气体吸收
第4章气体吸收
25
单相中物质的分子扩散
什么是分子扩散?在一相内部有浓度差存在时, 由于分子无规则的热运动引起的物质传递,简 称扩散。扩散的快慢用扩散通量表示
扩散通量—在单位时间内单位截面积上扩散传 递的物质量;kmol/m2 s ,用 J表示。
33
4.2.3 填料吸收塔的计算
4.2.3.1 吸收塔的物料衡算 4.2.3.2 吸收剂用量 4.2.3.3 填料层高度的计算 4.2.3.4 吸收塔的操作调节
4.3 吸收塔理论板层数的计算
34
4.2.3 填料吸收塔的计算 4.2.3.1 吸收塔的物料衡算
全塔物料衡算(逆流吸收)
Gy 1 +Lx 2 =Gy 2+ Lx 1
13
五、解吸(脱吸)
解吸:将溶质从溶剂中释放出来的操作 常用的解吸方法:升温、减压、吹气,升温和吹气通
常同时进行。 与吸收的比较
1)设备通用 2)传质理论相同。但因为传质方向不同,推动力的表 现形式改变 3)当用吹气解吸时,与吸收中最小液气比对应,存在 最小气体用量问题。
14
六、吸收剂的选择
成氨生产的氮氢混合气中的CO2和CO的净化;在接触法生 产硫酸中二氧化硫的干燥等。 ②分离气体混合物 用以得到目的产物或回收其中一些组分, 如石油裂解气的油吸收,将C2以上的组分与甲烷、氢分开; 用N-甲基吡咯烷酮作溶剂,将天然气部分氧化所得裂解 气中的乙炔分离出来;焦炉气的油吸收以回收苯等。
12
工业生产中的吸收过程
体中一个或几个组分便溶解于液体中 形成溶液,而不溶解的组分则留在气 相中,从而实现其分离。
尾气V1 吸收剂 L0
吸收依据是混合气体中各组分在同一 溶剂中溶解度的不同。
化工原理之气体吸收
化工原理之气体吸收气体吸收是化工过程中常用的一种物理操作,它指的是将气体从气相吸收到液相中。
气体吸收广泛应用于环境工程、化工工艺、能源工程等领域,例如废气处理、石油炼制、烟气脱硫等。
一、气体吸收的基本原理气体吸收的基本原理是气体和液体之间的质量传递过程。
气体吸收的过程中,气体溶质分子通过气相和液相之间的传质界面传递到溶液中,从而实现气体从气相到液相的转移。
气体吸收的速度由以下几个因素决定:1.液相溶剂的性质:液相溶剂的挥发性、表面张力、黏度和溶解度等性质都会影响气体吸收的速度。
通常情况下,挥发性较强的溶剂对气体的吸收速率较快。
2.溶剂和气体溶质之间的亲和力:溶剂和气体溶质之间的亲和力越强,气体吸收速度越快。
3.传质界面的面积和传质界面的厚度:传质界面的面积越大,气体吸收速度越快;传质界面的厚度越薄,气体吸收速度越快。
4.溶解度:气体的溶解度越高,气体吸收速度越快。
5.气体浓度梯度:气体浓度梯度越大,气体吸收速度越快。
二、气体吸收的设备常见的气体吸收设备包括吸收塔、吸收柱和吸附塔等。
1.吸收塔:吸收塔是最常用的气体吸收设备之一,它主要由一个塔体和填料层组成。
气体通过底部进入吸收塔,液体从塔顶滴入塔体中。
在填料层的作用下,气体和液体之间的接触面积增加,从而促进气体的传质。
通过提供充分的接触时间和表面积,吸收塔可以实现高效的气体吸收。
2.吸收柱:吸收柱通常用于含有反应过程的气体吸收。
与吸收塔类似,吸收柱也包含一个塔体和填料层。
区别在于,吸收柱还包括一个液相反应器,用于在吸收气体的同时进行反应。
3.吸附塔:吸附塔是另一种常用的气体吸收设备,主要用于吸附分离等工艺中。
吸附过程通过吸附剂将目标气体吸附在其表面上实现。
吸附塔通常由多个吸附层和吸附剂床组成,气体从底部进入吸附塔,经过吸附剂床后,被吸附物质从气相转移到固相中,从而实现气体吸附。
三、气体吸收的应用气体吸收在化工工艺中有着广泛的应用。
1.废气处理:气体吸收是一种有效的废气处理方法,可用于去除废气中的有害污染物,如二氧化硫、氮氧化物等。
化工原理-5章气体吸收
液两相的浓度呈连续变化。如填
溶剂
料塔。
溶剂
规整填料
散装填料
塑料丝网波纹填料 塑料鲍尔环填料
级式接触:气、液两相逐级接 触传质,两相的组成呈阶跃变 化。 如板式塔。
气体
气体
a 微分接触
b 级式接触
图9-2 填料塔和板式塔
5.1.3 吸收操作的分类
物理吸收:吸收过程溶质与溶剂不发生显著的化学反应。如用水 吸收二氧化碳、用水吸收乙醇或丙醇蒸汽、用洗油吸收芳烃等。
硫回收
低温 甲 醇洗
甲醇 醋酸
CO分离
醋酐
低温甲醇洗装置
原气料体器气热I/交合换成 新醇鲜储甲槽 锅冷炉却给器水
原料气 冷却器
补充泵
洗氨器 原料气 体/热合交成换气器
原料气 /交废换气器热
地下 废液罐
地下 吸收器 废液泵
II
C02 甲 醇 级 间冷却器
H进2料S-冷吸却收器器
合成气 原料气
原 凝物料 气 冷
yA 1 yA
KmolA/ KmolB
在计算比质量分数或比摩尔分数的数值时, 通常以在操作中不转移到另一相的组分作为 B组分。在吸收中,B组分是指吸收剂或惰 性气,A组分是指吸收质.
