide based glass substrates has attracted considerable interestrecently,owing to their favorable transparency in the visible lightregion and applicability in optoelectronic devices[9].Considerableefforts have been made to grow highly transparent dielectriccapacitors on glass substrates using indium tin oxide(ITO)layersas bottom electrodes[10].However,few papers reported theelectricfield tunable Bi1.5MgNb1.5O7transparent capacitor.In orderto apply BMN thinfilms to electricfield tunable transparentcapacitor,a lot of systematic work needs to be done.The post-annealing process after thinfilm deposition is considered to be aneffective way to improve the quality offilm[11,12].Therefore,aninvestigation of post-annealing of BMN thinfilms is considered tobe pared with the in air,the thinfilms post-annealedin O2oven have the better electric and optical properties,duo tothe improvement of the crystallize quality[13].In this paper,BMNthinfilms were deposited at5001C by rf magnetron sputtering.The influences of post-annealing on the crystallinity,optical andelectrical properties of BMN thinfilms have been investigated.2.ExperimentalThe Bi1.5MgNb1.5O7ceramic target was prepared by solid statereaction process with Bi2O3,MgO,and Nb2O5as starting materials.The mixtures of starting materials in stoichiometry were sinteredinto disks at11801C for4h.BMN thinfilms were deposited onITO/glass substrates by rf magnetron sputtering from the BMNceramic target.The target to substrate distance was kept as10cm.Before sputtering,the vacuum chamber was evacuated down to abase pressure of7.0Â10À6Torr.High purity(99.99%)Ar and(99.99%)O2were introduced through separate massflow con-trollers.The total pressure during sputtering was maintained at10mTorr,and the O2/Ar ratio was3:17.The substrate temperaturewas controlled at5001C.The depositing power wasfixed at150W.Thefilm thickness was controlled to be$220nm(thedeposition rate was$3nm/min).After the deposition,BMN thinfilms were post-annealed at7001C for10min in air and in oxygenambient oven.The pressure of post-annealing in oxygen ambienceoven was0.1MPa.For electrical measurement,Au top electrodeswith0.2mm in diameter were patterned by lift-off process.Contents lists available at ScienceDirectjournal homepage:/locate/matletMaterials Letters0167-577X/$-see front matter&2013Elsevier B.V.All rights reserved./10.1016/j.matlet.2013.10.071n Corresponding author.Tel./fax:þ862227402838.E-mail address:lingxiali@(L.Li).Materials Letters116(2014)50–52The crystal structure of the films was characterized by X-ray diffraction (Rigaku D/MAX-RB,Akishima,Tokyo,Japan).Film morphologies were investigated by scanning electron microscopy (JEOL JSM-7600F,Akishima,Tokyo,Japan).The thickness of the thin films was measured by Alpha-Step D-100pro filometer (KLA-Tencor,California,USA).The dielectric properties,tunability were measured at room temperature by Aglient 4285A precision LCR meter (Santa Clara,California,USA).Optical transmittance spectra were obtained on an ultraviolet-visible-near infrared (UV –vis –NIR)spectrophotometer (Cary 5000,Varian).3.Results and discussionThe XRD patterns of the BMN thin films with different post-annealing processes are shown in Fig.1.The as-deposited BMN thin films are amorphous in nature when deposited at 5001C without post-annealing.However,the thin films begin to crystal-lize after post-annealed at 7001C.As shown in Fig.1,all thin films post-annealed at 7001C exhibit cubic pyrochlore phase structure.No other phase can be detected in the XRD patterns except of the character peaks of ITO/grass pared with the BMN thin film post-annealed in air,the character peaks (222)of the thin films post-annealed in O 2oven strengthened,indicating that crystallinity increases.Fig.2shows the surface morphologies of BMN thin films with various post-annealing conditions.As shown in Fig.2,the surface morphology of as-deposited BMN thin film is an incompact structure,which indicating the amorphous nature of thin film,this consists well with the above XRD analysis results.After post-annealed at 7001C in air,the surface morphology transforms to a compact and smooth pared with the in air,the surface morphology of the thin film post-annealed in O 2oven shows the tremendous difference.The spherical grain is no longer dominated.Although thin film shows the dense state,the grain boundary becomes indistinct and the surface of the thin film becomes coarse.The spectral transmission curves of the BMN thin films with different post-annealing processes are shown in Fig.3.All the transmission spectra show interference fringes which originate due to interference at the air-and substrate-film interfaces.The sharp fall in transmission and disappearance of the fringes at the shorter wavelength is due to the fundamental absorption of the thin films.To determine the average transmittance Tav,the following relationship is used:T av ¼RV ðλÞT ðλÞd λR V ðλÞd λð1Þwhere T (λ)is the transmittance and V (λ)is the photopic luminous ef ficiency function de fining the standard observer for photometry [14].The optical transmittance of BMN thin films deposited at 5001C without post-annealing is about 68%in the visible range of wavelengths (400–800nm).After post-annealing,we can see that all the BMN thin films show high transmittance (Z 80%)in the visible pared with the in air,the average optical transmittance of the thin films post-annealed in O 2oven slightly increases from 80%to 85%,which can be explained by the fact that the crystallite size increases signi ficantly,thus reducing the grain boundary scattering and increasing the optical transmittance [15].Similar result has been reported by Meng et al.[16].In addition,since surface state is related to deep level defects,which are most probably due to oxygen vacancies,the surface state level will absorb visible photons [17].But the surface state density of the BMN thin film decreases when annealed at O 2even (as shown in Fig.2),therefore,the optical transmittance increases.Fig.4shows the electric field dependences of the dielectric constant of BMN thin films measured at 1MHz.The tunability of the thin films is de fined as [ε(0)Àε(v )]/ε(0),where ε(0)and ε(v )are the dielectric constant at zero and a certain bias field,respectively [18].As shown in Fig.4,the as-deposited BMN thin film exhibits the lowest dielectric tunability of 5%at a dc bias of 1.3MV/cm.The thin film post-annealed in air exhibits the tun-ability of 19%(1.8MV/cm)and the thin film post-annealed in O 2oven exhibits the tunability of approximate 29%(1.8MV/cm),which is consistent with the results of dielectric permittivity.The low tunability of as-deposited BMN thin films is because the thin films are amorphous and there are lots of defects in the BMN thin films [19].After post-annealing,with the increase of O 2pressure,the increase in tunability is probably because a different microstructure and less oxygen vacancies and defects in the BMN thin films,which in turn affects the tunability of the thin films [19].4.ConclusionsThe crystallinity,microstructure and electrical properties of Bi 1.5MgNb 1.5O 7thin films grown on ITO/glass substrates were investigated.XRD patterns and SEM analysis show that the BMN thin film post-annealed in O 2oven had the best crystalline quality of all the samples.Dielectric constant of as-deposited BMN thin2θ (degree)I n t e n s i t y (a r b . u n i t s )Fig.1.X-ray diffraction patterns of BMN thin films grown on ITO/glass substrates.Fig.2.SEM surface morphologies of BMN thin films grown on ITO/glass substrates:(a)as-deposited,(b)post-annealed in air and (c)post-annealed in O 2oven.S.Yu et al./Materials Letters 116(2014)50–5251film is 52.After post-annealing,dielectric properties of BMN thin films are signi ficantly improved,the thin film post-annealed in O 2oven show the largest dielectric constant of 99and the largest dielectric tunability of 29%,which may attribute to the increase in grain size and the elimination of oxygen vacancies.Moreover,the thin film post-annealed in O 2oven has a relatively high optical transparency about 85%in the visible light region,making it highly promising for integration into optoelectronic devices.AcknowledgmentsThis work was supported financially by Program for New Century Excellent Talentsin University (NCET),863Program (2007AA03Z423)and China Postdoctoral Science Foundation.References[1]Mikheev E,Kajdos AP,Hauser AJ,Stemmer S.Appl Phys Lett 2012;101:252906.[2]Bhardwaj C,Danielb BSS,Kaur D.Mater Lett 2012;87:172–5.[3]Liu H,Avrutin V,Zhu C,Özgür Ü,Yang J,Lu C,et al.J Appl Phys2013;113:044108.[4]Gao L,Jiang S,Li R,Li B,Li Y.Thin Solid Films 2012;520:6295–8.[5]Nguyen HB,Norén L,Liu Y,Withers LR,Wei X,Elcombec MM.J Solid StateChem 2007;180:2558–65.[6]Huang B,Liu Y,Lu Y,Gao H,Chen H.J Mater Sci Mater Electron2013;24:2785–9.[7]Jiang SW,Li YR,Li RG,Xiong ND,Tan LF,Liu XZ,et al.Appl Phys Lett 2009;94:162908.[8]Gao L,Jiang S,Xiao Y,Li R,Li Y.J Appl Phys 2013;114:014104.[9]Liang YC,Huang CL,Hu CY.J Alloys Compd 2011;509:7948–52.[10]Zhu G,Xu H,Yang Z,Yu A.Thin Solid Films 2013;531:415–8.[11]Lee EJH,Pontes FM,Leite ER,Longo E,Magnani R,Pizani PS,et al.Mater Lett2004;58:1715–21.[12]Ning P,Li L,Xia W,Ji L,Zhang X.J Sol Gel Sci Technol 2012;63:395–9.[13]Li N,Li WL,Zhang SQ,Fei WD.Thin Solid Films 2011;519:5070–3.[14]Yu S,Zhang W,Li L,Xu D,Dong H,Jin Y.Acta Mater 2013;61:5429–36.[15]Yu S,Ding L,Xue C,Chen L,Zhang WF.J Non Cryst Solids 2012;358:3137–40.[16]Meng LJ,Andritschky M,Dos –Santos MP.Vacuum 1994;45:19–22.[17]Yang W,Wu Z,Liu Z,Pang A,Tu YL,Feng ZC.Thin Solid Films 2010;519:31–6.[18]Lu J,Stemmer S.Appl Phys Lett 2003;83:2411–3.[19]Zhu X,Zheng D,Peng W,Zhu J,Yuan X,Li J,et al.Mater Lett 2004;58:3591–96.300400500600700800020406080100T r a n s m i t t a n c e (%)Wavelength (nm)As-depositedPost-annealed in airPost-annealed in O 2 evenFig.3.Optical transmittance of BMN thin films grown on ITO/glass substrates.406080100D i e l e c t r i c c o n s t a n tBias field (MV/cm)Fig.4.The bias-field dependence of the dielectric constant at 1MHz for BMN thin films grown on ITO/glass substrates.S.Yu et al./Materials Letters 116(2014)50–5252。

