2016年高考数学(文)冲刺卷01(山东卷)(答案及评分标准)
2016年高考文科数学山东卷及答案解析
绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合}{=1,2,3,4,5,6U ,}{=1,3,5A ,}{=3,4,5B ,则u AB =()ð( )A .{}26,B .{}36,C .{}1345,,,D .{}1246,,,2. 若复数2z=1i-,其中i 为虚数单位,则z =( )A .1i +B .1i -C .1i -+D .1i --3. 某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5[]30,,样本数据分组为17.5[)20,,[20,22.5),22.5[)25,,252[)7.5,,27.5[)30,.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .120D .1404. 若变量x ,y 满足+22390x y x y x ⎧⎪-⎨⎪⎩≤,≤,≥,则22+x y 的最大值是( )A .4B .9C .10D .125. 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A .12+33πB.1+33C.13D.16. 已知直线a ,b 分别在两个不同的平面αβ,内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 已知圆2220(0)x y ay a M +-=>:截直线0x y +=所得线段的长度是M 与圆22(1)(1) 1N x y -+-=:的位置关系是 ( )A .内切B .相交C .外切D .相离8. ABC △中,角A B C ,,的对边分别是a b c ,,.已知b c =,222(1sin )A a b =-,则A =( )A .34πB .3π C .4πD .6π9. 已知函数()f x 的定义域为R .当0x <时,()1f x x -3=;当x -1≤≤1时,()f x -=()f x -;当12x >时,11(+)()22f x f x -=.则(6)f =( )A .2-B .1-C .0D .210. 若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是 ( )A .y=sin xB .y=ln xC .xy=eD .3y=x-----------在-------------------此-------------------卷-------------------上-------------------答-------------------题-------------------无-------------------效-----------姓名________________ 准考证号_____________第II 卷(共100分)二、选择题:本大题共5小题,每小题5分,共25分.11. 执行如图的程序框图,若输入n 的值为3,则输出的S 的值为_______.12. 观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯;2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯;2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯;2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯;……照此规律, 2222π2π3π2π(sin )(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++________.13. 已知向量a 1(1,)=-,b 4(6,)=-.若a ⊥(t a + b ),则实数t 的值为________.14. 已知双曲线2222y100E a b a bx =>>-:(,).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是_______.15. 已知函数2 24 () x x m x x mx m x m f =⎧⎪⎨-+⎪⎩||,≤,,>,其中0m >.若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是_______.三、解答题:本大题共6小题,共75分. 16. (本小题满分12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下: ①若3xy ≤,则奖励玩具一个; ②若8xy ≥,则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项 活动.(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明 理由.17. (本小题满分12分)设2()π)sin (sin cos )f x x x x x =---. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数()y g x =的图象,求π()6g 的值.18. (本小题满分12分)在如图所示的几何体中,D 是AC 的中点,EF DB ∥. (Ⅰ)已知AB BC =,AE EC =.求证:AC FB ⊥;(Ⅱ)已知G ,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC .19. (本小题满分12分)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .20. (本小题满分13分)设2ln 1)2()(f x x x ax a x =-+-,a ∈R .(Ⅰ)令()()g x x f '=,求()g x 的单调区间;(Ⅱ)已知()f x 在1x =处取得极大值,求实数a 的取值范围.21. (本小题满分14分)已知椭圆222210y a b a ax C +=>>:()的长轴长为4,焦距为. (Ⅰ)求椭圆C 的方程;(Ⅱ)过动点()(,)00M m m >的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B .(i )设直线PM ,QM 的斜率分别为k 、'k ,证明'k k为定值. (ii )求直线AB 的斜率的最小值.A B={1,3,4A B)=U【提示】主要考察集合的并集、补集.=-cos0cosπ1=,y=e x【答案】5-(6ta b t+=+-,,()(64)(1,1)2100a tab t t t+=+---=+=,,解得【提示】从()a ta b⊥+出发,转化成为平面向量的数量积的计算.【考点】平面向量的数量积【解析】依题意,不妨设64AB AD==,,作出图象如下图所示2c4m m m+,【提示】利用数形结合思想,通过对函数图象的分析,转化得到代数不等式【考点】函数的图象与性质、数形结合思想、分段函数BD DE D=,所以(Ⅱ)设FC的中点为I ,连GI HI ,.在CEF △中,因为G 是CE 的中点,所以GI EF ∥,又EF DB ∥,所以GI DB ∥. 在CFB △中,因为H 是FB 的中点,所以HI BC ∥,又G IH I I =,所以GHI ABC 平面∥平面,因为GH ⊂平面GHI ,所以GH ∥平面ABC .【提示】(Ⅰ)根据EF DB ∥,知EF 与BD 确定一个平面,连接DE ,得到DE AC ⊥,BD AC ⊥,从而AC ⊥平面BDEF ,证得AC FB ⊥.(Ⅱ)设FC 的中点为I ,连GI HI ,,在CEF △,CFB △中,由三角形中位线定理可得线线平行,证得GHI ABC 平面∥平面,进一步得到GH ∥平面ABC . 【考点】平行关系,垂直关系. 19.【答案】(Ⅰ)31n b n =+(Ⅱ)232n n T n +=【解析】(Ⅰ)由题意知,当2n ≥时,165n n n a S S n -=-=+, 当1n =时,1111a S ==,符合上式,所以65n a n =+.设数列的公差为d ,由112223a b b a b b =+⎧⎨=+⎩,即111121723b db d=+⎧⎨=+⎩,解得14b =,3d =,所以31n b n =+.11)2n -, n c ++,得23232(1)n +⨯+++2(1)n ⨯+++,12224(21)2(1)234(1)23221n n n n n n n n ++++⎡⎤-⎤++-+⨯=⨯+-+⨯=-⎢⎥⎦-⎣⎦22n n +(Ⅰ)由题意得11)2n -,424)2n +++,利用错位相减法即得n T . 【考点】等差数列的通项公式,等比数列的求和,错位相减法。
2016年高考数学(文)冲刺卷 02(山东卷)(答案及评分标准)
