2019_2020学年高中数学第2章平面向量2.1平面向量的实际背景及基本概念教案(含解析)新人教A版
2.1平面向量的实际背景及基本概念
例1:已知O为正六边形ABCDEF的中心, 在图中所标出的向量中: E D (1)试找出与FE共线的向量;
F
O C
热 热 身
解: (1) OA BC, (2) FE BC
若不相等,则之间有什么关系?
A
B
(3)虽然OA // BC,且|OA|=|BC|,
立
BACK
练习:
1.已知a、b为不共线的非零向量,且
存在向量 c,使 c ∥ a, c ∥ b, 则
c =____ 0
BACK
练习:
1.与非零向量 a (非单位向量)平行的 2 向量中,不相等的单位向量有_____ 个.
BACK
练习:如图,EF是△ABC的中位线,AD是BC 边上的中
线,在以A、B、C、D、E、F为端点的有向线 段表示的向量中请分别写出
三维目标 1.通过实例,利用平面向量的物理背景以及研 究平面向量的必要性,理解平面向量的概念以 及确定平面向量的两个要素,分清数量与向量 的区别。 2.理解自由向量、平行向量、相等向量、相反 向量等概念,并能判断它们之间的关系,并会 辨认图形中的相等向量或作出与某一向量相等 的向量。 3.在教学过程中,应充分根据平面向量的两个 要素加以研究向量的关系,揭示向量可以平移 这一特性。培养学生数形结合的思想。
教学反思:
位移和距离 这两个量
香港
上海 台北
想一想:
观察下述三个量,哪个与另两个有区别?
m=5kg
(1)
F=20N
(2)
v =20km/h
(3)
(2)(3)都是有大小和方向的量
授课教师:高 波
一、向量的定义
2019-2020高中数学人教A版必修四教师用书:2.1 平面向量的实际背景及基本概念 Word版
姓名,年级:时间:2.1 平面向量的实际背景及基本概念[教材研读]预习课本P74~76,思考以下问题1.向量是如何定义的?向量与数量有什么区别?2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.零向量与单位向量有什么特殊性?0与0的含义有什么区别? 5.如何判断相等向量或共线向量?向量错误!与向量错误!是相等向量吗?[要点梳理]1.向量的概念和表示方法(1)概念:既有大小,又有方向的量称为向量.(2)向量的表示2.向量的长度(或称模)与特殊向量(1)向量的长度(或模)定义:向量的大小叫做向量的长度(或模).(2)向量的长度表示:向量错误!,a的长度分别记作:|错误!|,|a|。
(3)特殊向量:①长度为0的向量为零向量,记作0;②长度等于1个单位的向量,叫做单位向量.3.向量间的关系(1)相等向量:长度相等且方向相同的向量,叫做相等向量,记作:a =b。
(2)平行向量:方向相同或相反的非零向量,也叫共线向量;a平行于b,记作a∥b;规定零向量与任一向量平行.[自我诊断]判断(正确的打“√",错误的打“×”)1.两个向量能比较大小.()2.向量的模是一个正实数.()3.单位向量的模都相等.( )4.向量错误!与向量错误!是相等向量.( )[答案]1。
×2。
× 3.√ 4.×错误!思考:已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度.其中是数量的有__________,是向量的有__________.提示:②④⑤⑨⑩①③⑥⑦⑧下列说法正确的有__________.(填序号)①若|a|=|b|,则a与b的长度相等且方向相同或相反;②若|a|=|b|,且a与b的方向相同,则a=b;③由于0方向不确定,故0不能与任意向量平行;④向量a与向量b平行,则向量a与b方向相同或相反;⑤起点不同,但方向相同且模相等的向量是相等向量.[思路导引] 利用向量的有关概念逐一判断.[解析] ①不正确.由|a|=|b|只能判断两向量长度相等,不能确定它们方向的关系.②正确.因为|a|=|b|,且a与b同向,由两向量相等的条件,可得a=b.③不正确.依据规定:0与任一向量平行.④不正确.因为向量a与向量b若有一个是零向量,则其方向不定.⑤正确.对于一个向量只要不改变其大小与方向,是可以任意移动的.[答案] ②⑤解决与向量概念有关问题的方法解决与向量概念有关题目的关键是突出向量的核心——方向和长度,如:共线向量的核心是方向相同或相反,长度没有限制;相等向量的核心是方向相同且长度相等;单位向量的核心是方向没有限制,但长度都是一个单位长度;零向量的核心是方向没有限制,长度是0;规定零向量与任一向量共线.只有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.[跟踪训练]下列说法错误的有__________.(填上你认为所有符合的序号)①两个单位向量不可能平行;②两个非零向量平行,则它们所在直线平行;③当两个向量a,b共线且方向相同时,若|a|〉|b|,则a>b.[解析]①错误,单位向量也可以平行;②错误,两个非零向量平行,则它们所在直线还可能重合;③错误,两个向量是不能比较大小的,只有模可以比较大小.[答案] ①②③错误!思考:向量就是有向线段,这种说法对吗?提示:不对,向量与有向线段是两个不同的概念,可以用有向线段表示向量.在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)错误!,使|错误!|=4错误!,点A在点O北偏东45°;(2)错误!,使|错误!|=4,点B在点A正东;(3)错误!,使|错误!|=6,点C在点B北偏东30°。
2.1 平面向量的实际背景及基本概念
三 向量的表示
有向线段 AB 、a
长度(也称为模) AB 、|a| 零向量 0 单位向量 a 0
四 向量的性质
1.向量有大小,但却不可以比较大小
2.向量不是有向线段,却用有向线段 表示
3.向量平行即共线
六 练习3
下列说法不正确的是( ). (A)若|a|=0,则a =0
(B)若| a |=|b|,则a = b (C)若a =0,则| a |=0 (D)若a = b ,则| a |=| b |
六 练习4
如图:四边形 ABCD 是平行四边形. 则下列哪些向量是相等的向量( )
(A) AD 和 BC
A
D
(B) AD 和 CB
(C) AB 和 CD B
C
(D) AC 和 BD
六 练习5 在等腰梯形 ABCD 中,AB∥CD, E、F 分别为 AD、BC 的中点.则
与 AB 共线的向量有_______个.