纳米纺织材料课题组

纳米纺织材料课题组

纳米纺织材料课题组[1] ZHOU H, NAEEM M A, LV P, et al. Effect Effect of pore distribution on the lithium storage properties of porous C/SnO2 nanofibers [J]. Journal of Alloys and Compounds, 2017, 711(414-23.[2] ZHANG J, YANG Q, CAI Y, et al. Fabrication and characterization of electrospun porous cellulose acetate nanofibrous mats incorporated with capric acid as form-stable phase change materials for storing/retrieving thermal energy [J]. International Journal of Green Energy, 2017, 14(12): 1011-9.[3] ZHANG J, HOU X, PANG Z, et al. Fabrication of hierarchical TiO2 nanofibers by microemulsion electrospinning for photocatalysis applications [J]. Ceramics International, 2017, 43(17): 15911-7.[4] ZHANG J, CAI Y, HOU X, et al. Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries [J]. Beilstein Journal of Nanotechnology, 2017, 8(1297-306.[5] ZHANG J, CAI Y, HOU X, et al. Fabrication and Characterization of Porous Cellulose Acetate Films by Breath Figure Incorporated with Capric Acid as Form-stable Phase Change Materials for Storing/Retrieving Thermal Energy [J]. Fibers and Polymers, 2017, 18(2): 253-63.[6] YUAN X, XU W, HUANG F, et al. Structural colors of fabric from Ag/TiO2 composite films prepared by magnetron sputtering deposition [J]. International Journal of Clothing Science and Technology, 2017, 29(3): 427-35.[7] SHAO D, GAO Y, CAO K, et al. Rapid surface functionalization of cotton fabrics by modified hydrothermalsynthesis of ZnO [J]. Journal of the Textile Institute, 2017, 108(8): 1391-7.[8] SHA S, JIANG G, CHAPMAN L P, et al. Fast Penetration Resolving for Weft Knitted Fabric Based on Collision Detection [J]. Journal of Engineered Fibers and Fabrics, 2017, 12(1): 50-8.[9] QIAO H, XIA Z, LIU Y, et al. Sonochemical synthesis and high lithium storage properties of ordered Co/CMK-3 nanocomposites [J]. Applied Surface Science, 2017, 400(492-7.[10] QIAO H, XIA Z, FEI Y, et al. Electrospinning combined with hydrothermal synthesis and lithium storage properties of ZnFe2O4-graphene composite nanofibers [J]. Ceramics International, 2017, 43(2): 2136-42.[11] PANG Z, NIE Q, YANG J, et al. Ammonia sensing properties of different polyaniline-based composite nanofibres [J]. Indian Journal of Fibre & Textile Research, 2017, 42(2): 138-44.[12] PANG Z, NIE Q, WEI A, et al. Effect of In2O3 nanofiber structure on the ammonia sensing performances of In2O3/PANI composite nanofibers [J]. Journal of Materials Science, 2017, 52(2): 686-95.[13] PANG Z, NIE Q, LV P, et al. Design of flexible PANI-coated CuO-TiO2-SiO2 heterostructure nanofibers with high ammonia sensing response values [J]. Nanotechnology, 2017, 28(22):[14] LV X, LI G, LI D, et al. A new method to prepare no-binder, integral electrodes-separator, asymmetric all-solid-state flexible supercapacitor derived from bacterial cellulose [J]. Journal of Physics and Chemistry of Solids, 2017, 110(202-10.[15] LV P, YAO Y, ZHOU H, et al. Synthesis of novel nitrogen-doped carbon dots for highly selective detection of iron ion [J]. Nanotechnology, 2017, 28(16):[16] LV P, YAO Y, LI D, et al. Self-assembly of nitrogen-dopedcarbon dots anchored on bacterial cellulose and their application in iron ion detection [J]. Carbohydrate Polymers, 2017, 172(93-101.[17] LUO L, QIAO H, XU W, et al. Tin nanoparticles embedded in ordered mesoporous carbon as high-performance anode for sodium-ion batteries [J]. Journal of Solid State Electrochemistry, 2017, 21(5): 1385-95.[18] LUO L, LI D, ZANG J, et al. Carbon-Coated Magnesium Ferrite Nanofibers for Lithium-Ion Battery Anodes with Enhanced Cycling Performance [J]. Energy Technology, 2017, 5(8): 1364-72.[19] LU H, WANG Q, LI G, et al. Electrospun water-stable zein/ethyl cellulose composite nanofiber and its drug release properties [J]. Materials Science & Engineering C-Materials for Biological Applications, 2017, 74(86-93.[20] LI G, NANDGAONKAR A G, WANG Q, et al. Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: Evaluation for photo- and bio-catalytic dye degradation [J]. Journal of Membrane Science, 2017, 525(89-98.[21] LI G, NANDGAONKAR A G, HABIBI Y, et al. An environmentally benign approach to achieving vectorial alignment and high microporosity in bacterial cellulose/chitosan scaffolds [J]. Rsc Advances, 2017, 7(23): 13678-88.[22] LI G, NANDGAONKAR A G, HABIBI Y, et al. An environmentally benign approach to achieving vectorial alignment and high microporosity in bacterial cellulose/chitosan scaffolds (vol 7, pg 13678, 2017) [J]. Rsc Advances, 2017, 7(27): 16737-.[23] HUANG X, MENG L, WEI Q, et al. Effect of substrate structures on the morphology and interfacial bonding properties of copper films sputtered on polyester fabrics [J]. InternationalJournal of Clothing Science and Technology, 2017, 29(1): 39-46.[24] CAI Y, SONG X, LIU M, et al. Flexible cellulose acetate nano-felts absorbed with capric-myristic-stearic acid ternary eutectic mixture as form-stable phase-change materials for thermal energy storage/retrieval [J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(2): 661-73.[25] CAI Y, HOU X, WANG W, et al. Effects of SiO2 nanoparticles on structure and property of form-stable phase change materials made of cellulose acetate phase inversion membrane absorbed with capric-myristic-stearic acid ternary eutectic mixture [J]. Thermochimica Acta, 2017, 653(49-58.[26] ZHOU J, WANG Q, LU H, et al. Preparation and Characterization of Electrospun Polyvinyl Alcohol-styrylpyridinium/beta-cyclodextrin Composite Nanofibers: Release Behavior and Potential Use for Wound Dressing [J]. Fibers and Polymers, 2016, 17(11): 1835-41.[27] ZHOU H, LI Z, NIU X, et al. The enhanced gas-sensing and photocatalytic performance of hollow and hollow core-shell SnO2-based nanofibers induced by the Kirkendall effect [J]. Ceramics International, 2016, 42(1): 1817-26.[28] ZHOU H, LI Z, NIU X, et al. The enhanced gas-sensing and photocatalytic performance of hollow and hollow core shell SnO2-based nanofibers induced by the Kirkendall effect (vol 42, pg 1817, 2016) [J]. Ceramics International, 2016, 42(6): 7897-.[29] ZHANG J, SONG M, WANG X, et al. Preparation of a cellulose acetate/organic montmorillonite composite porous ultrafine fiber membrane for enzyme immobilizatione [J]. Journal of Applied Polymer Science, 2016, 133(33):[30] ZHANG J, SONG M, LI D, et al. Preparation of Self-clustering Highly Oriented Nanofibers by NeedlelessElectrospinning Methods [J]. Fibers and Polymers, 2016, 17(9): 1414-20.[31] YUAN X, XU W, HUANG F, et al. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering [J]. Applied Surface Science, 2016, 390(863-9.[32] YUAN X, WEI Q, CHEN D, et al. Electrical and optical properties of polyester fabric coated with Ag/TiO2 composite films by magnetron sputtering [J]. Textile Research Journal, 2016, 86(8): 887-94.[33] YU J, ZHOU T, PANG Z, et al. Flame retardancy and conductive properties of polyester fabrics coated with polyaniline [J]. Textile Research Journal, 2016, 86(11): 1171-9.[34] YANG J, LI D, PANG Z, et al. Laccase Biosensor Based on Ag-Doped TiO2 Nanoparticles on CuCNFs for the Determination of Hydroquinone [J]. Nano, 2016, 11(12):[35] YANG J, LI D, FU J, et al. TiO2-CuCNFs based laccase biosensor for enhanced electrocatalysis in hydroquinone detection [J]. Journal of Electroanalytical Chemistry, 2016, 766(16-23.[36] WANG X, WANG Q, HUANG F, et al. The Morphology of Taylor Cone Influenced by Different Coaxial Composite Nozzle Structures [J]. Fibers and Polymers, 2016, 17(4): 624-9.[37] QIU Y, QIU L, CUI J, et al. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing [J]. Materials Science & Engineering C-Materials for Biological Applications, 2016, 59(303-9.[38] QIAO H, FEI Y, CHEN K, et al. Electrospun synthesis and electrochemical property of zinc ferrite nanofibers [J]. Ionics, 2016, 22(6): 967-74.[39] PANG Z, YANG Z, CHEN Y, et al. A room temperatureammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2016, 494(248-55.[40] NIE Q, PANG Z, LU H, et al. Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature [J]. Beilstein Journal of Nanotechnology, 2016, 7(1312-21.[41] NARH C, LI G, WANG Q, et al. Sulfanilic acid inspired self-assembled fibrous materials [J]. Colloid and Polymer Science, 2016, 294(9): 1483-94.[42] LV P, XU W, LI D, et al. Metal-based bacterial cellulose of sandwich nanomaterials for anti-oxidation electromagnetic interference shielding [J]. Materials & Design, 2016, 112(374-82.[43] LV P, WEI A, WANG Y, et al. Copper nanoparticles-sputtered bacterial cellulose nanocomposites displaying enhanced electromagnetic shielding, thermal, conduction, and mechanical properties [J]. Cellulose, 2016, 23(5): 3117-27.[44] LV P, FENG Q, WANG Q, et al. Biosynthesis of Bacterial Cellulose/Carboxylic Multi-Walled Carbon Nanotubes for Enzymatic Biofuel Cell Application [J]. Materials, 2016, 9(3):[45] LV P, FENG Q, WANG Q, et al. Preparation of Bacterial Cellulose/Carbon Nanotube Nanocomposite for Biological Fuel Cell [J]. Fibers and Polymers, 2016, 17(11): 1858-65.[46] LUO L, XU W, XIA Z, et al. Electrospun ZnO-SnO2 composite nanofibers with enhanced electrochemical performance as lithium-ion anodes [J]. Ceramics International, 2016, 42(9): 10826-32.[47] LI W, LIU X, LIU C, et al. Preparation and Characterisation of High Count Yak Wool Yarns Spun by Complete Compacting Spinning and Fabrics Knitted from them [J]. Fibres & Textiles inEastern Europe, 2016, 24(1): 30-5.[48] LI G, WANG Q, LV P, et al. Bioremediation of Dyes Using Ultrafine Membrane Prepared from the Waste Culture of Ganoderma lucidum with in-situ Immobilization of Laccase [J]. Bioresources, 2016, 11(4): 9162-74.[49] LI G, SUN K, LI D, et al. Biosensor based on bacterial cellulose-Au nanoparticles electrode modified with laccase for hydroquinone detection [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2016, 509(408-14.[50] LI G, NANDGAONKAR A G, LU K, et al. Laccase immobilized on PAN/O-MMT composite nanofibers support for substrate bioremediation: a de novo adsorption and biocatalytic synergy [J]. Rsc Advances, 2016, 6(47): 41420-7.[51] LI D, ZANG J, ZHANG J, et al. Sol-Gel Synthesis of Carbon Xerogel-ZnO Composite for Detection of Catechol [J]. Materials, 2016, 9(4):[52] LI D, AO K, WANG Q, et al. Preparation of Pd/Bacterial Cellulose Hybrid Nanofibers for Dopamine Detection [J]. Molecules, 2016, 21(5):[53] KE H, PANG Z, PENG B, et al. Thermal energy storage and retrieval properties of form-stable phase change nanofibrous mats based on ternary fatty acid eutectics/polyacrylonitrile composite by magnetron sputtering of silver [J]. Journal of Thermal Analysis and Calorimetry, 2016, 123(2): 1293-307.[54] KE H, GHULAM M U H, LI Y, et al. Ag-coated polyurethane fibers membranes absorbed with quinary fatty acid eutectics solid-liquid phase change materials for storage and retrieval of thermal energy [J]. Renewable Energy, 2016, 99(1-9.[55] KE H, FELDMAN E, GUZMAN P, et al. Electrospun polystyrene nanofibrous membranes for direct contactmembrane distillation [J]. Journal of Membrane Science, 2016, 515(86-97.[56] HUANG F, LIU W, LI P, et al. Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery [J]. Materials, 2016, 9(2):[57] ZONG X, CAI Y, SUN G, et al. Fabrication and characterization of electrospun SiO2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/retrieval [J]. Solar Energy Materials and Solar Cells, 2015, 132(183-90.[58] ZHENG H, ZHANG J, DU B, et al. Effect of treatment pressure on structures and properties of PMIA fiber in supercritical carbon dioxide fluid [J]. Journal of Applied Polymer Science, 2015, 132(14):[59] ZHENG H, ZHANG J, DU B, et al. An Investigation for the Performance of Meta-aramid Fiber Blends Treated in Supercritical Carbon Dioxide Fluid [J]. Fibers and Polymers, 2015, 16(5): 1134-41.[60] XU C, HINKS D, SUN C, et al. Establishment of an activated peroxide system for low-temperature cotton bleaching using N- 4-(triethylammoniomethyl)benzoyl butyrolactam chloride [J]. Carbohydrate Polymers, 2015, 119(71-7.[61] WANG Q, NANDGAONKAR A, LUCIA L, et al. Enzymatic bio-fuel cells based on bacterial cellulose (BC)/MWCNT/laccase (Lac) and bacterial cellulose/MWCNT/glucose oxidase (GOD) electrodes [J]. Abstracts of Papers of the American Chemical Society, 2015, 249([62] WANG H, XU Y, WEI Q. Preparation of bamboo-hat-shaped deposition of a poly(ethylene terephthalate) fiber web by melt-electrospinning [J]. Textile Research Journal, 2015, 85(17):1838-48.[63] SIGDEL S, ELBOHY H, GONG J, et al. Dye-Sensitized Solar Cells Based on Porous Hollow Tin Oxide Nanofibers [J]. Ieee Transactions on Electron Devices, 2015, 62(6): 2027-32.[64] QIAO H, LUO L, CHEN K, et al. Electrospun synthesis and lithium storage properties of magnesium ferrite nanofibers [J]. Electrochimica Acta, 2015, 160(43-9.[65] QIAO H, CHEN K, LUO L, et al. Sonochemical synthesis and high lithium storage properties of Sn/CMK-3 nanocomposites [J]. Electrochimica Acta, 2015, 165(149-54.[66] NANDGAONKAR A, WANG Q, KRAUSE W, et al. Photocatalytic and biocatalytic degradation of dye solution using laccase and titanium dioxide loaded on bacterial cellulose [J]. Abstracts of Papers of the American Chemical Society, 2015, 249([67] LUO L, QIAO H, CHEN K, et al. Fabrication of electrospun ZnMn2O4 nanofibers as anode material for lithium-ion batteries [J]. Electrochimica Acta, 2015, 177(283-9.[68] LUO L, FEI Y, CHEN K, et al. Facile synthesis of one-dimensional zinc vanadate nanofibers for high lithium storage anode material [J]. Journal of Alloys and Compounds, 2015, 649(1019-24.[69] LUO L, CUI R, LIU K, et al. Electrospun preparation and lithium storage properties of NiFe2O4 nanofibers [J]. Ionics, 2015, 21(3): 687-94.[70] LI W, SU X, ZHANG Y, et al. Evaluation of the Correlation between the Structure and Quality of Compact Blend Yarns [J]. Fibres & Textiles in Eastern Europe, 2015, 23(6): 55-67.[71] LI D, LV P, ZHU J, et al. NiCu Alloy Nanoparticle-Loaded Carbon Nanofibers for Phenolic Biosensor Applications [J]. Sensors, 2015, 15(11): 29419-33.[72] LI D, LI G, LV P, et al. Preparation of a graphene-loaded carbon nanofiber composite with enhanced graphitization and conductivity for biosensing applications [J]. Rsc Advances, 2015, 5(39): 30602-9.[73] HUANG F, XU Y, PENG B, et al. Coaxial Electrospun Cellulose-Core Fluoropolymer-Shell Fibrous Membrane from Recycled Cigarette Filter as Separator for High Performance Lithium-Ion Battery [J]. Acs Sustainable Chemistry & Engineering, 2015, 3(5): 932-40.[74] GONG J, QIAO H, SIGDEL S, et al. Characteristics of SnO2 nanofiber/TiO2 nanoparticle composite for dye-sensitized solar cells [J]. Aip Advances, 2015, 5(6):[75] GAO D, WANG L, WANG C, et al. Electrospinning of Porous Carbon Nanocomposites for Supercapacitor [J]. Fibers and Polymers, 2015, 16(2): 421-5.[76] FU J, PANG Z, YANG J, et al. Hydrothermal Growth of Ag-Doped ZnO Nanoparticles on Electrospun Cellulose Nanofibrous Mats for Catechol Detection [J]. Electroanalysis, 2015, 27(6): 1490-7.[77] FU J, PANG Z, YANG J, et al. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application [J]. Applied Surface Science, 2015, 349(35-42.[78] FU J, LI D, LI G, et al. Carboxymethyl cellulose assisted immobilization of silver nanoparticles onto cellulose nanofibers for the detection of catechol [J]. Journal of Electroanalytical Chemistry, 2015, 738(92-9.[79] DU B, ZHENG L-J, WEI Q. Screening and identification of Providencia rettgeri for brown alga degradation and anion sodium alginate/poly (vinyl alcohol)/tourmaline fiber preparation[J]. Journal of the T extile Institute, 2015, 106(7): 787-91.[80] CUI J, QIU L, QIU Y, et al. Co-electrospun nanofibers of PVA-SbQ and Zein for wound healing [J]. Journal of Applied Polymer Science, 2015, 132(39):[81] CHEN X, LI D, LI G, et al. Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor [J]. Applied Surface Science, 2015, 328(444-52.[82] CAI Y, SUN G, LIU M, et al. Fabrication and characterization of capric lauric palmitic acid/electrospun SiO2 nanofibers composite as form-stable phase change material for thermal energy storage/retrieval [J]. Solar Energy, 2015, 118(87-95.[83] CAI Y, LIU M, SONG X, et al. A form-stable phase change material made with a cellulose acetate nanofibrous mat from bicomponent electrospinning and incorporated capric-myristic-stearic acid ternary eutectic mixture for thermal energy storage/retrieval [J]. Rsc Advances, 2015, 5(102): 84245-51.[84] ZHANG P, WANG Q, ZHANG J, et al. Preparation of Amidoxime-modified Polyacrylonitrile Nanofibers Immobilized with Laccase for Dye Degradation [J]. Fibers and Polymers, 2014, 15(1): 30-4.[85] XIA X, WANG X, ZHOU H, et al. The effects of electrospinning parameters on coaxial Sn/C nanofibers: Morphology and lithium storage performance [J]. Electrochimica Acta, 2014, 121(345-51.[86] WANG Q, NANDGAONKAR A G, CUI J, et al. Atom efficient thermal and photocuring combined treatments for the synthesis of novel eco-friendly grid-like zein nanofibres [J]. Rsc Advances, 2014, 4(106): 61573-9.[87] WANG Q, LI G, ZHANG J, et al. PAN Nanofibers Reinforced with MMT/GO Hybrid Nanofillers [J]. Journal of Nanomaterials, 2014,[88] WANG Q, CUI J, LI G, et al. Laccase Immobilized on a PAN/Adsorbents Composite Nanofibrous Membrane for Catechol Treatment by a Biocatalysis/Adsorption Process [J]. Molecules, 2014, 19(3): 3376-88.[89] WANG Q, CUI J, LI G, et al. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry [J]. Polymers, 2014, 6(9): 2357-70.[90] PANG Z, FU J, LV P, et al. Effect of CSA Concentration on the Ammonia Sensing Properties of CSA-Doped PA6/PANI Composite Nanofibers [J]. Sensors, 2014, 14(11): 21453-65.[91] PANG Z, FU J, LUO L, et al. Fabrication of PA6/TiO2/PANI composite nanofibers by electrospinning-electrospraying for ammonia sensor [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2014, 461(113-8.[92] NANDGAONKAR A G, WANG Q, FU K, et al. A one-pot biosynthesis of reduced graphene oxide (RGO)/bacterial cellulose (BC) nanocomposites [J]. Green Chemistry, 2014, 16(6): 3195-201.[93] MENG L, WEI Q, LI Y, et al. Effects of plasma pre-treatment on surface properties of fabric sputtered with copper [J]. International Journal of Clothing Science and Technology, 2014, 26(1): 96-104.[94] LUO L, CUI R, QIAO H, et al. High lithium electroactivity of electrospun CuFe2O4 nanofibers as anode material for lithium-ion batteries [J]. Electrochimica Acta, 2014, 144(85-91.[95] LI X-J, WEI Q, WANG X. Preparation of magnetic polyimide/maghemite nanocomposite fibers by electrospinning[J]. High Performance Polymers, 2014, 26(7): 810-6.[96] LI X, WANG X, WANG Q, et al. Effects of Imidization Temperature on the Structure and Properties of Electrospun Polyimide Nanofibers [J]. Journal of Engineered Fibers and Fabrics, 2014, 9(4): 33-8.[97] LI D, YANG J, ZHOU J, et al. Direct electrochemistry of laccase and a hydroquinone biosensing application employing ZnO loaded carbon nanofibers [J]. Rsc Advances, 2014, 4(106): 61831-40.[98] LI D, PANG Z, CHEN X, et al. A catechol biosensor based on electrospun carbon nanofibers [J]. Beilstein Journal of Nanotechnology, 2014, 5(346-54.[99] LI D, LUO L, PANG Z, et al. Novel Phenolic Biosensor Based on a Magnetic Polydopamine-Laccase-Nickel Nanoparticle Loaded Carbon Nanofiber Composite [J]. Acs Applied Materials & Interfaces, 2014, 6(7): 5144-51.[100] LI D, LUO L, PANG Z, et al. Amperometric detection of hydrogen peroxide using a nanofibrous membrane sputtered with silver [J]. Rsc Advances, 2014, 4(8): 3857-63.[101] KE H, PANG Z, XU Y, et al. Graphene oxide improved thermal and mechanical properties of electrospun methyl stearate/polyacrylonitrile form-stable phase change composite nanofibers [J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(1): 109-22.[102] KASAUDHAN R, ELBOHY H, SIGDEL S, et al. Incorporation of TiO2 Nanoparticles Into SnO2 Nanofibers for Higher Efficiency Dye-Sensitized Solar Cells [J]. Ieee Electron Device Letters, 2014, 35(5): 578-80.[103] HUANG X, MENG L, WEI Q, et al. Morphology and properties of nanoscale copper films deposited on polyestersubstrates [J]. International Journal of Clothing Science and Technology, 2014, 26(5): 367-76.[104] GAO D, WANG L, YU J, et al. Preparation and Characterization of Porous Carbon Based Nanocomposite for Supercapacitor [J]. Fibers and Polymers, 2014, 15(6): 1236-41.[105] FU J, QIAO H, LI D, et al. Laccase Biosensor Based on Electrospun Copper/Carbon Composite Nanofibers for Catechol Detection [J]. Sensors, 2014, 14(2): 3543-56.[106] FENG Q, ZHAO Y, WEI A, et al. Immobilization of Catalase on Electrospun PVA/PA6-Cu(II) Nanofibrous Membrane for the Development of Efficient and Reusable Enzyme Membrane Reactor [J]. Environmental Science & Technology, 2014, 48(17): 10390-7.[107] FENG Q, WEI Q, HOU D, et al. Preparation of Amidoxime Polyacrylonitrile Nanofibrous Membranes and Their Applications in Enzymatic Membrane Reactor [J]. Journal of Engineered Fibers and Fabrics, 2014, 9(2): 146-52.[108] DUAN F, ZHANG Q, WEI Q, et al. Control of Photocatalytic Property of Bismuth-Based Semiconductor Photocatalysts [J]. Progress in Chemistry, 2014, 26(1): 30-40.[109] CUI J, WANG Q, CHEN X, et al. A novel material of cross-linked styrylpyridinium salt intercalated montmorillonite for drug delivery [J]. Nanoscale Research Letters, 2014, 9([110] CAI Y, ZONG X, ZHANG J, et al. THE IMPROVEMENT OF THERMAL STABILITY AND CONDUCTIVITY VIA INCORPORATION OF CARBON NANOFIBERS INTO ELECTROSPUN ULTRAFINE COMPOSITE FIBERS OF LAURIC ACID/POLYAMIDE 6 PHASE CHANGE MATERIALS FOR THERMAL ENERGY STORAGE [J]. International Journal of Green Energy, 2014, 11(8): 861-75.[111] XIA X, LI S, WANG X, et al. Structures and properties ofSnO2 nanofibers derived from two different polymer intermediates [J]. Journal of Materials Science, 2013, 48(9): 3378-85.[112] WANG X, LI S, WANG H, et al. Progress in Research of Melt-electrospinning [J]. Polymer Bulletin, 2013, 7): 15-26.[113] WANG X, HE T, LI D, et al. Electromagnetic properties of hollow PAN/Fe3O4 composite nanofibres via coaxial electrospinning [J]. International Journal of Materials & Product Technology, 2013, 46(2-3): 95-105.[114] WANG Q, PENG L, LI G, et al. Activity of Laccase Immobilized on TiO2-Montmorillonite Complexes [J]. International Journal of Molecular Sciences, 2013, 14(6): 12520-32.[115] WANG Q, PENG L, DU Y, et al. Fabrication of hydrophilic nanoporous PMMA/O-MMT composite microfibrous membrane and its use in enzyme immobilization [J]. Journal of Porous Materials, 2013, 20(3): 457-64.[116] WANG Q, DU Y, FENG Q, et al. Nanostructures and Surface Nanomechanical Properties of Polyacrylonitrile/Graphene Oxide Composite Nanofibers by Electrospinning [J]. Journal of Applied Polymer Science, 2013, 128(2): 1152-7.[117] SHAO D, WEI Q, TAO L, et al. PREPARATION AND CHARACTERIZATION OF PET NONWOVEN COATED WITH ZnO-Ag BY ONE-POT HYDROTHERMAL TECHNIQUES [J]. Tekstil Ve Konfeksiyon, 2013, 23(4): 338-41.[118] QIAO H, YAO D, CAI Y, et al. One-pot synthesis and electrochemical property of MnO/C hybrid microspheres [J]. Ionics, 2013, 19(4): 595-600.[119] LIU H, CHEN D, WEI Q, et al. An investigation into thebust girth range of pressure comfort garment based on elastic sports vest [J]. Journal of the Textile Institute, 2013, 104(2): 223-30.[120] LI D, PANG Z, WANG Q, et al. Fabrication and Characterization of Polyamide6-room Temperature Ionic Liquid (PA6-RTIL) Composite Nanofibers by Electrospinning [J]. Fibers and Polymers, 2013, 14(10): 1614-9.[121] KUMAR D N T, WEI Q. Analysis of Quantum Dots for Nano-Bio applications as the Technological Platform of the Future [J]. Research Journal of Biotechnology, 2013, 8(5): 78-82.[122] KE H, LI D, ZHANG H, et al. Electrospun Form-stable Phase Change Composite Nanofibers Consisting of Capric Acid-based Binary Fatty Acid Eutectics and Polyethylene Terephthalate [J]. Fibers and Polymers, 2013, 14(1): 89-99.[123] KE H, LI D, WANG X, et al. Thermal and mechanical properties of nanofibers-based form-stable PCMs consisting of glycerol monostearate and polyethylene terephthalate [J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(1): 101-11.[124] KE H, CAI Y, WEI Q, et al. Electrospun ultrafine composite fibers of binary fatty acid eutectics and polyethylene terephthalate as innovative form-stable phase change materials for storage and retrieval of thermal energy [J]. International Journal of Energy Research, 2013, 37(6): 657-64.[125] HUANG F, ZHANG H, WEI Q, et al. Preparation and characterization of PVDF nanofibrous membrane containing bimetals for synergistic dechlorination of trichloromethane [J]. Abstracts of Papers of the American Chemical Society, 2013, 246( [126] HUANG F, XU Y, LIAO S, et al. Preparation of Amidoxime Polyacrylonitrile Chelating Nanofibers and Their Application forAdsorption of Metal Ions [J]. Materials, 2013, 6(3): 969-80.[127] GAO D, WANG L, XIA X, et al. Preparation and Characterization of porous Carbon/Nickel Nanofibers for Supercapacitor [J]. Journal of Engineered Fibers and Fabrics, 2013, 8(4): 108-13.[128] FENG Q, WANG Q, TANG B, et al. Immobilization of catalases on amidoxime polyacrylonitrile nanofibrous membranes [J]. Polymer International, 2013, 62(2): 251-6.[129] CAI Y, ZONG X, ZHANG J, et al. Electrospun nanofibrous mats absorbed with fatty acid eutectics as an innovative type of form-stable phase change materials for storage and retrieval of thermal energy [J]. Solar Energy Materials and Solar Cells, 2013, 109(160-8.[130] CAI Y, ZONG X, BAN H, et al. Fabrication, Structural Morphology and Thermal Energy Storage/Retrieval of Ultrafine Phase Change Fibres Consisting of Polyethylene Glycol and Polyamide 6 by Electrospinning [J]. Polymers & Polymer Composites, 2013, 21(8): 525-32.[131] CAI Y, GAO C, ZHANG T, et al. Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats [J]. Renewable Energy, 2013, 57(163-70.[1]张权,董建成,陈亚君,王清清,魏取福.水热反应温度对PMMA/TiO_2复合纳米纤维膜的形貌和性能的影响[J].材料科学与工程学报,2017,(05):785-789.[2]周建波,卢杭诣,张权,代雅轩,王清清,魏取福.醋纤基载药纳米纤维膜制备及药物缓释行为研究[J].化工新型材料,2017,45(10):223-225.[3]盛澄成,徐阳,魏取福,乔辉.Cu/Al_2O_3复合薄膜的制备及其抗氧化性能[J].材料科学与工程学报,2017,35(04):596-599+606.[4]张金宁,何慢,陈昀,曹建华,杨占平,宋明玉,魏取福.二醋酸纤维/OMMT复合增强纳米纤维膜及其过滤性能研究[J].化工新型材料,2017,45(08):84-86.[5]周建波,卢杭诣,张权,王清清,魏取福.CA/β-CD复合纳米纤维的制备与表征研究[J].化工新型材料,2017,45(07):244-246.[6]敖克龙,李大伟,吕鹏飞,王清清,魏取福.载钯细菌纤维素纳米纤维的制备及表征[J].化工新型材料,2017,45(07):214-216.[7]盛澄成,徐阳,魏取福,乔辉.双面结构电磁屏蔽材料的制备及抗氧化性能研究[J].化工新型材料,2017,45(07):57-59.[8]刘文婷,宁景霞,李沛赢,魏取福,黄锋林.PVDF-HFP/LLTO复合锂离子电池隔膜的电化学性能研究[J].化工新型材料,2017,45(07):50-53.[9]邱玉宇,蔡维维,邱丽颖,王清清,魏取福.负载王不留行黄酮苷纳米纤维作为创伤敷料的研究[J].生物医学工程学杂志,2017,34(03):394-400.[10]俞俭,李祥涛,高大伟,刘丽,魏取福,林洪芹.木棉/棉混纺机织物的服用性能[J].丝绸,2017,54(06):22-26.[11]盛澄成,徐阳,魏取福.层状复合电磁屏蔽材料的制备及性能研究[J].化工新型材料,2017,45(05):61-63.[12]张权,董建成,马梦琴,王清清,魏取福.柔性PMMA/TiO_2复合超细纤维的制备及表征[J].化工新型材料,2017,45(05):90-92.[13]张金宁,宋明玉,王小宇,陈昀,曹建华,杨占平,魏取福.多孔二醋酸超细纤维膜的固定化酶及染料降解性能[J].化工新型材料,2017,45(05):173-175.[14]高大伟,王春霞,林洪芹,魏取福,李伟伟,陆逸群,姜宇.二氧化钛纳米管的制备及其光催化性能[J].纺织学报,2017,38(04):22-26.[15]柯惠珍,李永贵,王建刚,袁小红,陈东生,魏取福.磁控溅射法提高定型相变材料的储热和放热速率[J].功能材料,2017,48(03):3163-3167.[16]张权,代雅轩,马梦琴,王清清,魏取福.光敏抗菌型静电纺丙烯酸甲酯/丙烯酸纳米纤维的制备及其性能表征[J].纺织学报,2017,38(03):18-22.。

