浅探算术—几何均值不等式在不等式证明中的应用
均值不等式的认识与应用
均值不等式的认识与应用作者:吴晨来源:《速读·中旬》2018年第02期摘要:均值不等式在不等式理论中处于比较重要的地位,也是数学中最重要的基本不等式之一。
同时,它在数学中的各个领域中有着广泛的应用。
利用均值不等式,我们可以解决最值或者是数学其他方面的问题。
因此,研究均值不等式有着很大的意义。
本文在概述了均值不等式定义的基础上,分析了两种均值不等式典型的证明方法,最后论述了均值不等式的应用,以加深人们对均值不等式的认识和理解。
关键词:均值不等式;认识;应用一、均值不等式的概述均值不等式,又称为平均值不等式或者是平均不等式,是数学中的一个重要公式。
它的表达式为Hn≤Gn≤An≤Qn,指的是调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数,简单来说就是“调几算方”。
其中,调和平均数:[Hn=ni=1n1ai=n1a1+1a2+…+1an]几何平均数:[Gn=i=1nain=a1a2…ann]算术平均数:[An=i=1nain=a1+a2+…+ann]平方平均数:[Qn=i=1na2in=a21+a22+…+a2nn]二、均值不等式的证明方法均值不等式的证明方法有很多,接下来我们就讨论下泰勒公式法和不等式法这两种典型的证明方法。
(一)泰勒公式法设[fx=logxa](00),于是有[fnx=-1x2lna>0],将[fx]在[x0]展开,由泰勒公式我们可以得到[fx=fx0+fx0x-x0+fnx0x-x022],因此有:(二)不等式法在均值不等式的证明方法中,有一个特殊的不等式ex≥1+x,我们就可以利用这个不等式进行推导。
三、均值不等式的应用均值不等式在不等式理论中占有重要的地位。
同时,在我们的日常生活中也会利用到均值不等式。
因此,均值不等式不管是在数学中还是在日常生产生活中的应用都是十分广泛的。
(一)均值不等式在数学中的应用1.均值不等式在证明不等式中的应用通常情况下,一些不等式的证明都会采取比较法、综合法和分析法等,但有些不等式在运用以上方法证明时会比较困难。
【免费下载】算术 几何平均值不等式
算术-几何平均值不等式经常被简称为平均值不等式(或均值不等式),尽管后者是一组包括它的不等式的合称。
.可见
历史上的证明
的情况,设:
。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
均值不等式法
均值不等式法均值不等式是数学中的一种重要的不等式定理,被广泛应用于各个数学领域中。
它可以帮助我们求解各种数学问题,特别是在求最值问题时非常有用。
本文将介绍均值不等式的定义、证明及其应用,重点讨论算术均值不等式、几何均值不等式和平方均值不等式的性质和应用。
首先,我们来介绍均值不等式的定义。
均值不等式是指若a,b是非负实数且a≥b,则有关于a和b的某种函数f(a,b)成立不等式a≥f(a, b)≥b。
其中,f(a, b)是对a,b进行某种运算的函数。
在均值不等式中,我们常用到的运算有算术平均数、几何平均数和平方平均数。
对应的不等式就是算术均值不小于几何均值,几何均值不小于平方均值。
由此可以得出三个主要的均值不等式:算术均值不等式、几何均值不等式和平方均值不等式。
接下来,我们来证明这三个均值不等式。
首先是算术均值不等式。
对于任意非负实数a1,a2,...,an,我们有:(a1+a2+...+an)/n ≥ √(a1a2...an)即算术平均数不小于几何平均数。
证明如下:设a1,a2,...,an为非负实数,令A = (a1+a2+...+an)/n,G = √(a1a2...an)。
根据等差平均不等式,对于任意的非负实数ai,我们有:(A-ai) + (G/√ai) ≥ 0将上述不等式对i从1到n分别求和,我们有:nA - (a1+a2+...+an) + G(1/√a1 + 1/√a2 + ... + 1/√an)≥ 0由于A = (a1+a2+...+an)/n,所以上述不等式等价于:nA - nA + G(1/√a1 + 1/√a2 + ...+ 1/√an) ≥ 0化简得:G(1/√a1 + 1/√a2 + ... + 1/√an) ≥ 0由于√ai是非负实数,所以1/√ai也是非负实数。
所以上述不等式恒成立。
证毕。
其次是几何均值不等式。
对于任意非负实数a1,a2,...,an,我们有:√(a1a2...an) ≥ (a1+a2+...+an)/n即几何平均数不小于算术平均数。
均值不等式应用
均值不等式应用在实际应用中,均值不等式有一些常用的技巧,可以帮助我们更方便地应用和理解它们。
1.对称性:均值不等式对于多个变量的情况,通常具有对称性。
这意味着可以通过交换变量的位置来得到等价的不等式。
例如,对于实数$a,b,c$,有$\sqrt{\frac{a^2+b^2}{2}} \geq \frac{a+b}{2}$ 和$\sqrt{\frac{b^2+c^2}{2}} \geq \frac{b+c}{2}$,可以通过交换$a$和$c$得到$\sqrt{\frac{a^2+c^2}{2}} \geq \frac{a+c}{2}$。
利用这个对称性,可以在一些情况下简化不等式的推导过程。
2.递增性:均值不等式通常对于多个变量的情况是递增的。
这意味着如果变量的取值不变,但其中一个变量增加了,那么均值不等式的左边将比右边更大。
例如,对于实数$a,b$,有$\sqrt{ab} \leq \frac{a+b}{2}$,如果将$b$增加为$b+c$,则有$\sqrt{a(b+c)} \leq \frac{a+b+c}{2}$。
利用这个递增性,可以在一些情况下通过增加变量的值来简化不等式的推导过程。
3.平方技巧:当不等式中涉及到平方时,可以通过对不等式同时两边取平方来简化推导过程。
例如,对于实数$a,b$,有$\sqrt{a^2b^2} \leq\frac{a^2+b^2}{2}$,两边同时平方得到$a^2b^2 \leq\frac{(a^2+b^2)^2}{4}$,再进行化简推导。
需要注意的是,平方技巧可能会引入额外的解,因此在使用此方法时需要注意检查这些额外的解是否符合原始问题的要求。
4.归纳思想:对于具有多个变量的复杂不等式问题,可以利用归纳思想逐步推导出目标不等式。
具体来说,可以先考虑两个变量的情况,再逐步增加变量的个数,通过观察和推导相应的不等式,逐步得到目标不等式的结论。
这种思想在解决一些较为复杂的均值不等式问题时非常有帮助。
算术几何平均不等式与其应用
算术几何平均不等式与其应用算术几何平均不等式是数学中的一种重要的不等式关系,它在数学推导和实际问题中具有广泛的应用。
本文将介绍算术几何平均不等式的概念、证明以及一些常见的应用。
一、算术平均与几何平均的定义与性质在介绍算术几何平均不等式之前,我们先来了解一下算术平均和几何平均的定义与性质。
