多元统计分析模拟考题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10 设 X,Y 是来自均值向量为 ,协差阵为 的总体 G 的两个样品,则 X 与总体 G 的马 氏平方距离 d 2 ( X ,G) = ( X )1( X )
11 设随机向量 X ( X1, X 2 , X3 ) 的相关系数矩阵通过因子分析分解为
1
R
1 3
2 3
1 3 1
0
2
3
16 设Uk ,Vk 是第 k 对典型变量则 D(Uk ) 1, D(Vk ) 1 (k 1, 2, , r)
Cov(Ui ,U j ) 0, Cov(Vi ,Vj ) 0 (i j)
i 0 (i j,i 1, 2, , r)
Cov(Ui ,Vj ) 0
(i j)
0
( j r)W来自x1 x2W3 5
d

X
3 5
属于
G2 总体
5 表 1 是根据某超市对不同品牌同类产品按畅销(1)、平销(2)和滞销(3)的数据,
利用 SPSS 得到的 Bayes 判别函数系数表,请据此建立贝叶斯判别函数,并说明如何判
断新样品(x1,x2,x3)属于哪类?
Classification Function Coefficients
2. 请阐述距离判别法、贝叶斯判别法和费希尔判别法的基本思想和方法,比较其异同
3 请阐述系统聚类法、K 均值聚类法、有序样品聚类法的基本思想和方法,比较其异同
4 请阐述主成分分析和因子分析的基本思想、方法步骤和应用,比较其异同 5 请阐述相应分析、多维标度法、典型相关分析和多变量的可视化分析的基本思想和应 用
( 错)5 X ( X1, X 2 ,, X p ) ~ N p (, ) , X , S 分别是样本均值和样本离 差阵,则 X , S 分别是 , 的无偏估计。
n ( 对)6 X ( X1, X 2 ,, X p ) ~ N p (, ) , X 作为样本均值 的估计,是
无偏的、有效的、一致的。
Group1: Y1 81.84311.689X112.297X 2 16.761X 3 Group2: Y 2 94.53610.707X113.361X 2 17.086X 3 Group3: Y3 17.449 2.194X1 4.960X 2 6.447X 3
将新样品的自变量值代入上述三个 Bayes 判别函数,得到三个函数值。比较这三个函 数值,哪个函数值比较大就可以判断该样品判入哪一类。
故Y
D(0.5X1 X 2 0.5X3 1) 3
D(0.5X1 0.5X3 2) 1
COV (0.5X1 X 2 0.5X3 1, 0.5X1 0.5X3 2) 1
N3(E(Y ), D(Y ))
2. 设 三 维 随 机 向 量 X
2 1 1 1
N3(, )
,已

3
,
1
6. 对某数据资料进行因子分析,因子分析是从相关系数阵出发进行的,前两个特征根
和对应的标准正交特征向量为
1 2.920 U1' (0.1485, 0.5735, 0.5577, 0.5814)

1 2.920 U1' (0.1485, 0.5735, 0.5577, 0.5814)
(1) 取公因子个数为 2,求因子载荷阵
DY
D( AX
d)
ADXA
1
1
2 0
1 1
1 0.5
0
0.5
3 1
1
1
所以Y N3(E(Y ), D(Y )) 另解:
Y
AX
d
0.5X1 X 2 0.5X3 1
0.5X1 0.5X3 2
E(0.5X1 X 2 0.5X3 1) 2
E(0.5X1 0.5X3 2) 1
故Y N(13,9)
3 设有两个二元总体 和
,从中分别抽取样本计算得到
,
,
假设
,试用距离判别法建立判别函数和
判别规则。 样品 X=(6,0)’应属于哪个总体?
解: =
,=
,=
=
即样品 X 属于总体
4
设已知有两个正态总体 G1, G2
,且
1
2 6
,
2
4
2
,
1
2
1 1
1 9
,而其
先验概率分别为 q1 q2 0.5, 误判的代价 L(2 |1) e4, L(1| 2) e ,试用贝叶斯判别
3
2