第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【命题意图】本题考查集合的交集运算,意在考查学生的逻辑思维能力. 【答案】A【试题解析】因为{}{}1,2,,2,3,4,S a T b ==,{}1,2,3S T = ,所以1,3==b a ,则2=-b a ;故选A .2. 【命题意图】本题主要考查复数的基本运算以及共轭复数的概念等,意在考查学生的基本计算能力. 【答案】D【试题解析】由已知可得1(1)(2)13132(2)(2)555i i i i z i i i i ++++====+--+,所以1355z i =-,故选D.3. 【命题意图】本题考查指数不等式、对数不等式以及充分条件和必要条件的判定等知识,意在考查学生的逻辑思维能力. 【答案】B【试题解析】b a ba >⇔>22 ,且0log log 22>>⇔>b a b a ,∴“22a b >”是“22log log a b >”的必要不充分条件;故选B .4. 【命题意图】本题以应用题为载体考查等比数列的通项和前n 项和公式的应用,意在考查学生的逻辑思维能力和基本计算能力. 【答案】B5. 【命题意图】本题考查程序框图的应用,意在考查学生的逻辑思维能力.【答案】A【试题解析】初始条件1S =,1K =;运行第一次,131122S =+=⨯,2K =;运行第二次,3152233S =+=⨯,3K =;运行第三次,5173344S =+=⨯,4K =;运行第四次,7194455S =+=⨯,5K =.要输出的值是95,必须条件满足,停止运行,所以4?K >,所以4a =,故选A .6. 【命题意图】本题考查点与圆的位置关系、直线与圆的位置关系等知识,意在考查学生的逻辑思维能力和基本计算能力. 【答案】C【试题解析】因为点00(,)P x y 在圆22:4C x y +=外,所以22004x y +>,则圆心)0,0(C 到直线00:40l x x y y +-=的距离24202<+=yx d ,直线00:4l x x y y +=与圆C 相交;故选C .7. 【命题意图】本题考查导数与函数的单调性的关系和数形结合思想的应用,意在考查学生的逻辑思维能力和基本计算能力. 【答案】B8.【命题意图】本题考查不等式组和平面区域的关系、三角形的面积,意在考查学生的数形结合思想的应用和基本运算能力. 【答案】C【试题解析】作出可行域(如图所示),且直线04=+-y kx 可化为4+=kx y ,即恒过点)4,0(A ,联立⎩⎨⎧=+=44x kx y ,得)44,4(+k C ,则ABC ∆的面积为1644421=+⨯⨯k ,解得1=k 或3-=k ;故选C .9. 【命题意图】本题主要考查茎叶图的识别、样本数据的平均数以及均值不等式求解最值等知识,意在考查学生识图能力以及基本的运算能力. 【答案】B10. 【命题意图】本题考查分段函数、函数的零点等知识,意在考查学生的数学逻辑思维能力、计算能力和解决问题的综合能力. 【答案】B 【试题解析】试题分析:令1)(222≤---x x x ,即0322≤--x x ,解得231≤≤-x ,则⎪⎪⎩⎪⎪⎨⎧>-<-≤≤--=231,231,2)(22x x x x x x x f 或,则)(x f 的图象如图所示,且曲线的端点分别为)43,23(),41,23(),2,1(),1,1(----,令)(1x f y =,c y =2,由图象,可知当2-≤c 或431-<<-x 时,直线c y =2与)(1x f y =的图象有两个交点,即函数()y f x c =-恰有两个不同的零点;故选B .第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.【命题意图】本题考查空间几何体的三视图、组合体的体积等知识,意在考查学生的空间想象能力和基本计算能力. 【答案】28836+π 【试题解析】试题分析:由三视图知:该几何体是由底面圆的半径为3,高为8的半圆柱和长为8,宽为6,高为6的长方体的组合体,所以该几何体的体积是2138866362882V ππ=⨯⨯⨯+⨯⨯=+.12. 【命题意图】本题考查两个变量间的线性回归关系,意在考查学生逻辑思维能力和基本计算能力. 【答案】4【试题解析】由题意, 1.5x =,84y π+=,∴样本中心点是坐标为8(1.5,)4π+,∵回归直线必过样本中心点,y 与x 的回归直线方程为^332y x =-,∴83 1.5 1.54π+=⨯-,∴4m =;故答案为4.13. 【命题意图】本题考查归纳推理的应用,意在考查学生的逻辑思维能力和基本计算能力. 【答案】(5,7)14. 【命题意图】本题考查正弦定理、三角形的面积公式以及两角差的正弦公式的应用,意在考查学生的逻辑思维能力和基本计算能力.【答案】4【试题解析】由正弦定理得:2sinB b R =,2sinC c R =,因为B c C b cos cos =,所以B C C B cos sin cos sin =,即0)sin(=-B C ,所以C B =,即1c b ==,所以a 边上的12=,所以C ∆AB 的面积是1122=4. 15. 【命题意图】本题考查抛物线的定义、直线与抛物线的位置关系等知识,意在考查学生的基本计算能力和逻辑思维能力.. 【答案】1556-三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16. (本小题满分12分)【命题意图】本题考查平面向量的数量积运算、三角恒等变形、三角函数的图象与性质等知识,意在考查学生分析问题、解决问题的能力和基本的计算能力.【试题解析】(Ⅰ)()f x =⋅ab ππcos π2sin(π)6x x x =+=+, ………………2分 由π2π2k -≤ππ6x +≤π2π2k +,解得223k -≤x ≤123k +,k ∈Z , ……………………4分因为[0,2]x ∈时,0≤x ≤13或43≤x ≤2, ………………………………………………5分()f x ∴的单调递增区间为1[0,]3,4[,2]3. (6)分(Ⅱ)由题意,得1(,2)3P ,4(,2)3Q -, …………………………………………………7分由距离公式,得|OP =|OQ =,|PQ = ………………………………………………………10分根据余弦定理,得37526417cos +--∠===POQ .…………………12分17. (本小题满分12分)【命题意图】本题考查等差数列的通项和裂项抵消法的应用,意在考查学生分析问题、解决问题的能力和基本的计算能力.18. (本小题满分12分)【命题意图】本题考查独立性检验思想的应用、几何概型的概率公式等知识,意在考查学生的应用数学能力和准确的计算能力. 【试题解析】(Ⅰ)由表中数据得2K 的观测值()225022128850 5.556 5.024*********K ⨯⨯-⨯==≈>⨯⨯⨯所以根据统计在犯错误的概率不超过0.025的前提下认为视觉和空间能力与性别有关.………………6分(Ⅱ)设甲、乙解答一道几何题的时间分别为x y 、分钟,则基本事件满足的区域为5768x y ≤≤⎧⎨≤≤⎩(如图所示)yx11O设事件A 为“乙比甲先做完此道题” 则满足的区域为x y >∴由几何概型11112()228P A ⨯⨯==⨯ 即乙比甲先解答完的概率为18.………………12分19.(本小题满分12分)【命题意图】本题考查空间中平行关系的转化、几何体的体积公式,意在考查学生的空间想象能力和逻辑推理能力.20.(本小题满分13分)【命题意图】本题考查椭圆的标准方程和几何性质、直线与椭圆的位置关系等知识,意在考查学生逻辑推理能力和分析问题、解决问题的综合能力.21.(本小题满分14分)【命题意图】本题考查导数的几何意义、利用导数研究不等式恒成立问题,意在考查学生逻辑推理能力和分析问题、解决问题的综合能力【试题解析】(Ⅰ)()()22x x x x e a ae f x e a e a '⎛⎫-'== ⎪+⎝⎭+,由题意得:()()221021a f a '==+, ∴1a = …6分 (Ⅱ)令()()12g x fx x =-,。
2016年高考文科数学山东卷-答案
两式作差,得
Tn 3 2 22 23 24
2n1
(n
1) 2n2
3
4
4(2n 1) 2 1
(n
1) 2n2
3n
2n2
所以 Tn 3n 2n2
【提示】(Ⅰ)由题意得
aa12
【提示】(Ⅰ)根据 EF∥DB ,知 EF 与 BD 确定一个平面,连接 DE ,得到 DE AC ,BD AC ,从而 AC 平面 BDEF ,证得 AC FB . (Ⅱ)设 FC 的中点为 I ,连 GI,HI ,在 △CEF , △CFB 中,由三角形中位线定理可得线线平行,证得 平面GHI∥平面ABC ,进一步得到 GH∥平面 ABC . 【考点】平行关系,垂直关系. 19.【答案】(Ⅰ) bn 3n 1
r1 r2 MN r1 r2 ,所以圆 M 与圆 N 相交,故选 B.
【提示】注意“圆的特征直角三角形”。 【考点】直线与圆的位置关系,圆与圆的位置关系 8.【答案】C 【解析】由余弦定理得: a2 b2 c2 2bc cos A 2b2 2b2 cos A 2b2 (1 cos A) ,因为 a2 2b2 (1 sin A) ,所以
f
x
1 2
,所以当
x
1 2
时,函数
f
(x)
是周期为1 的周期函数,所以
2 / 10
f (6) f (1) ,又因为当 1 x 1时, f (x) f (x) ,所以 f (1) f (1) 13 1 2 ,故选 D.
【提示】利用分段函数的概念,发现周期函数特征,进行函数值的转化. 【考点】函数的周期性,分段函数. 10.【答案】A 【解析】当 y sin x 时, y cos x ,cos0 cos π 1 ,所以在函数 y sin x 图象存在两点使条件成立,故 A 正 确;函数 y ln x , y ex , y x3 的导数值均非负,不符合题意,故选 A.