1. 算术平均:对于一组数a₁,a₂,...,aₙ,它们的算术平均记为A,即A=(a₁+a₂+...+aₙ)/n。
算术平均是指将一组数的和除以这组数的个数所得到的值。
2. 几何平均:对于一组正数a₁,a₂,...,aₙ,它们的几何平均记为G,即G=(a₁a₂...aₙ)^(1/n)。
几何平均是指将一组数的乘积开n次方所得到的值。
算术平均和几何平均都是常见的求平均值的方法,它们有以下性质:性质1:对于任意一组正数a₁,a₂,...,aₙ,有G≤A。
性质2:当且仅当a₁=a₂=...=aₙ时,有G=A。
二、算术几何平均不等式的概念与证明算术几何平均不等式是指对于一组正数a₁,a₂,...,aₙ,有G≤A,即几何平均不大于算术平均。
下面我们将给出算术几何平均不等式的证明。
假设a₁,a₂,...,aₙ是一组正数,我们来证明G≤A。
首先,我们考虑当n=2的情况。
此时,算术平均和几何平均分别为A=(a₁+a₂)/2,G=(a₁a₂)^(1/2)。
我们可以通过平方的方式来证明G≤A。
由(a₁-a₂)²≥0可得a₁²-2a₁a₂+a₂²≥0,进一步变形得到a₁²+a₂²≥2a₁a₂。
再对不等式两边同时开2次方,即得到(a₁²+a₂²)^(1/2)≥(2a₁a₂)^(1/2)。
即G≥(2a₁a₂)^(1/2),进一步化简得到G≥(a₁+a₂)/2=A。
所以,当n=2时,算术几何平均不等式成立。
接下来,我们假设当n=k时,算术几何平均不等式成立。
即对于一组正数a₁,a₂,...,aₙ,有G≤A。
再探“算术—几何平均值不等式”的证明及应用
再探“算术—几何平均值不等式”的证明及应用
发表时间:2012-09-28T14:23:32.763Z 来源:《学习方法报·语数教研周刊》2012年第47期供稿作者:董小高陈明星[导读] 在初等数学中,有一个重要的不等式——算术—几何平均值不等式(或称平均值定理).陕西商南县高级职业中学董小高陈明星在初等数学中,有一个重要的不等式——算术—几何平均值不等式(或称平均值定理).之所以重要,是因为利用它可以解决很多不等式的证明问题、某些代数式和函数的最值或取值范围问题、与最值有关的几何与实际应用问题等.本文将介绍一种证明均值不等式的初等数学方法,并举例介绍均值不等式在初等数学中的几个重要应用类型,旨在帮助读者进一步理解平均值不等式的推导过程,熟练掌握平均值
不等式的运用.
一、算术—几何平均值不等式及其推论
1. 定义平均值的概念.
用均值不等式解决实际应用问题和几何问题的一般步骤:
(1)根据题意设变量,选取适当的变量设为自变量,把要求最大值或最小值的变量定为因变量(函数);
(2)建立相应的函数关系式,把实际问题、几何问题转化为函数的最大值或最小值问题;
(3)利用均值不等式求出函数的最大值或最小值;
(4)检验求得的函数最值和与之对应的自变量取值是否符合题意;
(5)回答问题.
例3 某工厂去年的某产品的年产量为100万件,每件产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元(科技成
本),并计划以后每年比上一年多投入100万。
平均值不等式及其应用
平均值不等式及其应用摘要:平均值不等式在不等式理论中处于核心地位,是现代分析数学中应用最广泛的不等式之一. 本文总结性地介绍了平均值不等式的几种具有代表性的证明方法,包括逆向归纳法、马克罗林的替代法、概率论方法、泰勒公式、不等式证明等,并归纳总结了其在不等式证明、求函数极值和最值、判断数列及级数的敛散性、解决积分不等式问题、比较大小等各方面应用,为今后此类问题的研究提供了便利,为解决其他不等式的证明提供了帮助.关键词:平均值不等式;数学归纳法;泰勒公式;应用Mean Value Inequality and its Application Abstract:The mean value inequality is of great importance in inequalities, and it is one of the most widely used inequality in modern analytical mathematic. In this paper ,we summarize several typical proof methods of the mean value inequality, including mathematic induction, Mark Rollin's alternative method, probability theory method, Taylor formua, inequality method. Furthermore, we introduce some applications of the mean value inequality through examples. It can use in proving inequalities, judging the divergence of certain sequences and the progression, and solving the integral inequality question, as well as seeking the extreme value of function and so on.Key words:mean value inequality;mathematic induction;Taylor formula;application1.引言平均值不等式在不等式理论中处于核心地位,是数学中最重要的基本不等式12之一,也是人们最为熟悉的不等式,因此,它在数学的很多领域中都有着广泛的应用.平均值不等式是数学分析中解决许多极限问题以及其他应用问题的一个重要依据,特别是算术-几何平均值不等式的应用更是尤为广泛,许多极限问题的证明都要应用到这一不等式.2.平均值不等式下面介绍一下平均值不等式:考虑n 个正数n a a a ,,,21 的算术平均(n A )和几何平均(n G ):∑==ni i n a n A 11, n n n a a a G 21=平方平均(n Q )和调和平均(n H ):n a a a Q n n 22221+++= ,nn a a a nH 11121+++= 平均值不等式:n n n n Q A G H ≤≤≤,即22212121121111nnn n i i na a a na a a a n n a a a =+++≤≤≤+++∑ .其中当且仅当n a a a === 21时等号成立.3.平均值不等式的证明关于平均值不等式的证明方法,常见的有利用数学归纳法及詹生不等式的证明,下面介绍几种另外的证明方法.在介绍第一种证明方法之前,首先介绍一下逆向归纳法的证明思路. 逆向归纳法:设有一个与自然数n 有关的命题,如果(1) 命题对于无穷多个自然数成立;(2) 假设命题对n =k 时成立,得出命题对n =k-1时也成立; 那么这个命题对于一切自然数n 都成立.3证法一[2](逆向归纳法)证明 i) 首先证明命题对一切2(1,2,)k n k == 成立. 