2.质量浓度与物质的量浓度
质量浓度是指单位体积混合物内所含物质的质量。对于A组分,有
A
mA V
kg / m3
对于气体混合物,在压强不太高、温度不太低的情况下,可视为理
EM s 83.318
第八章 吸收
三、吸收平衡线
表明吸收过程中气、液相平衡关系的图线称吸收平衡线。在吸收操作 中,通常用图来表示。
吸收平衡线
YA
1
mX A (1 m) X
气体吸收
第二章气体吸收第一节概述2.1.1 气体吸收过程一、什么是吸收:气体吸收是用液体吸收剂吸收气体的单元操作。
二、吸收基本原理:是利用气体混合物中各组分在某一液体吸收剂中溶解度的不同,从而将其中溶解度最大的组分分离出来。
三、吸收的特点:吸收是一种组分从气相传入夜相的单向扩散传质过程。
四、传质过程:借扩散进行物质传递的过程称为传质过程。
除吸收外,蒸馏.萃取.吸收.干燥等过程,也都属于传质过程。
五、S吸收剂(溶剂)S+液相吸收液(溶液)A扩散:由于微粒(分子.原子等)的热运动而产生的物质迁移现象。
可由一种或多种物质在气、液或固相的同一相内或不同相间进行。
主要由于温度差和湍流运动等。
微粒从浓度较大的区域向较小的区域迁移,直到一相内各部分的浓度达到一致或两相间的浓度达到平衡为止。
扩散速度在气相最大,液相次之,固相中最小。
吸收在化工生产中的应用极为广泛,其目的主要有四点:SO制98%的硫酸)。
一、制造成品(93%的硫酸吸收3二、回收有价值的气体,(焦化厂用洗油处理焦炉气以分离其中的苯等芳香烃)。
三、去掉有害气体(如合成氨厂用氨水或其它的吸收剂除去半水煤气中的硫化氢)。
四、三废处理:(如用吸收法除净硫酸生产尾气中的二氧化硫。
)总之吸收的目的可用四个字来概括:去害兴利。
2.1.2 气体吸收的分类一、物理吸收:吸收过程中吸收质只是简单地从气相溶入液相,吸收质与吸收剂间没有显著的化学反应或只有微弱的化学反应,吸收后的吸收质在溶液中是游离的或结合的很弱,当条件发生变化时,吸收质很容易从溶剂中解吸出来。
如用水吸收二氧化碳。
物理吸收是一个物理化学过程,吸收的极限取决于操作条件下吸收质在吸收剂中的溶解度、吸收速率则取决于吸收质从气相主体传递入液相主体的扩散速率。
物理吸收都是可逆的一般热效应较小。
二、化学吸收:吸收过程中吸收质与吸收剂之间发生显著的化学反应。
例如NaOH 吸收2CO 。
化学吸收时,吸收平衡主要取决于当时条件下吸收反应的化学平衡,吸收速率则取决于吸收质的扩散速率和化学发应速率,因为化学吸收降低了吸收质的浓度故吸收速率一般比同样条件下没有化学反应的物理吸收速率大。
化工原理 第五章 气体吸收
Y
*
mX 1 (1 m) X
当溶液浓度很低时,上式右端分母约等于1,于是上式可简化为:
Y*=mX
20
三、 相平衡关系在吸收中的应用
(一)判断过程进行的方向
* pA pA * pA pA * pA pA
A由气相向液相传质,吸收过程 平衡状态
A由液相向气相传质,解吸过程
*或x* >x或 c * y
dc A —组分A在扩散方向z上的浓度梯度(kmol/m3)/m; dz
DAB——组分A在B组分中的扩散系数,m2/s。
负号:表示扩散方向与浓度梯度方向相反,扩散沿 着浓度降低的方向进行
28
理想气体:
pA cA RT
dc A 1 dp A = dz RT dz
DAB dpA JA RT dz
25
吸收过程: (1)A由气相主体到相界面,气相内传递; (2)A在相界面上溶解,溶解过程; (3)A自相界面到液相主体,液相内传递。
单相内传递方式:分子扩散;对流扩散 。
26
一、 分子扩散与菲克定律
分子扩散:在静止或滞流流体内部,若某一组分存 在浓度差,则因分子无规则的热运动使
该组分由浓度较高处传递至浓度较低处,
物系一定, E T 2)E大的,溶解度小,难溶气体 E小的,溶解度大,易溶气体
3)E的来源:实验测得;查手册
对于理想溶液,亨利常数即为纯溶质的饱和蒸汽压。亨利常数E值较大表示溶解度 较小。一般E值随温度的升高而增大,常压下压力对E值影响不大。
16
(二)亨利定律其它形式
cA 1)p H
体主体浓度线相交于一点E,则厚度zG为E到相界
面的垂直距离。
(二)气相传质速率方程
气体 吸收
例10-3 调整的净现值法的应用 假定已知某公司的信息如下:
营业收入:每年为500万元,永续年金; 营业成本:为营业收入的60%; 折旧:每年为50万元; 净营运资本增加额:每年为0元; 资本支出:每年为50万元; 所得税税率为25%,全权益融资公司的资本成本
R0为2