A
B
E
F
D
C
六 练习6
在平面直角坐标系 xoy 中,已知| OA |
=4, OA 与 x 轴正方向成 60°角,
情感态度与价值观
• 了解数学是如何从具体的事物中抽象出向量的概念,强 化数学与物理之间有着密切联系的观念.
一 实例引入
广附 5 千米 北
60 西
六中
N f
30 G
二 向量的概念
位移和力这些物理量都是既有大小, 又有方向的量,在物理中称为“矢 量”.它们和长度、面积、质量等只有 大小的量是不同的.
4.零向量方向任意,可平行于任何向 量列量当中,不是向量的有( )个.
2.1平面向量的实际背景及基本概念
(2)直角坐标平面内的x轴,y轴是向量。 (3)如果两个向量所在的直线互相平行,那么这 两个向量是平行向量。
(4)平行向量所在的直线一定互相平行。 (5)单位向量都相等。
二、课堂互动讲练
(6)不相等的向量一定不平行。 (7)若 | a | > | b | 则 a > b 。
二、课堂互动讲练
(三)解决问题
3、掌握平行向量、相等向量、共线向量的概念。 重、难点 重点:理解并掌握向量、向量的模、零向量、单
位向量、平行向量、相等向量、共线向量的概念。 难点:向量的方向、相等向量、共线向量。
一、课前自主探究 1、什么是位移? 2、什么是向量?你还能从物理学中举 出一些这样的量吗?
3、什么是数量?生活中哪些量是数量
? 4、什么是有向线段?怎样表示?它的 长度怎样表示?它由哪几个要素组成?
5、向量的大小(或称模),怎样表示?
一、课前自主探究 6、对比线段的表示方法,向量怎样表 示? 7、你知道两个特殊向量吗?它们是? 8、什么是平行向量? 9、什么是相等向量? 10、什么是共线向量?
二、课堂互动讲练
(一)选择
1、下列物理量不是向量的是( ① ⑥ ⑦
① 质量 ② 速度 ③ 位移 ④
)
力
⑤
加速度 ⑥
路程
⑦
密度
2、下列说法中错误的是( A ) A.零向量是没有方向的 B.零向量的长度为零 C.零向量与任一向量平行 D.零向量的方向是任 意的
二、课堂互动讲练
(二)辨析
(1)温度含零上和零下温度,所以温度是向量。
(1)与零向量相等的向量必定是什么向量?
零向量 (2)与任意向量都平行的向量是什么向量? 零向量
(3)平行向量是否一定方向相同? 不一定
2.1平面向量的实际背景及基本概念
向量的几何表示 方向相同或相反的非零向量叫做平行向量
a
b
记作 a ∥ b ∥c
c
规定: 零向量与任一向量平行, 即对于任意向量a,都有0∥a
相等向量:长度相等且方向相同的向量。
a
b
记作: a = b
共线向量 任一组平行向量都可以移动到 同一直线上 a 平行向量也叫做共线向量。
b c
l
C
o B A
比较大小的,因此向量不能比较大小。
友情链接:物理中向量与数量分别叫做
矢量、标量
判断题
1.身高是一个向量( )
)
2.温度含零上和零下温度,所以温度是向量(
3.坐标平面上的 x 轴和 y 轴都是(
)
Hale Waihona Puke 2.1.2向量的几何表示 由于实数与数轴上的点一一对应,所以 数量常常用数轴上的一个点表示。 如:3,2,-1,…而且不同的点表示不同 的数量.
B
(知道了有向线段的起点、方向和长度, 它的终点就可以唯一确定.)
A
向量的几何表示:用有向线段表示。 向量AB的大小,也就是向量AB的长度(或 称模),记作|AB|.
长度为0的向量叫做零向量(方向任意)。 记作0. |0|=0.
长度等于1个单位的向量,叫做单位向量. 向量的字母表示:(1)a、b、c.... (2)用表示向量的有向线段的起点和终 点字母表示,例如,AB,CD
思考:有向线段就是向量,向量就是有 向线段? 有向线段只是一个几何图形,是 向量直观表示
例1 如图,试根据图中的比例尺以及三地 的位置,在图中分别用有向线段表示A地 至B、C两地的位移(精确到1km).
解:
AB表示A地至B地的位移,且
2019-2020学年人教A版必修4 2.1 平面向量的实际背景及基本概念 课件(21张)
向量,它们都有大小和方向.故选 A.
数学 必修4 A
第二章 平面向量
2.(2018·河北沧州高一期末)下列说法不正确的是( ) A.零向量没有方向 B.零向量只与零向量相等 C.零向量的模为 0 D.零向量与任何向量都共线 解析:选 A 零向量的方向是任意的.故选 A.
数学 必修4 A
第二章 平面向量
数学 必修4 A
第二章 平面向量
(2)由于点 B 在点 A 正东方向处,且|A→B|=4,所以在坐标纸 上点 B 距点 A 的横向小方格数为 4,纵向小方格数为 0,于是 点 B 位置可以确定,画出向量A→B如图所示.
(3)由于点 C 在点 B 北偏东 30°处,且|B→C|=6,依据勾股定 理可得:在坐标纸上点 C 距点 B 的横向小方格数为 3,纵向小 方格数为 3 3≈5.2,于是点 C 位置可以确定,画出向量B→C如图 所示.
数学 必修4 A
第二章 平面向量
题点知识巩固
数学 必修4 A
第二章 平面向量
知识点一 向量的有关概念
1.(2018·北师大附中高三一模)给出下列物理量:①质量;
②速度;③位移;④力;⑤路程;⑥功;⑦加速度.其中是向
量的有( )
A.4 个
B.5 个
C.6 个
D.7 个
解析:选 A 速度、位移、力、加速度,这 4 个物理量是
第二章 平面向量
解析:选 A 两个有共同起点,且长度相等的向量,它们 的方向不一定相同,终点也不一定相同,故 B 错误;向量A→B与 C→D是共线向量,则 A,B,C,D 四点必在同一条直线上或 AB ∥CD,故 C 错误;任意两个单位向量只有长度相等,方向不一 定相同,故 D 错误.故选 A.
高中数学第二章平面向量2.1平面向量的实际背景及基本
考点类析
新课导入
[导入二] 我们已经学过了哪些既有大小又有方向的量?正弦线、余弦线、正切线是怎样的量? 答:位移、力、速度、加速度等都是既有大小又有方向的量.正弦线、余弦线、正切 线也都是既有大小又有方概念 1.既有___大小_____,又有___方_向____的量叫作向量. 2.只有___大小_____,没有___方_向____的量叫作数量.