2016年高考数学(文)冲刺卷01(山东卷)解析版 含解析
第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数1+1i i-(i 是虚数单位)等于( )A 。
1B 。
2 C. i D 。
2i【命题意图】本题考查复数的除法运算,意在考查学生的基本运算能力。
【答案】C【试题解析】i ii i i i i ==+-+=-+22)1)(1()1(112;故选C 。
2.已知集合{|21}A x x =-<<,2{|20}B x x x =-≤,则A B =()A .{|01}x x <<B .{|01}x x ≤<C .{|11}x x -<≤D .{|21}x x -<≤【命题意图】本题考查一元二次不等式的解法和集合的交集运算,意在考查学生的基本计算能力和逻辑思维能力. 【答案】B3。
已知函数()12log 030xx x f x x >⎧⎪=⎨⎪≤⎩,,,则((4))f f 的值为( )91- B .9-C .91 D .9【命题意图】本题以分段函数为载体考查指数式、对数式的运算,意在考查学生的基本运算能力。
【答案】C【试题解析】因为()12log 030x x x f x x >⎧⎪=⎨⎪≤⎩,,,所以()1(4)(2)9f f f =-=;故选C .4。
设x R ∈,向量(,1)a x =,(1,2)b =-,且a b ⊥,则||a b +=( ) A .5B .10C .25D .10【命题意图】本题考查平面向量的坐标运算,意在考查学生的基本计算能力。
【答案】B【试题解析】∵a b ⊥,∴20x -=,解得2=x ,∴(3,1)a b +=-, 则(3,1)||10a b a b +=-⇒+=;故选B .5。
运行右图所示框图的相应程序,若输入b a ,的值分别为3log 2和2log 3,则输出M 的值是( )A .0B .1C .2D .-1 【命题意图】本题考查程序框图中的条件结构、比较大小等知识,意在考查学生解决问题的综合能力. 【答案】C 【解析】因为2log31>,3log 21<,所以23log 3log 2>,由算法框图可知,运行后输出M 的值为23log 3log 21112M =⋅+=+=;故选C .6.为了得到函数2y x=的图象,可以将函数x x y 3cos 3sin +=的图象( )A .向右平移12π个单位长 B .向右平移4π个单位长C .向左平移12π个单位长 D .向左平移4π个单位长【命题意图】本题考查三角恒等变形、三角函数的图象变换,意在考查学生的化简计算能力和转化能力. 【答案】A7.已知数列{}na 满足21n n n aa a ++=-,且1=2a ,2=3a ,n S 为数列{}n a 的前n 项和,则2016S 的值为( )A 。
2016年高考文科数学山东卷
17. (本小题满分 12 分) 设 f (x) 2 3sin(π x)sin x (sin x cos x)2 .
(Ⅰ)求 f (x) 的单调递增区间;
(Ⅱ)把 y f (x) 的图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),再把得
到的图象向左平移 π 个单位,得到函数 y g(x) 的图象,求 g( π ) 的值.
()
A. 2,6
无
C. 1,3,4,5
B. 3,6
D. 1,2,4,6
2. 若复数 z= 2 ,其中 i 为虚数单位,则 z = 1i
()
A.1 i
效
C. 1 i
B.1 i D. 1 i
数学试卷 第 1 页(共 6 页)
3. 某高校调查了 200 名学生每周的自习时间(单位:小时),制成了如图所示的频率分 布直方图,其中自习时间的范围是 [17.5,30],样本数据分组为 [17.5,20) ,[20,22.5) , [22.5,25) ,[25,27.5) ,[27.5,30) .根据直方图,这 200 名学生中每周的自习时间不少于
中
m
0
.若
存
在
实
数
b
,使
得
关
于
x
的
方
程 f (x) b 有三个不同的根,则 m 的取值范围是_______.
数学试卷 第 4 页(共 6 页)
三、解答题:本大题共 6 小题,共 75 分. 16. (本小题满分 12 分)
某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所 示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次 记录的数分别为 x , y .奖励规则如下: ①若 xy≤3 ,则奖励玩具一个; ②若 xy≥8 ,则奖励水杯一个; ③其余情况奖励饮料一瓶. 假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项 活动. (Ⅰ)求小亮获得玩具的概率; (Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明 理由.
2016年高考山东文科数学试题及答案(word解析版)
2016年普通高等学校招生全国统一考试(山东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年山东,文1,5分】设集合{}{}1,2,3,4,5,6,1,3,5,{3,4,5}U A B ===,则()U A B =U ð( )(A ){}2,6 (B ){}3,6 (C ){}1,3,4,5 (D ){}1,2,4,6 【答案】A【解析】={1,34,5}A B U ,,()={2,6}U A B U ð,故选A . 【点评】考查集合的并集及补集运算,难度较小.(2)【2016年山东,文2,5分】若复数21iz =-,其中i 为虚数单位,则z =( )(A )2i - (B )2i (C )2- (D )2 【答案】B【解析】22(1i)=1i 1i 2z -==+-,1i z =-,故选B .【点评】复数的运算题目,考察复数的除法及共轭复数,难度较小. (3)【2016年山东,文3,5分】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ) (A )56 (B )60 (C )120 (D )140 【答案】D【解析】由图可知组距为2.5,每周的自习时间少于22.5小时的频率为(0.020.1) 2.50.30+⨯=, 所以,每周自习时间不少于22.5小时的人数是()20010.30140⨯-=人,故选D . 【点评】频率分布直方图题目,注意纵坐标为频率/组距,难度较小.(4)【2016年山东,文4,5分】若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22x y +的最大值是( )(A )4(B )9 (C )10 (D )12【答案】C 【解析】由22x y +是点(),x y 到原点距离的平方,故只需求出三直线的交点()()()0,2,0,3,3,1--,所以()3,1-是最优解,22x y +的最大值是10,故选C .(5)【2016年山东,文5,5分】有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为( )(A )1233+π (B )1233+π (C )1236+π (D )216+π【答案】C【解析】由三视图可知,此几何体是一个正三棱锥和半球构成的,体积为3142112111+=+3323ππ⨯⨯⨯⨯(),故选C .【点评】考察三视图以及几何体的体积公式,题面已知是半球和四棱锥,由三视图可看出是正四棱锥,难度较小. (6)【2016年山东,文6,5分】已知直线,a b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A【解析】若直线相交,一定有一个交点,该点一定同时属于两个平面,即两平面相交,所以是充分条件;两平面相交,平面内两条直线关系任意(平行、相交、异面),即充分不必要条件,故选A .(7)【2016年山东,文7,5分】已知圆()22:200M x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆22:(1)+(1)=1N x y --的位置关系是( )(A )内切 (B )相交 (C )外切 (D )相离 【答案】B【解析】圆()22:200M x y ay a +-=>化成标准形式222()(0)x y a a a +-=>解法1:圆心(0, )a 到直线0x y +=的距离为2ad =,由勾股定理得2222a a ⎛⎫+= ⎪⎝⎭, 解得2,0,2a a a =±>∴=Q ,圆M 与圆22:(1)+(1)=1N x y --的圆心距为22(10)(12)2-+-=,圆M 半 径12R =,圆N 半径212121,2,R R R R R =-<<+∴Q 圆M 与圆N 相交,故选B .解法2:直线0x y +=斜率为1-,倾斜角为135︒,可知2,2BM OB OM a ==∴==,B 点坐标为()1,1-,即为圆N 的圆心.圆心在圆M 中,且半径为1,即两圆相交,故选B .(8)【2016年山东,文8,5分】ABC ∆中,角,,A B C 的对边分别是,,a b c ,已知b c =,222(1sin )a b A =-,则A=( )(A )34π (B )3π (C )4π (D )6π【答案】C【解析】222222(1sinA),2cos 2(1sinA),a b b c bc A b =-∴+-=-Q 又b c =Q ,2222cos b b A ∴-22(1sin )b A =-,cos sin A A ∴=,在ABC ∆中,(0,),A 4A ππ∈∴=,故选C .(9)【2016年山东,文9,5分】已知函数()f x 的定义域为R ,当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则()6f =( )(A )2- (B )1- (C )0 (D )2 【答案】D【解析】由1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,知当12x >时,()f x 的周期为1,所以()()61f f =.又当11x -≤≤时,()()f x f x -=-,所以()()11f f =--.于是()()()()3611112f f f ⎡⎤==--=---=⎣⎦,故选D .(10)【2016年山东,文10,5分】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数具有T 性质的是( )(A )sin y x = (B )ln y x = (C )x y e = (D )3y x = 【答案】A【解析】因为函数ln y x =,x y e =的图象上任何一点的切线的斜率都是正数;函数3y x =的图象上任何一点的切线的斜率都是非负数.都不可能在这两点处的切线互相垂直,即不具有T 性质,故选A .第II 卷(共100分)二、填空题:本大题共5小题,每小题5分. (11)【2016年山东,文11,5分】执行右边的程序框图,若输入n 的值为3,则输出的S 的值为 . 【答案】1【解析】根据题目所给框图,当输入3n =时,依次执行程序为:1,0i S ==,021=21S =+--,13i =≥不成立,12i i =+=,213231S =-+-=-,23i =≥不成立,13i i =+=,3143211S =-+-=-=,33i =≥成立,故输出的S 的值为1.(12)【2016年山东,文12,5分】观察下列等式:2224sin sin 12333ππ--⎛⎫⎛⎫+=⨯⨯ ⎪ ⎪⎝⎭⎝⎭ 22222344sin sin sin sin 2355553ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22222364sin sin sin sin 3477773ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22222384sin sin sin sin 4599993ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭……2222232sin sin sin sin 21212121n n n n n ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭ . 【答案】()413n n+【解析】由题干中各等式左端各项分母的特点及等式右端所表现出来的规律经过归纳推理即得.(13)【2016年山东,文13,5分】已知向量()1,1a =-r ,()6,4b =-r .若()a tab ⊥+r r r,则实数t 的值为 .【答案】5-【解析】由已知条件可得()6,4ta b t t +=+--r r,又因()a ta+b ⊥r r r 可得()=a ta+b ⋅r r r 0,即()()()6141642100t t t t t +⨯+--⨯-=+++=+=,即得5t =-.(14)【2016年山东,文14,5分】已知双曲线()2222:10,0x y E a b a b-=>>,若矩形ABCD 的四个顶点在E 上,,AB CD的中点为E 的两个焦点,且23AB BC =,则E 的离心率为 .【答案】2【解析】由题意BC 2c =,所以2AB 3BC =,于是点3,2c c ⎛⎫⎪⎝⎭在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==.(15)【2016年山东,文15,5分】在已知函数()2,24,x x mf x x mx m x m⎧≤⎪=⎨-+>⎪⎩,其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是 .【答案】()3,+∞【解析】因为()224g x x mx m =-+的对称轴为x m =,所以x m >时()224f x x mx m =-+单调递增,只要b 大于()224g x x mx m =-+的最小值24m m -时,关于x 的方程()f x b =在x m >时有一根;又()h x x =在x m ≤,0m >时,存在实数b ,使方程()f x b =在x m ≤时有两个根,只需0b m <≤;故只需24m m m -<即可,解之,注意0m >,得3m >,故填()3+∞,. 三、解答题:本大题共6题,共75分.(16)【2016年山东,文16,12分】某儿童乐园在“六一”儿童节推出了一项趣味活动,参加活动的儿 童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设 两次记录的数分别为x ,y .奖励规矩如下:①若3xy ≤,则奖励玩具一个;②若8xy ≥,则奖 励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此活动.(1)求小亮获得玩具的概率; (2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解:(1)设获得玩具记为事件A ,获得水杯记为事件B ,获得一瓶饮料记为事件C ,转盘转动两次后获得的数据记为(),x y ,则基本事件空间为()()()()()()()()1,11,21,31,42,12,22,32,4、、、、、、、、()()()()()()()()3,13,23,33,44,14,24,34,4、、、、、、、共16种,事件A 为()()()()()1,11,21,32,13,1、、、、,共5种, 故小亮获得玩具的概率()516A P =. (2)事件B 为()()()()()()2,43,33,44,24,34,4、、、、、共6种,故小亮获得水杯的概率()63168B P ==,获得饮料的指针2431A概率()()()5116C A B P P P =--=.因为()()B C P P >,所以小亮获得水杯比获得饮料的概率大. (17)【2016年山东,文17,12分】设2())sin (sin cos )f x x x x x π=---.(1)求()f x 的单调递增区间;(2)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单位,得到函数()y g x =的图象,求6y g π⎛⎫= ⎪⎝⎭的值.解:(1)()()()2sin sin sin cos 2sin sin cos 2sin cos ()2sin 21f x x x x x x x x x x x x π=---=-+-+-sin 2212sin 2212sin 12213x x x x x π⎛⎫⎛⎫=-=-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭ ()222232k x k k Z πππππ-+≤-≤+∈,()51212k x k k Z ππππ-+≤≤+∈, 所以单调递增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (2)经变换()2sin1g x x =,6g π⎛⎫= ⎪⎝⎭(18)【2016年山东,文18,12分】在如图所示的几何体中,D 是AC 的中点,//EF DB .(1)已知AB BC =,AE EC =.求证:AC FB ⊥;(2)已知G ,H 分别是EC 和FB 的中点.求证://GH ABC 平面. 解:(1)连接ED ,AB BC =Q ,AE EC =.AEC ∴∆和ABC ∆为等腰三角形.又D Q 是AC 的中点,ED AC ∴⊥,BD AC ⊥;AC ∴⊥平面EDB .又//EF DB Q , ∴平面EDB 与平面EFBD 为相同平面;AC ∴⊥平面EFBD .FB ⊆Q 平面EFBD ;AC FB ∴⊥. (2)取ED 中点I ,连接IG 和IH .在EDC ∆中I 和G 为中点;//IG CD ∴.//EF DB Q ;∴四边形EFBD 为梯形.I Q 和H 分别 为ED 和FB 中点;//IH BD ∴.又IH Q 和IG 交与I 点,CD 与BD 交与D 点;∴平面//GIH 平面BDC .又GH ⊆Q 平面GIH ; //GH ∴平面ABC .(19)【2016年山东,文19,12分】已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(1)求数列{}n b 的通项公式;(2)令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T .解:(1)因为数列{}n a 的前n 项和238n S n n =+,所以111a =,当2n ≥时,221383(1)8(1)65n n n a S S n n n n n -=-=+----=+,又65n a n =+对1n =也成立,所以65n a n =+.又因为{}n b 是等差数列,设公差为d ,则12n n n n a b b b d +=+=+.当1n =时,1211b d =-;当2n =时,2217b d =-,解得3d =,所以数列{}n b 的通项公式为312n n a db n -==+. (2)由111(1)(66)(33)2(2)(33)n n n n n n nn a n c n b n +++++===+⋅++,于是23416292122(33)2n n T n +=⋅+⋅+⋅+++⋅L , 两边同乘以2,得341226292(3)2(33)2n n n T n n ++=⋅+⋅++⋅++⋅L ,两式相减,得 2341262323232(33)2n n n T n ++-=⋅+⋅+⋅++⋅-+⋅L 22232(12)32(33)212n n n +⋅-=⋅+-+⋅-2221232(12)(33)232n n n n T n n ++=-+⋅-++⋅=⋅.(20)【2016年山东,文20,13分】设2()ln (21)f x x x ax a x =-+-,a R ∈.AA(1)令()'()g x f x =,求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求实数a 取值范围. 解:(1)定义域()0+∞,,()()ln 1221g x f x x ax a '==+-+-,()12g x a x'=-. ①当0a ≤时,()0g x '>恒成立,()g x 在()0+∞,上单调递增; ②当0a >时,令()0g x '=,得12x a =.()g x 在10,2a ⎛⎫ ⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递减. 综上所述,当0a ≤时,单调递增区间为()0+∞,,当0a >时,单调递增区间为10,2a ⎛⎫⎪⎝⎭, 单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭. (2)∵()f x 在1x =处取得极大值,∴()10g =,ln112210a a +-+-=在a 取任何值时恒成立.①当0a ≤时,()g x 在()0+∞,上单调递增,即()0,1x ∈时,()0g x <;()1,x ∈+∞时,()0g x >, 此时()f x 在1x =处取得极小值,不符合题意;②当0a >时,()g x 在10,2a ⎛⎫ ⎪⎝⎭上单调递增, 在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递减.只需令112a <,即12a >.综上所述,a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭.(21)【2016年山东,文21,14分】已知椭圆2222:1x y C a b+=()0a b >>的长轴长为4,焦距为(1)求椭圆C 的方程; (2)过动点()()0,0M m m >的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M是线段PN 的中点,过点P 做x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .(i )设直线PM ,QM 的斜率分别为k ,'k ,证明'k k为定值;(ii )求直线AB 的斜率的最小值.解:(1)由题意得222242a c a b c =⎧⎪=⎨⎪=+⎩,解得2a b c =⎧⎪=⎨⎪=⎩22142x y +=.(2)(i )设(,0),(,),N P P N x P x y 直线:+PA y kx m =,因为点N 为直线PA 与x 轴的交点,所以N mx k=-, 因为点()0,M m 为线段PN 的中点,所以00,22N P P x x y m ++==,得,2P P mx y m k==, 所以点,2m Q m k ⎛⎫- ⎪⎝⎭,所以()2=30m m k k m k--=--’,故3k k =-’为定值.(ii )直线:+PA y kx m =与椭圆方程联立22142y kx m x y =+⎧⎪⎨+=⎪⎩,得:222(21)4240k x kmx m +++-=,所以222222164(21)(24)328160k m k m k m ∆=-+-=-+>① 12122242,2121kmx mx x y y k k -+=+=++, 所以222264,(21)21k m m k m A k k k ⎛⎫+-- ⎪++⎝⎭,直线:3+QM y kx m =-与椭圆方程联立223142y kx mx y =-+⎧⎪⎨+=⎪⎩, 得()22218112240k x kmx m +-+-=,所以121222122,181181km mx x y y k k +=+=++,所以()()22224916,181181m k k m m B k k k ⎛⎫++ ⎪- ⎪++⎝⎭,26131424B A ABB A y y k k k x x k k -+===+-, 因为点P 在椭圆上,所以2224142m m k +=,得2224k m =② 将②代入①得()2240k >+1恒成立, 所以20k ≥,所以0k ≥,所以3124AB k k k =+≥k =时取“=”), 所以当k 时,AB k .。
(精校版)2016年山东文数高考试题文档版(含答案)
绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B U ð= (A ){2,6}(B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}(2)若复数21i z =-,其中i 为虚数单位,则z =(A )1+i(B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56(B )60(C )120(D )140(4)若变量x,y满足2,239,0,x yx yx+≤⎧⎪-≤⎨⎪≥⎩则x2+y2的最大值是(A)4 (B)9 (C)10 (D)12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A)12+π33(B)123(C)123(D)2(6)已知直线a,b分别在两个不同的平面α,b内,则“直线a和直线b相交”是“平面α和平面b相交”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是M 与圆N :22(1)1x y +-=(-1)的位置关系是(A )内切(B )相交(C )外切(D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A= (A )3π4(B )π3(C )π4(D )π6(9)已知函数f(x)的定义域为R.当x <0时,f(x)=x3-1;当-1≤x ≤1时,f(-x)= —f(x);当x >12时,f(x+12)=f(x —12).则f(6)=(A )-2 (B )-1 (C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是学科&网(A )sin y x =(B )ln y x =(C )e xy =(D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2016年山东高考试题及答案-文科数学
2016年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð= (A ){2,6}(B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} (2)若复数21i z =-,其中i 为虚数单位,则z = (A )1+i (B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140(4)若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是(A )4(B )9(C )10(D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )12+π33(B )1+π33(C )1+π36(D )1+π6(6)已知直线a ,b 分别在两个不同的平面βα,内,则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是M与圆N :22(1)1x y +-=(-1)的位置关系是 (A )内切(B )相交(C )外切(D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =(A )3π4(B )π3(C )π4(D )π6 (9)已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= (A )-2 (B )-1(C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
(精校版)2016年山东文数高考试题文档版(含答案)
绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð=(A ){2,6}(B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}(2)若复数21i z =-,其中i 为虚数单位,则z =(A )1+i(B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56(B )60(C )120(D )140(4)若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x2+y2的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )12+π33 (B)1+π33 (C)1+π36 (D)1+π6(6)已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是M 与圆N :22(1)1x y +-=(-1)的位置关系是(A )内切(B )相交(C )外切(D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A= (A )3π4(B )π3(C )π4(D )π6(9)已知函数f(x)的定义域为R.当x <0时,f(x)=x3-1;当-1≤x ≤1时,f(-x)= —f(x);当x >12时,f(x+12)=f(x —12).则f(6)=(A )-2 (B )-1 (C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是学科&网(A )sin y x=(B )ln y x =(C )e xy = (D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2016年山东省高考数学试卷及解析(文科)
2016年山东省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项中,只有一个是项符合题目要求的.1、(5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U (A∪B)=()A、{2,6}B、{3,6}C、{1,3,4,5}D、{1,2,4,6}2、(5分)若复数z=,其中i为虚数单位,则=()A、1+iB、1﹣iC、﹣1+iD、﹣1﹣i3、(5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30]、根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A、56B、60C、120D、1404、(5分)若变量x,y满足,则x2+y2的最大值是()A、4B、9C、10D、125、(5分)一个由半球和四棱锥组成的几何体,其三视图如图所示、则该几何体的体积为()A、+πB、+πC、+πD、1+π6、(5分)已知直线a,b分别在两个不同的平面α,β内、则“直线a和直线b 相交”是“平面α和平面β相交”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件7、(5分)已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A、内切B、相交C、外切D、相离8、(5分)△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=()A、 B、C、D、9、(5分)已知函数f(x)的定义域为R、当x<0时,f(x)=x3﹣1;当﹣1≤x ≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣)、则f(6)=()A、﹣2B、1C、0D、210、(5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质、下列函数中具有T性质的是()A、y=sinx B、y=lnx C、y=e x D、y=x3二、填空题:本大题共5小题,每小题5分,共25分.11、(5分)执行如图的程序框图,若输入n的值为3,则输出的S的值为、12、(5分)观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=、13、(5分)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为、14、(5分)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是、15、(5分)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是、三、解答题:本大题共6小题,共75分16、(12分)某儿童节在“六一”儿童节推出了一项趣味活动、参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数、记两次记录的数分别为x,y、奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶、假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动、(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由、17、(12分)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2、(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值、18、(12分)在如图所示的几何体中,D是AC的中点,EF∥DB、(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC、19、(12分)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1、(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n、20、(13分)设f(x)=xln x﹣ax2+(2a﹣1)x,a∈R、(1)令g(x)=f′(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求正实数a的取值范围、21、(14分)已知椭圆的长轴长为4,焦距为、(Ⅰ)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点、过点P作x轴的垂线交C于另一点Q,延长QM交C于点B、(ⅰ)设直线PM,QM的斜率分别为k1,k2,证明为定值;(ⅱ)求直线AB的斜率的最小值、参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项中,只有一个是项符合题目要求的.1、(5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U (A∪B)=()A、{2,6}B、{3,6}C、{1,3,4,5}D、{1,2,4,6}题目分析:求出A与B的并集,然后求解补集即可、试题解答解:集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则A∪B={1,3,4,5}、∁U(A∪B)={2,6}、故选:A、点评:本题考查集合的交、并、补的运算,考查计算能力、2、(5分)若复数z=,其中i为虚数单位,则=()A、1+iB、1﹣iC、﹣1+iD、﹣1﹣i题目分析:根据复数的四则运算先求出z,然后根据共轭复数的定义进行求解即可、试题解答解:∵z===1+i,∴=1﹣i,故选:B、点评:本题主要考查复数的计算,根据复数的四则运算以及共轭复数的定义是解决本题的关键、比较基础、3、(5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30]、根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A、56B、60C、120D、140题目分析:根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数、试题解答解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频率为:0.7×200=140,故选:D、点评:本题考查的知识点是频率分布直方图,难度不大,属于基础题目、4、(5分)若变量x,y满足,则x2+y2的最大值是()A、4B、9C、10D、12题目分析:由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值、试题解答解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1)、∵,∴x2+y2的最大值是10、故选:C、点评:本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题、5、(5分)一个由半球和四棱锥组成的几何体,其三视图如图所示、则该几何体的体积为()A、+πB、+πC、+πD、1+π题目分析:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案、试题解答解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=、故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,故选:C、点评:本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键、6、(5分)已知直线a,b分别在两个不同的平面α,β内、则“直线a和直线b 相交”是“平面α和平面β相交”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件题目分析:直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立、试题解答解:直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立、∴“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件、故选:A、点评:本题考查了空间位置关系、简易逻辑的判定方法,考查了推理能力,属于基础题、7、(5分)已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A、内切B、相交C、外切D、相离题目分析:根据直线与圆相交的弦长公式,求出a的值,结合两圆的位置关系进行判断即可、试题解答解:圆的标准方程为M:x2+(y﹣a)2=a2 (a>0),则圆心为(0,a),半径R=a,圆心到直线x+y=0的距离d=,∵圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,∴2=2=2=2,即=,即a2=4,a=2,则圆心为M(0,2),半径R=2,圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1,则MN==,∵R+r=3,R﹣r=1,∴R﹣r<MN<R+r,即两个圆相交、故选:B、点评:本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a的值是解决本题的关键、8、(5分)△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=()A、 B、C、D、题目分析:利用余弦定理,建立方程关系得到1﹣cosA=1﹣sinA,即sinA=cosA,进行求解即可、试题解答解:∵b=c,∴a2=b2+c2﹣2bccosA=2b2﹣2b2cosA=2b2(1﹣cosA),∵a2=2b2(1﹣sinA),∴1﹣cosA=1﹣sinA,则sinA=cosA,即tanA=1,即A=,故选:C、点评:本题主要考查解三角形的应用,根据余弦定理建立方程关系是解决本题的关键、9、(5分)已知函数f(x)的定义域为R、当x<0时,f(x)=x3﹣1;当﹣1≤x ≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣)、则f(6)=()A、﹣2 B、1 C、0 D、2题目分析:求得函数的周期为1,再利用当﹣1≤x≤1时,f(﹣x)=﹣f(x),得到f(1)=﹣f(﹣1),当x<0时,f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出结论、试题解答解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1、∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2、故选:D、点评:本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题、10、(5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质、下列函数中具有T性质的是()A、y=sinx B、y=lnx C、y=e x D、y=x3题目分析:若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案、试题解答解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=e x时,y′=e x>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;故选:A、点评:本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档、二、填空题:本大题共5小题,每小题5分,共25分.11、(5分)执行如图的程序框图,若输入n的值为3,则输出的S的值为1、题目分析:根据程序框图进行模拟计算即可、试题解答解:若输入n的值为3,则第一次循环,S=0+﹣1=﹣1,1≥3不成立,第二次循环,S=﹣1+=﹣1,2≥3不成立,第三次循环,S=﹣1+﹣=﹣1=2﹣1=1,3≥3成立,程序终止,输出S=1,故答案为:1点评:本题主要考查程序框图的识别和判断,进行模拟运算是解决本题的关键、12、(5分)观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=n(n+1)、题目分析:由题意可以直接得到答案、试题解答解:观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=×n (n+1),故答案为:n(n+1)点评:本题考查了归纳推理的问题,关键是找到相对应的规律,属于基础题、13、(5分)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为﹣5、题目分析:根据向量的坐标运算和向量的数量积计算即可、试题解答解:∵向量=(1,﹣1),=(6,﹣4),∴t+=(t+6,﹣t﹣4),∵⊥(t+),∴•(t+)=t+6+t+4=0,解得t=﹣5,故答案为:﹣5、点评:本题考查了向量的数量积的运算以及向量垂直的条件,属于基础题、14、(5分)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是2、题目分析:可令x=c,代入双曲线的方程,求得y=±,再由题意设出A,B,C,D的坐标,由2|AB|=3|BC|,可得a,b,c的方程,运用离心率公式计算即可得到所求值、试题解答解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由2|AB|=3|BC|,可得2•=3•2c,即为2b2=3ac,由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,解得e=2(负的舍去)、故答案为:2、点评:本题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A,B,C,D的坐标是解题的关键,考查运算能力,属于中档题、15、(5分)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是(3,+∞)、题目分析:作出函数f(x)=的图象,依题意,可得4m﹣m2<m(m>0),解之即可、试题解答解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞)、点评:本题考查根的存在性及根的个数判断,数形结合思想的运用是关键,分析得到4m﹣m2<m是难点,属于中档题、三、解答题:本大题共6小题,共75分16、(12分)某儿童节在“六一”儿童节推出了一项趣味活动、参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数、记两次记录的数分别为x,y、奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶、假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动、(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由、题目分析:(Ⅰ)确定基本事件的概率,利用古典概型的概率公式求小亮获得玩具的概率;(Ⅱ)求出小亮获得水杯与获得饮料的概率,即可得出结论、试题解答解:(Ⅰ)两次记录的数为(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(3,3),(4,2),(4,3),(4,4),共16个,满足xy≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5个,∴小亮获得玩具的概率为;(Ⅱ)满足xy≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6个,∴小亮获得水杯的概率为;小亮获得饮料的概率为1﹣﹣=,∴小亮获得水杯大于获得饮料的概率、点评:本题考查概率的计算,考查古典概型,确定基本事件的个数是关键、17、(12分)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2、(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值、题目分析:(Ⅰ)利用三角恒等变换化简f(x)的解析式,再利用正弦函数的单调性,求得函数的增区间、(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,从而求得g()的值、试题解答解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z、(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=、点评:本题主要考查三角恒等变换,正弦函数的单调性,函数y=Asin(ωx+φ)的图象变换规律,求函数的值,属于基础题、18、(12分)在如图所示的几何体中,D是AC的中点,EF∥DB、(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC、题目分析:(Ⅰ)由条件利用等腰三角形的性质,证得BD⊥AC,ED⊥AC,再利用直线和平面垂直的判定定理证得AC⊥平面EFBD,从而证得AC⊥FB、(Ⅱ)再取CF的中点O,利用直线和平面平行的判定定理证明OG∥平面ABC,OH∥平面ABC,可得平面OGH∥平面ABC,从而证得GH∥平面ABC、试题解答(Ⅰ)证明:如图所示,∵D是AC的中点,AB=BC,AE=EC,∴△BAC、△EAC都是等腰三角形,∴BD⊥AC,ED⊥AC、∵EF∥DB,∴E、F、B、D四点共面,这样,AC垂直于平面EFBD内的两条相交直线ED、BD,∴AC⊥平面EFBD、显然,FB⊂平面EFBD,∴AC⊥FB、(Ⅱ)已知G,H分别是EC和FB的中点,再取CF的中点O,则OG∥EF,又∵EF∥DB,故有OG∥BD,而BD⊂平面ABC,∴OG∥平面ABC、同理,OH∥BC,而BC⊂平面ABC,∴OH∥平面ABC、∵OG∩OH=O,∴平面OGH∥平面ABC,∴GH∥平面ABC、点评:本题主要考查直线和平面垂直的判定和性质,直线和平面平行的判定与性质,属于中档题、19、(12分)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1、(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n、题目分析:(Ⅰ)求出数列{a