当2n =时,12122a a a a +≥,命题成立; 当4n =时,有不等式:2234121234()()22a a a a a a a a ++≤⋅ 2341222a a a a ++⎛⎫=⋅ ⎪⎝⎭43412412342224a a a a a a a a ++⎛⎫+ ⎪+++⎛⎫≤=⎪ ⎪⎝⎭⎪⎝⎭,即命题成立. 同理推出命题对3428,2,,2s n n n ==== 都成立(s 为任意自然数),所以命题对无穷多个自然数成立.ii) 设命题对n k =成立,令 12k k a a a S k +++=,12111k k a a a S k --+++=- ,由上式立即得:12111k k k a a a S S k---++++= .由归纳假设得:121111211kk k k k k k a a a S Sa a a S k -----++++⎛⎫=≥ ⎪⎝⎭,即 11121k k k S a a a ---≥ . 故12111211k k k a a a a a a k ---+++≥- ,从而命题对1n k =-也成立.综合i)、ii),由反归纳法原理知,命题对一切自然数n 都成立.证法二[2] (马克罗林的替代法证明)证明 我们保持12a a s +=和不变,以122a a +分别代替1a 和2a ,这时两个数122a a +的和仍然是s ,但两个数的积却增加了,即有21212()2a aa a +≥,实际上两个数的算术平均值大于几何平均值,且当两个数相等时等号成立.现在变动诸数12,,,n a a a ,但保持它们的和12n a a a s +++= 不变,这时乘4积12nn a a a 必须在12n a a a === 时取极大值,因为只要i j a a ≠,我们用2i ja a +分别代替i a 和j a ,这时和12n a a a s +++= 仍然不变,但它们的乘积却增加了,即有:121222i ji jn i j n a a a a a a a a a a a a ++>当且仅当12n a a a === 时,1212nn n a a a a a a n+++= .故1212n nn a a a a a a n+++≥ ,即命题成立.注:这个证明方法是由苏格兰科学家马克罗林给出的,所以我们称其为马克罗林替代法.证法三[3] (概率论证明方法) 证明 设1()i P a nξ==,(0,1,2,,)i a i n >= ,则 111()()nni i i i i E a P a a n ξξ===⋅==⋅∑∑ 11n i i a n ==∑.所以 2211()n i i E a n ξ=⎛⎫= ⎪⎝⎭∑.又由公式得:222211111()()nnn i i i i i i i E a P a a a n n ξξ====⋅==⋅=∑∑∑,而22()()E E ξξ≤,所以221111n n i i i i a a n n ==⎛⎫≤ ⎪⎝⎭∑∑ ,即 21111n n i i i i a a n n ==≤∑∑. (1) 由公式11111(ln )ln ()ln ln nnni i i i i i i E a P a a a n n ξξ====⋅==⋅=∑∑∑,511ln()ln n i i E a n ξ=⎛⎫= ⎪⎝⎭∑,而(ln )ln()E E ξξ≤,所以有:1111ln ln n n i i i i a a n n ==⎛⎫≤ ⎪⎝⎭∑∑ ,即 1211ln ln nn n i i a a a a n =⎛⎫≤ ⎪⎝⎭∑ . 故 1211nn n i i a a a a n =≤∑ (2)再设有分布列11()i P a nξ==,(0,1,2,,)i a i n >= ,由(ln )ln()E E ξξ≤可得: 111111ln ln n n i i ii n a n a ==⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑ 故1211n n ni ina a a a=≤∑ (3)综合(1)、(2)、(3)得: 212111111n n nn i i ni i i ina a a a a n n a ===≤≤≤∑∑∑ . 注:这里,我们利用概率论模型证明了平均值不等式,实际上有许多不等式均可利用这种方法进行证明,这为证明不等式找到了新的途径.证法四[4] (利用不等式1x e x ≥+,1x ≥-) 证明 设12nn a a a A n+++= ,12n n n G a a a = ,(0,1,2,,)i a i n >=由不等式1x e x ≥+,(1x ≥-)可知,对于每一i 有:exp 1i i n na aA A ⎛⎫-≥ ⎪⎝⎭,1,2,,i n = .求其乘积,得:6111exp 1exp 1nn i i i i n na a A A ==⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∏ 1nni n i n n a G A A =⎛⎫≥= ⎪⎝⎭∏ 故n n A G ≥,即1212n nn a a a a a a n+++≥ .(0,1,2,,i a i n >= )注:利用不等式证明平均值不等式有几种方法,其中詹生不等式就是一种,而这里是利用不等式1x e x ≥+(1x ≥-)来得到证明.证法五 (利用泰勒公式)证明 设()log a f x x =,(01,0)a x <<>,则 ''21()0ln f x x a=>. 将()f x 在点0x 处展开,由泰勒公式,有:'''200000()()()()()()2f x f x f x f x x x x x =+-+-,其中00()x x x ξθ=+-,(01θ<<)因此有'000()()()()f x f x f x x x ≥+-. 取011ni i x x n ==∑,(,)i x a b ∈,1,2,,i n = ,则有:'111111()()()()n nn i i i i i i i i f x f x f x x x n n n ===≥+-∑∑∑,1,2,,i n = . 故'1111111()()()()nn n n ni i i i i i i i i i f x nf x f x x x n n =====≥+-∑∑∑∑∑ 11()n i i nf x n ==∑, 即 1111()()n ni i i i f x f x n n ==≤∑∑.因此有121211log ()(log log log )an a a a n a a a a a a n n+++≤+++ . 于是7121211log ()log ()a n a n a a a a a a n n≥+++ 112121log ()log ()na n an a a a a a a n≥+++ 故1212n nn a a a a a a n+++≥ .