广东工业大学物理学院导师简介

广东工业大学物理学院导师简介

物理学院导师简介硕士教育材料物理与化学(硕士)学科、专业培养目标:具有坚实的材料物理与化学理论基础和系统的专门知识。

了解本学科的发展动向。

掌握材料结构及其物理性质和化学性质研究的基本方法和技术。

熟练掌握运用一门外国语和计算机。

有较强的知识更新能力和熟练的实验技能,掌握有关先进的材料制备技术和先进测试仪器的使用和结果分析。

具有在材料或器件的研究开发单位、高等院校或生产部门工作的能力。

主要课程: 量子力学(Ⅱ)、固体物理(Ⅱ)、高等激光技术、纳米材料与纳米技术、群论、固态电子学、激光光谱学、半导体薄膜技术、新型复合材料理论与应用、光信息存储材料、光电材料及器件物理、计算物理、材料科学前沿、激光与物质相互作用、材料化学、Matlab在工程中的应用、X射线衍射与电子显微分析。

物理电子学(硕士)学科、专业培养目标:物理电子学是近代物理学、电子学、光学、光电子学、量子电子学及相关技术的交叉学科,主要在电子工程和信息科学技术领域内进行基础和应用研究。

硕士生通过三年左右时间的学习学生应具有较坚实的数学、物理基础知识,常据本学科坚实的理论基础及系统的专门知识;掌据相关的实验技术及计算机技术。

较为熟练地掌据一门外国语,能阅读本专业的外文资料。

具有从事科学研究工作及独立从事专门技术工作的能力,以及严谨求实的科学态度和工作作风;能胜任研究机构、高等院校和产业部门有关方面儒教学、研究、工程、开发及管理工作。

主要课程: 光电子学与激光器件、微电子器件原理与应用、固体物理学Ⅱ、激光光谱学、量子力学、薄膜物理技术、声学基础、物质结构、Matlab在工程中的应用、半导体物理学、光通信技术与器件、计算物理学、物理电子技术实验等导师风采材料物理与化学:王银海朱燕娟唐新桂易双萍张欣罗莉赵韦人刘秋香物理电子学:胡义华吴福根周金运钟韶苏成悦潘永雄陈丽伍春燕王银海教授广东工业大学物理与光电工程学院副院长教授,博士,硕士生导师。

1964年3月出生,2001年在中国科学技术大学获博士学位,2002-2004年中国科学院固体物理研究所博士后。

现代传感技术

现代传感技术

2010年春季学期研究生课程考试试题Q1 填空题(共10分,每空1分)a)现代信息技术的三大支柱是传感技术、通讯技术和计算机技术,它们分别构成信息系统的“( ①感觉器官)”、“神经”和“(大脑②)”。

b)往往一种量值在传感或检测技术上的突破,会带来对另外一种量值的突破。

例如,约瑟夫森效应器件的出现,不仅解决了对于10-13T超弱(磁场③)的检测,同时还解决了对微弱(电压④)量的检测。

c)汽车气囊安全系统的启动,应该依据汽车安装的(压力⑤)和(加速度⑥)等传感器输出的信号值。

d)传感技术的发展主要体现在以下几个方面,如集成化智能化、无线化(网络⑦)化、微机械微(电子⑧)化。

e)传感器结构设计采用反馈形式,可以使传感器的延迟时间常数(变小⑨);采用双敏感元件差动方式,不仅可以改善传感器的非线性问题,还可以抑制例如(温度⑩)等变量参数的干扰。

