压电式传感器测量振动实验
压电传感器的动态响应实验
压电传感器的动态响应实验压电传感器是一种常见的传感器,它利用压电效应来测量力、压力、加速度等物理量。
它的优点包括高灵敏度、快速响应、结构简单等。
在动态响应实验中,我们需要考虑压电传感器的频率响应,因为这关系到它能否正确地测量快速变化的物理量。
以下是一篇关于压电传感器动态响应实验的实验报告。
一、实验目的本实验的目的是探究压电传感器的动态响应特性,了解其在不同频率和振幅下的输出信号表现,以便在实际应用中选择合适的压电传感器,并确保测量结果的准确性。
二、实验原理压电传感器的工作原理是基于压电效应。
当压电传感器受到外力作用时,其内部晶体会发生形变,导致晶体内部电荷分布发生变化,从而产生电信号。
这个电信号与所受外力成正比。
在动态响应实验中,我们通常采用振动台对传感器施加正弦波形的外力,并测量其输出信号。
三、实验步骤1.准备实验器材:压电传感器、振动台、信号发生器、示波器、计算机等。
2.将压电传感器连接到振动台上,确保连接稳定且无松动。
3.通过信号发生器产生不同频率和振幅的正弦波形信号,输入到振动台上,使压电传感器受到不同程度的外力作用。
4.通过示波器实时监测压电传感器的输出信号,并将数据传输到计算机进行记录和分析。
5.重复步骤3和4,进行多次实验,以获取压电传感器在不同条件下的输出信号表现。
6.对实验数据进行整理和分析,绘制压电传感器的频率响应曲线和幅值响应曲线。
四、实验结果及分析1.实验数据整理在实验过程中,我们记录了不同频率和振幅下的压电传感器的输出信号数据。
以下是部分实验数据的表格:根据实验数据,我们绘制了压电传感器的频率响应曲线和幅值响应曲线。
从频率响应曲线中可以看出,随着频率的增加,压电传感器的输出信号逐渐减小。
这主要是因为高频信号会导致传感器的谐振频率发生变化,从而影响其灵敏度和响应速度。
在低频范围内,传感器的输出信号受频率影响较小,因此适用于低频测量。
幅值响应曲线则显示了压电传感器在不同振幅下的输出信号表现。
振动传感器的实训报告
一、实训目的通过本次实训,了解振动传感器的原理、结构、工作原理和性能特点,掌握振动传感器的安装、调试和维修方法,提高对振动传感器在实际工程中的应用能力。
二、实训内容1. 振动传感器原理与结构(1)振动传感器原理:振动传感器是一种将振动信号转换为电信号的装置,主要利用压电效应、电磁感应等原理实现。
压电式振动传感器通过振动引起压电元件产生电荷,从而实现振动信号的转换。
(2)振动传感器结构:振动传感器主要由敏感元件、放大电路、信号处理电路、输出电路等组成。
2. 振动传感器性能特点(1)频率响应范围宽:振动传感器能够检测从低频到高频的振动信号。
(2)灵敏度较高:振动传感器对微小振动信号的检测能力强。
(3)抗干扰性能好:振动传感器具有良好的抗电磁干扰、抗温度漂移等性能。
3. 振动传感器安装与调试(1)安装:振动传感器安装位置应根据检测对象和检测要求确定。
通常,振动传感器应安装在设备轴承、振动源或振动敏感部位。
(2)调试:振动传感器安装后,需要进行调试,包括校准、滤波、放大等。
4. 振动传感器维修(1)检查:定期检查振动传感器的性能,如灵敏度、频率响应等。
(2)清洗:清洁振动传感器,去除灰尘、油污等。
(3)更换:更换损坏的部件,如压电元件、电缆等。
三、实训过程1. 实验准备(1)实验器材:振动传感器、信号发生器、示波器、数据采集卡等。
(2)实验环境:实验室、振动台等。
2. 实验步骤(1)安装振动传感器:将振动传感器安装在振动台上,确保传感器安装牢固。
(2)连接信号线:将振动传感器的信号线与数据采集卡连接。
(3)设置参数:在数据采集卡上设置采样频率、滤波器参数等。
(4)进行实验:启动信号发生器,使振动台产生振动,观察示波器波形,记录数据。
(5)数据分析:对实验数据进行处理和分析,得出振动传感器的性能指标。
3. 实验结果与分析(1)实验数据:通过实验,得到了振动传感器的灵敏度、频率响应等性能指标。
(2)结果分析:根据实验数据,分析了振动传感器的性能特点,如频率响应范围宽、灵敏度高等。
振动传感器校准实验
2021/2/21
25
力传感器 序列号
电荷放大器 放大倍数
锤帽
测试电压值 换算冲击力值
(V)
(N)
灵敏度 PC / N
4. 调整第一通道“伏/格”为1.00V(屏幕左下角显示,
“秒/格”为25ms(屏幕下中显示);
2021/2/21
27
六、注意事项
1. 拔插传感器导线时,一定要关闭仪器电源, 否则容易将放大器输入端烧毁。
2. 调节各输出旋钮时要缓慢,调节过程中应
随时观察仪器是否有异常情况,如有异常应立即 关闭仪器电源。
9
1. 压电型加速度传感器
压电式加速度传感器最常见的类型有三种,即中
心压缩型、剪切型和三角剪切型。中心压缩型压电加
速度传感器的敏感元件由两个压电晶体片组成,其上
放有一重金属制成的惯性质量块,用一预紧硬弹簧板
将惯性质量块和压电元件片压紧在基座上。整个组件
就构成了一个惯性传感器(见图1)。为了使加速度