1 1 2 2
Y 3X1 2X 2 X3 的分布 解:正态分布的任意线性组合仍正态,故 Y 的分布是一维正态分布,只需求 E(Y ) 3E(X1) 2E( X 2) E( X3) 13 D(Y ) 32 E( X1) 22 E( X2 ) E( X3) 2Cov(3X1, 2X 2) 2Cov(3X1, X3) 2Cov( X3, 2X 2) 9
(2) 用 F1F2 表示选取的公因子,1,2 为特殊因子,写出因子模型,说明因子载荷
阵中元素 aij 的统计意义
7 在一项对杨树的形状研究中,测定了 20 株杨树树叶,每个叶片测定了四个变量
X1, X 2 , X3, X 4 分别代表叶长,叶子 2/3 处宽,1/3 处宽,1/2 处宽,这四个变量的相
group
1
2
3
x1
-11.689 -10.707 -2.194
x2
12.297 13.361 4.960
x3
16.761 17.086 6.447
(Constant )
-81.843 -94.536 -17.449
Fisher's linear discriminant functions
表1 Bayes判别函数系数 解:根据判别分析的结果建立 Bayes 判别函数: Bayes 判别函数的系数见表 4.1。表中每一列表示样本判入相应类的 Bayes 判别函数系 数。由此可建立判别函数如下:
关系数矩阵的特征根和标准正交特征向量分别为:
1 2.920 U1' (0.1485, 0.5735, 0.5577, 0.5814)
2
1.024
U
' 2
(0.9544, 0.0984, 0.2695, 0.0824)
3
0.049
U
' 3
(0.2516, 0.7733, 0.5589,
0.1624)
( 错)7 因子载荷经正交旋转后,各变量的共性方差和各因子的贡献都 发生了变化 ( 对)8 因子载荷阵 A (aij ) 中的 aij 表示第 i 个变量在第 j 个公因子上
的相对重要性。 ( 对 )9 判别分析中,若两个总体的协差阵相等,则 Fisher 判别与距离判别等
价。 (对)10 距离判别法要求两总体分布的协差阵相等,Fisher 判别法对总体的分布无特 定的要求。
法确定样本
X
3 5
属于哪个总体?
解:由 Bayes 判别知,W (x)
f1 ( x) f2 ( x)
exp[( x
)1(1
2
)]
其中
1 2
(1
2 )
1 2
2
6
4
2
3 4
1
1 8
9 1
1
1
,
1
2
2
4
d q2C(1| 2) e3 q1C(2 |1)
W
(
x)
标准化变量 X1 的方差为 1,公因子 f1 对 X 的贡献 g12 0.9342+0.4172+0.8352=1.743
12. 对应分析是将 Q 型因子分析 和 R 型因子分析 结合起来进行的统计分析方法
13 典型相关分析是研究两组变量间 相关关系 的一种多元统计方法 14. 聚类分析中,Q 型聚类是指对 样本 进行聚类,R 型聚类是指对 指标 进 行聚类。 15 Spss for windows 中 主 成 分 分 析 由 Data Reduction->Factor Analysis 过程实现。
为: 1 2.920 U1' (0.1485, 0.5735, 0.5577, 0.5814)
2
1.024
U
' 2
(0.9544, 0.0984, 0.2695, 0.0824)
3
0.049
U
' 3
(0.2516, 0.7733, 0.5589,
0.1624)
4
0.007
U
' 4
(0.0612, 0.2519, 0.5513, 0.7930)
10
6 设 Xi N3(, ),i 1, 2, ,10,则W ( Xi )( Xi ) 服从W3(10, ) i 1
4 4 3
7. 设随机 向量
X
( X1, X 2 , X3 )
,且协差阵
4
9
2