Q2 简答题(共10分,每小题2分)a)如果使用霍尔传感器测量小电流,请简述原理或给出测量示意图。

是霍尔元件在聚集磁路中检测到与原边电流成比例关系的磁通量后输出霍尔电压信号,经放大电路放大后输送到仪表显示或计算机采集来直观反映电流的大小。

b)比较说明热电阻和热敏电阻的测温特点。

热电阻是金属材料,热敏电阻是半导体材料。

热电阻比热敏电阻测温范围大(如铂热电阻-200~960℃,热敏电阻只有-50~300℃左右)。

热电阻线性好,热敏电阻非线性严重,且热敏电阻互换性较差。

热电阻比热敏电阻灵敏度低。

(因热电阻温度系数较小,<1%/℃;热敏电阻-2%/℃至-6%/℃)。

热电阻都是正温度系数(即阻值随温度的上升而上升),而热敏电阻分为负温度系数和正温度系数两种。

c) 无线传感器网络的核心技术问题有哪些?答:关键技术:拓扑控制、网络协议、网络安全、时间同步、定位技术、数据融合、数据管理、无线通信技术、嵌入式系统、应用层技术。

核心问题:能源、传感器、封装、部署、资源受限下的网络机制、大规模下的网络机制d) 功能型光纤传感器可以测量哪些物理量?(举3例即可)答:陀螺、声、磁、压力、温度、液面、e) 在传感器静态特性数据分析中,插值和回归的目的分别是什么?答:插值的目的在于减少或增大信息量。

静电纺丝纳米纤维的制备工艺及其应用

静电纺丝纳米纤维的制备工艺及其应用

万方数据第4期董晓英等.静电纺丝纳米纤维的制备工艺及其应用49ski等∽o的实验,随着距离减小,聚苯乙烯纤维上串珠分布增多,其原因与流速增加相同,即溶剂在到达接受装置前不能完全挥发。

1.4溶液浓度静电纺丝需要适当的溶液浓度。

当溶液过稀时,溶液会从针头喷射,不能形成连续的纤维。

而当溶液浓度过大时,粘度过高,纺丝行为不稳定。

韩国的Lee等¨u研究了溶液浓度与串珠形貌的关系。

在电压为15kV,接收距离为12cnl的情况下,聚苯乙烯在1:1的THF/DMF溶液中进行静电纺丝,随着溶液质量分数从5%增加到15%,串珠逐渐变细,变长,直至消失。

康奈尔大学的Tan和Oberdorf¨21研究了不同浓度含5%氯化1,3.二氯-5,5.二甲基己内醯脲(DDMH)的尼龙6静电纺丝溶液粘度、电导率和纤维直径之间的关系。

随着溶液浓度增加,溶液粘度增大,电导率下降。

1.5溶剂挥发性静电纺丝溶液从针头喷出到达接收器的过程也是溶剂挥发的过程。

若溶剂挥发过快,则溶质易堵塞针头,影响纺丝的稳定性;若溶剂在到达接收器前不能完全挥发,则残留溶剂会溶蚀接收器上的纤维,进而破坏纤维形貌。

Megelski等一1研究了聚苯乙烯纤维在不同浓度的DMF和THF混合溶液中的静电纺丝行为。

两种极端情况下,在挥发性溶剂THF_中,纤维上小孔的分布密度最大,从而使纤维的比表面积增大20%~40%;而在低挥发性的DMF中,纤维表面趋于平滑。

2同轴静电纺丝单轴的静电纺丝既可以用一种材料的溶液纺出纤维¨3|,又可以对相容性体系的多种材料进行混纺¨4’15j。

但是,欲得到不互溶物间的理想静电纺丝材料,虽然人们通过乳液或悬浮液等分散的非均相体系也进行了一些尝试¨6’17o,但这些体系往往由于界面张力的不同而产生纤维内部分布的不均匀现象。

例如,美国纽约州立大学石溪分校的Kim等¨8J将亲水性药物头孢西丁钠负载于油性聚乙交酯.丙交酯(PLGA)基体中静电纺丝,结果药物在初期显示突释现象,引入亲水性链段PLGA/PLA/PEG.b.PLA后,突释现象只得到一定程度的抑制。

静电纺丝聚氨酯纳米纤维的应用研究进展

静电纺丝聚氨酯纳米纤维的应用研究进展
[8] GASPAR-VIPTIPIPSCU A, STANCIPC A M, CRACIPNESCU O. Naturae composite dressings based on collagen, gelatin and plant bioactive compounds foo wound healing: A review [ J -. Internationai Journai of Bioloaicai MacromcOecules, 2019, 138: 854-865.
生物组织工程是修复或替换受损人体器官以重 建其功能的一项重要医学技术。生物组织工程涉及 的领域主要分为生物支架、细胞和生长因子3个部 分⑴],其中生物支架为细胞提供所需要的基体,通 过构建组织工程支架来替代原有的受损皮肤,将会 降低大面积皮肤修复的成本。静电纺丝纳米纤维与 天然细胞外基质结构类似,可以应用于生物组织工 程支架的构建。聚氨酯软硬段之间的微相分离结 构,利于细胞的附着和生长,因此静电纺丝聚氨酯纳 米纤维生物支架广泛应用于血管、心脏和皮肤等生 物组织工程中。Jaganathan等,12-将肉豆蔻油和聚氨 酯混合,利用静电纺丝制备生物组织工程支架。结 果发现,肉豆蔻油可有效降低聚氨酯的润湿性 ,改善 表面光滑度;此纳米复合材料的抗凝血性实验表明, 其抗血栓形成性比不加肉豆蔻油的静电纺丝聚氨酯 纤维更强。Puperi等⑴-通过静电纺丝得到聚氨酯 和聚乙二醇水凝胶组成的复合支架,该支架的多层 结构可实现细胞的3D培养。通过静电纺丝聚氨酯 网眼层的设计,调整支架可模拟自然主动脉瓣的拉 伸性、各向异性和可延展性,为进一步了解纤维化瓣 膜疾病提供模型。
[5 - HU X, LIF S, ZHOU G, et al. Electrospinning oi polymeac nanofibero for dag delivea applications[ J]. Jouaial oi Controlled Re­ lease, 2014,185:12—21.

高熵陶瓷研究进展

高熵陶瓷研究进展

高熵陶瓷研究进展摘要高熵陶瓷是一种新兴的等摩尔多组分陶瓷材料,集抗氧化、耐烧蚀、耐腐蚀、超高硬度优秀性能于一体。

在空天技术,精密制造等高端领域有着广阔的应用前景。

当前高熵陶瓷制备工艺尚不成熟,本文基于近年相关实验,详细阐述了高熵硼化物相关研究成果,对当前高熵体系的相关体系与其特征进行了归纳和总结。

关键词高熵陶瓷,体系计算,制备方法0.引言2004年叶均蔚教授[1]提出了高熵的概念,认为高熵材料内部出现迟滞动力,晶格畸变和非原组元性能。

表现出良好的结构稳定性和优异的力学性能,并且展现了全新的电性能和催化性能等性质。

高熵陶瓷作为一种新兴等摩尔的多组分陶瓷材料,是一种抗氧化,抗烧蚀,耐腐蚀和超高硬度于一体的优秀材料,具有极大的发展潜力。

1.高熵效应在高混乱度无序系统中的特殊效应被称为高熵效应[1]。

高熵效应有四类:1.热力学中的高熵效应:在高熵系统作用下可以促进元素间的相容性使得多组元复合材料在制备后形成单一相。

2.结构的晶格畸变效应:高熵体系中的各组元的原子在晶格点阵中的随机分布,组元之间的结构差距较大,晶体内部的具有比传统复合材料更大的晶格畸变和缺陷。

3.动力学迟滞扩散效应:高熵材料内部的扩散和相变速度相对于传统材料较慢,内部反应滞后。

4.性能上的鸡尾酒效应[9],不同组元的性能的不同以及组元之间的相互作用会使得高熵材料产生更加复杂的性质,产生多组元协增效应从而实现性能的飞跃。

2.高熵氧化物最早提出高熵陶瓷概念并制备的陶瓷是Rost CM[2]等四制备的五元氧化物陶瓷。

他们以MgO、CoO、NiO、CuO、ZnO为原料,球磨混合后烧结制备,并从相转变的可逆性,体系熵与组元的关系和元素的化学环境来分析高熵陶瓷中的高熵效应,在此之后,相关学者将其扩展到到不同的氧化物体系,制备所得的材料具有优异的性能。

单相(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)1-x-yGyAxO (其中A= Li, Na或K)具有极高的介电常数和超离子电导率;快速燃烧降解法制备的(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O陶瓷粉体在奈耳温度以下表现出长程反铁磁行为,并且在室温下显示出顺磁行为。

二氧化硅气凝胶制备条件的选择_李华

二氧化硅气凝胶制备条件的选择_李华
为[7],甲醇和乙醇对正硅酸乙酯水解反应的性质影响不明显,但 对最后凝胶的结构、孔径的大小有较大影响,而霍玉秋等[8]的研 究发现,在以盐酸为催化剂的体系中,从乙醇、异丙醇到正丁醇, 随着共溶剂烷基链的增长,正硅酸乙酯水解和缩聚过程都加快, 产率增大,同时 反 应 产 物 的 粒 度 变 小 但 均 匀 性 增 加。 乙 醇 存 在 下的较低反应速率与其促进水解和聚合的逆反应也是有关的。 除了醇外还可使 用 其 它 溶 剂 如 二 氧 六 环、甲 酰 胺、丙 酮、四 氢 呋 喃等。 1. 1. 3 制备工艺的选择
摘 要: 二氧化硅气凝胶是典型的纳米多孔轻质材料,由于具有独特的性能并在许多领域存在潜在的应用价值而受到广泛关
注。本文从气凝胶制备过程中的硅源的选择、溶剂的选择、制备工艺的选择、催化剂等方面进行了研究,有利于确定常压干燥制备二
氧化硅气凝胶的生产条件。
关键词: 二氧化硅气凝胶; 一步法; 两步法; 常压干燥
Key words: silica aerogel; in one step; two step; atmospheric pressure drying
气凝胶是由胶体粒子缩聚而成的一种轻质纳米多空非晶固 体材料,具有 连 续 的 网 络 结 构,在 微 观 上 具 有 纳 米 尺0 nm,比表面积高达 200 ~ 1000 m2 ·g - 1 ,密度变化范围 3 ~ 500 kg·m - 3 ,具有许多特 殊的性质和广阔的应用前景[1 - 2]。
* 基金项目: 河南省教育厅自然科学研究项目资助( 2007530002) 。 作者简介: 李华,女( 1981 - ) ,硕士,助教,从事功能高分子材料合成与表征。
第 40 卷第 3 期
李华等: 二氧化硅气凝胶制备条件的选择