(0,1,2,,i a i n >= ).注:除了上面介绍的几种证明方法外,证明平均值不等式还有拉格朗日乘数法(见[5])、排序不等式等.4.平均值不等式的应用在数学分析中,平均值不等式可用于判断某些数列及级数的敛散性,解决积分不等式问题,求函数极值等,并且其在求最值,比较大小,证明不等式等各方面都具有巧妙的应用. 下面通过实例说明平均值不等式的一些应用.4.1 判断数列敛散性,并求其极限例1[6].设13a =,11621n n n a a a +⎛⎫=+ ⎪+⎝⎭,(1,2,)n = ,证明lim n n a →∞存在,并求其值.证明 先证有下界. 132a =>;假设2k a >,则有11612611=(1)2123163k k k kk k a a a a a a +⎛⎫⎡⎤+=+++- ⎪⎢⎥++⎝⎭⎣⎦ 2611(1)223163k k a a ≥+⋅+⨯-=+. 由数学归纳法知:对任意正整数n ,有2n a >,即数列有下界. 再证数列单调递减. 事实上,对任意正整数n ,有11621n n n a a a +⎛⎫=+ ⎪+⎝⎭161(2)2212n n a a ⎛⎫<+=+ ⎪+⎝⎭()12n n n a a a <+=, 即1n n a a +<.8由单调有界原理,极限lim n n a →∞存在. 设lim n n a a →∞=,对等式11621n n n a a a +⎛⎫=+ ⎪+⎝⎭两边取极限,得1621a a a ⎛⎫=+ ⎪+⎝⎭解之得:2a =(负值不合题意,舍去) 故lim 2n n a →∞=.例2.证明:数列12n n n n nn a n ⎧⎫+++=⎨⎬⎩⎭收敛. 证明 首先证明数列是单调的. 对任意的正整数1,2,,1k n =- ,都有11111nn k n k k n n n n ++⋅+⎛⎫<= ⎪++⎝⎭, 所以11(1)(1)n n n n k k n n +++<+. 所以12n n n n n n a n +++= 1111123(1)(1)n n n n n n a n +++++++++<<+ . 即数列{}n a 是单调递增的.再证数列有上界. 对任意的正整数1,2,,1k n =- ,都有1111111kn kn n k n n n ⎡⎤⎢⎥⎛⎫⎛⎫⎢⎥-≤-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎛⎫+⎢⎥ ⎪-⎝⎭⎣⎦ 1kk e e -⎛⎫<= ⎪⎝⎭, 所以9(1)[(1)]n n n n n n n n n a n +-++--= 11111n nn n n -⎛⎫⎛⎫=+-++- ⎪ ⎪⎝⎭⎝⎭ 1(1)1111n n e e ee ------<+++=- 1111ee e -<=--, 即数列有上界.由单调有界定理知,该数列收敛.4.2 判断级数敛散性例3[6].设111111111(1)112132n n b n n n n +⎛⎫=-⋅+⋅+⋅++⋅ ⎪--⎝⎭ ,证明:级数1n n b ∞=∑是发散级数.证明 因111111111(1)112132n n b n n n n +⎛⎫=-⋅+⋅+⋅++⋅ ⎪--⎝⎭ ,由2a bab +≤有112n n +⋅≤,12(1)2n n +-≤,1,12n n ++≤ 故1211n n ≥+⋅,1212(1)n n ≥+-,12,11n n ≥+⋅ 从而有1112112(1)1n n b n n n n =+++≥+⋅-⋅ . 因lim 0n n b →∞≠,故级数1n n b ∞=∑发散.4.3 证明函数项级数一致收敛性10例4[7].试证:22111(1)11lim (1)2n n x n n x x n x n ∞∞→==-=-∑∑. 证明 设 2(1)()(1)n n n x x u x n x -=-,1x ≠,显然有 211lim ()2n x u x n →=. 令21(1)2n u n=,则()n u x 在[0,2]上连续,()0n u x ≥,应用几何平均-算术平均不等式,得21()(1)n n n x u x n x x -=+++ 222221212221n n n x x n n n x x -≤=≤⋅⋅ ,[0,2]x ∈, 又因为211n n∞=∑收敛, 根据魏尔斯特拉斯判别法,得级数1()n n u x ∞=∑在[0,2]上是一致收敛的.故21111111lim ()lim ()2n n x x n n n u x u x n ∞∞∞→→=====∑∑∑, 即 22111(1)11lim (1)2n n x n n x x n x n ∞∞→==-=-∑∑.例5.试证级数2211cos 1nn n x nx x x x∞-=++++∑ 在(0,1]上一致收敛. 证明 设 21()1nn n x a x x x -=+++ ,()cos n b x nx =,1,2,n = ;显然{}()n a x 是递减的,因为21()1n n n x a x x x -=+++ 22112221n n n x x n nn x x -≤=≤⋅ ,(01)x ≤≤ 所以{}()n a x 是递减的且一致收敛于0. 注意到1111sin()sin1122cos 12sin sin sin242nk xn kx x x =+-=≤≤∑,1(1)2x ≤≤ 根据狄里克雷判别法,1()()n n n a x b x ∞=∑在1[,1]2上一致收敛.当102x ≤≤时,1()()2nn n n a x b x x ⎛⎫≤≤ ⎪⎝⎭,1,2,n = , 而112nn ∞=⎛⎫ ⎪⎝⎭∑收敛,根据魏尔斯特拉斯判别法,得 1()()n n n a x b x ∞=∑在1(0,]2上一致收敛. 故1()()n n n a x b x ∞=∑在(0,1]上一致收敛.4.4 求函数极值和最值平均值不等式是求最值的常用方法之一,运用平均值不等式求最值时,要注意三个条件:‚一正二定三相等‚,三者缺一不可,求值时,要注意所进行的必须是等价转化. 运用平均值不等式求最值的方法有:负变正法,乘‘1’法,配系数法,添项法,拆项法,平方法,换元法,引入参数法.例6[6].求函数3()(33)(1)f x x x =-+在开区间(0,1)内的极大值.解 3()(33)(1)f x x x=-+ 44(33)(1)(1)(1)6814416x x x x -++++++⎡⎤⎛⎫≤== ⎪⎢⎥⎣⎦⎝⎭ 当且仅当331x x -=+,即12x =时,()f x 有极大值8116.例7[10].若,,a b c R +∈,且1a b c ++=,求414141a b c +++++的最大值.[分析] 当函数恒为正值时,有时对目标函数进行平方,可达到凑和为定值的目的.