n}的通项公式,再求数列{b n}的通项公式;(Ⅱ)求出数列{c n}的通项,利用错位相减法求数列{c n}的前n项和T n、试题解答解:(Ⅰ)S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,=b n﹣1+b n,∴a n﹣1∴a n﹣a n﹣1=b n+1﹣b n﹣1、∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3(n﹣1)=3n+1;(Ⅱ)c n========6(n+1)•2n,∴T n=6[2•2+3•22+…+(n+1)•2n]①,∴2T n=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,①﹣②可得﹣T n=6[2•2+22+23+…+2n﹣(n+1)•2n+1]=12+6×﹣6(n+1)•2n+1=(﹣6n)•2n+1=﹣3n•2n+2,∴T n=3n•2n+2、点评:本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题、20、(13分)设f(x)=xln x﹣ax2+(2a﹣1)x,a∈R、(1)令g(x)=f′(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求正实数a的取值范围、题目分析:(1)求出函数的导数,通过讨论a的范围,求出函数g(x)的单调区间即可;(2)通过讨论a的范围,得到函数f(x)的单调区间,结合函数的极大值,求出a的范围即可、试题解答解:(1)由f′(x)=ln x﹣2ax+2a,可得g(x)=ln x﹣2ax+2a,x∈(0,+∞),所以g′(x)=﹣2a=,当a≤0,x∈(0,+∞)时,g′(x)>0,函数g(x)单调递增;当a>0,x∈(0,)时,g′(x)>0,函数g(x)单调递增,x∈(,+∞)时,g′(x)<0,函数g(x)单调递减、所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)的单调增区间为(0,),单调减区间为(,+∞)、…(6分)(2)由(1)知,f′(1)=0、①当0<a<时,>1,由(1)知f′(x)在(0,)内单调递增,可得当x∈(0,1)时,f′(x)<0,当x∈(1,)时,f′(x)>0、所以f(x)在(0,1)内单调递减,在(1,)内单调递增,所以f(x)在x=1处取得极小值,不合题意、②当a=时,=1,f′(x)在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x∈(0,+∞)时,f′(x)≤0,f(x)单调递减,不合题意、③当a>时,0<<1,当x∈(,1)时,f′(x)>0,f(x)单调递增,当x∈(1,+∞)时,f′(x)<0,f(x)单调递减、所以f(x)在x=1处取极大值,符合题意、综上可知,正实数a的取值范围为(,+∞)、…(12分)点评:本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题、21、(14分)已知椭圆的长轴长为4,焦距为、(Ⅰ)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点、过点P作x轴的垂线交C于另一点Q,延长QM交C于点B、(ⅰ)设直线PM,QM的斜率分别为k1,k2,证明为定值;(ⅱ)求直线AB的斜率的最小值、题目分析:(Ⅰ)结合题意分别求出a,c的值,再求出b的值,求出椭圆方程即可;(Ⅱ)(i)设出P的坐标,表示出直线PM,QM的斜率,作比即可;(ii)设出A,B的坐标,分别求出PA,QB的方程,联立方程组,求出直线AB 的斜率的解析式,根据不等式的性质计算即可、试题解答解:(Ⅰ)设椭圆的半焦距为c、由题意知,所以、所以椭圆C的方程为、(Ⅱ)证明:(ⅰ)设P(x0,y0)(x0>0,y0>0),由M(0,m),可得P(x0,2m),Q(x0,﹣2m)所以直线PM的斜率k1==,直线QM的斜率k2==﹣,此时=﹣3、所以为定值﹣3(ⅱ)设A(x1,y1),B(x2,y2)、直线PA的方程为y=kx+m,直线QB的方程为y=﹣3kx+m联立整理得(2k2+1)x2+4mkx+2m2﹣4=0、由,可得,所以、同理所以,,所以、由m>0,x0>0,可知k>0,所以,等号当且仅当时取得,此时,即,所以直线AB 的斜率的最小值为点评:本题考查了椭圆的方程问题,考查直线的斜率以及椭圆的性质,考查函数求最值问题,是一道综合题。
【精校版】2016年山东省高考数学(文)试题(Word版,含答案)
2016年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分、共4页。
满分150分。
考试用时120分钟。
考试结束后、将将本试卷和答题卡一并交回。
注意事项:1.答卷前、考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后、用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动、用橡皮擦干净后、在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答、答案必须写在答题卡各题目指定区域内相应的位置、不能写在试卷上;如需改动、先划掉原来的答案、然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案、解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥、那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题、每小题5分、共50分、在每小题给出的四个选项中、只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===、则()U A B ð= (A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}(2)若复数21i z =-、其中i 为虚数单位、则z = (A )1+i (B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时)、制成了如图所示的频率分布直方图、其中自习时间的范围是[17.5、30]、样本数据分组为[17.5、20)、 [20、22.5)、 [22.5,25)、[25、27.5)、[27.5、30).根据直方图、这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140(4)若变量x 、y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是(A )4(B )9(C )10(D )12(5)一个由半球和四棱锥组成的几何体、其三视图如图所示.则该几何体的体积为(A )12+π33(B)1+π33(C)1+π36(D)1+π6(6)已知直线a 、b 分别在两个不同的平面α、b 内、则“直线a 和直线b 相交”是“平面α和平面b 相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是、则圆M 与圆N :22(1)1x y +-=(-1)的位置关系是(A )内切(B )相交(C )外切(D )相离(8)ABC △中、角A 、B 、C 的对边分别是a 、b 、c 、已知22,2(1sin )b c a b A ==-,则A =(A )3π4(B )π3(C )π4(D )π6 (9)已知函数f(x )的定义域为R.当x <0时、f(x )=x 3-1;当-1≤x ≤1时、f(-x )= —f(x );当x >12时、f(x +12)=f(x —12).则f(6)= (A )-2 (B )-1(C )0 (D )2(10)若函数()y f x =的图象上存在两点、使得函数的图象在这两点处的切线互相垂直、则称()y f x =具有T 性质.下列函数中具有T 性质的是(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =第II 卷(共100分)二、填空题:本大题共5小题、每小题5分、共25分。
【精校版】2016年山东省高考数学(文)试题(Word版,含答案)
2016年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð=(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}(2)若复数21i z =-,其中i 为虚数单位,则z = (A )1+i (B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140(4)若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是(A )4(B )9(C )10(D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )12+π33(B)1+π33(C)1+π36(D)1+π6。
2016年山东省高考文科数学试题及答案.doc
2016年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð= (A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}(2)若复数21i z =-,其中i 为虚数单位,则z = (A )1+i (B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140(4)若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是(A )4(B )9(C )10(D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )12+π33(B )12+π33 (C )12+π36(D )21+π6(6)已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆N :22(1)1x y +-=(-1)的位置关系是(A )内切(B )相交(C )外切(D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =(A )3π4(B )π3(C )π4(D )π6 (9)已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= (A )-2 (B )-1(C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是学科&网(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第Ⅰ卷(共50分)
一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.【命题意图】本题考查复数的除法运算,意在考查学生的基本运算能力. 【答案】C
【试题解析】i i
i i i i i ==+-+=-+2
2)1)(1()1(112;故选C.
2. 【命题意图】本题考查一元二次不等式的解法和集合的交集运算,意在考查学生的基本计算能力和逻辑思维能力. 【答案】B
【试题解析】∵集合{|21}A x x =-<<,2
{|20}B x x x =-≤{|02}x x =≤≤,∴
{|01}A B x x =≤< ,
故选B .