菲尼克斯光学镜头用户手册说明书

菲尼克斯光学镜头用户手册说明书

7th International Conference on Applied Science, Engineering and Technology (ICASET 2017) Fabrication and Characterization of Nano MgO CrystalHaicheng Wei1,a Lisheng Tang2,b Mingxia Xiao1,c Yajie Xu1,d1School of Electrical and Information Engineering, Beifang University For Nationalities, Yinchuan,Ningxia, China2Beijing Hui Feng Energy Technology Co., Ltd., Beijing, China a**************.cn b********************c*****************d***************Abstract: In this work, the direct precipitation method was used to generate magnesium salt Mg(OH)2, the process of preparing MgO crystal by calcining Mg(OH)2 in three stage temperature was studied, and MgO crystal was characterized by scanning electron microscope and XRD. On this basis, the energy band structure and states density of Mgo crystal were calculated by the first principle theory, the influence of crystal orientation on Mgo secondary electron emission was analyzed. The experimental results show that the MgO prepared by this method is cubic crystal. The grain size is evenly distributed in the vicinity of 40.65nm. The crystal orientation is of (200), (111), (220) and along the (200) orientation preferential growth.Keyword:MgO Crystal, Secondary Electron Emission, First Principle theory, Direct Precipitation MethodIntroductionMgO is a kind of metal oxide material, which has capacities of good insulation, chemical inertness and sputtering resistance. Since MgO has the factors of high coefficient of secondary electron emission, stable working performance, can withstand high current density, craft process simple, it is widely used as materials secondary electron emitter. It is important component of optoelectronic detecting instruments and flat panel display devices [1]. In the related research field, MgO can be used as the dielectric protective film material of the gas discharge device[2], and the improvement of the surface electron emission ability has become the key factor to improve the luminous efficiency of the device [3][4]. It is important to study the preparation technology of MgO material in high Xe environment, which can increase the number of secondary electron emission on the surface of MgO material and improve the luminous efficiency of the device [5].But there are some problems come out with the increase of Xe content in the working gas of MgO, such as the increase of discharge delay and the decrease of the response speed of the device. Kim et al. study on the effects of the exo-electron on MgO materials for addressing speed, put forward by increasing the number of the exo-electron methods to improve addressing speed [6]. Because of the high specific surface of nano MgO crystal by using microcrystalline particles, the exo-electron emission quantity will be improved, the speed of electron emission will be accelerated, the discharge delay time will be reduced, the stability of discharge will be improved. Therefore, it is very important to fabricate the high purity and consistency MgO particles for improving the electron emission characteristics of optoelectronic devices.In this paper, the microstructure of MgO crystal was studied, and the precursor of MgO was prepared by low cost liquid phase synthesis method. The preparation process of nano MgO crystal material was explored, which could guide the preparation of MgO material. The related research hasa theoretical and practical significance for understanding the relationship between the microstructure of MgO materials and the electron emission coefficient.Theory of MgO exo-electron emissionGeneral MgO primitive cell model could consult Sasaki’s studies [7]. According to the reference, MgO has the same cubic cell structure as NaCl, which belongs to the space group FM-3M. Standard MgO model contains 14 Mg2+ and 13 O2-, shown as Fig 1Fig. 1 Nano Mgo primitive cell modelInside nano MgO, the relaxation of electrons and holes, composite process that is captured by the forbidden band of electron in absorbing composite process of energy released from the surface of the MgO style after injection. This escape electron emission belongs to MgO material itself or into electrons and holes of MgO style after a slow delay compound produced by the electron emission. The main processes of escape electron emission of nanometer MgO style crystal are:1) Electron irradiation in vacuum ultraviolet or electron collision excitation to the conduction band; 2) Shallow hole level can capture these electrons; 3) Captured through thermal excitation effect to be excited to conduction band again, and after drift in MgO style crystal, was captured by the hole again; 4) Radiation centers capture some electronic drift; 5) Electron in the band gaps by VUV irradiation or auger effect to the excitation energy to the discharge space form the run-up to erase the wall charges required.Cathode electron excitation spectra showed that nano MgO crystal material itself has an oxygen defect in MgO crystal and a broad peak related to near 400 nm wavelength. Single crystal MgO particles in electron and ultraviolet photon excitation, will have two peaks near 400 nm and 235 nm. The emission peaks exist in single crystal MgO particles, and luminous summit increases will increase with the size of MgO single crystal. The emission peak is mainly composed of the Auger recombination process of electron and hole in the composite produced by 235nm (5.3eV) VUV. In the single crystal MgO, the hole and electron recombination process, which can make the electrons in the forbidden band escape into the discharge space, can enhance the electron emission properties of the MgO materialsTherefore, Yan team [9][10] and Chiang[11] and others believe that the existing electronic single crystal MgO nano particles in the composite hole trap can produce desired electron and hole. Nano MgO crystal coating on the surface of MgO film, can increase the exo-electron emission surface, improve the low bit delay, improve the discharge stability. The preparation of nano MgO has an important significance for improving the photoelectric properties of MgO materials.Fabrication method of nano MgO crystalThe preparation of MgO nano particles with high purity was divided into MgO precursor preparation and MgO crystal preparation. In this paper, the precursor Mg(OH)2 was prepared by direct precipitation method, and the MgO crystal was prepared by calcination method [12].Fabrication of Mg(OH)2Morphology of prepared MgO precursor Mg(OH)2 was influence on the following morphology of MgO crystal in a certain extent. The precursor crystal morphology, size and crystal orientation related by the technics of preparation. It is necessary to consider the process parameters in the preparation process.The experiment mainly adopts magnesium salt C 4H 6O 4Mg·4H 2O, using NaOH as precipitant, selection of ethylene glycol as dispersing agent, to preparation of Mg(OH)2. The experiment was prepared by direct precipitation method, mainly studied in the process of preparation of magnesium salt and precipitant concentration on precursor shape looks and the influence of particle size.When the precipitant concentration increased from 0.25M to 1.25M, the reaction in direct precipitation under ultrasonic condition, the Mg(OH)2 shape changed from flake into rod gradually. When the initial concentration of magnesium salt increased from 0.4M to 0.8M, the Mg(OH)2 particle size increases gradually, grain boundaries become blur, shown in Fig. 2.Fig.2 Photos of Different preparation magnesium hydroxide precipitant and the initial concentration of magnesium salt SEM (a:precipitation agent 0.25M; b: precipitation agent 1.25M; c: magnesium salt 0.4M; d: precipitation agent 0.8 M)The reasons affecting the reactant concentration on the morphology and size of the precursor body are: there are two stages nucleation and grain growth of grain growth. If the concentration of reactants is too low, it is difficult to form a large number of homogeneous nucleation, grain will growth on the nucleation which has been formed priority, which makes easy to get great number of grain. When the concentration of reactants is too high, crystal nucleation rates greater than the growth rate, add with reactants produce a large number of crystal nucleus instantly, nucleus grew up too late, so the surface free energy is very high, it is easy to agglomerate. Therefore, when the precipitant concentration of Mg2+ is relatively large at the beginning time, degree of super saturation is great, and the nucleation rate is greater than the growth rate, it is easy to get small solids precipitation. But when the nucleation density is too large, it will lead to the blurring of the boundaries between the grains.Fabrication of nano MgO crystalMgO was prepared by three stage calcination heating process, and the MgO crystal was prepared by calcination of Mg(OH)2 with temperature control, and the calcination process can be described as formula (1).90022()Mg OH MgO H O −−−→+↑℃(1)In response, in order to ensure the crystal morphology and grain size of MgO crystal, the calcination process of experiment in environmental samples under nitrogen atmosphere, heating up to 1350℃, the heating rate is 5℃/min, and set the temperature control heating curve according to the TG standard drawing precursor.There are three heating temperature control curve, corresponding to the sample area. The multi segment weight loss, weight loss rate of sample temperature peak occurred at 340~427℃, the temperature of the sample. The weight loss rate is 20.82%. High loss rate showed that Mg(OH)2 is under this temperature decomposition. In addition, the weight loss of.355℃ belongs to the decomposition of organic matter caused by weightlessness temperature near the point of 709.3~778.2℃ also has 10.07%. Since then, the highest temperature point control reaction heat treatment at 1156℃, can reduce the surface defects of crystal grain, and the grain size of material, crystal etc. Finally, when the temperature rises to 1346.5℃, the residual MgO mass is about 62.62%, and the specific process is shown in Fig. 3.Fig 3 Mg(OH)2 calcined hot weight standardIn the calcination experiments, The morphology of precursor can extent affect the shape of MgO style after calcining, flake of precursor will become cube morphology of MgO after calcining, rod-shaped precursor still keeps stick style of MgO after calcination. This is mainly because the precursor sheet can provide a good atmosphere, calcination process of crystallization is more uniform. And for the long rod precursor, crystal growth will be preferred in some direction in calcination.In addition, the pretreatment of precursor will also affect the purity of crystal MgO. The Mg(OH)2 was cleaned and purified several times, and the experimental results show that the increase in the number of cleaning will removing impurities and increase the purity of nano MgO crystal, shown in Tab 1.Tab1 The purity of MgO prepared by different processingContent of elements in MgO (%)ProcessingC Na Si S CaClearing 5 0.320.014 0.03 0.0140.026Clearing 7 0.2<0.0050.00700.0100.0050Character of nano MgO CrystalThe MgO crystal was analyzed by scanning electron microscopy (SEM), and it is found that sheet Mg(OH)2 will formed cube structure MgO crystal powder after calcined. The crystallization and grain size of the powder is with expectations, as shown in Fig 4.Fig.4 SEM of MgO formed by calcination of sheet Mg(OH)2The analysis of crystal X-ray diffraction (XRD) preparation showed that the test data are fit the date of standard cubic test card (JCPDS87-0653 space groups Fm 3m). Under the condition of the corresponding process, the powder of MgO style is cube structure, the grain size at 2θ=36.937°, 42.917°, 62.304°, 74.691°, 78.630° appear diffraction peaks at (111), (200), (220), (311), (222), the diffraction peak is sharp, except for slight instrument test migration, no phase diffraction peaks exist. The results show that the MgO crystal has high purity, good crystallinity and crystal growth along (200),and the results are shown in Fig 5. 30405060708020406080100Fm 3m (JCPDS87-0653) Sample 0100200300400500(222)(311)(220)(200) I n t e n s i t y (a .u .) I n t e n s i t y (a .u .)2-Theta(degree)(111)Fig.5 XRD test results of nano crystalline MgO structureGet MgO data obtained by the above XRD test into the Scherrer formula, you can estimate the size of the grain, shown in Figure (2).cos K D λβθ= (2) In the formula, the constant K is 0.943, D is the average thickness of the grain is perpendicular to the plane direction, β is the half height breadth of the samples’ diffraction peaks, θ is diffraction angle, X-ray wavelength is 0.154056 nm.From the results of this experiment, β is 0.22 nm, θ is 21.46°, estimated grain size is 40.65nm. As described in the reference, the results which MgO style is cubic grain and the grain size distributed in the range of 50nm are approximate.ConclusionNano MgO crystal has the larger specific surface area, the higher the exo-electron emission characteristics, It has wider application. The preparation of MgO precursor using low cost solution,and the calcination process of preparation of MgO is an important method for the preparation of MgO crystal.The Mg(OH)2 was prepared by direct precipitation in this article, the multistage calcination temperature control sheet was adopted to prepare MgO style crystal precursor, finally got MgO crystal orientation at (111), (200), (220), (311), (222). Experimental results show that the crystal orientation selective extension at (200), grain size is 40.65nm, showing a high degree of crystallinity.AcknowledgmentThis work is supported by the National Natural Science Foundation(No. 61461001).References[1]Weber Boeuf J. Plasma display panels: physics, recent developments and key issues[J]. Journal of physics D: Applied physics, 2003, 36 (6): R53-R57.[2]Yan Q, Deng X, Lu Z, et al. 44.1: Invited Paper: High Luminous Efficacy PDP Using CaMgO Protecting Layer[C]. L.A. USA: SID, 2011:633-636.[3]Ha CH, Kim JK, Whang KW. The role of the defect levels in MgO in the low firing voltage, wide driving voltage margin operation of an alternate current plasma display panel[J]. Journal of applied physics, 2007, 101 (12): 123301.1-123301.5.[4]Li Yongdong, Yang Wenjing, Zhang Na, et al. A combined phenomenological model for secondary electron emission[J]. Acta Physica Sinica, 2013, 62 (7): 77901.1-7.[5]Kim JS, Yang JH, Kim TJ, et al. Comparison of electric field and priming particle effects on address discharge time lag and addressing characteristics of high-Xe content AC PDP[J]. Plasma Science, IEEE Transactions on, 2003, 31 (5): 1083-1090.[6]Sasaki S, Fujino K, Takéuchi Y. X-ray determination of electron-density distributions in oxides, MgO, MnO, CoO, and NiO, and atomic scattering factors of their constituent atoms.[J]. Proceedings of the Japan Academy Ser B Physical & Biological Sciences, 1979, 55(2):43-48.[7]Li Qiaofen, Tu Yan, Yang Lanlan,et al. First Principle Calculation of Exciton Binding Energy in MgO[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(10):1042-1046.[8]Kuang W J, Li Q, Chen Y X, et al. Surface exciton emission of MgO crystals[J]. Journal of Physics D Applied Physics, 2013, 46(36):510-516.[9]Yan Q, Deng X, Lu Z, et al. 44.1: Invited Paper : High Luminous Efficacy PDP Using CaxMg1−x O Protecting Layer[J]. Sid Symposium Digest of Technical Papers, 2011, 42(1):633-636.[10]C hiang C L, Zeng H K, Li C H, et al. Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp[J]. Aip Advances, 2016, 6(1):091501-555.[11]L iu Tao, Ma Pengcheng, Yu Jingkun, et al. Preparation of MgO by Thermal Decomposition of Mg(OH)2 [J]. Journal of the Chinese Ceramic Society, 2010, 38(7): 1337-1340.[12]L F. The race for TVs with higher luminous efficiency[J]. Advanced Display, 2007, 7: 23-29.。

sci中的长难句

sci中的长难句

sci中的长难句在科学论文中,长难句常常出现,主要是为了表达复杂的概念和关系。

以下是一些常见的长难句例子:1. "The development and implementation of a robust and scalable machine learning algorithm, combined with advanced data analytics techniques, have significantly improved the accuracy and efficiency of predicting and analyzing complex biological systems, thereby enabling researchers to gain deeper insights into the underlying mechanisms driving disease progression."“强大且可扩展的机器学习算法的开发和实施,结合先进的数据分析技术,显著提高了预测和分析复杂生物系统的准确性和效率,从而使研究人员能够更深入地了解驱动疾病进展的潜在机制。

”2. "The integration of nanomaterials with traditional construction materials, such as concrete and steel, not only enhances their mechanical properties, but also provides additional functionalities, such as self-healing, self-cleaning, and energy harvesting capabilities, contributing to the development of sustainable and smart infrastructure."“将纳米材料与混凝土和钢材等传统建筑材料相结合,不仅增强了它们的机械性能,还提供了额外的功能,如自我修复、自清洁和能量收集能力,有助于可持续和智能基础设施的发展。

四氧化三铁

四氧化三铁

共沉淀法制备四氧化三铁纳米磁性材料引言:磁性是物质的基本属性,磁性材料是古老而用途十分广泛的功能材料。

磁挂材料与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关.纳米磁性材料是20世纪70年代后逐步产生、发展,壮大而成为最富有竞争力与宽广应用前景的新型磁性材料。

纳米磁性材料的特性不同于常规的磁性材料,其原因是与磁相关联的特征物理长度恰好处于纳米量级,倒如:磁单畴临界尺寸,超顺磁性临界尺寸,交换作用长度以及电子平均自由路程等大致上处于l~1OOnm量级,当磁性体的尺寸与这些特征物理长度相当时就会呈现反常的磁学性质[1]。

磁性纳米材料除具有纳米材料的一般特性外还具有顺磁效应,其中Fe3O4纳米晶由于其超顺磁性、高表面活性等特性,已在磁流体、微波吸收、水处理、光催化、生物医药、生物分离等方面得到了广泛的应用,正在成为磁性纳米材料的研究热点。

目前制备磁性Fe3O4纳米晶的主要方法有沉淀法、溶剂热法、溶胶-凝胶法、微乳液法、微波超声法等[2-8],这几种方法制得的磁性Fe3O4纳米晶在结构和性能方面都有一定的差异,因此在不同领域的应用往往要采用不同的制备方法。

其中共沉淀法即在含有两种或两种以上阳离子的可溶性溶液中加入适当的沉淀剂,使金属离子均匀沉淀或结晶出来,再将沉淀物脱水或热分解而制得纳米微粉。

共沉淀法有两种: 一种是Massart 水解法[9], 即将一定摩尔比的三价铁盐与二价铁盐混合液直接加入到强碱性水溶液中, 铁盐在强碱性水溶液中瞬间水解结晶形成磁性铁氧体纳米粒子。

另一种为滴定水解法[10], 是将稀碱溶液滴加到一定摩尔比的三价铁盐与二价铁盐混合溶液中, 使混合液的pH 值逐渐升高, 当达到6~7 时水解生成磁性Fe3O4纳米粒子共沉淀方法的最大优点是设备要求低、成本低、操作简单和反应时间短,便于在实验室内操作。

本文主要介绍共沉淀法合成纳米Fe3O4及浓度、熟化时间、pH、超声波对纳米Fe3O4粒径等性质的影响。

对位芳纶可行性研究报告

对位芳纶可行性研究报告

对位芳纶可行性研究报告1. 引言本研究报告旨在评估对位芳纶的可行性,该材料是一种具有优异性能的高分子材料,具有广泛的应用潜力。

本文将对对位芳纶的特性、制备方法、应用领域以及市场前景进行详细介绍,并结合实际情况分析其可行性。

2. 对位芳纶的特性对位芳纶具有许多优异的特性,包括高强度、高刚度、低热膨胀、耐温性好、耐化学腐蚀等。

其热稳定性和耐候性也非常出色。

这些特性使得对位芳纶在多个领域有着广泛的应用前景。

3. 对位芳纶的制备方法对位芳纶的制备方法主要有溶液法、熔融法和气相法。

其中,溶液法是较为常用的制备方法,通过溶解芳纶原料,再通过溶剂蒸发或共混剂溶解法得到。

熔融法是将芳纶原料加热熔化,再通过拉伸或挤出法得到纤维或膜状材料。

气相法则是通过化学反应或物理氧化得到对位芳纶。

4. 对位芳纶的应用领域对位芳纶具有广泛的应用领域,主要包括航空航天、汽车工业、电子电气、体育用品、医疗器械等。

在航空航天领域,对位芳纶可以用于制作轻质、高强度的结构材料和防护材料。

在汽车工业领域,对位芳纶可以用于制造轻量化部件、提高汽车性能。

在电子电气领域,对位芳纶可以用于制造高温绝缘材料和电池隔膜。

在体育用品领域,对位芳纶可以用于制作高强度的运动器材。

在医疗器械领域,对位芳纶可以用于制造替代有机材料的生物医学材料。

5. 市场前景分析对位芳纶作为一种新型高分子材料,具有广阔的市场前景。

随着航空航天、汽车工业、电子电气等领域的不断发展,对位芳纶的需求也将进一步增长。

另外,对位芳纶具有独特的性能优势,可以替代传统材料,提高产品性能,减少能耗和污染,因此在可持续发展的背景下,对位芳纶市场前景非常看好。

6. 可行性分析对位芳纶具有优异的特性和广泛的应用领域,市场前景广阔。

然而,由于对位芳纶的制备方法相对复杂,生产成本较高,因此在市场推广阶段可能会面临一定的困难。

此外,对位芳纶还需要进一步完善其性能和工艺,并面临与传统材料的竞争。

因此,在推广应用过程中需要加大研发投入,提高对位芳纶的技术水平和市场竞争力。

四氧化三铁——精选推荐

四氧化三铁——精选推荐

四氧化三铁共沉淀法制备四氧化三铁纳⽶磁性材料引⾔:磁性是物质的基本属性,磁性材料是古⽼⽽⽤途⼗分⼴泛的功能材料。

磁挂材料与信息化、⾃动化、机电⼀体化、国防、国民经济的⽅⽅⾯⾯紧密相关.纳⽶磁性材料是20世纪70年代后逐步产⽣、发展,壮⼤⽽成为最富有竞争⼒与宽⼴应⽤前景的新型磁性材料。