考点类析
[答案] (1)D (2)A [解析] (1)不管向量的方向如何,它们都不能比较大小,故 A,B 不正确;向量的大 小即为向量的模,指的是有向线段的长度,与方向无关,故 C 不正确;向量的模是 一个数量,可以比较大小,故 D 正确. (2)①正确,因为单位向量的长度为 1,零向量的长度为 0. ②正确,因为零向量与任一向量平行. ③错误,平行向量所在的直线可能不共线. ④错误,平行向量的平行关系不具有传递性. ⑤错误,平行向量不一定是相等向量.
预习探究
知识点三 向量的有关概念 1._长_度_相_等_且_方向_相_同_的_向_量_______________叫作相等向量,如向量 a 与 b 相等,记作 a=b. 2.方向_相_同_或_相_反_的_非_零_向量______________叫作平行向量,如 a 与 b 平行,记作__a_∥_b ____,零 向量与任一向量平行. 3.任一组_平_行_向_量______都可以移动到同一直线上,因此平行向量也叫作_共_线_向_量______.
重点难点
[重点] 理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会 表示向量.
[难点] 向量的概念和共线向量的概念,共线向量(平行向量)和相等向量的区别 和联系.
教学建议
对教材处理,先由物理中的位置关系导入新课,然后提出问题,并要求学生带着问题 去阅读课本,最后由教师总结,并对概念进行辨析,以加大学生的思维的深度,拓宽 学生的视野,突破本节课的难点,充分发挥学生的主导作用.
高中数学第二章平面向量2.1平面向量的实际背景及基本
3.向量的表示:
二、有向线段表示向量 1.向量的模(长度):向量A→B的 大小 ,记作: |A→B| . 2.零向量:长度为 0 的向量,记作 0. 3.单位向量:长度等于1 个单位 的向量. 三、两个向量间的关系 1.平行向量:方向相同 或 相反 的非零向量,又叫作 共线向量 .若 a,b 是
量、相等向量及向量的模等概念,会辨识图形
中这些相关的概念.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
课时作业
[自主梳理]
一、向量的概念及表示 1.概念:既有 大小 ,又有 方向 的量. 2.有向线段:(1)定义:带有方向的线段. (2)三个要素: 起点 、 方向 、 长度 . (3)表示:在有向线段的终点处画上箭头表示它的方向,以 A 为起点、B 为终点的 有向线段记作 A→B . (4)长度:线段 AB 的长度也叫作有向线段A→B的长度,记作 |A→B|.
涉及平面向量的有关概念的命题真假判断的题目,在解题过程中准确把握概念是 关键;掌握向量与数的区别,充分利用反例进行否定也是行之有效的方法.
1.判断下列说法是否正确: (1)若向量 a=A→B,b=B→A,则|a|=|b|; (2)若 a 是单位向量,b 也是单位向量,则 a 与 b 的方向相同或相反; (3)若向量A→B是单位向量,则B→A也是单位向量; (4)以坐标平面上的定点 A 为始点,所有单位向量的终点 P 的集合是以 A 为圆心的 单位圆.
探究二 向量的表示 [典例 2] 如图的方格由若干个边长为 1 的小正方形并在 一起组成,方格纸中有定点 A,点 C 为小正方形的顶点, 且|A→C|= 5,画出所有的向量A→C. 已知飞机从 A 地按北偏东 30°的方向飞行 2 000 km 到达 B 地,再从 B 地按南偏东 30 °的方向飞行 2 000 km 到达 C 地, 再从 C 地按西南方向飞行 1 000 2 km 到达 D 地. (1)作出向量A→B,B→C,C→D,D→A; (2)问 D 地在 A 地的什么方向?D 地距 A 地多远?
说课第二章 平面向量 2.1平面向量的实际背景及基本概念
200km .
AC 表示A地至C地的位移,且
280km .
25
平行向量:
向量间的关系
①方向相同或相反的非零向量叫平行向量;
②我们规定0与任一向
a
量平行.
b
c
26
讲授新课
6.平行向量定义: ①方向相同或相反的非零向量叫平行向量; ②我们规定0与任一向量平行. a
b c
决数学问题。
(三)情感态度与价值观
经历平面向量的概念的探索过程,提高自主探究能力,进
一步提高学习数学的乐趣,由感性思维逐步提升到理性思
维。
7
(四)学科核心素养 a. 数学抽象:平面向量的概念 b. 逻辑推理:共线向量的判断 c. 数学运算:向量相等 d. 直观想象:向量的几何表示 e.数学建模:向量概念的建立
直线与直线的位置关 系里,严格区分直线和 直线位置关系,平行就 是共面前提下的无交 点,平行不共线.
29
相等向量:长度相等,方向相同的两个向量。
a
b
ab
对向量的大小和方向都明确规定
a
b
方向相同
a
b
30
思 (1)相等向量一定是平行向量?
考
a
:
是
b
(2)平行向量一定是相等向量?
以A为起点、B为终点的有向线段 记作: AB
起点写在终点的前面.
A(起点)
B (终点)
线段AB的长度也叫做有向线段 AB 的长度,记作: AB
有向线段的三要素:起点、,它的终 点就唯一确定.
22
3. 向量的表示方法:
(1)几何表示法:用有向线段表示
高中数学第二章平面向量2.1平面向量的实际背景及基本概念课件新人教A版必修4 (1)
一
二
三
四
3.我们曾经用单位圆中的有向线段定义了三角函数线,那么线段与有 向线段相同吗?有向线段有哪几个要素? 提示:线段与有向线段是不同的,有向线段有长度、方向、端点等要素. 4.填空:(1)有向线段:带有方向的线段叫做有向线段,其方向是由起点 指向终点.以A为起点、B为终点的有向线段记作 ������������ (如图所示),线段AB 的长度也叫做有向线段 ������������ 的长度,记作 |������������|书写有向线段时,起点写在 终点的前面,上面标上箭头.