解 令414141u a b c =+++++,则0u ≥.12所以24()32(41)(41)2(41)(41)2(41)(41)u a b c a b b c a c =++++++++++++72(41)(41)2(41)(41)2(41)(41)a b b c a c =+++++++++7(442)(442)(442)a b b c a c ≤+++++++++ 138()21a b c =+++=.4.5 证明积分不等式例8.若函数()f x 在[,]a b 上连续,且当[,]x a b ∈时()0f x >,则2()()()bbaadxf x dx b a f x ≥-⎰⎰[分析] 证法一中利用了定积分的定义和平均值不等式,定积分的定义是很容易可以想到的,再加上对平均值不等式的熟练掌握和灵活应用,即可解决本题的证明. 另外,如果对定积分的性质比较熟悉的话,也可以直接利用柯西-施瓦茨(Cauchy-Schwartz )不等式来证明.证法一[6]利用1212111nna a a n na a a +++≤+++ 的变形:21212111()()n na a a n a a a +++⋅+++≥ 由已知条件:()f x 与1()f x 在[,]a b 上均可积. 应用定积分定义,将[,]a b n 等分,得:111()()nn k k k k b a b af x n f x n ==--⋅∑∑ 2121()11[()()]()()n n b a f x f x n f x f x ⎡⎤-=++⋅++⎢⎥⎣⎦ 2222()()b a n b a n-≥⋅=-, 故对上式两边取极限n →+∞,得:2()()()bbaadxf x dx b a f x ≥-⎰⎰.13证法二 由于函数()f x 在[,]a b 上连续,所以()f x 在[,]a b 上可积. 根据Cauchy-Schwartz 不等式,即()222()()()()bb baaaf xg x dxf x dxg x dx ≤⋅⎰⎰⎰,得:221()()()b ab a f x dt f x ⎛⎫-=⋅⎪ ⎪⎝⎭⎰()221()()b b aa f x dt dt f x ⎛⎫≤⋅⎪ ⎪⎝⎭⎰⎰ ()()bbaadxf x dx f x =⎰⎰, 即命题得证.例9. 设正值函数()f x 在[0,1]上连续,证明:11()0()f x dx e f x dx ⎰≤⎰.证明 由条件知()f x ,ln ()f x 在[0,1]上可积,将[0,1]进行n 等分,作积分和:111()lim ()n n i if x dx f n n →∞==∑⎰1011112ln ()lim ln ()lim ln[()()()]n n n i i nf x dx f f f f n n n n n n →∞→∞===∑⎰ 11limln[()]nn n i i f n →∞==∏ 所以11011lim ln[()]ln ()1lim[()]nn n i inf f x dx nn n i i e ef n→∞=→∞=∏⎰==∏由平均值不等式得:1111[()]()nn ni i i i f f n n n ==≤∑∏故得101()0()f x dxe f x dx ⎰≤⎰.4.6 证明不等式平均值不等式在不等式的证明中具有非常重要的地位,如果能够灵活应用,往往会达到事半功倍的效果.14例10[9].若n N +∈,证明:111(1)(1)1n n n n++>++. 证明 由平均值不等式知,1111(1)(1)(1)(1)1n n n n n +=+++⋅ 11(1)11n n n n +⎡⎤+⋅+⎢⎥<⎢⎥+⎢⎥⎣⎦1121()(1)11n n n n n +++==+++ 故得证.例11.设n N ∈且1n >,证明:2(1)(21)(!)6nn n n ++⎡⎤<⎢⎥⎣⎦. 证明 由平均值不等式知,222221212nnn n n+++⋅< .又22112(1)(21)6n n n n n ⋅=++ 所以22(1)(21)126n n n n n ++⋅<两边作n 次乘方,即得2(1)(21)(!)6nn n n ++⎡⎤<⎢⎥⎣⎦.例12.已知,,a b c 都是正实数,求证:(1) 555333222a b c a b c b c a ++≥++; (2) 555222222a b c a b c b c c a a b++≥++.证明 (1)由平均值不等式可得,5553332225a a a b b a b b b++++≥, (1) 5553332225b b b c c b c c c ++++≥, (2) 5553332225c c c a a c a a a++++≥. (3)15(1)+(2)+(3)得:555333222a b c a b c b c a++≥++. (2) 由平均值不等式可得:552222225a a b b c a b c b c++++≥, (4) 552222225b b c c a b c a c a++++≥, (5) 552222225c c a a b c a b a b+++++≥. (6) (4)+(5)+(6)得:555222222a b c a b c b c c a a b++≥++.参考文献:[1] 匡继昌.常用不等式[M].长沙:湖南教育出版社,1989:17-18.[2] 谢刚.证明一类重要不等式的几种方法[J].滁州职业技术学院学报,2010,9(1):79-80. [3] 姚仲明.蒋秀梅,平均值与平均值不等式[J].安庆师范学院学报,2009,15(1):96-98. [4] 陈侃.算术-几何平均值不等式的证明[J].巢湖学院学报,2008,10(3):129-130. [5] 黄东兰.算术-几何平均值不等式的证法[J].福建广播电视大学学报,2007,(4). [6] 刘俊先.平均值不等式在数学分析中的应用[J].廊坊师范学院学报,2009,9(1):14-16. [7] 饶明贵.几个不等式的应用[J].河南科学,2008,26(8):900-903.[8] 伏春玲,董建德.均值不等式的性质推广及应用[J].甘肃联合大学学报,2010,24(6):26-31.[9] 夏立标.均值不等式及其推广[J].宁德师专学报,2010,22(2):125-127.[10] 沈丙申.运用均值定理求最值的八种方法[J].四川教育学院学报,2007,23(6):61-62.[11] 裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,2002.[12] 华东师范大学数学系.数学分析:上册[M].北京:高等教育出版社,2001.[13] Akerberg B., A proof of arithmetic geometric mean inequality, Amer. Math Monthly, 1963,70:997-998.[14] Chong, Kong-Ming, An inductive proof of the A.M.-G.M. Inequality, Amer.Math Monthly,1976, 83:657-658.16。