一、亨利定律的表达式
2. p~c关系 若溶质在气、液相中的组成分别以分压p、摩
尔浓度 c 表示,亨利定律为
p* c H
H — 溶解度系数,kmol/(m3·kPa)
一、亨利定律的表达式
3. y~x关系
若溶质在气、液相中的组成分别以摩尔分数
y、x表示 ,亨利定律为
y* mx
x* p E
c* Hp x* y
m
X* Y m
二、各系数间的关系
推导可得亨利定律表达式各系数间的关系如下:
E~H 关系 E~m 关系 H~m 关系
H EM S
m E P 1
H PM S m
溶液 密度
溶剂 S 的 摩尔质量
一、判断传质进行的方向
设某瞬时 气相中溶质的实际组成为Y
液相中溶质的实际组成为X
气体在 液体中 溶解度
pA f (xA)
平衡方程
pA ~ xA曲线 溶解度曲线
气体(A+B)
A 溶解 A 逸出
液体 S
易溶
400 50
氨在水中的溶解度
中等溶解度
68 50
二氧化硫在水中的溶解度
难溶
0.002
50
氧在水中的溶解度
二、温度、压力对溶解度的影响
讨论
温度对溶解度的影响 压力对溶解度的影响
解度不同。
吸
收
原料气 A+B
气体吸收名词解释
气体吸收名词解释
气体吸收是指气体被其他物质吸收并进入其中的过程。
在化学和物理领域中,气体吸收经常涉及到气体溶解、吸附和反应等过程。
气体溶解是指气体分子在液体中被吸收并与溶剂分子相互作用的过程。
气体溶解可以通过增加溶剂和气体之间的接触面积、提高溶剂的温度或压力来增加。
溶解度通常用溶解度曲线来描述,它表示了在不同温度和压力下溶剂能够溶解的气体的最大量。
气体吸附是指气体吸附剂表面上的分子吸引和捕获气体分子的过程。
吸附可以分为物理吸附和化学吸附两种类型。
物理吸附是指气体分子在吸附剂表面上通过分子间力相互作用被吸附的过程,其吸附速度较快,吸附强度较弱。
化学吸附是指气体分子在吸附剂表面上发生化学反应并形成化学键的过程,其吸附速度较慢,吸附强度较强。
气体吸收还可以是指气体在化学反应中被反应物所吸收的过程。
这种吸收通常是一个反应物与气体发生化学反应,并在反应中形成产物的过程。
气体吸收在许多工业领域中被广泛应用,如空气污染控制、气体分离和催化反应等。
总之,气体吸收涉及到气体在液体或固体中被吸收的过程,可以通过溶解、吸附或化学反应来实现。
该过程在科学研究和工业生产中具有重要意义。
化工原理28气体吸收
煤气中的芳烃,可采用洗油吸收方法回收芳烃获得粗苯.
二、吸收操作分类
*物理吸收与化学吸收 *等温吸收与非等温吸收 *单组分吸收与多组分吸收 *定态吸收与非定态吸收(过程参数是否随时间而变) 本章讨论所作的基本假定: 单组分、低浓度、连续定态逆流、等温物理吸收
三、吸收操作的经济性
吸收操作费用主要包括: ①气、液两相流经吸收设备的能量消耗; ②溶剂的挥发损失和变质损失;
=
0
dz dz dz
—d —PA = - —d P—B
dz
dz
—d C—A= - —d —CB
dz
dz
DAB = DBA = D
若选择固定的,垂直扩散方向的截面为基准,观察 扩散传质的速率。对于定态分子扩散则有
NA= JA
同理有
NB= JB
由以上讨论可知,等摩尔逆向扩散过程传质速率的大小主
要是分子扩散的贡献。
有总体流动时的传质速率: 对于B组分有: NB = JB+NBM =0
即: JB= - NBM
且
NAM
PA
——— = ———
NBM
PB
JB= -NBM = - JA
对于A组分,其传递速率 :
即:
NA = JA + NAM = JA + NBM PA / PB NA =(1+ PA / PB)JA
NA=
dCA JA= - DAB———
dZ 式中:
JA— 组分A沿Z方向的扩散通量kmol/m2 ·s; CA— 组分A在混合物中摩尔浓度kmol/ m3 ; DAB—组分A在A、B混合中的扩散系数,m2/s 。
同理,对B组分的扩散可表示为
dCB JB= - DBA———
气体吸收知识点总结
气体吸收知识点总结一、气体吸收的基本原理气体吸收是一种物理与化学相结合的过程,其基本原理主要包括气体与溶剂之间的质传和能传。
质传是指气体分子在气-液界面附近的扩散传输,包括气体分子的渗透、重新吸附和溶解等过程。
能传是指气体分子在溶液中释放或吸收能量,从而参与到化学反应中。
对于溶液吸收来说,通常会发生溶解、吸附、反应等过程。
在气体吸收过程中,溶剂的选择是十分重要的。
常用的溶剂包括水、乙醇、甲醇、丙酮等。
不同的溶剂对于不同的气体有着不同的选择,具体的选择需要考虑其溶解度、选择性、毒性、成本等因素。