一
二
三
四
一、向量的概念 【问题思考】 1.在物理中,位移与距离是同一个概念吗?现实世界中有各种各样 的量,如年龄、身高、体重、力、速度、面积、体积、温度等,怎 样正确区分这些量呢? 提示:位移与距离不是同一个概念;这些量中有些只有大小,没有 方向,但有些既有大小又有方向,因此应该从大小和方向两个方面 对这些量进行区分. 2.填空:(1)向量:数学中,我们把既有大小,又有方向的量叫做向量. (2)数量:把那些只有大小,没有方向的量,称为数量.
一
二
三
四
3.如果两个向量所在的直线互相平行,那么这两个向量的方向有 什么关系? 提示:方向相同或相反. 4.填空:平行向量 (1)定义:方向相同或相反的非零向量叫做平行向量,向量a与b平 行,通常记作a∥b. (2)规定:零向量与任一向量平行,即对于任意的向量a,都有0∥a. (3)共线向量:任意一组平行向量都可以移动到同一直线上,因此 平行向量也叫做共线向量.
解析:有向线段 ������������和有向线段������������ 的起点与终点互换,其方向 相反,长度相等,故D项正确. 答案:D
2019_2020学年高中数学第二章平面向量2.1平面向量的实际背景及基本概念课件新人教A版必修4
的向量有________.
答案:A→B,D→C
向量的相关概念
给出下列命题: ①若A→B=D→C,则 A,B,C,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有A→B=D→C; ③若 a=b,b=c,则 a=c. 其中所有正确命题的序号为________.
【解析】 A→B=D→C,A,B,C,D 四点可能在同一条直线上,故 ①不正确;在▱ABCD 中,|A→B|=|D→C|,A→B与D→C平行且方向相同, 故A→B=D→C,故②正确;a=b,则|a|=|b|,且 a 与 b 的方向相同;b =c,则|b|=|c|,且 b 与 c 的方向相同,则 a 与 c 长度相等且方向 相同,故 a=c,故③正确.
第二章 平面向量
2.1 平面向量的实际背景及基本概念
第二章 平面向量
考点 平面向量的
相关概念 平面向量
的表示 相等向量 与共线向量
学习目标 了解向量的实际背景,理解 平面向量的相关概念 掌握向量的表示方法,理解 向量的模的概念 理解两个向量相等的含义以 及共线向量的概念
核心素养 数学抽象
数学抽象 数学抽象、
已知向量 a 如图所示,下列说法不正确的是( )
A.也可以用M→N表示 C.起点是 M
B.方向是由 M 指向 N D.终点是 M
答案:D
已知点 O 固定,且|O→A|=2,则 A 点构成的图形是( )
A.一个点
B.一条直线
C.一个圆
D.不能确定
答案:C 如图,四边形 ABCD 和 ABDE 都是平行四边形,则与E→D相等
→ 点、B 为终点的有向线段记作__A_B___. ④长度→:线段 AB 的_长__度___也叫做有向线段A→B的长度(或称模),记 作__|A__B_| _.
高中数学 第二章 平面向量 2.1 平面向量的实际背景及
2.1 平面向量的实际背景及基本概念课堂探究探究一 向量的表示1.准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.2.注意事项:书写有向线段时,要注意起点和终点的不同;在书写字母表示时不要忘了字母上的箭头.【典型例题1】 在如图所示的坐标纸上(每个小方格的边长均为1),用直尺和圆规画出下列向量:(1) OA u u u r ,使|OA u u u r |=,点A 在点O 北偏东45°方向;(2) AB u u u r ,使|AB u u u r |=4,点B 在点A 正东方向;(3) BC uuu r ,使|BC uuu r |=6,点C 在点B 北偏东30°方向.解:如图中的OA u u u r ,AB u u u r 和BC uuu r .探究二 相等向量与共线向量1.寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是同向共线.2.寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再找同向与反向的向量.注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终点的向量.【典型例题2】 给出下列说法:①|AB u u u r |=|BA u u u r |;②若a 与b 方向相反,则a ∥b ;③若AB u u u r ,CD uuu r 是共线向量,则A ,B ,C ,D 四点共线;④有向线段是向量,向量就是有向线段.其中所有正确的序号是________.思路分析:利用共线(平行)向量的概念判断.解析:①中AB u u u r 与BA u u u r 的起点终点相反,但长度相等,故①正确;②正确;③AB u u u r 与CDuuu r 共线时,有AB ∥CD 或A ,B ,C ,D 四点共线,故③错误;④向量是一个量,有向线段是一种几何图形,向量可以用有向线段表示,但向量不是有向线段.答案:①②【典型例题3】 如图,O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形,在图中所示的向量中分别写出:(1)与DO u u u r ,CO uuu r 相等的向量.(2)与DO u u u r 共线的向量.解:(1) DO u u u r =CF uuu r ,CO uuu r =DE u u u r .(2)与DO u u u r 共线的向量为:CF uuu r ,BO uuu r ,AE u u u r . 规律小结 对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.探究三 易错辨析易错点:混淆向量的有关概念而致错【典型例题4】 已知下列命题:①若|a |=0,则a 为零向量;②若|a |=|b |,则a =b 或a =-b ;③若a ∥b ,则|a |=|b |;④所有单位向量都是相等向量;⑤两个有共同起点,而且相等的向量,其终点必相同.其中正确的有( )A .2个B .3个C .4个D .5个 错解:C错因分析:①正确;②正确;③错误;没有正确理解单位向量和相等向量而判断④正确;⑤正确.正解:①正确;②由|a |=|b |得a 与b 的模相等,但不确定方向,故②错误;③错误;④所有单位向量的模都相等,都为1,但方向不确定,故④不正确;⑤正确.答案:A方法技巧 明确向量及其相关概念的联系与区别:(1)区分向量与数量:向量既强调大小,又强调方向,而数量只与大小有关.(2)明确向量与有向线段的区别:有向线段有三要素:起点、方向、长度,只要起点不同,另外两个要素相同也不是同一条有向线段,但决定向量的要素只有两个:大小和方向,与表示向量的有向线段的起点无关.(3)零向量和单位向量都是通过模的大小来确定的.零向量的方向是任意的.(4)平行向量也叫共线向量,当两共线向量的方向相同且模相等时,两向量为相等向量.。
2019_2020学年高中数学第二章平面向量2.1平面向量的实际背景及基本概念课件新人教A版必修4
2.下列说法正确的是( ) A.向量A→B∥C→D就是A→B所在的直线平行于C→D所在的直线 B.长度相等的向量叫做相等向量 C.零向量与任一向量平行 D.共线向量是在一条直线上的向量 解析:选 C.向量A→B∥C→D包含A→B所在的直线与C→D所在的直线平 行和重合两种情况,故 A 错;相等向量不仅要求长度相等,还 要求方向相同,故 B 错;C 显然正确;共线向量可以是在一条 直线上的向量,也可以是所在直线互相平行的向量,故 D 错.