算术_几何平均值不等式的证明
平均值不等式是数学分析中解决许多极限问题以及其他应用问题的一个重要依据,特别是算术平均值-几何平均值不等式(以下简称算几不等式)的应用更是尤为广泛,许多极限问题的证明都要应用到这一不等式,而关于这一不等式的证明方法,常见的有利用数学归纳法及詹生不等式的证明,下面介绍几种另外的证明方法。
1利用二项式定理证明:首先,对于a,b>0由二项式定理,得(a+b)n>an+nan-1b由数学归纳法,若n-1时为真,对于n,假设an≥an-1≥…≥a2≥a1≥0.又设a=1n-1n-1i=1"xi,b=1n(xn-a),故有a,b≥0及1nn-1i=1"xi#$n=(a+b)n>an+nan-1b=xn1n-1n-1i=1"xi%&n-1≥xn(x1x2…xn-1)即x1+x2+…+xnn≥x1x2…xnn’(xi≥0,i=1,2,…,n).2利用不等式ex≥1+x(x≥-1)证明:设An=x1+x2+…+xnn,Gn=x1x2…xnn’(xi>0,i=1,2,…,n)由不等式ex≥1+x(x≥-1)可知,对于每一i,有expxiAn-%&1≥xiAn求乘积,得1=ni=1(expxiAn-%$1=expni=1"xiAn-%$1%$≥ni=1(xiAn=GnAn%$n算术-几何平均值不等式的证明故An≥Gn,即x1+x2+…+xnn≥x1x2…xnn"(xi>0,i=1,2,…,n).3利用泰勒公式证明:设f(x)=logax(0<a<1,x>0),则f″(x)=1x21na>0,将f(x)在点x0处展开,有f(x)=f(x0)+f′(x0)(x-x0)+f″(x)2(x-x0)2,!=x0+"(x-x0)(0<"<1)因此有f(x)≥f(x0)+f′(x0)(x-x0),取x0=1nni=1#xi(xi∈(a,b),(i=1,2,…,n),则有f(xi)≥f1nni=1%xi&’+f′1nni=1%xi&(xi-ni=1%xi&((i=1,2,…,n)故ni=1%f(xi)≥nf1nni=1%xi&(+f′1nni=1%xi&(+ni=1%xi-ni=1%xi&(=nf1nni=1%xi&(即f1nni=1%xi&(≤1nni=1%f(xi).因此有loga1n(x1+x2+…+xn)≤1n(logax1+logax2+…logaxn)即1nloga(x1x2…xn)≥loga1n(x1+x2+…+xn)亦即loga(x1x2…xn)1n≥1nloga(x1+x2+…+xn)(0<a<1)故有x1+x2+…+xnn≥x1x2…xnn"(xi>0,i=1,2,…,n).4利用函数凹凸性证明:设f(x)=logax(a>1,x>0),则f″(x)=-1x21na<0,故f(x)是上凸函数,因此有ni=1%aif(xi)≤fni=1%aixi&(,取ak=1n(k=1,2,…,n),有1n(logax1+logax2+…logaxn)≤loga1n(x1+x2+…+xn)即1nloga(x1x2…xn)≤loga1n(x1+x2+…+xn)亦即loga(x1x2…xn)1n≤loga1n(x1+x2+…+xn)故有x1+x2+…+xnn≥x1x2…xnn"(xi>0,i=1,2,…,n).。
均值不等式及其应用
均值不等式及其应用一、均值不等式定义1.均值不等式:如果,0a b >,那么2a b +≥,当且仅当a b =时,式中等号成立. 对于均值不等式的理解:(1)对任意两个正实数,a b ,2a b +叫做,a b叫做,a b 的几何平均值.(2)均值不等式可以表述为:两个正实数的算术平均值大于或等于它的几何平均值.2.均值不等式的两种证明:(1)代数法:20,0,0222a b a b a b ++->>∴==≥,即2a b +≥.当且仅当a b =时,式中等号成立. (2)几何法:如图,AB 是圆O 的直径,点Q 是AB 上任一点,,AQ a BQ b ==,过点Q 作PQ 垂直AB 于Q ,连接,AP PB .易证Rt APQ Rt PBQ ∽,那么2PQ AQ QB =⋅,即PQ =22AB a b PO +==.根据三角形三边关系可得:PO PQ ≥,即2a b +≥当且仅当点Q 与圆心O 重合,即a b =时,等号成立.几何意义可简记为:“半径不小于半弦”要点提炼:(2)等号成立的条件:当且仅当a b =时取等号.常见基本不等式1.基本不等式:ab ≤a +b 2(1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b 2称为正数a ,ba ,b 的几何平均数. 2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.3.利用基本不等式求最值已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大). 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三相等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值1、基本题型例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x2、常见解题技巧:技巧一:凑项(不正时)例1:已知54x <,求函数14245y x x =-+-的最大值。
均值不等式及其在数学证明中的应用
均值不等式及其在数学证明中的应用均值不等式是数学中一种重要的不等式关系,它在不同领域的数学证明中发挥着重要的作用。
本文将介绍均值不等式的概念和常见形式,并探讨其在数学证明中的应用。
一、均值不等式的概念和常见形式均值不等式是指对于一组数的平均值,其大小关系与这组数的取值有关。
常见的均值不等式有算术平均值不小于几何平均值、几何平均值不小于调和平均值等。
以算术平均值不小于几何平均值为例,对于正实数$a_1,a_2,\dots,a_n$,它们的算术平均值和几何平均值分别为$\frac{a_1+a_2+\dots+a_n}{n}$和$(a_1a_2\dotsa_n)^{\frac{1}{n}}$,则有不等式关系:$$\frac{a_1+a_2+\dots+a_n}{n}\geq(a_1a_2\dots a_n)^{\frac{1}{n}}$$二、均值不等式在数学证明中的应用1. 不等式证明均值不等式在不等式证明中经常被使用。
通过运用均值不等式,可以将一个复杂的不等式问题转化为一个简单的均值不等式问题,从而简化证明过程。
例如,对于正实数$a,b$,要证明$a^2+b^2\geq2ab$,可以通过应用均值不等式来证明。
首先,我们将$a^2$和$b^2$分别表示为$a^2=b\cdot a$和$b^2=a\cdot b$,然后应用几何平均值不小于算术平均值的均值不等式,得到:$$\sqrt{a^2\cdot b^2}\geq\frac{a+b}{2}$$进一步化简得到$a^2+b^2\geq2ab$,即所要证明的不等式。