2021/2/21
图2
12
电涡流传感器的工作原理如图2所示。
当通有交变电流i的线圈靠近导体表面时,
由于交变磁场的作用,在导体表面层就感
生电动势,并产生闭合环流ie,称为电涡
流。电涡流传感器中有一线圈,当给传感
器线圈通以高频激励电流i时,其周围就产
生一高频交变磁场。当被测的导体靠近传
感器线圈时,由于受到高频交变磁场的作
3. 记录测试数据时应待仪器显示稳定后再读 数,并能分析并剔除测试结果的异常数据。
【实验报告】压电式传感器测振动实验报告
压电式传感器测振动实验报告篇一:压电式传感器实验报告一、实验目的:了解压电传感器的测量振动的原理和方法。
二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。
(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。
三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。
双踪示波器。
四、实验步骤:1、压电传感器装在振动台面上。
2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。
3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。
将压电传感器实验模板电路输出端Vo1,接R6。
将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。
3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。
4、改变低频振荡器的频率,观察输出波形变化。
光纤式传感器测量振动实验一、实训目的:了解光纤传感器动态位移性能。
二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。
三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。
四、实训内容与操作步骤1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。
2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。
3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi 相接,低通输出Vo接到示波器。
4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。
5、将频率档选在6~10Hz左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。
传感器实验
实验一 (1)金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:εK R R =∆/式中R R /∆为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /∆=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
单臂电桥输出电压U O14/εEK =。
三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表、±15V 电源、±4V 电源、万用表(自备)。
四、实验步骤:1、根据图1-1应变式传感器已装于应变传感器模块上。
传感器中各应变片已接入模块的左上方的R 1、R2、R3、R 4。
加热丝也接于模块上,可用万用表进行测量判别,R 1= R 2= R 3= R 4=350Ω,加热丝阻值为50Ω左右。
2、接入模块电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模块调节增益电位器Rw 3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的数显表电压输入端Vi 相连,调节实验模块上调零电位器Rw 4,使数显表显示为零(数显表的切换开关打到2V 档)。
关闭主控箱电源。
图1-1 应变式传感器安装示意图3、将应变式传感器的其中一个应变片R 1(即模块左上方的R 1)接入电桥作为一个桥臂与R 5、R 6、R 7接成直流电桥(R 5、R 6、R 7模块内已连接好),接好电桥调零电位器Rw 1,接上桥路电源±4V (从主控箱引入)如图1-2所示。
检查接线无误后,合上主控箱电源开关。
调节Rw 1,使数显表显示为零。
压电式传感器测量振动实验数据
压电式传感器测量振动实验数据压电式传感器是一种常用的测量振动的传感器,其基本原理是利用压电效应将机械振动转化为电信号输出。
在实验中,通过采集压电式传感器的输出信号,可以获取到被测振动的相关参数,如振幅、频率、相位等。