二、影响气体吸收的因素1. 气体性质气体的性质对气体吸收的影响十分显著。
例如,气体的溶解度、扩散系数、表面张力等均会影响气体在溶液中的吸收速率。
2. 溶剂性质不同的溶剂对气体的溶解度不同,对于不同的气体有不同的选择。
此外,溶剂的粘度、温度、酸碱性等也会影响气体的溶解和吸收速率。
3. 操作条件操作条件包括温度、压力、气体流量、溶液浓度等。
这些操作条件对气体吸收的速率、效率、能耗等方面都有着重要的影响。
4. 设备结构设备结构对气体吸收的效率、能耗、稳定性等都有很大的影响。
例如,吸收塔的塔板设计、填料结构、液体循环方式等都会对气体吸收过程产生影响。
5. 质量传递模式质量传递模式包括气体-液体相间的传递和气体在液相中的扩散传递。
传质速率和传质方式会对气体吸收过程产生影响。
6. 气液接触方式气液接触方式包括气液接触面积、气液接触时间等。
这些因素直接影响着气体分子与溶剂分子之间的相互作用过程。
三、气体吸收的工艺方法根据气体吸收过程中气体与溶剂之间的相互作用方式,气体吸收的工艺方法主要包括物理吸收、化学吸收和生物吸收等。
1. 物理吸收物理吸收是指气体分子在溶剂中的溶解和吸附过程。
物理吸收的主要方式包括分子间力作用(如范德华力、静电作用)和气液相间传递。
常见的物理吸收方法包括吸附、解吸、扩散等过程。
物理吸收主要应用于一些低气体浓度和不易发生化学反应的气体分离和净化。
第8章 化工原理气体吸收
8.3.1双组分混合物中的分子扩散
⑴费克定律 温度、总压一定,组分A在扩散方向上任 一点处的扩散通量与该处A的浓度梯度成正比。
dCA J A DAB d
JA——组分A扩散速率(扩散通量), kmol/(m2· s);
dCA ——组分A在扩散方向z上的浓度梯度(kmol/m3)/m; d DAB——组分A在B组分中的扩散系数,m2/s。
பைடு நூலகம்G L
8.3.5对流传质理论
②数学模型
DG p DG 1 ( pA pAi ) p ( y yi ) 气膜 N A RT G pBm RT G yBm
式中:
pBm yBm (1 y ) m p DG DG 1 DG p 1 kG RT G pBm RT G yBm RT G (1 y )m
pB1 pA1 pA2
0 扩散距离z
z
3)等分子反方向扩散发生在蒸馏过程中。
2.单向扩散及速率方程
JA
(1)总体流动:因溶质A扩散到界面溶 解于溶剂中,造成界面与主体的微小压差, NMcA/c 使得混合物向界面处的流 动。 总体流 动NM NMcB/c (2)总体流动的特点: JB 1)因分子本身扩散引起的宏观流动。 2)A、B在总体流动中方向相同,流动 速度正比于摩尔分率。 1 2
负号:表示扩散方向与浓度梯度方向相反,扩散沿 着浓度降低的方向进行。 理想气体:
pA cA RT
dc A 1 dp A = dz RT dz
DAB dpA JA RT dz
8.3.1双组分混合物中的分子扩散
对双组分混合物,总浓度 CM CA CB =常数
dC A dC B d d
化工原理第八章 气体吸收
平衡关系与上式联立可求解界面浓度 xi 与 yi 。在用作图
3
三、工业吸收过程
工业的吸收过程常在吸收塔中进行。生产中除少部分直 接获得液体产品的吸收操作外,一般的吸收过程都要求 对吸收后的溶剂进行再生,即在另一称之为解析他的设 备中进行于吸收相反的操作-解吸。因此,一个完整地 吸收分离过程一般包括吸收和解吸两部分。
2024/3/25
4
8.2 吸收过程相平衡基础
对于单组分物理吸收,组分数c=3(溶质A、惰性 气体B、溶剂S),相数(气、液),自由度数F应为
F c23223
即在温度、总压和气、液组成共四个变量中,有三个是 自变量,另一个是它们的函数。
2024/3/25
6
在一定的操作温度和压力下,溶质在液相中的溶解 度由其相中的组成决定。在总压不很高的情况下,可以 认为气体在液体中的溶解度只取决于该气体的分压pA , 而与总压无关。于是,cA*与 pA 得函数关系可写成
ky P kG
Ky m Kx KG HKL
13
二、界面浓度的求取
当m随浓度变化时,用分传质速率方程式计算更加方 便,界面浓度 xi 与 yi 存在关系有:
(1)有双膜模型理论,yi 与 xi 在平衡线上。如果平衡线以
y f (x) 表示,则 yi 。 f (xi )
(2)可导出
y yi kx x xi ky
2024/3/25
12
不同的推动力所对应的不同传质系数和速率方程。
浓度组成表示法