(2)由于点 B 在点 A 正东方向上,且|A→B|=4,所以在坐标纸上 点 B 距点 A 的横向小方格数为 4,纵向小方格数为 0,于是点 B 的位置可以确定,画出向量A→B,如图所示. (3)由于点 C 在点 B 北偏东 30°方向上,且|B→C|=6,依据勾股 定理可得,在坐标纸上点 C 距点 B 的横向小方格数为 3,纵向 小方格数为 3 3≈5.2,于是点 C 的位置可以确定,画出向量B→C, 如图所示.
解:(1)由题意,作出向量A→B,B→C,C→D,D→A,如图所示.
(2)依题意知,三角形 ABC 为正三角形,所以 AC=2 000 km. 又因为∠ACD=45°,CD=1 000 2,所以△ACD 为等腰直角 三角形,即 AD=1 000 2 km,∠CAD=45°,所以 D 地在 A 地的东南方向,距来自A 地 1 000 2 km.
量,记作 a=b.
■名师点拨 (1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.
判断(正确的打“√”,错误的打“×”) (1)两个向量,长度大的向量也较大.( ) (2)如果两个向量共线,那么其方向相同.( ) (3)向量的模是一个正实数.( ) (4)向量就是有向线段.( ) (5)向量A→B与向量B→A是相等向量.( ) (6)两 个 向 量 平 行 时 , 表 示 向 量 的 有 向 线 段 所 在 的 直 线 一 定 平 行.( ) (7)零向量是最小的向量.( ) 答案:(1)× (2)× (3)× (4)× (5)× (6)× (7)×
2020版高中数学第二章平面向量2.1平面向量的实际背景及基本概念导学案新人教A版必修4_112.doc
2.1 平面向量的实际背景及基本概念学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.知识点一 向量的概念思考1 在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别? 答案 面积、质量只有大小,没有方向;而速度和位移既有大小又有方向. 思考2 两个数量可以比较大小,那么两个向量能比较大小吗? 答案 数量之间可以比较大小,而两个向量不能比较大小. 梳理 向量与数量(1)向量:既有大小,又有方向的量叫做向量. (2)数量:只有大小,没有方向的量称为数量. 知识点二 向量的表示方法思考1 向量既有大小又有方向,那么如何形象、直观地表示出来? 答案 可以用一条有向线段表示. 思考2 0的模长是多少?0有方向吗? 答案 0的模长为0,方向任意. 思考3 单位向量的模长是多少? 答案 单位向量的模长为1个单位长度.梳理 (1)向量的几何表示:向量可以用一条有向线段表示.带有方向的线段叫做有向线段,它包含三个要素:起点、方向、长度,如图所示.以A 为起点、B 为终点的有向线段记作AB →.(2)向量的字母表示:向量可以用字母a , b , c ,…表示(印刷用黑体a ,b ,c ,书写时用a →, b →, c →).(3)向量AB →的大小,也就是向量AB →的长度(或称模),即有向线段AB →的长度,记作|AB →|.长度为0的向量叫做零向量,记作0;长度等于1个单位的向量,叫做单位向量. 知识点三 相等向量与共线向量思考1 已知A ,B 为平面上不同两点,那么向量AB →和向量BA →相等吗?它们共线吗? 答案 因为向量AB →和向量BA →方向不同,所以二者不相等.又表示它们的有向线段在同一直线上,所以两向量共线.思考2 向量平行、共线与平面几何中的直线、线段平行、共线相同吗?答案 不相同,由相等向量定义可知,向量可以任意移动.由于任意一组平行向量都可以移动到同一直线上,所以平行向量也叫做共线向量.因此共线向量所在的直线可以平行,也可以重合.思考3 若a ∥b ,b ∥c ,那么一定有a ∥c 吗? 答案 不一定.因为当b =0时,a ,c 可以是任意向量.梳理 (1)相等向量:长度相等且方向相同的向量叫做相等向量. (2)平行向量:方向相同或相反的非零向量叫做平行向量. ①记法:向量a 平行于b ,记作a∥b . ②规定:零向量与任一向量平行.(3)共线向量:由于任意一组平行向量都可移动到同一直线上,所以平行向量也叫做共线向量.也就是说,平行向量与共线向量是等价的,因此要注意避免向量平行、共线与平面几何中的直线、线段的平行和共线相混淆.类型一 向量的概念例1 下列说法正确的是( ) A.向量AB →与向量BA →的长度相等B.两个有共同起点,且长度相等的向量,它们的终点相同C.零向量没有方向D.任意两个单位向量都相等 答案 A解析 两个有共同起点,且长度相等的向量,它们的方向不一定相同,终点也不一定相同;零向量的方向不确定,并不是没有方向;任意两个单位向量只有长度相等,方向不一定相同,故B ,C ,D 都错误,A 正确.故选A.反思与感悟 解决向量概念问题一定要紧扣定义,对单位向量与零向量要特别注意方向问题. 跟踪训练1 下列说法正确的有 . (1)若|a |=|b |,则a =b 或a =-b ;(2)向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在同一条直线上;(3)向量AB →与BA →是平行向量. 答案 (3)解析 (1)错误.|a |=|b |仅说明a 与b 的模相等,不能说明它们方向的关系.(2)错误.共线向量即平行向量,只要方向相同或相反,并不要求两个向量AB →、CD →必须在同一直线上,因此点A 、B 、C 、D 不一定在同一条直线上. (3)正确.向量AB →和BA →是长度相等,方向相反的两个向量. 类型二 共线向量与相等向量例2 如图所示,△ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量; (2)写出与EF →的模大小相等的向量; (3)写出与EF →相等的向量.解 (1)因为E 、F 分别是AC 、AB 的中点, 所以EF 綊12BC .又因为D 是BC 的中点,所以与EF →共线的向量有FE →,BD →,DB →,DC →,CD →,BC →,CB →. (2)与EF →模相等的向量有FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量有DB →与CD →.反思与感悟 (1)非零向量共线是指向量的方向相同或相反.(2)共线的向量不一定相等,但相等的向量一定共线.跟踪训练2 如图所示,O 是正六边形ABCDEF 的中心.(1)与OA →的模相等的向量有多少个?(2)是否存在与OA →长度相等、方向相反的向量?若存在,有几个? (3)与OA →共线的向量有哪些?解 (1)与OA →的模相等的线段是六条边和六条半径(如OB ),而每一条线段可以有两个向量,所以这样的向量共有23个.(2)存在.由正六边形的性质可知,BC ∥AO ∥EF ,所以与OA →的长度相等、方向相反的向量有AO →,OD →,FE →,BC →,共4个.