3. 【命题意图】本题以分段函数为载体考查指数式、对数式的运算,意在考查学生的基本运算能力. 【答案】C
4. 【命题意图】本题考查平面向量的坐标运算,意在考查学生的基本计算能力. 【答案】B
【试题解析】∵a b ⊥ ,∴20x -=,解得2=x ,∴(3,1)a b +=-
,
则(3,1)||a b a b +=-⇒+=
;故选B .
5. 【命题意图】本题考查程序框图中的条件结构、比较大小等知识,意在考查学生解决问题的综合能力. 【答案】C
【解析】因为2log 31>,3log 21<,所以23log 3log 2>,由算法框图可知,运行后输出
M 的值为23log 3log 21112M =⋅+=+=;故选C .
6. 【命题意图】本题考查三角恒等变形、三角函数的图象变换,意在考查学生的化简计算能力和转化能力. 【答案】A
【解析】由sin 3cos3y x x =+,得)3()412
y x x ππ
=
+=+,将
3()12
y x π
=+
向右平移
12
π
个单位长度,便可得
3()31212
y x x π
π
=-
+
=的图象;故选A.
7. 【命题意图】本题考查利用数列的递推式求通项、数列的周期性等知识,意在考查学生的归纳推理的能力和基本计算能力. 【答案】A
【试题解析】由题意得,3211a a a =-=,4322a a a =-=-,5433a a a =-=-,
6541a a a =-=-,7652a a a =-=,∴数列{}n a 是周期为6的周期数列,且
0654321=+++++a a a a a a ;
又因为20166336=⨯,所以201663360S S ==,故选A .
8.【命题意图】本题考查直线方程的一般式、两直线垂直的判定以及充分条件和必要条件的判定等知识,意在考查学生的逻辑思维能力. 【答案】A
9. 【命题意图】本题考查抛物线、双曲线的几何性质,意在考查学生的逻辑思维能力. 【答案】C
【试题解析】由题意,得抛物线2y =-的焦点)0,2(-F 到到双曲线
()222210,0x y a b a b -=>>的一条渐近线0:=-ay bx l =,
解得c =,即22210()c c a =-,即3
c e a =
=;故选C . 10. 【命题意图】本题以新定义为载体考查集合的运算知识,意在考查学生对新定义数学问题的理解能力和运用能力、基本运算能力. 【答案】C .
【解析】①中,当2a =-,2b =时,{}02,1,1,2a b +=∉--,{}42,1,1,2a b ⨯=-∉--,所以①中集合对加法运算和乘法运算都不封闭;②、③、④中集合对加法运算和乘法运算都满足条件()1和()2,所以②、③、④中集合对加法运算和乘法运算都封闭,所以对加法运算和乘法运算都封闭的集合的个数是3,故选C .
第Ⅱ卷(共100分)
二、填空题(每题5分,满分25分,将答案填在答题纸上)
11.【命题意图】本题考查全称命题的否定,意在考查学生的逻辑思维能力. 【答案】“R x ∃∈,sin 1x ≥”
【试题解析】命题“R x ∀∈,sin 1x <”的否定是“R x ∃∈,sin 1x ≥”.
12. 【命题意图】本题考查空间几何体的三视图、旋转体的表面积等知识,意在考查学生的空间想象能力和基本计算能力. 【答案】π)27(+
13. 【命题意图】本题考查线性规划问题,意在考查学生的数形结合思想的应用. 【答案】1
【试题解析】令x y z 2-=,将x y z 2-=化成z x y +=2,作出可行域和目标函数基准直线x y 2=,当直线z x y +=2向左上方平移时,直线z x y +=2在y 轴上的截距z 增大;由图象得,当直线z x y +=2过点)3,1(时,z 取得最小值为1.
14. 【命题意图】本题考查点与直线的位置关系、基本不等式等知识,意在考查学生的基本运算能力. 【答案】
2
3 【试题解析】因为直线06=-+by ax 过点)1,1(,所以06=-+b a ,即6=+b a ,则
4114114543()()(5)6662a b a b a b a b b a ++=++=++≥=(当且仅当a
b b a 4=且6=+b a , 即42==b a 时取“=”).
15. 【命题意图】本题考查导数的运算法则、利用导数研究函数的单调性和不等式问题,意在考查逻辑思维能力和基本计算能力. 【答案】(2,0)(2,)-+∞ .
【试题解析】设2()'()()
()'()f x xf x f x g x g x x x
-=
⇒=,∴当0x >时,'()0g x >, 即()g x 在(0,)+∞上单调递增,又∵(2)
(2)02
f g ==,∴()0f x >的解为(2,0)(2,)-+∞ ,
故填(2,0)(2,)-+∞ .
三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)
16. (本小题满分12分)
【命题意图】本题考查二倍角公式的应用、正弦定理和余弦定理的应用,意在考查学生的分析问题、解决问题的能力和基本的计算能力.
17. (本小题满分12分)
【命题意图】本题考查古典概型的概率、茎叶图、样本的平均数和方差的计算及应用,意在考查学生的数学知识的应用能力和基本计算能力.
【解析】(I )把4个男运动员和2个女运动员分别记为1234,,,a a a a 和12,b b . 则基本事件包括()12,a a ,()13,a a ,()14,a a ,()11,a b ,()12,a b ,
()23,a a ,()24,a a ,()21,a b ,()22,a b ,()34,a a ,()31,a b ,()32,a b , ()41,a b ,()42,a b ,()12,b b ,共15种.
其中至少有1个女运动员的情况有9种, 故至少有1个女运动员的概率93
155
P =
=. ………………6分 (II )设甲运动员的平均成绩为x 甲,方差为2
s 甲,乙运动员的平均成绩为y 乙,方差为2
s 乙, 可得6870717274715x ++++=
=甲, 6970707274
715
y ++++==乙,
()()()()()22222
216871707171717271747145=s ⎡⎤-+-+-+-+-=⎣⎦甲,
()()()()()22222
2169717071707172717471 3.25=s ⎡⎤-+-+-+-+-=⎣
⎦乙;
Q x 甲=y 乙,2s 甲>2s 乙,故乙运动员的成绩更稳定. ………………12分
18.(本小题满分12分)
【命题意图】本题考查空间中平行关系的转化和在多面体和球的组合等知识;意在考查学生的空间想象能力与运算求解能力.
19.(本小题满分12分)
【命题意图】本题考查等差数列、等比数列的通项公式、前n项和公式及分组求和法的应用等知识,意在考查学生的分析问题、解决问题的综合能力.
20. (本小题满分13分)
【命题意图】本题考查导数的几何意义、利用导数研究函数的单调性等知识,意在考查学生的逻辑思维能力和分析问题、解决问题的综合能力.
【解析】(Ⅰ)由a x x x f +-='2)(2
及题意,得()()
0302f f '=⎧⎪⎨=-⎪⎩,解得32a b =⎧⎨=-⎩……4分
(Ⅱ)由(Ⅰ)知1
2331)(2
3-+-+-=x m x x x x g
∵ 2
2
()23(1)m
g x x x x '=-+-
-
∴ )(x g 在),2[+∞上单调递增,∴0)('
≥x g 在),2[+∞上恒成立, 即 0)1(322
2
≥--
+-x m
x x 在),2[+∞上恒成立,
设 t x =-2
)1(, ∵),2[+∞∈x ,∴ ),1[+∞∈t 即不等式02≥-
+t
m
t 在),1[+∞上恒成立, ……7分 即)2(+≤t t m 在),1[+∞上恒成立,令)2()(+=t t t h ,
则1)1()(2-+=t t h 在),1[+∞上单调递增,且当1=t 时,)(t h 取得最小值3, 所以3≤m ,即实数m 的最大值为3. ……13分 21. (本小题满分14分)
【命题意图】本题考查椭圆的标准方程、直线和椭圆的位置关系、平面向量的数量积运算等知识,意在考查学生的化归与转化思想的应用、运算求解能力.。