表8—1 传质速率方程的各种形式
摩尔分率
物质得量浓度或分压
传质速率方程 总传质系数
2024/3/25
N A ky ( y yi ) kx (xi x) ky (y y*) kx (x* x)
气体吸收的原理
吸收速率方程
吸收速率方程是描述气体吸收速率的数学模型。它通常由实验数据拟合得到,反映了气体吸收速率与操作条件之 间的关系。
03
气体吸收的影响因素
温度与压力
温度
温度越高,气体分子的运动速度越快 ,有利于气体在吸收剂中的扩散和溶 解,提高吸收速率。
噪声控制
气体吸收技术也可用于噪 声控制,如消音器、隔音 罩等的设计和制造。
在能源领域的应用
燃料脱硫
在化石燃料的燃烧过程中,会产生大量的硫化物,气体吸收技术可用于燃料脱硫,以减 少硫化物对环境的污染。
氢能储存
气体吸收技术可用于氢能的储存和运输,通过特定的吸收剂将氢气储存于其中,并在需 要时进行释放。
吸收平衡
平衡常数
平衡常数是描述气体在液体中溶解达到平衡状态时的浓度比 值。平衡常数的大小取决于温度和压力,反映了气体在液体 中的溶解能力。
平衡移动
当气体的分压大于其在液体中的溶解度时,平衡状态向吸收 方向移动;反之,当气体的分压小于其在液体中的溶解度时 ,平衡状态向解吸方向移动。
吸收速率
扩散系数
吸收过程的重要性
01
02
03
环境保护
气体吸收在处理工业排放 和大气污染方面具有重要 作用,能够去除有害气体, 保护环境。
工业流程
在许多工业流程中,气体 吸收用于分离和纯化气体 混合物,生产高纯度气体 或液体产品。
科学研究
气体吸收是研究气体与液 体之间相互作用的重要手 段,有助于深入了解物质 的性质和化学反应机制。
基于气体与液体之间的物理性质的差异进行的吸收,而化学吸收则是基
高中物理 第八章 气体吸收
8.1概述
①溶剂应对被分离组分(溶质)有较大的溶解度,或者说在 一定的温度与浓度下,溶质的平衡分压要低。这样,从平衡角度 来说,处理一定量混合气体所需溶剂量较少,气体中溶质的极限 残余浓度亦可降低;就过程数率而言,溶质平衡分压↓,过程推 动力大,传质数率快,所需设备尺寸小。
②溶剂对混合气体中其他组分的溶解度要小,即溶剂应具备 较高的选择性。若溶剂的选择性不高,将同时吸收混合物中的其 他组分,只能实现组分间某种程度的增浓而不能实现较为完全的 分离。
⑺物理吸收和化学吸收 ①物理吸收:吸收时溶质与溶剂不发生明显的化学反应,如 上述洗油吸收苯,水吸收CO2、SO2等。 ②化学吸收:吸收时溶质与溶剂或溶液中的其它物质发生化 学反应。如CO2在水中的溶解度甚低,但若用K2CO3水溶液吸收CO2, 则在液相中发生下列反应:
8.1概述
K2CO3+CO2+H2O=2KHCO3 从而使K2CO3水溶液具有较高的吸收CO2的能力,作为化学吸收可 被利用的化学反应一般都满足以下条件:
第八章 气体吸收
8.1概述
⑴ 吸收的目的 在化学工业种,将气体混合物种的各组分加以分离,其目的是: ①回收或捕获气体混合物中的有用物质,以制取产品; ②除去工艺气体中的有害成分,使气体净化,以便进一步加工处理, 如有害气体会使催化剂中毒,必须除去;或除去工业放空尾气中的有害 物,以免污染大气。 ⑵ 吸收的依据 为达到吸收分离气体混合物的目的,要用什么物质(溶剂,吸收剂), 其分离的依据使什么?(气体混合物中各组分在溶剂中的溶解度不同, 若各组分在吸收剂中的溶解度差异越大,吸收的选择性越好)例如欲分 离氨气+空气的混合物,可选择水做溶剂,因为氨水在水中的溶解度最 大,而空气几乎不溶于水。
③溶质在溶剂中的溶解度应对温度的变化比较敏感,即不仅 在低温下溶解度要大,平衡分压要小,而且随着温度升高,溶解 度应迅速下降,平衡分压应迅速上升。这样,被吸收的气体容易 解吸,溶剂再生方便。
化工原理-气体吸收_图文
• 气体的溶解度与温度有关,一般来说,温度下降则气体的 溶解度增高。
溶解度曲线:在一定温度、压力下,平衡时溶质在气相和液 相中的浓度的关系曲线。例:图2-2,2-3,2-4。
本章以分析单组分的等温物理吸收为重点,以便掌握最基本 的原理。
• 气体吸收是物质自气相到液相的转移,这是一种传质过程。 • 混合气体中某一组分能否进入溶液里,既取决于该组分的分压,