2. 极值问题均值不等式在极值问题中也有广泛的应用。
通过运用均值不等式,可以确定一个函数的最大值或最小值。
例如,对于正实数$a,b$,要求函数$f(x)=ax^2+bx$的最小值。
我们可以通过应用均值不等式来解决这个问题。
首先,我们将$f(x)$表示为$f(x)=ax^2+bx=ax^2+\frac{b}{2}x+\frac{b}{2}x$,然后应用算术平均值不小于几何平均值的均值不等式,得到:$$\frac{ax^2+\frac{b}{2}x+\frac{b}{2}x}{3}\geq\sqrt[3]{a\left(\frac{b}{2}\right)^ 2x^3}$$进一步化简得到$f(x)\geq3\sqrt[3]{\frac{ab^2}{4}}$,即函数$f(x)$的最小值为$3\sqrt[3]{\frac{ab^2}{4}}$。
均值不等式在几何中的应用
均值不等式在几何中的应用均值不等式是一种经典的数学定理,它可以用来推导几何结构、在几何中证明各种定理、求解几何问题等。
它是一种非常有用的工具,在几何中有着广泛的应用。
本文介绍均值不等式在几何中的应用,并给出相关的证明。
均值不等式的定义是:若三个正数a,b,c满足a+b+c=3,则有a2+b2+c2≥9/4。
这个定论可以证明一个几何形状的性质,即三角形中,任意角的余弦值一定大于(或小于)1/3。
要证明这一点,首先可以将三角形分解成三条边的平方和的和以及三角形的内角余弦的和。
即:a2 + b2 + c2=2cosa2 +2cosb2 +2cosc2。
将这个公式代入均值不等式,可以得出:2cosa2 +2cosb2 +2cosc2≥9/4。
由于所有内角余弦值的绝对值不超过1,所以有2cosa2+2cosb2 +2cosc2≤3,从而可以推出:cosa2 +cosb2 +cosc2≤1/3。
这就是说,任意三角形的角的余弦值和一定小于1/3,因此任意三角形角的余弦值一定小于1/3,也就是所谓的三角形余弦定理。
均值不等式也可以用来证明多边形面积的求法,即以多边形的顶点坐标来求多边形的面积。
假设一个多边形具有n个顶点,第i个顶点的坐标为(xi,yi),i=1,2,…,n,那么多边形的面积S可以用以下公式表示:S=1/2∑ni=1(xi+1yi-xiyi+1)用均值不等式证明此公式,首先用下面的公式将多边形面积S表示为余弦值的和:S=1/2∑ni=1[(xi+1-xi)(yi+1-yi)+(xi-xi+1)(yi+1-yi+1)]=1/2∑ni=1[(xi+1-xi)^2+(yi+1-yi)^2+2cosαi]将这个式子代入均值不等式可以得出:∑ni=1[(xi+1-xi)^2+(yi+1-yi)^2+2cosαi]≥3/2,从而证明了多边形面积的公式。
另一个应用是求解多边形的顶点坐标。
假设一个多边形具有n个顶点,设第i个顶点的坐标分别为(xi,yi),其中i=1,2,…,n,多边形的面积S=1/2∑ni=1(xi+1yi-xiyi+1),这时可以将多边形的面积S代入均值不等式,可以得出:∑ni=1[(xi+1-xi)^2+(yi+1-yi)^2+2cosαi]=3/2此式子可以用来求解多边形的顶点坐标,即可以求解出每一个顶点的坐标,从而得到多边形的顶点坐标。
算术几何平均间不等式的证明
算术几何平均间不等式的证明在数学中,算术平均和几何平均是两个常用的概念。
算术平均是一组数的总和除以数的个数,而几何平均是一组数的乘积的n次方根。
算术几何平均间不等式是一种基本的不等式,它提供了一种关于算术平均和几何平均之间的关系。
本文将对算术几何平均间不等式进行证明。
设有正数x₁,x₂,x₃,...,xₙ,它们的算术平均为A,几何平均为G。
那么我们可以得到以下关系:x₁+x₂+x₃+...+xₙ ≥ n√(x₁·x₂·x₃·...·xₙ) ——(1)首先,我们通过归纳法证明这个不等式对于n=2时成立。
当n=2时,不等式可以变为:x₁+x₂ ≥ 2√(x₁·x₂) ——(2)我们可以将不等式(2)两边平方,得到:x₁²+x₂²+2x₁x₂ ≥ 4x₁x₂接着,我们可以重写上式为:(x₁-x₂)² ≥ 0这是显然成立的,所以当n=2时,算术几何平均间不等式成立。
接下来,我们假设当n=k时,不等式成立。
即对于k个正数的情况下,算术几何平均间不等式成立。
我们需要证明当n=k+1时,不等式也成立。
对于k+1个正数的情况,我们可以将这些数分成两组:前k个数和最后一个数。
我们假设前k个数的算术平均为A,几何平均为G₁;最后一个数的值为xₙ₊₁。
根据归纳法的假设,我们知道不等式对于前k个数成立:x₁+x₂+x₃+...+xₙ ≥ k√(x₁·x₂·x₃·...·xₙ) ——(3)现在,我们考虑最后一个数与前k个数的几何平均的关系。
即:G₂ = (x₁·x₂·x₃·...·xₙ·xₙ₊₁)^(1/(k+1))我们可以将G₂重写为:G₂ = (G₁^k ·xₙ₊₁)^(1/(k+1))根据虚根定理,不等式√G₁^k·xₙ₊₁ ≥ (G₁+xₙ₊₁)/2 成立。
算术_几何平均值不等式的证明
平均值不等式是数学分析中解决许多极限问题以及其他应用问题的一个重要依据,特别是算术平均值-几何平均值不等式(以下简称算几不等式)的应用更是尤为广泛,许多极限问题的证明都要应用到这一不等式,而关于这一不等式的证明方法,常见的有利用数学归纳法及詹生不等式的证明,下面介绍几种另外的证明方法。
1利用二项式定理证明:首先,对于a,b>0由二项式定理,得(a+b)n>an+nan-1b由数学归纳法,若n-1时为真,对于n,假设an≥an-1≥…≥a2≥a1≥0.又设a=1n-1n-1i=1"xi,b=1n(xn-a),故有a,b≥0及1nn-1i=1"xi#$n=(a+b)n>an+nan-1b=xn1n-1n-1i=1"xi%&n-1≥xn(x1x2…xn-1)即x1+x2+…+xnn≥x1x2…xnn’(xi≥0,i=1,2,…,n).2利用不等式ex≥1+x(x≥-1)证明:设An=x1+x2+…+xnn,Gn=x1x2…xnn’(xi>0,i=1,2,…,n)由不等式ex≥1+x(x≥-1)可知,对于每一i,有expxiAn-%&1≥xiAn求乘积,得1=ni=1(expxiAn-%$1=expni=1"xiAn-%$1%$≥ni=1(xiAn=GnAn%$n算术-几何平均值不等式的证明陈侃(巢湖学院数学系,安徽巢湖238000)摘要:分别利用初等数学及高等数学知识进行算术-几何平均值不等式的证明。
关键词:算术-几何平均值不等式;二项式定理;函数凹凸性;泰勒公式中图分类号:O17文献标识码:A文章编号:1672-2868(2008)03-0129-022008年第10卷第3期巢湖学院学报No.3.,Vol.10.2008总第90期JournalofChaohuCollegeGeneralSerialNo.90收稿日期:2008-03-22作者简介:陈侃(1985-),男,安徽巢湖人。