纳⽶磁性材料的特性不同于常规的磁性材料,其原因是与磁相关联的特征物理长度恰好处于纳⽶量级,倒如:磁单畴临界尺⼨,超顺磁性临界尺⼨,交换作⽤长度以及电⼦平均⾃由路程等⼤致上处于l~1OOnm量级,当磁性体的尺⼨与这些特征物理长度相当时就会呈现反常的磁学性质[1]。

磁性纳⽶材料除具有纳⽶材料的⼀般特性外还具有顺磁效应,其中Fe3O4纳⽶晶由于其超顺磁性、⾼表⾯活性等特性,已在磁流体、微波吸收、⽔处理、光催化、⽣物医药、⽣物分离等⽅⾯得到了⼴泛的应⽤,正在成为磁性纳⽶材料的研究热点。

⽬前制备磁性Fe3O4纳⽶晶的主要⽅法有沉淀法、溶剂热法、溶胶-凝胶法、微乳液法、微波超声法等[2-8],这⼏种⽅法制得的磁性Fe3O4纳⽶晶在结构和性能⽅⾯都有⼀定的差异,因此在不同领域的应⽤往往要采⽤不同的制备⽅法。

其中共沉淀法即在含有两种或两种以上阳离⼦的可溶性溶液中加⼊适当的沉淀剂,使⾦属离⼦均匀沉淀或结晶出来,再将沉淀物脱⽔或热分解⽽制得纳⽶微粉。

共沉淀法有两种: ⼀种是Massart ⽔解法[9],即将⼀定摩尔⽐的三价铁盐与⼆价铁盐混合液直接加⼊到强碱性⽔溶液中, 铁盐在强碱性⽔溶液中瞬间⽔解结晶形成磁性铁氧体纳⽶粒⼦。

另⼀种为滴定⽔解法[10], 是将稀碱溶液滴加到⼀定摩尔⽐的三价铁盐与⼆价铁盐混合溶液中, 使混合液的pH 值逐渐升⾼, 当达到6~7 时⽔解⽣成磁性Fe3O4纳⽶粒⼦共沉淀⽅法的最⼤优点是设备要求低、成本低、操作简单和反应时间短,便于在实验室内操作。

本⽂主要介绍共沉淀法合成纳⽶Fe3O4及浓度、熟化时间、pH、超声波对纳⽶Fe3O4粒径等性质的影响。

磷酸锂陶瓷靶材的制备 (1)

磷酸锂陶瓷靶材的制备 (1)

· 256 ·2015 年 6 月Journal of CeramicsV ol.36 No.3Jun. 2015第 36 卷 第 3 期2015 年 6 月DOI:10.13957/ki.tcxb.2015.03.008磷酸锂陶瓷靶材的制备皮陈炳 1,蔡雪贤 1,高庆庆 1,张忠健 2,肖 超 1,尚福亮 1,杨海涛1(1.深圳大学材料学院,深圳市特种功能材料重点实验室,深圳陶瓷制备先进技术工程实验室,广东 深圳 518060;2.株洲硬质合金集团有限公司,硬质合金国家重点实验室,湖南 株洲412000)摘 要:采用传统的常压固相烧结方法制备了Li 3PO 4陶瓷靶材,研究了烧结温度对Li 3PO 4陶瓷靶材的微观结构力学性能、致密度的影响。

通过XRD测定靶材相的结构,SEM观察靶材的断面形貌,万能实验机测量靶材的抗弯强度,维氏显微硬度仪测量靶材的维氏硬度,阿基米德排水法测量靶材密度等对Li 3PO 4靶材的性能进行了分析表征。

结果表明:其各项力学性能均达到了一个很高的水平,靶材的最佳烧结温度为800 ℃,抗弯强度为76.16 Mpa,维氏硬度为475.87HV0.3,相对密度为98.89%;而XRD数据则表明靶材物相单一且结晶性良好。

关键词:粉末冶金;材料加工;磷酸锂;陶瓷靶材;烧结;电解质薄膜中图分类号:TQ174.75 文献标志码:A 文章编号:1000-2278(2015)03-0256-04Preparation of Li 3PO 4 Ceramic TargetsPI Chenbing 1,CAI Xuexian 1, GAO Qingqing 1, ZHANG Zhongjian 2, XIAO Chao 1,SHANG Fuliang 1,YANG Haitao1(1. Shenzhen Engineering Laboratory of Advanced Technology for Ceramics, Key Laboratory of Functional Materials of Shenzhen,College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China ; 2. State Key Lab ofCemented Carbide, Zhuzhou Cemented Carbide Group Co. Ltd., Zhuzhou 412000, Hunan, China)Abstract:Li 3PO 4 ceramic targets were prepared by traditional solid-state sintering method. The effects of the sintering temperature on themicrostructure, the mechanical properties and the density were discussed. The phase structure of the as-prepared targets was analyzed by X-ray diffractometer. The fracture morphology was observed by SEM. The bending strength was measured by the universal testing machine and the Vickers hardness was measured by the Vickers microhardness instrument. The density was measured using the Archimedes drainage method. The results show that the optimal sintering temperature is 800 ℃, resulting in a bending strength of 76.16 MPa, a Vickers hardness of 475.87HV0.3 and a relative density of 98.89%, which are excellent for a ceramic target material. XRD results indicated the sintered target having a good crystallinity.Key words:powder metallurgy; materials processing; Li 3PO 4; ceramic target; sintering; electrolyte film0 引 言 由Li 3PO 4靶材制备的LiPON固态电解质薄膜是全固态薄膜锂电池[1-4]的重要组成结构,LiPON与低电极电位的金属锂阳极和高电极电位的过渡金属氧化物阴极接触时都非常稳定,故采用LiPON电解质薄膜可以很好地克服锂枝晶的生长、钝化层的不断增厚和电池循环寿命低等问题[5],成为一种广泛应用在全固态锂电池中的电解质薄膜[6]。

InGaAs

InGaAs

第 21 卷 第 12 期2023 年 12 月Vol.21,No.12Dec.,2023太赫兹科学与电子信息学报Journal of Terahertz Science and Electronic Information TechnologyInGaAs/InAlAs光电导太赫兹发射天线的制备与表征陈益航1,杨延召2,张桂铭2,徐建星1,苏向斌1,王天放1,余红光1,石建美1,吴斌2,杨成奥1,张宇1,徐应强1,倪海桥1,牛智川1(1.中国科学院半导体研究所,北京100083;2.中国电子科技集团公司第四十一研究所,山东青岛266555)摘要:光电导天线作为太赫兹时域光谱仪产生与探测太赫兹辐射的关键部件,具有重要的科研与工业价值。

本文采用分子束外延(MBE)方法制备InGaAs/InAlAs超晶格作为1 550 nm光电导天线的光吸收材料,使用原子力显微镜、光致发光、高分辨X射线衍射等方式验证了材料的高生长质量;通过优化制备条件得到了侧面平整的台面结构光电导天线。

制备的光电导太赫兹发射天线在太赫兹时域光谱系统中实现了4.5 THz的频谱宽度,动态范围为45 dB。

关键词:太赫兹时域光谱仪;光电导天线;分子束外延;InGaAs/InAlAs超晶格中图分类号:TN405.98+.4文献标志码:A doi:10.11805/TKYDA2022204Fabrication and characterization of InGaAs/InAlAs photoconductiveterahertz transmitting antennaCHEN Yihang1,YANG Yanzhao2,ZHANG Guiming2,XU Jianxing1,SU Xiangbin1,WANG Tianfang1,YU Hongguang1,SHI Jianmei1,WU Bin2,YANG Cheng'ao1,ZHANG Yu1,XU Yingqiang1,NI Haiqiao1,NIU Zhichuan1(1.Institute of Semiconductors,Chinese Academy of Science,Beijing 100083,China;2.The 41st Institute of China Electronic Technology Group Corporation,Qingdao Shandong 266555,China)AbstractAbstract::Photoconductive antennas are of great scientific and industrial value as the key components for generating and detecting terahertz radiation in terahertz time-domain spectrometers. Inthis paper, Molecular Beam Epitaxy(MBE) is utilized to prepare InGaAs/InAlAs superlattices as light-absorbing materials for 1 550 nm photoconductive antennas. The high growth quality of the materials isverified by Atomic Force Microscopy(AFM), Photoluminescence(PL), and high-resolution X-raydiffraction. The mesa-structured photoconductive antenna with flat sides is obtained by optimizing thepreparation conditions. The fabricated photoconductive terahertz transmitting antenna achieves aspectral width of 4.5 THz in a terahertz time-domain spectroscopy system with a dynamic range of 45 dB.KeywordsKeywords::terahertz time-domain spectrometer;photoconductive antenna;Molecular Beam Epitaxy;InGaAs/InAlAs superlattices太赫兹时域光谱基于超短太赫兹脉冲的相干时间分辨探测原理工作,是重要的材料分析检测技术,也是开展太赫兹频段科学研究的关键平台[1]。

聚乳酸多孔微球的制备及其表征

聚乳酸多孔微球的制备及其表征

2018年第37卷第5期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·1875·化 工 进展聚乳酸多孔微球的制备及其表征刘瑞来(武夷学院福建省生态产业绿色技术重点实验室,生态与资源工程学院,福建 武夷山 354300)摘要:以聚乳酸(PLLA )/四氢呋喃(THF )为淬火溶液,无其他添加剂条件下,通过低温淬火、萃取、洗涤和干燥得到直径为30.92μm±1.55μm 的PLLA 多孔微球,多孔微球由直径为0.34μm±0.06μm 向外辐射的纤维组成。

偏光显微镜表明多孔微球为球晶结构。

XRD 结果表明,多孔微球属于α晶型,晶粒尺寸大小为17.25nm 。

DSC 结果表明,PLLA 多孔微球的结晶度为36.05%。

与熔融挤出造粒得到PLLA 原料(结晶度小于10%)相比,低温淬火得到的多孔微球的结晶度大大提高。

N 2吸附-脱附结果分析表明,多孔微球的平均孔径和孔体积分别为42.92nm 和0.1135cm 3/g ,大部分为大孔和介孔结构,比表面积和孔隙率分别为14.18cm 2/g 和93.15%。

采用等温DSC 模拟低温淬火过程研究了PLLA 在THF 溶液中结晶动力学,利用Avrami 方程得到Avrami 指数n 平均值为2.29,说明PLLA 在THF 溶液中为异相成核和三维生长。

关键词:结晶;纳米材料;乳酸;多孔微球;低温淬火中图分类号:TQ317.3 文献标志码:A 文章编号:1000–6613(2018)05–1875–06 DOI :10.16085/j.issn.1000–6613.2017-1361Fabrication and characterization of poly(L-lactic acid) porousmicrospheresLIU Ruilai(College of Ecological and Resources Engineering ,Fujian Provincial Key laboratory of Eco-Industrial GreenTechnology ,Wuyi University ,Wuyishan 354300,Fujian ,China )Abstract :Poly(L-lactic acid) porous microspheres with diameter of 30.92μm±1.55μm were prepared from its tetrahydrofuran solution through four steps of low-temperature quenching ,extraction ,washing and drying while without the assistance of other additives. The microspheres were composed of radicalized nanofibers with diameter of 0.34μm±0.06μm. The polarized optical microscope observations show that the PLLA porous microspheres are spherulites ,while the XRD patterns show that they belong to α form with grain size of 17.25nm. DSC results show that the crystallinity of the microspheres obtained from low-temperature quenching are 36.05%,higher than the raw PLLA prepared by the melt-extrusion. N 2 adsorption-desorption results indicate that the average pore size and volume of the microspheres are 42.92nm and 0.1135cm 3/g ,respectively ,and most pores are macropore and mesopore. The specific surface area and porosity are 14.18m 2/g and 93.15%,respectively. DSC was used to study the isothermal crystallization kinetics of PLLA in THF solutions to mimic the low-temperature quenching process. The Avrami equation was used to analyze the data. Avrami exponent n was 2.29,indicating that the nucleation and crystal growth mechanism were heterogenous nucleation and three-dimensional ,respectively.(201710397014)及武夷学院引进人才项目(YJ201703,YJ201704)。

量子点发光二极管的制备及性能表征

量子点发光二极管的制备及性能表征

分类号学号M********* 学校代码10487 密级硕士学位论文量子点发光二极管的制备及性能表征学位申请人:叶智爽学科专业:软件工程指导教师:张建兵副教授答辩日期:2019年1月10日A Thesis Submitted in Partial of Fulfillment of the Requirements forthe Degree of Master of EngineeringFabrication and Characterization of QLEDCandidate:Zhishuang YeMajor:Software EngineeringSupervisor: A.P. Jianbing ZhangHuazhong University of Science & TechnologyWuhan 430074, P. R. ChinaJan 10, 2019独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。

尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。

对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到,本声明的法律结果由本人承担。

学位论文作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

保密□,在_____年解密后适用本授权书。

本论文属于不保密□。

(请在以上方框内打“√”)学位论文作者签名:指导教师签名:日期:年月日日期:年月日华中科技大学硕士学位论文摘要目前,量子点电致发光器件(QLED)经过几十年的研究和发展,其商业化黎明正在到来。

腈纶的玻璃化温度

腈纶的玻璃化温度

腈纶的玻璃化温度简介腈纶是一种合成纤维,具有优异的物理性能和化学稳定性,广泛应用于纺织、塑料、橡胶等领域。

玻璃化温度是腈纶的一个重要性能指标,它决定了腈纶在高温下的稳定性和应用范围。

本文将介绍腈纶的玻璃化温度及其影响因素,并对腈纶的应用进行讨论。

腈纶的玻璃化温度是什么?玻璃化温度是指在升温过程中,聚合物由固态转变为类似玻璃的非晶态的临界温度。

对于腈纶来说,玻璃化温度是指腈纶分子链在高温下失去可塑性,变得硬化和脆化的温度。

腈纶的玻璃化温度测定方法腈纶的玻璃化温度可以通过不同的实验方法进行测定。

以下是常用的几种方法:1.差示扫描量热法(DSC):利用差示扫描量热仪测量腈纶样品在升温过程中的热响应,通过分析热容变化来确定玻璃化温度。

2.动态力学热分析法(DMA):利用动态力学热分析仪测量腈纶样品在不同频率下的力学性能,通过分析材料的损耗模量来确定玻璃化温度。

3.热机械分析法(TMA):利用热机械分析仪测量腈纶样品在升温过程中的尺寸变化,通过分析线性膨胀系数的变化来确定玻璃化温度。

这些方法各有优劣,选择合适的方法应根据具体实验需求和设备条件来确定。

腈纶的玻璃化温度影响因素腈纶的玻璃化温度受多种因素的影响,以下是一些主要因素:1.分子结构:腈纶的分子结构对玻璃化温度有很大影响。

一般来说,分子链越长、侧链越少,玻璃化温度越高。

2.结晶度:腈纶的结晶度也会影响玻璃化温度。

结晶度高的腈纶通常具有较高的玻璃化温度。

3.添加剂:腈纶中添加一些特定的化学剂可以改变其玻璃化温度。

例如,添加塑化剂可以降低玻璃化温度,添加交联剂可以提高玻璃化温度。

4.加工条件:腈纶的加工条件也会对玻璃化温度产生影响。

例如,加工温度越高,玻璃化温度通常会升高。

腈纶的应用腈纶由于其优异的物理性能和化学稳定性,在多个领域得到了广泛应用。

以下是一些主要的应用领域:1.纺织品:腈纶纤维具有优异的强度、耐磨性和抗皱性,被广泛用于制作高强度织物,如防弹衣、防火服、工业过滤材料等。

新型生物活性骨修复复合材料制备及性能研究的开题报告

新型生物活性骨修复复合材料制备及性能研究的开题报告

新型生物活性骨修复复合材料制备及性能研究的开题报告一、选题背景骨修复是临床常见的治疗手段,尤其是在骨折、骨融合等方面,传统的方法主要是使用人工骨埋置、骨转移移植等方法,但是这些方法存在一定的风险,如感染、疼痛等。