也取决于溶液里该组分的平衡蒸汽压。如果混合气体中该气体的 分压大于溶液的平衡蒸汽压,这个组分便可自气相转移至液相, 即被吸收。由于转移的结果,溶液里这个组分的浓度便增高,它 的平衡蒸汽压也随着增高,到最后,可以增高到等于它在气相中 的分压,传质过程于是停止,这时称为气液两相达到平衡。 • 反之,如果溶液中的某一组分的平衡蒸汽压大于混合气体中该组 分的分压,这个组分便要从溶液中释放出来,即从液相转移到气 相,这种情况称为解吸(或脱吸)。 • 所以根据两相的平衡关系可以判断传质过程的方向与极限,而且 ,两相的浓度距离平衡愈远,则传质的推动力愈大,传质速率也 愈大。 • 吸收操作的分析,应该从气液两相的平衡关系与传质速率关系着 手,本章各节即如此展开讨论。
y
相对于气相浓度而言实
际液相浓度过饱和
(x>x*),故液相有释放
o
溶质 A 的能力。
y*=f(x)
吸收溶质
Q
释放溶质
x* x x
结论:若系统气、液相浓度(y,x)在平衡线下方,则体系将 发生从液相到气相的传质,即解吸过程。
传质过程的方向
气、液相浓度(y,x)处于
气体吸收
5.1 概述
2、传质
气体吸收是传质分离过程。 前面提到的传质分离过程中,
重点是要讲述平衡分离过程, 是组分在两相间的分配不同 (平衡)来实现分离。 气体吸收过程包含有组分从一 相到另一相的转移。 过程的推动力为:浓度差C
二. 物理吸收和化学吸收
物理吸收 定义: 溶质气体溶于液相中不发生显著化学 反应的吸收过程,称之为~ 例如: CO2 + H2O= H2 CO3 HCl(g)+H2O = HCl(L) 丙酮(g)+H2O=丙酮(L) 化学吸收 定义: 液相中有某种组分,能够与溶质气体 (溶解于L)进行化学反应的吸收过程,促进 了吸收过程的进行速率; 例如:Na2 CO3 (K2CO3) +CO2 + H2O = Na2HCO3 ( KHCO3 )
X1、X2——分别为吸收塔的塔底和塔顶的液相比摩尔分率; φA——混合气体中溶质A被吸收的百分率,称为吸收率或回收率
现取塔内任一截面m-n与塔底(图中的虚线范围)作溶质
的物料衡算, 即:
V(Y1 - Y) = L(X1 - X)
L L Y X (Y1 X 1 ) V V
同理,可得
L L Y X (Y2 X 2 ) V V
NA=ky(y-yi) ky=PkG NA=kX(xi -X) kX=CkL
NA=Ky(y-ye) Ky=PKG Ky=1/(1/ky+m/kX) 气膜控制时Ky=ky
液膜
NA=kL(Ci-C)
NA=KG(P-Pe)
KG=1/(1/kG+1/HkL)
气相
气膜控制 KG=kG NA=KL(Ce -C)
一、亨利定律
5.2
气液相平衡
当总压不高(<5×105Pa)时,在一定温度下,稀溶液上方 溶质的平衡分压与其在液相中的浓度之间存在着如下的关系:
化工单元操作基础知识讲座之五气体吸收
化工单元操作基础知识讲座之五气体吸收化工单元操作基础知识讲座之五:气体吸收气体吸收是化工过程中常用的分离和净化技术之一,广泛应用于气体净化、废气处理、制备纯气等领域。
本讲座将为大家介绍气体吸收的基本原理、装置结构以及常见应用。
一、气体吸收的基本原理气体吸收是利用溶液对气体的亲和性,将气体分子从气相迁移到液相的过程。
溶液为吸收剂,可选择对目标物质具有高亲和性的溶剂,以实现对气体成分的分离和富集。
在气体吸收过程中,溶液与气体接触,气体分子在气液界面传质,并通过扩散、对流和界面反应等方式与溶剂分子相互作用。
随着气体分子在液相中的迁移,气体逐渐被吸收剂吸附、扩散和溶解,从而实现气体分离和净化的目标。
二、气体吸收装置结构1. 吸收塔吸收塔是气体吸收装置的核心部分,其结构常见的有板塔和填料塔两种。
板塔通过在塔内设置多层水平板,使气体与吸收液在板上交相传质;填料塔则通过塔内填充物的大表面积,增加气液接触面,促进传质过程。
2. 进料装置进料装置通常包括入口管道、分配器等,用于将待处理的气体引入吸收塔。
合理设计的进料装置可以保证气体分布均匀,提高吸收效率。
3. 出口装置出口装置用于将处理后的气体从吸收塔中排出。
常见的设计包括出口管道、排气阀门等,以实现气体流动的控制和调节。
三、气体吸收的应用1. 废气处理在工业生产中,许多过程产生的废气含有有害物质,如氧化物、酸雾等。
气体吸收技术可以有效将有害气体吸收到溶液中,达到废气处理和环境保护的目的。
2. 气体纯化一些化工过程需要使用高纯度气体,如半导体制造、食品加工等行业。
通过气体吸收技术,可以将气体中的杂质去除,实现气体的纯化。
3. 反应气体分离在一些化学反应过程中,产生大量的反应气体。
通过气体吸收装置,可以将反应气体吸收并分离,以控制反应过程中的压力和温度,提高反应的转化率和产物纯度。