不等式的证明与应用
不等式的证明与应用不等式是数学中常见的重要概念,它在数学推理和实际问题的解决中具有广泛的应用。
本文将从不等式的基本定义和性质入手,探讨不等式的证明方法和应用实例,以期加深对不等式的理解和运用。
一、不等式的基本定义和性质不等式是数学中比较两个数或两个代数表达式大小关系的数学语句。
常见的不等式符号包括“大于”(>)、“小于”(<)、“大于等于”(≥)和“小于等于”(≤)。
不等式的基本定义如下:定义1:给定实数a和b,若a-b是正数,则称a大于b,记作a>b;若a-b是负数,则称a小于b,记作a<b。
根据不等式的定义,我们可以得到以下性质:性质1:若a>b,则有-a<-b。
性质2:若a>b且b>c,则有a>c。
性质3:若a>b且c>0,则有ac>bc;若a<b且c<0,则有ac>bc。
以上性质是不等式研究和证明中常用的基本性质,能够在不等式的推导和转化中起到重要的作用。
二、不等式的证明方法不等式的证明与方程的证明有所不同,常用的不等式证明方法主要包括数学归纳法、反证法和数学推理法。
1. 数学归纳法数学归纳法用于证明关于自然数的不等式时很常见。
它的基本思路是:先证明当n=1时命题成立,然后假设当n=k(k为正整数)时命题成立,再证明当n=k+1时命题也成立。
通过这一过程,可以得出命题对于一切正整数n都成立。
举例说明:例1:证明不等式1 + 2 + 3 + ... + n < n^2对于一切正整数n成立。
解:当n=1时,左边为1,右边为1,不等式成立。
假设当n=k时命题成立,即1 + 2 + 3 + ... + k < k^2。
我们需要证明当n=k+1时命题也成立,即1 + 2 + 3 + ... + k + (k + 1) < (k + 1)^2。
根据假设,我们有1 + 2 + 3 + ... + k < k^2,两边同时加k+1得到:1 +2 +3 + ... + k + (k + 1) < k^2 + (k + 1)。
均值不等式的总结及应用.doc
均值不等式的总结及应用【解题技巧】技巧一:凑项例已知,求函数的最大值。
解:因,所以首先要“调整”符号,又不是常数,所以对要进行拆、凑项,,当且仅当,即时,上式等号成立,故当时,。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数例1.当时,求的最大值。
解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到为定值,故只需将凑上一个系数即可。
当,即x=2时取等号当x=2时,的最大值为8。
评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。
变式:设,求函数的最大值。
解:∵∴∴当且仅当即时等号成立。
技巧三:分离例3.求的值域。
解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。
当,即时,(当且仅当x=1时取“=”号)。
技巧四:换元解析二:本题看似无法运用均值不等式,可先换元,令t=x+1,化简原式在分离求最值。
当,即t=时,(当t=2即x=1时取“=”号)。
评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。
即化为,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。
技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数的单调性。
例:求函数的值域。
解:令,则因,但解得不在区间,故等号不成立,考虑单调性。
因为在区间单调递增,所以在其子区间为单调递增函数,故。
所以,所求函数的值域为。
练习.求下列函数的最小值,并求取得最小值时,x的值.(1)(2)(3)2.已知,求函数的最大值.;3.,求函数的最大值.条件求最值1.若实数满足,则的最小值是.分析:“和”到“积”是一个缩小的过程,而且定值,因此考虑利用均值定理求最小值,解:都是正数,≥当时等号成立,由及得即当时,的最小值是6.变式:若,求的最小值.并求x,y的值技巧六:整体代换多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅探算术—几何均值不等式在不等式证明中的应用
作者:钱小三
来源:《科技资讯》2013年第13期
摘要:均值不等式是数学中几个经典不等式之一,在生产和生活中具有重要作用,是证明不等式及求解各类最值问题的一个重要依据和方法。
其中算术-几何均值不等式应用最为广泛,具有变通灵活性和条件约束性等特点,在不等式证明方面具有不可忽视的作用。
本文分别从内容的突破和形式的构造两个方面,探索算术-几何均值不等式在不等式证明中的应用。
关键词:不等式算术-几何均值不等式应用
中图分类号:0178 文献标识码:A 文章编号:1672-3791(2013)05(a)-0165-02
均值不等式是数学中的一个重点内容,由文献[1]知,它是由调和平均数、几何平均数、算术平均数和平方平均数所联合满足的不等式≤≤≤。
“算术-几何平均值不等式”(≤)的应用广泛性已经得到了人们的重视(见[2,3,4])。
研究工作主要集中在函数最值问题,不等式成立问题,但对它在不等式证明中应用的延伸还需进一步深入研究。
本文分别从内容的突破和形式的构造两个方面,探索算术-几何均值不等式在不等式证明中的应用。
1 基本算术-几何均值不等式
如果、,那么≥(当且仅当时,“=”成立),这个不等式称为基本“算术-几何”均值不等式,也叫均值定理。
深刻理解和掌握此不等式的内容及形式,便能快速找到问题的突破口,从而解决问题。
4 算术-几何均值不等式在积分不等式证明中的应用
命题[5]:若函数在上是正值可积的,且,则≤,应用“算术-几何”均值不等式可推出该命题成立。
过程如下:先构造不等式≤,再两边同时积分≤,化简不等式≤1,去分母可得≤
利用算术-几何均值不等式来证明不等式时需要构造不等式的内容及形式,同时需要注意均值不等式的条件“一正二定三相等”,从上面的例子可以看出算术-几何均值不等式在不等式证明中的实用性和重要性。
参考文献
[1] 王学功.著名不等式[M].北京:中国物资出版社,1993:12-15.
[2] 吴善和,石焕南.平均值不等式的推广及应用[J].贵州教育学院学报,2003,14(2):14-16.
[3] 刘俊先.平均值不等式在数学分析中的应用[J].廊坊师范学院学报:自然科学版,2009,9(1):14-15.
[4] 冉凯.平均值不等式在数学分析中的应用[J].青海师专学报:自然科学版,1997,1(4):35-38.
[5] 纪乐刚.数学分析[M].上海:华东师范大学出版社,1993:10-14.。