近年来,生物活性骨修复复合材料作为一种新型的治疗方法逐渐被临床应用。

该材料具有良好的生物相容性和活性,能够促进骨生长和修复,有望成为骨修复领域的新的研究热点。

二、研究目的本研究旨在制备一种新型生物活性骨修复复合材料,并对其生物活性和力学性能进行测试,探讨其在骨修复方面的应用前景,进一步促进骨修复领域的发展。

三、研究内容和方法1. 研究内容(1)制备一种新型的生物活性骨修复复合材料;(2)对材料进行生物活性测试,如成骨活性、细胞毒性等;(3)对材料进行力学性能测试,如硬度、强度、韧性等;(4)分析材料性能与应用前景。

2. 研究方法(1)通过化学法制备复合材料,包括生物活性陶瓷、生物高分子等材料;(2)使用细胞培养等技术进行生物活性测试;(3)使用万能材料测试仪等设备进行材料力学性能测试;(4)对测试结果进行分析和比较。

四、预期结果和意义通过制备一种具有良好生物活性和力学性能的生物活性骨修复复合材料,可以推动其在临床骨修复领域的应用和发展,促进骨生长和骨愈合过程,提高治疗效果和患者生活质量。

五、研究进度安排本研究的进度计划如下:第一年:1、调研国内外生物活性骨修复复合材料相关研究;2、选择材料并制备、优化生物活性骨修复复合材料;3、进行生物活性测试。