相关


3 2 16
1
R=
2 3
3
8
2 3
1
1 6
3 8
1 6
1
0.934
0
0.417 0.835
1
0
0.894 0.447
0.934 0
0.417 0.894
0.128
0.835 0.447
0.027
0.103
则 X1 的共性方差 h12 0.9342 =0.872 ,其统计意义是:描述了全部公因子对变量 X1
的总方差所作的贡献,称为变量 X1 的共同度,反映了公共因子对变量 X1 的影响程度。
4
0.007
U
' 4
(0.0612, 0.2519, 0.5513, 0.7930)
若按一般性原则选取主成分个数,请写出主成分表达式,并计算每个主成分的方差贡
献率
解:选取主成分的一般原则是特征值大于 1 或累积贡献率达到 80%以上。据题选取两个 主成分,其表达式和贡献率分别是:
y1 0.1485X1 0.5735X 2 0.5577 X3 0.5814 X 4, 贡献率为1 2.920





( 对 )1 X ( X1, X 2 , , X p ) 的协差阵一定是对称的半正定阵
( 对 )2 标准化随机向量的协差阵与原变量的相关系数阵相同。 ( 对)3 典型相关分析是识别并量化两组变量间的关系,将两组变量的相关关系
的研究转化为一组变量的线性组合与另一组变量的线性组合间的相关关系的研究。 ( 对 )4 多维标度法是以空间分布的形式在低维空间中再现研究对象间关系的数据 分析方法。
8.
设 X (X1, X2)
N2 (, ),
,其中
(1,
2
),
2
1
1
,则
Cov(X1 X 2 , X1 X 2 ) 0
9 设 X,Y 是来自均值向量为 ,协差阵为 的总体 G 的两个样品,则 X,Y 间的马氏平
方距离 d 2 ( X ,Y ) ( X Y )1( X Y )
17. 在多维标度分析中,当 D 是欧几里得距离阵时,X 是 D 的一个构图
三、简答题(答案见平时习题)
1 简述多元统计的主要内容与方法(10 分) 可对比一元统计列出多元统计的主要内容与方法 (从随机变量及其分布、数字特征、四大分布(正态分布密度(1 分)、 2 (n) 与威沙特分布W p (n, ) (1 分)、t 分布与 HotelingT 2 分布(1 分)、F 分布 与威尔克斯分布 ( p, n1, n2 )(1 分))、抽样分布定理、参数估计和假设检验、 统计方法(2 分)
,则其第二个主成分的表达式是
y2 0.9544X1 0.0984X 2 0.2695X3 0.0824X 4 ,方差为 1.024
4. 若 X ( ) ~ N p (, ) ,( 1,2,, n )且相互独立,则样本均值向量 X 服
从的分布是
N
p
(
,
n
)

5.设 X i N p (, ), i 1, 2, ,16 , X 和 A 分别是正态总体的样本均值和样本离差 阵,则T 2 15[4( X )]A1[4( X )] 服从 T 2 (15, p)或 15 p F ( p, n p) 16 p
二、填空题 1、多元统计中常用的统计量有:样本均值向量、样本协差阵、样本离差阵、 样本相关系数矩阵.
2、设 是总体 X ( X1, , X m ) 的协方差阵, 的特征根 i (i 1, , m) 与相应的单
位 正 交 化 特 征 向 量 i (ai1, ai2 , , aim ) , 则 第 一 主 成 分 的 表 达 式 是 y1 a11X1 a12 X 2 a1m X m ,方差为 1 。 3 设 是总体 X ( X1, X 2 , X3, X 4 ) 的协方差阵, 的特征根和标准正交特征向量分别
四、计算题
1 设三维随机向量
X N3(, 2I3)
,已知
2 1 0 0
0
,
I3
0
0 0
1 0
0 1
,
A
0.5 0.5
1 0
0.5 0.5
,
d
1
2
,求 Y
AX
d
的分布
解:正态分布的线性组合仍为正态,故只需求
E(Y
)
E( AX
d
)
AEX
d
1 1
1
2
2
1
0.5 0.5
相关文档
最新文档