四、气体吸收的操作考虑因素1. 吸收剂的选择不同的气体吸收过程需要选择适合的吸收剂,根据气体的性质和目标物质的亲和性确定吸收剂的组成和浓度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 以液膜传质分系数表示吸收速率方程式
NA
DL c总 Z L cBm
ci c (ci c) k L (ci c) 1 kL
N A kL (ci c )
kL——以浓度差为推动力的液膜传质分系数,ms-1;
N A k x ( xi x)
kx——以摩尔分数差为推动力的液膜传质分系数,molm-2s-1;
溶质的平衡分压 p与其在液相中的摩尔分率 x之间存在着如下的 关系:
p*=E· x
式中: p*---------溶质在气相中的平衡分压, Pa; x----------溶质在液相中的摩尔分数 E----------享利系数, Pa
上式表示溶液的组成低于一定数值时溶质的平衡分压与它
在溶液中的摩尔分率成正比。对于理想溶液,亨利常数即为纯 溶质的饱和蒸汽压。亨利常数E值较大表示溶解度较小。一般 E值随温度的升高而增大,常压下压力对E值影响不大。
m
y
m
某吸收过程,气相传质分系数,液相传质分系数, 由此可知方该过程为( )。 (A)液膜控制;(B)气膜控制; (C)气液双膜控制;(D)判断依据不足
积上被吸收的溶质量。表明吸收速率与吸收推动力之间
关系的数学式称为吸收速率方程。 1 以气膜传质分系数表示的吸收速率方程式
NA
Dp总 RTZG pB ,m
p pi ( p pi ) kG ( p pi ) 1 kG
N A kG ( p pi )
kG——以分压差为推动力的气膜传质分系数,molm-2s-1Pa-1;
浓度的差值来表示。
(1) 以(p-p*)表示总推动力 液膜吸收速率方程
N A kL (ci c)
代入
亨利定律: p*=c/H 双膜理论:pi=ci/H
NA=kL H(pi –p*)
气膜吸收速率方程
NA=kG(p-pi) 1 1 N A( ) p p* kG k L H
令
1 1 1 KG kG k L H
下,气体组分的溶解度则随温度的升高而减小。
(2) 在同一温度下,对于不同种类的气体组分,欲得到 相同浓度的溶液,易溶气体仅需控制较低的分压,而
难溶气体则需较高分压。
(3) 加压和降温对吸收操作有利;反之,升温和减压有 利于解吸。
8.2.2 亨利定律
当总压不高( <5×105Pa )时,在一定温度下,稀溶液上方
m=E/p总
E=p总m
上式中 p 总 为系统总压, m 值越大,表示溶解度越小。
m是温度和压力的函数, 随着压力增大而减小,随着 温度增大而增大。
(3) 对于低浓度气体吸收,两相的组成通常用物质的量比来表示
液相中溶质的摩尔数 xA XA 液相中溶剂的摩尔数 1 x A
气相中溶质的摩尔数 yA YA 气相中惰性组分的摩尔 数 1 yA
(2)以(c*-c)表示总推动力
1 1 N A( ) p p* kG k L H
1 1 c N A( ) kG kL H H H
c*
H 1 * N A( ) c c kG k L
令
1 H 1 KL kG kL
代入
N A KL c c
*
KL——液相传质系数,m/s
下述说法中错误的是_____。
A. 液体中的扩散系数与压力成正比,与粘度成反比;
B. 气体中的扩散系数与压力成反比,与温度的1.75次方成正比; C. 液体中的扩散系数与温度成正比,与粘度成反比; D. 发生在静止或滞流流体中的扩散属于分子扩散
下述说法中正确的是____。
A. 气相中的扩散系数大于液相中的扩散系数,故物质在气相中的扩
亨利定律的其它形式
(1) 气相用平衡分压 p,液相用物质的量浓度 c 表示
p*= c/H
式中: c——液相中溶质的摩尔浓度, mol· m-3 ;
H——溶解度系数, mol· m-3· Pa-1;
在亨利定律适用的范围内, H是温度的函数,而与p*或c无关。 对于一定的溶质和溶剂,H 值一般随温度升高减小。易溶气体 H值较大,难溶气体H值较小。 m
N A k y y yi
kY——以摩尔分数差为推动力的气膜传质分系数,molm-2s-1;
N A kY Y Yi
kG——以物质的量比差为推动力的气膜传质分系数,molm-2s-1;
三个气膜传质分系数之间的换算
k y p总 kG p总 kG kY 1 Y 1 Yi 当Y值很小时,kY p总 kG
散通量大于在液相中的扩散通量;
B. 气相中的扩散系数小于液相中的扩散系数,故物质在气相中的扩
散通量小于在液相中的扩散通量;
C. 气相中的扩散系数与液相中的扩散系数在数量级上接近,故气液