(3)由(2)知,BC ∥OA ∥EF ,线段OD ,AD 与OA 在同一条直线上,所以与OA →共线的向量有BC →,CB →,EF →,FE →,AO →,OD →,DO →,AD →,DA →,共9个. 类型三 向量的表示及应用例3 一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向,向西偏北50°的方向走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD →|.解 (1)向量AB →、BC →、CD →如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线, ∵|AB →|=|CD →|,∴在四边形ABCD 中,AB 綊CD , ∴四边形ABCD 为平行四边形, ∴AD →=BC →,∴|AD →|=|BC →|=200 km.反思与感悟 准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.跟踪训练3 在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b =a ;(2)在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么?解 (1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(作图略).(2)由平面几何知识可知所有这样的向量c 的终点的轨迹是以A 为圆心,半径为5的圆(作图略).1.下列结论正确的个数是( )①温度含零上和零下温度,所以温度是向量; ②向量的模是一个正实数;③向量a 与b 不共线,则a 与b 都是非零向量; ④若|a |>|b |,则a >b . A.0 B.1 C.2 D.3 答案 B解析 ①温度没有方向,所以不是向量,故①错;②向量的模也可以为0,故②错;④向量不可以比较大小,故④错;③若a ,b 中有一个为零向量,则a 与b 必共线,故a 与b 不共线,则应均为非零向量,故③对. 2.下列说法错误的是( ) A.若a =0,则|a |=0 B.零向量是没有方向的 C.零向量与任一向量平行 D.零向量的方向是任意的 答案 B解析 零向量的长度为0,方向是任意的,它与任何向量都平行,所以B 是错误的. 3.如图所示,梯形ABCD 为等腰梯形,则两腰上的向量AB →与DC →的关系是( )A.AB →=DC →B.|AB →|=|DC →|C.AB →>DC →D.AB →<DC →答案 B解析 |AB →|与|DC →|表示等腰梯形两腰的长度,故相等.4.如图所示,以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中.(1)写出与AF →、AE →相等的向量; (2)写出与AD →模相等的向量.解 (1)AF →=BE →=CD →,AE →=BD →.(2)DA →,CF →,FC →.1.向量是既有大小又有方向的量,从其定义可以看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又将几何问题转化为代数问题,故向量能起到数形结合的桥梁作用.2.共线向量与平行向量是一组等价的概念.两个共线向量不一定要在一条直线上.当然,同一直线上的向量也是平行向量.3.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆.课时作业一、选择题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程.其中是向量的有( ) A.2个 B.3个 C.4个 D.5个 答案 C解析 ②③④⑤是向量.2.下列说法中正确的个数是( )①任一向量与它的相反向量不相等;②一个向量方向不确定当且仅当模为0;③共线的向量,若起点不同,则终点一定不同;④单位向量的模都相等. A.0 B.1 C.2 D.3 答案 C3.下列说法正确的是( )A.若a ∥b ,则a 与b 的方向相同或相反B.若a ∥b ,b ∥c ,则a ∥cC.若两个单位向量平行,则这两个单位向量相等D.若a =b ,b =c ,则a =c 答案 D4.如图,在四边形ABCD 中,若AB →=DC →,则图中相等的向量是( )A.AD →与CB →B.OB →与OD →C.AC →与BD →D.AO →与OC →答案 D解析 ∵AB →=DC →,∴四边形ABCD 是平行四边形,∴AC 、BD 互相平分,∴AO →=OC →. 5.如图,在菱形ABCD 中,∠BAD =120°,则以下说法错误的是( )A.与AB →相等的向量只有一个(不含AB →)B.与AB →的模相等的向量有9个(不含AB →)C.BD →的模恰为DA →的模的3倍 D.CB →与DA →不共线 答案 D解析 由于AB →=DC →,因此与AB →相等的向量只有DC →,而与AB →的模相等的向量有DA →,DC →,AC →,CB →,AD →,CD →,CA →,BC →,BA →,因此选项B 正确.而Rt△AOD 中,∵∠ADO =30°,∴|DO →|=32|DA →|,故|DB →|=3|DA →|,因此选项C 正确.由于CB →=DA →,因此CB →与DA →是共线的,故选D.6.如图所示,四边形ABCD ,CEFG ,CGHD 是全等的菱形,则下列结论中不一定成立的是( )A.|AB →|=|EF →|B.AB →与FH →共线 C.BD →与EH →共线 D.CD →=FG → 答案 C7.以下命题:①|a |与|b |是否相等与a ,b 的方向无关;②两个具有公共终点的向量,一定是共线向量;③两个向量不能比较大小,但它们的模能比较大小;④单位向量都是共线向量.其中,正确命题的个数是( )A.0B.1C.2D.3 答案 C 解析 ②④错误. 二、填空题8.在四边形ABCD 中,若AB →=DC →且|AB →|=|AD →|,则四边形的形状为 . 答案 菱形解析 ∵AB →=DC →,∴AB 綊DC , ∴四边形ABCD 是平行四边形, ∵|AB →|=|AD →|,∴四边形ABCD 是菱形. 9.给出以下5个条件:①a =b ;②|a |=|b |;③a 与b 的方向相反;④|a |=0或|b |=0;⑤a 与b 都是单位向量.其中能使a ∥b 成立的是 .(填序号) 答案 ①③④解析 相等向量一定是共线向量,故①能使a ∥b ;方向相同或相反的向量一定是共线向量,故③能使a ∥b ;零向量与任一向量平行,故④成立.10.如图,若四边形ABCD 为正方形,△BCE 为等腰直角三角形,则:(1)图中与AB →共线的向量有 ; (2)图中与AB →相等的向量有 ; (3)图中与AB →的模相等的向量有 ; (4)图中与EC →相等的向量有 . 