第二年:1、进行力学性能测试;2、分析材料性能与应用前景;3、撰写研究报告。

六、参考文献1. Yubao Li. et al. Fabrication and Characterization of Bioactive Glass Fiber/Silk Fibroin Composite Scaffolds for Bone Tissue Engineering[J]. Journal of Biomaterials Science, Polymer Edition, 2017, 28(2):121-139.2. Cen Chen. et al. 3D printing of lattice structure alginate scaffolds for cartilage regeneration[J]. Carbohydrate Polymers, 2018, 198: 590-594.3. Yunchang Zhu et al. Development of an injectable composite bone substitute with improved physical and biological properties[J]. Journal of Materials Science: Materials in Medicine, 2011, 22(3): 731-741.4. Polyzois Vasilios et al. Hydroxyapatite and tricalcium phosphate bone substitutes[J]. Evolution and Properties of Calcium Phosphate Biomaterials, 2018.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Trans. Nonferrous Met. Soc. China 25(2015) 146−153Fabrication and characterization of electrodeposited nanocrystallineNi −Fe alloys for NiFe 2O 4 spinel coatingsLi MA 1,2, Long ZHANG 2, Xiao-bing LI 1, Zhi-you LI 2, Ke-chao ZHOU 21. School of Metallurgy and Environment, Central South University, Changsha 410083, China;2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, ChinaReceived 27 April 2013; accepted 21 November 2014Abstract: Nanocrystalline Ni −Fe FCC alloy coatings with Fe content of 1.3%−39% (mass fraction) were fabricated on the nickel substrates using a DC electrodeposition technique. The crystal structure, lattice strain, grain size and lattice constant of the Ni −Fe alloy coatings were studied by X-ray diffraction technique. The chemical composition and surface morphology of the FCC Ni −Fe alloy coatings were investigated with the energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM). The results show that the Fe content of the Ni −Fe alloy coatings has a great influence on the preferred orientation, grain size, lattice constant and lattice strain. FCC Ni −Fe alloy coatings exhibit preferred orientations of (200) or (200)(111). With an increase of Fe content, the preferred growth orientation of (200) plane is weakened gradually, while the preferred growth orientation of (111) increases. An increase of the Fe content in the range of 1.3%−25% (mass fraction) results in a significant grain refinement of the coatings. Increasing the Fe content beyond 25% does not decrease the grain size of FCC Ni −Fe alloys further. The lattice strain increases with increasing the Fe content in the FCC Ni −Fe alloys. Since the alloys with Fe content not less than 25% has similar grain size (~11 nm), the increase in the lattice strain with the increase of Fe content cannot be attributed to the change in the grain size.Key words: Ni −Fe alloy; electrodeposition; nanocrystalline; NiFe 2O 4 spinel; coating1 IntroductionNi −Fe alloy films are used in a wide variety ofapplications for storage, recording and memory devices for computers, magnetic actuators and magnetic shielding, because of their ability to exhibit stable, low coefficient of thermal expansion (CTE) and beneficial magnetic properties at room temperature [1,2]. Particularly, Ni −Fe alloy films from permalloy (Ni −20%Fe, mass fraction) to invar (Ni −64%Fe, mass fraction) have a wide spectrum of physical properties [3,4]. Permalloy films were commonly used in magnetoresistive sensors based on the intrinsic magnetoresistance of the ferromagnetic material (anisotropic magnetoresistance sensors) or on ferromagnetic/non-magnetic heterostructures (giant magnetoresistance multilayers, spin valve and tunneling magnetoresistance devices) [3]. Invar alloy films were used in the electronic, aerospace and mechanical industry, based on their low coefficient of thermal expansion [4]. Recently, Ni −Fe alloy electrodeposition followed by thermal oxidation to synthesize NiFe 2O 4 spinel coatings has received great attention due to low cost of this process and its capability to coat substrates with complex geometries. A spinel ferrite coating with general formula of MFe 2O 4, especially NiFe 2O 4 coating, is of increasing interest as this material finds or promises numerous applications in microwave devices [5], magnetic high-density data storage [6], solid oxide fuel cell (SOFC) [7] and inert anode materials for aluminium electrolysis [8−10]. Since the high-temperature treatment in air or oxygen-enriched atmosphere is unavoidable in spinel fabrication processes, metal or alloy oxidation will occur and result in microstructural change. The influence of such a microstructural change on the performance of spinels is by no means negligible. It has been reportedFoundation item: Project (51021063) supported by the National Natural Science Fund for Innovation Group of China; Project (2012M521540) supported byChina Post Doctoral Science Foundation; Project (2013RS4027) supported by the Post Doctoral Scientific Foundation of Hunan Province, China; Project (CSUZC2013023) supported by the Precious Apparatus Open Share Foundation of Central South University, ChinaCorresponding author: Ke-chao ZHOU; Tel: +86-731-88836264; E-mail: zhoukc2@ DOI:10.1016/S1003-6326(15)63589-0Li MA, et al/Trans. Nonferrous Met. Soc. China 25(2015) 146−153 147that apart from oxidation temperature, many parameters, such as alloy composition, grain size, preferred orientation and lattice strain, greatly affect the growth kinetics and the oxide morphology [11−13]. For example, the nanocrystallization of Ni-based superalloys has been found to be capable of obviously enhancing their high-temperature oxidation resistance, because a refinement of the alloy grain size can promote a continuous protective Al2O3 or Cr2O3 external scale formed on the alloy surface due to the high concentration of grain boundaries which act as preferential and faster transport paths [12]. In addition, it has been found that between 873 and 1173 K, the oxide growth rate on (111) Ni face is over one order of magnitude lower than that observed for (100) Ni face [13]. The similar phenomena have also been observed in electrodeposited nanocrystalline Ni coatings with different preferred orientations in our previous studies [14].It has recently reported that a NiO/NiFe2O4 composite coating thermally converted from an electroplated Ni−7Fe alloy exhibited increasing hot corrosion resistance under an atmosphere of Na3AlF6−AlF3−CaF molten salts and air at 960 °C, compared with bare Ni metal, based on its dense structure, homogeneously dispersed intragranular and intergranular NiFe2O4 precipitates [13]. Therefore, the properties of NiFe2O4 coating, such as the magnetic and high-temperature corrosion resistance properties, strongly depended on the Ni−Fe alloy composition and its microstructure, such as grain size, preferred orientation and lattice strain. These parameters may be controlled by adjusting the deposition conditions such as the composition of the deposition bath. Thus, it is necessary to investigate the effects of the deposition conditions to produce optimum electrodeposits and spinel coating with uniform physical and chemical properties.In this work, the electrodeposition method was adopted to prepare Ni−Fe coatings, and the effect of electrolyte composition on the Fe content in the alloy coating was focused on. The formation of nano-grains in the Ni–Fe coatings, and the variation of their microstructures such as grain size, preferred orientation and lattice strain with the electrolyte composition was investigated.2 Experimental2.1 ElectrodepositionPure nickel (99.5 %) specimens with dimensions of 30 mm×30 mm×2 mm were machined and polished using SiC paper up to 800-grit finish, and then electroplated (on all sides) with a film of Ni−(1.3%−39%)Fe (mass fraction) from a bath containing nickel sulfamate, nickel chloride and iron sulfate. Each bath was composed of 250 g/L NiSO4·6H2O, 45 g/L NiCl2·6H2O, 35 g/L H3BO3, 20g/L sodium citrate, 0.2 g/L sodium benzenesulphinate, and 3 g/L saccharin. An appropriate mass of FeSO4·7H2O was added into each bath to satisfy the specified Ni/Fe ratio. The composition of the plating bath is shown in Table 1. The pH value of the bath was adjusted to 3.5 by H2SO4 solution. The bath temperature was kept at (55±3) °C. The substrates were sequentially ultrasonically cleaned in ethanol, acetone, and distilled water, each for 10 min, then activated in an acidic solution (V(96% H2SO4):V(H2O))= 1:1 in volume) for 30 s, washed in distilled water, and finally immersed immediately in the plating bath for electrodeposition. The applied current (DC) density was 5 A/dm2 for all coatings. The thickness of the coatings was in the range of 160−180 μm.2.2 Coating characterizationX-ray diffraction (XRD, Rigaku/MAX−3A) technique with Cu K a radiation (λ=0.154 nm, scanning rate 4 (°)/min) was employed to characterize the crystal structure, lattice strain, grain size and lattice constant using the Philips APD3720. The line profile software,Table 1 Compositions of plating bathSample No. ρ(FeSO4·7H2O)/(g·L−1)ρ(NiSO4·6H2O)/(g·L−1)ρ(NiCl2·6H2O)/(g·L−1)ρ(H3BO3)/(g·L−1)ρ(Na3C6H5O7·2H2O)/(g·L−1)ρ(C7H5NaO2S)/(g·L−1)ρ(C7H5O3NS)/(g·L−1)w(Fe)/%B 1 250 45 35 20 0.23 1.3C 4 250 45 35 20 0.23 3.4D 8 250 4535 20 0.23 6.7E 12 250 4535 20 0.239.5F 16 250 4535 20 0.2312.3G 24 250 4535 20 0.2317.0H 36 250 4535 20 0.2325.0I 48 250 4535 20 0.2333.1 J 60 250 4535 20 0.2339.0Li MA, et al/Trans. Nonferrous Met. Soc. China 25(2015) 146−153148which accompanies the Philips system, was used for the analysis of the XRD results. Single line analysis (X-ray diffraction line broadening analysis) was employed for the calculation of the grain size and strain. The lattice parameters were measured by analyzing either the (111) or the (200) peak for the FCC Ni −Fe alloys depending on their crystal structures. The crystallite size and internal strains were estimated based on the (111) and (200) peaks of all the FCC Ni −Fe alloys. The analysis of the chemical composition was carried out on an energy dispersive X-ray spectroscopy (EDX, Oxford Link ISIS 300). The surface morphologies of the samples were investigated using the atomic force microscopy (AFM).3 Results and discussion3.1 Composition of Ni −Fe coatingsAt a fixed content of Ni 2+, the dependence of thecomposition of Ni −Fe alloys on the Fe 2+ content in theelectrolyte is presented in Fig. 1. It should be noted thatthe accuracy of iron in nickel, which can be measured bymicroprobe analysis, is approximately ±0.5%. It can beseen in Fig.1 that Fe 2+ content of the plating bath has agreat influence on the composition of Ni −Fe alloy plating. A slight change of Fe 2+ content in the bath leadsto a great change of Fe content in the plating. Thisindicates that abnormal codeposition happened duringthe codeposition Ni −Fe alloy. The standard reductionpotential of Ni 2+ (2+0Ni /Ni0.250 V φ=−) is 0.191V, which is higher than that of Fe 2+ (2+0Fe /Fe0.441 V φ=−). In theory, nickel is deposited on the cathode first; however,the result showed that iron was deposited on the cathodefirst. It has been reported that during the codepositionprocess of Ni −Fe alloy, hydrogen evolution reaction occurred on the cathode surface, leading to the increaseof the pH value around the cathode surface. Then, a lot of OH − ions were enriched in the cathode, reacting with the Fe 2+ that spread to the cathode surface to form Fe(OH)+ and other intermediate products [15]. These intermediate products were absorbed to the cathode surface, hindering the deposition of nickel. As a result, abnormal codeposition took place [16]. Such a vast amount of hydrogen evolution occurred only when the current density was high [16]. However, abnormal codeposition also occurred during the electrodeposition of Ni −Fe alloy coating, although a low current density (J =5 A/dm 2) was applied in this work. Such phenomenon cannot be explained by the above theories. Furthermore, another viewpoint was put forward by someone. On the cathode surface, the activity of Fe 2+ is higher than that of Ni 2+. Fe 2+ was adsorbed preferentially on the cathode surface where Fe 2+discharged easily, hindering thedeposition of Ni 2+. As a result, it made thedepositing rate of Ni 2+ slow, while Fe 2+ was depositedpreferentially [17].Fig. 1 Fe content in Ni −Fe alloy vs mass ratio of Fe 2+to Ni 2+in electrolyte 3.2 Structure of Ni −Fe coatings 3.2.1 XRD results The XRD patterns of the Ni −Fe alloy coatings and the pure nickel substrate are shown in Fig. 2. Only Ni diffraction peaks appear for samples B −J, while no Fe diffraction peak could be observed. Thus, the XRDpatterns confirm that the electrodeposited Ni −Fe alloy coating is composed of a solid solution. In comparison with the nickel substrate, the XRD patterns of the electrodeposited materials show changes in peak widths, peak locations and peak intensities. The relative intensities of Ni(111) and Ni(200) peaks change a lot. Preferred orientations of the coating, full width at half maximum (FWHM) of diffraction peak, lattice constant, grain size, and the change of microstress will be addressed in the following in details.Fig. 2 XRD patterns of Ni −Fe alloy coatings with different Fe contents ((a)−(j) correspond to samples A −J, and sample A isnickel substrate)Li MA, et al/Trans. Nonferrous Met. Soc. China 25(2015) 146−153 1493.2.2 Preferred orientations of coatingsIt can be seen from Fig. 2 that there are considerable changes in the peak intensities of the electrodeposited materials in comparison with the nickel standard (04−0850) in PDF card in Jade 5.0. For all coatings, the (220) peak intensity is reduced very much compared with a random crystal distribution. On the other hand, the (200) peak intensity is enhanced over the random distribution, indicating the presence of a (200) texture component. However, with increasing Fe content in the coatings, the relative intensity of (200) plane decreases gradually, while the relative intensity of (111) plane increases gradually.In order to compare the crystal preferred growth orientations of Ni −Fe alloy coatings with different Fe contents, the (111) and (200) texture coefficients (TC) of Ni −Fe alloy coatings are calculated by [18]()0()()()0()1TC 100%hkl hkl hkl n hkl hkl i I I I I ==×∑ (1)where I (hkl ) and I 0(hkl ) are the diffraction intensities of the (hkl ) plane measured in the diffractogram for the coating and the standard Ni powder sample, respectively. There are only three basic reflection lines from the Ni −Fe alloy to be considered, i.e., (111), (200) and (220), since the diffraction lines of (222) and (400) are the second-order diffraction of the (111) and (200) planes, respectively. TC (hkl ) denotes the percentage of the relative intensity of a given orientation (hkl ) among the three crystallographic orientations of each sample, while a preferred orientation of the (hkl ) plane is indicated by a value of TC (hkl )>33.3%.The results are shown in Fig. 3. It can be seen from Fig. 3 that all the texture coefficients of (200) plane for all the Ni −Fe coatings are greater than 33.3%. This indicates that all the coatings have a preferred growth orientation of (200). With an increase of the Fe content, the texture coefficient of (200) plane decreases, while the texture coefficient of (111) plane increases. This indicates that with an increase of Fe content, the preferred growth orientation of (200) plane is weakened, while the preferred growth orientation of (111) increases gradually. From the XRD patterns and the texture coefficients, it could be concluded that at a low Fe content, the (200) fiber texture is predominant. As the Fe content increases, the (111) fiber texture is strongly developed.It was reported that the preferred orientations of coatings changed with the change of alloy compositions [19,20]. In the TiSiN coatings [20], with an increase of Si content, the preferred growth orientation of coating was weakened significantly. According to the related theories of coating (or film) preferential growth, theFig. 3 Texture coefficients of (111) and (200) planes vs Fe content in Ni −Fe alloy coatingsplane with the highest surface free energy is the one that grows the fastest, in order to minimize the energy as far as possible. Finally, the exposing plane is the one that grows the slowest, with the lowest surface free energy.Among the crystal surfaces that parallel to the matrix surface, the plane that grows the fastest determines the preferred orientation of the coating. By adding alloy elements (especially solid solution elements), the difference of the element itself characteristics (including surface free energy), and the microstrain in the substitutional solid solution will significantly impact the surface free energy of each crystal surface, leading to the change of the growth orientation of coatings.3.2.3 Lattice constants of coatingsIt can clearly be seen that the lattice constant of the alloy increases with increasing Fe content. It has been confirmed in XRD patterns (Fig. 2) that Ni −Fe alloys are solid solutions of Fe in Ni. Since the atomic radius of Fe is larger than that of Ni, with an increase of Fe content, lattice constant of Ni −Fe coating will inevitably increase gradually.In this work, Rietveld method [21] was used to calculate the lattice constant of Ni −Fe coating with different Fe contents. In terms of nickel diffraction peaks in XRD patterns of Ni −Fe alloy coatings, the relative intensities of (111) and (200) peaks are larger than those of the other peaks. Consequently, in this work, the lattice constants of Ni −Fe coating were estimated by using (111) and (200) diffraction peaks. As shown in Fig. 4, the linear relationship between lattice constant and Fe content of the alloy coating is observed, and the expression of the lattice constant with the change of Fe content is expressed bya =0.358+0.00009x (2)where a is the lattice constant of Ni −Fe coating; x is FeLi MA, et al/Trans. Nonferrous Met. Soc. China 25(2015) 146−153 150Fig. 4 Lattice constants of Ni−Fe coatings calculated by rietveld method vs Fe content of coatingcontent (mass fraction, %) of Ni−Fe coating.3.2.4 FWHM and grain size of alloyFWHM analysis was conducted using the Scherrer equation on the (200) peak, with a correction of instrumental broadening. The FWHM as a function of Fe content in Ni−Fe coatings is shown in Fig. 5. It can be seen from Fig. 5 that with an increase of Fe content, the FWHM increases gradually. Usually, the reasons for peak broadening may be the grain refinement and the increase of stress in the coating [22,23].Fig. 5 FWHM vs Fe content in Ni−Fe alloy coatingsIn principle, the Bragg peak broadening in an XRD pattern is due to the combination of grain refinement and lattice strain, which can be determined by the integral breadth method [24]. WILLIAMSON and HALL [25] suggested a Cauchy−Cauchy approximation to separate the crystallite size (d) and strain (η). Firstly, assuming that both the crystalline grain size and microstrains contribute to the line broadening, the broadening due to crystallite size (βc) and lattice strain (βs) are represented byc0.9cosdλβθ=, s tanβηθ=(3)where λ is the X-ray wave length of Cu Kα, 1.54056 Å; θis Bragg’s diffraction angle (the position of the analyzed peak maximum); d and η, respectively, indicate the grain size and microstrain of the crystalline phase investigated. The total broadening is the sum of the above contributions. The following relationship holdsθηθλβtancos9.0+=d(4)Then, Eq. (4) can be turned intocos sin0.9dβθθηλλ=+(5) Thus, by plotting βcos θ/λ against sin θ/λ, the microstrain and grain size can be estimated from the slope and the intercept, respectively. In this work, the grain size and microstrain values of Ni−Fe coatings were estimated by using (111) and (200) diffraction peaks.The grain size in the Ni−Fe alloy coating as a function of Fe content is shown in Fig. 6. When the Fe content decreases below 25% (mass fraction), the grain size increases very rapidly with the decrease of Fe content. This finding is consistent with results in Ref. [4] although they employed different deposition parameters. When the Ni−Fe alloys are deposited, they form solid solutions. Because of the difference in the atomic radius of Fe and Ni (Fe: 0.126 nm, Ni: 0.125 nm), the lattice strain will be produced. With the increase of Fe content, the lattice distortion will be aggravated and result in lattice defects such as dislocation and vacancy. When the number of dislocations accumulates to a certain degree, small-angle grain boundaries will appear, leading to the grain size refinement of the coating. However, the grain size remains approximately constant (~11 nm) for the electrodeposited FCC alloys with Fe content in the range of 25%−40%. This indicates that the grain size of theFig. 6 Average grain size vs Fe content in Ni−Fe alloy coatingsLi MA, et al/Trans. Nonferrous Met. Soc. China 25(2015) 146−153 151 Ni−Fe coatings is independent of the Fe content in thecompositional range of 25%−40%. This is consistent with the results reported for Ni−Fe coatings fabricated from a sulfamate-based bath [26]. The important factors that affect the nucleation rate during the electrodeposition are overpotential and presence of additives [27].3.2.5 Lattice microscopic strain of coatingsFigure 7 presents the lattice microstrain values and FWHM as a function of the Fe content in Ni−Fe coatings. The lattice microstrain values were calculated based on the method proposed by WILLIAMSON and HALL [25]. While there are some scatters in the values at low Fe contents, the lattice strain increases with increasing the Fe content of the FCC Ni−Fe alloys. The scatter in the alloys with low Fe content can be attributedto the variation in the grain size in these coatings. Since the alloys with Fe content not less than 25% have similar grain sizes (~11 nm), the increase in the lattice strain cannot be attributed to a change in the grain size. The formation of defects such as vacancies, dislocations, voids and twins as well as any local inhomogeneity in the alloys can contribute to the development of lattice strains.Fig. 7 Lattice microstrain and FWHM vs Fe content in Ni−Fe alloy coatings3.3 Surface and cross-section morphologies of Ni−FecoatingsThe surface and cross-section morphologies of Ni−Fe alloy coatings with different Fe contents are quite similar. Thus, only the surface and cross-section morphologies of Ni−7Fe coating are shown in Fig. 8. It can be seen from Fig. 8(a) that the surface of Ni−7Fe alloy coating is quite smooth and compact, without any hole or crack. Furthermore, it can also be found that the grain size of Ni−7Fe coating is less than 100 nm. And from Fig. 8(b), the thickness of the coating is about 170 μm, and the coating is very flat and combines well with the substrate.Fig. 8 Surface AFM image (a) and cross-section SEM image (b) of as-deposited Ni−7Fe coating on Ni substrate4 Conclusions1) Nanocrystalline Ni−Fe FCC alloys with different compositions were fabricated on nickel substrates using a DC electrodeposition technique. The composition of the coatings was varied by changing the mass ratio of Ni to Fe in the electrolyte.2) The Fe content of the Ni−Fe alloy coatings has a great influence on the growth preferred orientation, grain size and residual stress. The coatings exhibit preferred orientations of (111) and (200) for FCC alloys. At a low Fe content, the (200) fiber texture is predominant. As the Fe content increases, the (111) fiber texture is strongly developed. Under similar deposition conditions, an increase in the Fe content in the range of 1%−25% results in a significant grain refinement. Increasing the Fe content beyond 25% does not decrease the grain size of FCC alloys any further. The lattice strain increases with increasing the Fe content of the Ni−Fe FCC alloys.Li MA, et al/Trans. Nonferrous Met. Soc. China 25(2015) 146−153 152Since the alloys with equal or more than 25% Fe have similar grain sizes (~11 nm) the increase in the lattice strain cannot be attributed to a change in the grain size. References[1]GHORBANI M, IRAJI ZAD A, DOLATI A, GHASEMPOUR R.The effect of the Cr and Mo on the physical properties ofelectrodeposited Ni−Fe alloy films [J]. Journal of Alloys andCompounds, 2005, 386(1−2): 43−46.[2]QIN X Y, KIM J G, LEE J S. Synthesis and magnetic properties ofnanostructured γ-Ni−Fe alloys [J]. Nanostructured Materials, 1999,11(2): 259−270.[3]SZMAJA W, BALCERSKI J, KOZLOWSKI W, CICHOMSKI M,GROBELNY J, SMONY M, KOWALCZYK P J. Study of thermallyevaporated thin permalloy films by the Fresnel mode of TEM andAFM [J]. Journal of Alloys and Compounds, 2012, 521: 174−177. [4]CHEUNG C, DJUANDA F, ERB U, PALUMBO G.Electrodeposition of nanocrystalline Ni−Fe alloys [J].Nanostructured Materials, 1995, 5(5): 513−523.[5]HARRIS V G, GEILER A, CHEN Y, YOON S D, WU M,YANG A, CHEN Z, HE P, PARIMI P V, ZUO X, PATTON C E,ABE M, ACHER O, VITTORIA C. Recent advances in processingand applications of microwave ferrites [J]. Journal of Magnetism andMagnetic Materials, 2009, 321(14): 2035−2047.[6]WANG Y, TENG X, WANG J S, YANG H. Solvent-free atomtransfer radical polymerization in the synthesis of Fe2O3@polystyrene core-shell nanoparticles [J]. Nano Letters, 2003,3(6): 789−793.[7]GENG Shu-jiang, LI Yan-dong, XIANG Dong, ZHOU Shi-gang.Electrodeposition of Fe−Ni alloy coating on ferritic stainless steel [J].Transactions of Nonferrous Metals Society of China, 2010, 20(S1):s226−s230.[8]MA L, ZHOU K, LI Z, WEI Q, ZHANG L. Hot corrosion of a novelNiO/NiFe2O4 composite coating thermally converted from theelectroplated Ni−Fe alloy [J]. Corrosion Science, 2011, 53(11):3712−3724.[9]MURALIDHARAN S, SARASWATHY V, BERCHMANS L J,THANGVEL K, ANN K Y. Nickel ferrite (NiFe2O4): A possiblecandidate material as reference electrode for corrosion monitoring ofsteel in concrete environments [J]. Sensors and Actuators B:Chemical, 2010, 145: 225−231.[10]CHEN Duan, ZOU Zhong, TIAN Zhong-lian, XIN Pang-fei, LIUKai, LAI Yan-qing, LI Jie. Effect of sintering atmosphere on phasecomposition and mechanical properties of 5Ni/(10NiO−NiFe2O4)[J].Transactions of Nonferrous Metals Society of China, 2012, 22(1):124−128.[11]ZHOU Ke-chao, MA Li, LI Zhi-you. Oxidation behaviors ofelectrodeposited Nickel-cobalt coatings at 960 °C in air [J].Transactions of Nonferrous Metals Society of China, 2011, 21(5):1052−1060.[12]RAHMAN A, JAYAGANTHAN R, PRAKASH S, CHAWLA V,CHANDRA R. High temperature oxidation behavior ofnanostructured Ni−Al coatings on superalloy [J]. Journal of Alloysand Compounds, 2009, 472(1−2): 478−483.[13]HERCHL R, KHOI N N, HOMMA T, SEMELTZER W W. Short-circuit diffusion in the growth of nickel oxide scales on nickel crystalfaces [J]. Oxidation of Metals, 1972, 4(1): 35−49.[14]MA L, ZHOU K C, ZHANG L, LI Z Y. A study on the oxidationbehavior of nickel coatings with different grain sizes and preferredorientations [J]. Advanced Materials Research, 2011, 183−185:1762−1766.[15]YIN K M, LEE C C. Effect of ferrous ion concentration on theelectrodeposition of iron–nickel alloys [J]. Journal of ChemicalTechnology & Biotechnology, 1997, 70(4): 337−342.[16]ZECH N, PODLAHA E J, LANDOLT D. Anomalous codepositionof iron group metals. I. Experimental results [J]. Journal of theElectrochemical Society, 1999, 146(8): 2886−2900.[17]NGUYEN A M, CERCELARU S, TREMBLAY G, PERRON J C,HESTO P. Magnetic and electrical characterizations of thin Ni−Feand Ni−Fe−Mo films [J]. Thin Solid Films, 1996, 275(1−2):231−234.[18]CHEN L, WANG L ZENG Z, XU T. Influence of pulse frequency onthe microstructure and wear resistance of electrodeposited Ni−Al2O3composite coatings [J]. Surface and Coatings Technology, 2006,201(3−4): 599−605.[19]KIM G, KIM B, LEE S. High-speed wear behaviors of CrSiNcoatings for the industrial applications of water hydraulics [J].Surface and Coatings Technology, 2005, 200(5−6): 1814−1818. [20]DISERENS M, PATSCHEIDER J, LEVY F. Improving theproperties of titanium nitride by incorporation of silicon [J]. Surfaceand Coatings Technology, 1998, 108−109: 241−246.[21]YOUNG R A. The rietveld method [M]. Oxford: Oxford UniversityPress, 1993.[22]GORCZYCA I, CHRISTENSEN N E, PERLIN P, GRZEGORY I,JUN J, BOCKOWSKI, M. High pressure phase transition inaluminium nitride [J]. Solid State Communications, 1991, 79(12):1033−1034.[23]WUHRER R, YEUNG W Y. A comparative study of magnetronco-sputtered nanocrystalline titanium aluminium and chromiumaluminium nitride coatings [J]. Scripta Materialia, 2004, 50(12):1461−1466.[24]ISHIKAWA N, YAMAMOTO S, CHIMI Y. Structural changes inanatase TiO2 thin films irradiated with high-energy heavy ions [J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2006, 250(1−2):250−253.[25]WILLIAMSON G K, HALL W H. X-ray line broadening from filedaluminium and wolfram [J]. Acta Metallurgica, 1995, 1(1): 22−31. [26]LI H, EBRAHIMI F. Synthesis and characterization ofelectrodeposited nanocrystalline nickel–iron alloys [J]. MaterialsScience and Engineering A, 2003, 347(1−2): 93−101.[27]WALSH F C, HERRON M E. Electrocrystallization andelectrochemical control of crystal growth: Fundamental considerations and electrodeposition of metals [J]. Journal of PhysicsD: Applied Physics, 1991, 24(2): 217−225.。

相关文档
最新文档