两相中可达到相同的扩散通量;
D. 气相中的扩散系数大于液相中的扩散系数,但在一定条件下,气
液两相中仍可达到相同的扩散通量。
* *
Ky= KG p总
(4) 以(Y-Y*)表示总推动力
N A KY (Y Y )
*
当吸收质浓度在气相中很小时,Y*和Y都很小,则有
KY ≈ KG p总
(5) 以(x*-x)表示传质总推动力
N A Kx ( x xA )
* A
N A KL c c
*
c
*
c c总 x x
NA=KG(p-p*)
式中 KG——气相传质系数,mol/(m2•s•kPa)
对于易溶气体,H值很大,则有:1/kLH<<1/kG ,此时传 质阻力的绝大部分存在于气膜之中,液膜阻力可以忽略。
1/KG≈ 1/kG
或
KG≈ kG
即气膜阻力控制着整个吸收过程的速率,吸收总推动力的绝 大部分用于克服气膜阻力,此种情况称为 “气膜控制”(gasfilm control)。如:水吸收氨,浓硫酸吸收水蒸气等过程。 对于气膜控制的吸收,要提高总吸收系数,应该加大气相湍 动程度。
对于中等溶解度的气体,气膜阻力和液膜阻力都不可忽略,
要提高总吸收系数,必须同力
N A Ky ( y y )
*
NA=KG(p-p*)
p p p y y
* * 总
N A KG p总 ( y y ) K y ( y y )
H EM m
m——溶液的密度, kg/m3 ; ——溶剂的密度, kg/m3 ;
EM
Mm——溶液的平均分子量, kg/mol M——溶剂的平均分子量, kg/mol
(2) 溶质在液相和气相中的浓度分别用摩尔分率x、y表示
y*=m· x
式中: y*——平衡时溶质在气相中的摩尔分率;
x——溶质在液相中的摩尔分率; m——相平衡常数,无因次。
N A kX ( Xi X )
kX——以物质的量比差为推动力的液膜传质分系数,molm-2s-1;
三个液膜传质分系数之间的换算
k x c总 k L c总 k L kX 1 X 1 X i 当X值很小时,k X c总 k L
3.2 总吸收速率方程
吸收过程的总推动力可采用任何一相的主体浓度与其平衡
在气膜控制的吸收过程,若系统的溶质摩尔分数不变,且亨 利定律适用,压力增加,则KG ,KY 。
在常压塔中用水吸收二氧化碳,k y 和 k x 分别为气 相和液相传质分系数, K y 为气相总传质系数,m 为相平衡常数,则_ _。 A.为气膜控制,且 K y k y B.为液膜控制,且 K y k x C.为气膜控制,且 K y k x D.为液膜控制,且 K k x
*
N A KLc总 (c c) Kx ( x x)
* *
Kx = KLc总
(6) 以(X*-X)表示传质总推动力
液相浓度以X表示,与气相浓度成平衡的液相浓度以Xe表示。
N A KX ( X X )
*
当吸收质浓度在液相中很小时,X*和X都很小,则有
KX ≈ KLc总
难溶气体的吸收过程属于 控制过程,传质总阻力主要集 中在 侧,提高吸收速率的有效措施是提高 相流体 的流速和湍动程度。 根据双膜理论,水吸收空气中NH3的过程属 控制过程; 水吸收空气中CO2的过程属 控制过程;水吸收空气中SO2 的过程属 控制过程 。 用水吸收CO2其气膜阻力 液膜阻力,总传质系数KX 。 液相传质系数kX 。若在水中加入碱,总传质系数KX
第八章
气 体 吸 收
Absorption
8.1 概述
吸收剂S
吸收尾气
混合气体 (溶质A+惰性组分 B)
吸 收 塔
(惰性组分B+少量的溶质)
吸收液 (吸收剂S+溶质A)
吸收操作示意图
8.1.1 气体吸收过程与流程 一、气体吸收过程
气体吸收:在化工生产中,常常会遇到从 其他混合物中分离其中一种或几种组分的 单元操作。 吸收原理:根据混合气体中各组分在某液 体溶剂中的溶解度不同而将气体混合物进 行分离。
8.1.3 吸收剂的选择
对溶质的溶解度大
对溶质有较高的选择性 不易挥发 黏度低,扩散系数大
解析性能好,无毒,经济等
8.2 吸收过程的相平衡关系
气液相平衡关系
液相组成 f 气相组成
溶解度曲线 气液平衡方程(亨利定律)
8.2.1 气体在液体中的溶解度
(1) 在一定温度下,气体组分的溶解度随该组分在气相 中的平衡分压的增大而增大;而在相同平衡分压条件
气体吸收的应用
1)制备某种气体的液态产品。
用水吸收二氧化氮以制备硝酸。 用水吸收甲醛以制备福尔马林溶液。
2)回收混合气体中所需的组分
用硫酸处理焦炉气以回收其中的氨。 用洗油处理焦炉气以回收其中的苯等芳香烃。