答案 (1)DC →,BE →,BA →,CD →,EB →,AE →,EA →(2)DC →,BE →(3)BA →,BE →,EB →,DC →,CD →,AD →,DA →,BC →,CB → (4)BD → 三、解答题11.一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2千米到D 地,然后从D 地沿北偏东60°方向行驶6千米到达C 地,从C 地又向南偏西30°方向行驶2千米才到达B 地.(1)画出AD →,DC →,CB →,AB →; (2)求B 地相对于A 地的位置向量. 解 (1)向量AD →,DC →,CB →,AB →如图所示.(2)由题意知AD →=BC →,∴AD 綊BC ,则四边形ABCD 为平行四边形,∴AB →=DC →,则B 地相对于A 地的位置向量为“北偏东60°,长度为6千米”. 12.如图,已知AA ′→=BB ′→=CC ′→.求证:(1)△ABC ≌△A ′B ′C ′; (2)AB →=A ′B ′———→,AC →=A ′C ′———→. 证明 (1)∵AA ′→=BB ′→, ∴|AA ′→|=|BB ′→|,且AA ′→∥BB ′→. 又∵点A 不在BB ′→上,∴AA ′∥BB ′, ∴四边形AA ′B ′B 是平行四边形, ∴|AB →|=|A ′B ′→|.同理|AC →|=|A ′C ′———→|,|BC →|=|B ′C ′———→|. ∴△ABC ≌△A ′B ′C ′.(2)∵四边形AA ′B ′B 是平行四边形, ∴AB →∥A ′B ′———→,且|AB →|=|A ′B ′———→|, ∴AB →=A ′B ′———→.同理可证AC →=A ′C ′———→.13.如图的方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A ,B .点C 为小正方形的顶点,且|AC →|= 5.(1)画出所有的向量AC →; (2)求|BC →|的最大值与最小值. 解 (1)画出所有的向量AC →,如图所示.(2)由(1)所画的图知, ①当点C 位于点C 1或C 2时, |BC →|取得最小值12+22=5; ②当点C 位于点C 5或C 6时, |BC →|取得最大值42+52=41. 所以|BC →|的最大值为41,最小值为 5. 四、探究与拓展14.设a 0,b 0是两个单位向量,则下列结论中正确的是 .(填序号) ①a 0=b 0;②a 0=-b 0;③|a 0|+|b 0|=2;④a 0∥b 0. 答案 ③15.如图,D ,E ,F 分别是正三角形ABC 各边的中点.(1)写出图中所示向量与向量DE →长度相等的向量; (2)写出图中所示向量与向量FD →相等的向量;(3)分别写出图中所示向量与向量DE →,FD →共线的向量.解 (1)与DE →长度相等的向量是EF →,FD →,AF →,FC →,BD →,DA →,CE →,EB →.(2)与FD →相等的向量是CE →,EB →.(3)与DE →共线的向量是AC →,AF →,FC →;与FD →共线的向量是CE →,EB →,CB →.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 平面向量的实际背景及基本概念1.向量与数量(1)向量:既有大小,又有方向的量叫做向量. (2)数量:只有大小,没有方向的量称为数量. 2.向量的几何表示(1)带有方向的线段叫做有向线段.它包含三个要素:起点、方向、长度.(2)向量可以用有向线段表示.向量AB →的大小,也就是向量 AB →的长度(或称模),记作|AB →|.向量也可以用字母a ,b ,c ,…表示,或用表示向量的有向线段的起点和终点字母表示,例如:AB →,CD →.思考:(1)向量可以比较大小吗? (2)有向线段就是向量吗?[提示] (1)向量不能比较大小,但向量的模可以比较大小. (2)有向线段只是表示向量的一个图形工具,它不是向量. 3.向量的有关概念1.正n 边形有n 条边,它们对应的向量依次为a 1,a 2,a 3,…,a n ,则这n 个向量( )A .都相等B .都共线C .都不共线D .模都相等D [因为多边形为正多边形,所以边长相等,所以各边对应向量的模都相等.] 2.有下列物理量:①质量;②温度;③角度;④弹力;⑤风速.其中可以看成是向量的有( )A .1个B .2个C .3个D .4个B [①②③不是向量,④⑤是向量.]3.已知|AB →|=1,|AC →|=2,若∠ABC =90°,则|BC →|= . 3 [三角形ABC 是以B 为直角的直角三角形,所以|BC →|=22-12= 3.] 4.如图,四边形ABCD 是平行四边形,则图中相等的向量是 (填序号).(1)AD →与BC →;(2)OB →与OD →; (3)AC →与BD →;(4)AO →与OC →.(1)(4) [由平行四边形的性质和相等向量的定义可知: AD →=BC →,OB →≠OD →, AC →≠BD →,AO →=OC →.]【例1】 判断下列命题是否正确,请说明理由: (1)若向量a 与b 同向,且|a |>|b |,则a >b ;(2)若向量|a |=|b |,则a 与b 的长度相等且方向相同或相反; (3)对于任意向量|a |=|b |,若a 与b 的方向相同,则a =b ; (4)由于0方向不确定,故0不与任意向量平行; (5)向量a 与向量b 平行,则向量a 与b 方向相同或相反.思路点拨:解答本题应根据向量的有关概念,注意向量的大小、方向两个要素. [解] (1)不正确.因为向量由两个因素来确定,即大小和方向,所以两个向量不能比较大小.(2)不正确.由|a |=|b |只能判断两向量长度相等,不能确定它们的方向关系. (3)正确.因为|a |=|b |,且a 与b 同向,由两向量相等的条件,可得a =b . (4)不正确.依据规定:0与任意向量平行.(5)不正确.因为向量a 与向量b 若有一个是零向量,则其方向不定.1.理解零向量和单位向量应注意的问题(1)零向量的方向是任意的,所有的零向量都相等. (2)单位向量不一定相等,易忽略向量的方向. 2.共线向量与平行向量(1)平行向量也称为共线向量,两个概念没有区别; (2)共线向量所在直线可以平行,与平面几何中的共线不同; (3)平行向量可以共线,与平面几何中的直线平行不同.提醒:解决与向量概念有关题目的关键是突出向量的核心——方向和长度.1.给出下列命题: ①若a ∥b ,b ∥c ,则a ∥c .②若单位向量的起点相同,则终点相同.③起点不同,但方向相同且模相等的几个向量是相等向量; ④向量AB →与CD →是共线向量,则A ,B ,C ,D 四点必在同一直线上. 其中正确命题的序号是 . ③ [①错误.若b =0,则①不成立;②错误.起点相同的单位向量,终点未必相同;③正确.对于一个向量只要不改变其大小和方向,是可以任意移动的.④错误.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB →,CD →必须在同一直线上.]写出 个向量.(2)在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:①OA →,使|OA →|=42,点A 在点O 北偏东45°; ②AB →,使|AB →|=4,点B 在点A 正东; ③BC →,使|BC →|=6,点C 在点B 北偏东30°.(1)12 [可以写出12个向量,分别是:AB →,AC →,AD →,BC →,BD →,CD →,BA →,CA →,DA →,CB →,DB →,DC →.](2)[解] ①由于点A 在点O 北偏东45°处,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 位置可以确定,画出向量OA →如图所示.②由于点B 在点A 正东方向处,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 位置可以确定,画出向量AB →如图所示.③由于点C 在点B 北偏东30°处,且|BC →|=6,依据勾股定理可得:在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 位置可以确定,画出向量BC →如图所示.1.向量的两种表示方法(1)几何表示法:先确定向量的起点,再确定向量的方向,最后根据向量的长度确定向量的终点.(2)字母表示法:为了便于运算可用字母a ,b ,c 表示,为了联系平面几何中的图形性质,可用表示向量的有向线段的起点与终点表示向量,如AB →,CD →,EF →等.2.两种向量表示方法的作用(1)用几何表示法表示向量,便于用几何方法研究向量运算,为用向量处理几何问题打下了基础.(2)用字母表示法表示向量,便于向量的运算.2.某人从A 点出发向东走了5米到达B 点,然后改变方向按东北方向走了102米到达C 点,到达C 点后又改变方向向西走了10米到达D 点.(1)作出向量AB →,BC →,CD →; (2)求AD →的模.[解] (1)作出向量AB →,BC →,CD →,如图所示:(2)由题意得,△BCD 是直角三角形,其中∠BDC =90°,BC =102米,CD =10米,所以BD =10米.△ABD 是直角三角形,其中∠ABD =90°,AB =5米,BD =10米,所以AD =52+102=55(米),所以|AD →|=55米.1.两个相等的非零向量的起点与终点是否都分别重合?提示:不一定.因为向量都是自由向量,只要大小相等,方向相同就是相等向量,与起点和终点位置无关.2.若AB →∥CD →,则从直线AB 与直线CD 的关系和AB →与CD →的方向关系两个方面考虑有哪些情况?提示:分四种情况(1)直线AB 和直线CD 重合,AB →与CD →同向; (2)直线AB 和直线CD 重合,AB →与CD →反向;(3)直线AB ∥直线CD ,AB →与CD →同向; (4)直线AB ∥直线CD ,AB →与CD →反向.【例3】 如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,OC →=c .(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?(3)请一一列出与a ,b ,c 相等的向量.思路点拨:根据相等向量与共线向量的概念寻找所求向量. [解] (1)与a 的长度相等、方向相反的向量有OD →,BC →,AO →,FE →. (2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.(3)与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,FA →;与c 相等的向量有FO →,ED →,AB →.1.本例条件不变,写出与向量BC →相等的向量.[解] 相等向量是指长度相等、方向相同的向量,所以图中与BC →相等的向量有AO →,OD →,FE →. 2.本例条件不变,写出与向量BC →长度相等的共线向量.[解] 与BC →长度相等的共线向量有:CB →,OD →,DO →,AO →,OA →,FE →,EF →. 3.在本例中,若|a |=1,则正六边形的边长如何?[解] 由正六边形中,每边与中心连接成的三角形均为正三角形,∴△FOA 为等边三角形,所以边长AF =|a |=1.相等向量与共线向量的探求方法(1)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是同向共线.(2)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终点的向量.提醒:与向量平行相关的问题中,不要忽视零向量.1.向量是近代数学重要的和基本的数学概念之一,有深刻的几何和物理背景,它是沟通代数、几何、三角函数的一种工具,注意向量与数量的区别与联系.2.从定义上看,向量有大小和方向两个要素,而有向线段有起点、方向和长度三个要素,因此它们是两个不同的量.在空间中,有向线段是固定的,而向量是可以自由移动的.向量可以用有向线段表示,但并不能说向量就是有向线段.3.共线向量与平行向量是一组等价的概念.两个共线向量不一定要在一条直线上.当然,同一直线上的向量也是平行向量.4.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆.1.在下列判断中,正确的是( )①长度为0的向量都是零向量;②零向量的方向都是相同的;③单位向量的长度都相等;④单位向量都是同方向;⑤任意向量与零向量都共线.A.①②③B.②③④C.①②⑤D.①③⑤D[由定义知①正确,②由于零向量的方向是任意的,故两个零向量的方向是否相同不确定,故不正确.显然③⑤正确,④不正确,故选D.]2.汽车以120 km/h的速度向西走了2 h,摩托车以45 km/h的速度向东北方向走了2 h,则下列命题中正确的是( )A.汽车的速度大于摩托车的速度B.汽车的位移大于摩托车的位移C.汽车走的路程大于摩托车走的路程D.以上都不对C[速度、位移是向量,既有大小,又有方向,不能比较大小,路程可以比较大小.] 3.在下列命题中:①平行向量一定相等;②不相等的向量一定不平行;③共线向量一定相等;④相等向量一定共线;⑤长度相等的向量是相等向量;⑥平行于同一个非零向量的两个向量是共线向量.正确的命题是.④⑥[由向量的相关概念可知④⑥正确.]4.如图所示菱形ABCD 中,对角线AC ,BD 相交于O 点,∠DAB =60°,分别以A ,B ,C ,D ,O 中的不同两点为始点与终点的向量中,(1)写出与DA →平行的向量; (2)写出与DA →模相等的向量.[解] 由题图可知,(1)与DA →平行的向量有:AD →,BC →,CB →;(2)与DA →模相等的向量有: AD →,BC →,CB →,AB →,BA →,DC →,CD →,BD →,DB →.。