本文将介绍使用压电式传感器测量振动的实验流程及注意事项。
实验仪器及材料:压电式传感器、信号放大器、数据采集卡、计算机、振动源(如振动台、振动器等)实验步骤:1.搭建实验装置:将振动源(如振动台)固定在实验台上,将压电式传感器固定在振动源上方,使其与振动方向垂直,并将信号放大器连接在传感器输出端口。
2.调整信号放大器:根据传感器的特性曲线调整信号放大器的增益和偏置,使其输出信号达到最佳的线性关系。
3.采集数据:利用数据采集卡将信号放大器的输出信号采集下来,并通过计算机进行数据处理和分析。
4.分析实验数据:根据采集到的数据,计算振动的相关参数,如振幅、频率、相位等,并进行图表展示。
实验注意事项:1.传感器的安装位置应尽量靠近振动源,以保证测量数据的准确性。
2.信号放大器的增益和偏置应根据传感器的特性曲线进行调整,避免输出信号过于弱或过于强。
3.数据采集卡的采样率应足够高,以避免数据采集不全或失真。
4.在采集数据时,应尽量减少外界干扰,如避免周围环境的振动和电磁干扰等。
5.数据分析时,应注意数据的可靠性和准确性,并进行充分的统计和分析,以便得到更加准确的结论。
总结:通过使用压电式传感器测量振动的实验,我们可以了解到传感器的基本原理和特性,并通过实验数据分析得到振动的相关参数。
在实际应用中,压电式传感器广泛应用于振动监测、结构健康检测、机械故障诊断等领域,具有重要的应用价值。
振动测量的实验报告
振动测量的实验报告1. 实验目的本实验的目的是通过使用振动传感器对不同振动源进行测量,了解振动信号的特点和测量方法,掌握实际振动信号的处理和分析技巧。
2. 实验装置和原理实验装置由振动传感器、信号调理器和示波器组成。
振动传感器可以将物体的振动信号转化为电信号;信号调理器可以对电信号进行放大和滤波处理;示波器可以将电信号转化为可视化的波形图。
振动信号的频率可以通过示波器的设置进行调整,以便观察不同频率下的振动信号。
3. 实验步骤1. 将振动传感器固定在实验台上,并接上信号调理器。
2. 将示波器与信号调理器连接,确保信号传输畅通。
3. 打开示波器,在示波器上设置合适的时间基和电压基准,以确保波形信号清晰可见。
4. 将振动传感器放置在不同的振动源旁边,观察示波器上所显示的振动信号波形。
5. 改变示波器的设置,调整不同的频率,观察波形信号的变化。
4. 实验数据记录与分析在实验中,我们观察到了来自不同振动源的振动信号,并记录了对应的波形数据。
通过对波形数据的分析,我们得到了以下结论:1. 振动信号的幅值和频率之间存在一定关系,随着频率的增加,波形信号的幅值减小。
2. 振动信号的频率越高,波形信号越接近正弦波。
3. 不同振动源产生的振动信号具有不同的频率特征,可以通过观察波形图来比较不同振动源之间的差异。
5. 实验结果讨论本次实验通过振动传感器测量了不同振动源产生的振动信号,并对波形信号进行了观察和分析。
实验结果表明振动信号的幅值和频率存在一定的关系,并且不同振动源产生的振动信号具有不同的频率特征。
这些结果对于振动信号的处理和分析具有一定的参考价值。
6. 实验总结通过本次实验,我们掌握了振动测量的基本原理和方法,并通过实际操作对振动信号的特点和测量方法有了更深入的了解。
实验结果和数据分析验证了振动信号的特性,并对实际振动信号的处理提供了指导。
在今后的研究和工程应用中,振动测量将具有重要的应用价值。
压电式传感器测振动实验
压电式传感器测量振动实验一、实验目的:1、了解压电式传感器结构及其特点;2、了解压电式传感器测量电路的组成方式和测量振动的方法。
二、基本原理:压电式传感器是一和典型的发电型传感器,其传感元件是压电材料,它以压电材料的压电效应为转换机理实现力到电量的转换。
压电式传感器可以对各种动态力、机械冲击和振动进行测量,在声学、医学、力学、导航方面都得到广泛的应用。
1、压电效应:一些离子型晶体的电介质(如石英、酒石酸钾钠、钛酸钡等)不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。
即:在这些电介质的一定方向上施加机械力而产生变形时,就会引起它内部正负电荷中心相对转移而产生电的极化,从而导致其两个相对表面(极化面)上出现符号相反的束缚电荷,且其电位移D(在MKS 单位制中即电荷密度σ)与外应力张量T 成正比。
当外力消失,又恢复不带电原状;当外力变向,电荷极性随之而变。
这种现象称为正压电效应,或简称压电效应。
具有压电效应的材料称为压电材料,常见的压电材料有两类压电单晶体,如石英、酒石酸钾钠等;人工多晶体压电陶瓷,如钛酸钡、锆钛酸铅等。
压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。
其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。
由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。
而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。
磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。
现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。
2、压电式加速度传感器图4-1 是本实验仪上所有的压电式加速度传感器的结构图。
基于压电传感器振动测量及信号调理电路设计
目录目录-----------------------------------------------------------------------------1 摘要-----------------------------------------------------------------------------2一、方案设计-----------------------------------------------------------------------31.1.选择的传感器类型------------------------------------------------------------3 1.2.对传感器的分析---------------------------------------------------------------51.3.系统方案------------------------------------------------------------------------6二、理论分析-----------------------------------------------------------------------72.1.压电效应-------------------------------------------------------------8 2.2.压电晶片及其等效电路-------------------------------------------------8 2.3.压电式加速度传感器---------------------------------------------------102.4.压电式加速度传感器和放大器等效电路-----------------------------10三、电路设计:电路原理图及各部分分析-----------------------------------123.1.电荷放大器电路部分--------------------------------------------------------123.2.低通滤波器电路部分--------------------------------------------------------13四、实验-----------------------------------------------------------------------------134.1.实验目的------------------------------------------------------------------------134.2.实验步骤------------------------------------------------------------------------13五、数据分析-----------------------------------------------------------------------18六、误差分析------------------------------------------------------------------------19七、总结------------------------------------------------------------------------------20 参考文献-----------------------------------------------------------------------------21摘要本设计采用检测实验室的CSY-3000型传感器与检测技术实验台研究压电传感器振动测量及信号调理电路,最后通过双踪示波器观测波形来分析振动源的振动情况。
振动测试技术
任务4 振动测试技术铁路工程结构的振动试验中,常有大量的物理量如应力(应变)、位移、速度、加速度等,需要进行量测、记录和分析。
由于结构的动应变与静应变的测量元件、测量方法基本相同,不同之处在于需要采用动态应变仪进行量测。
振动参量可用不同类型的传感器予以感受拾起,并从被测量对象中引出,形成测量信号,将能量通过测量线路发送出去,再通过仪器仪表将振动过程中的物理量进行测量并记录下来。
传感器是振动测试系统中的一个重要组成部分,它具有独立的结构形式。
按照被测物理量来分类,传感器可以分为位移传感器、速度传感器和加速度传感器;按照工作原理来分类,传感器可以分为机械式传感器和电测传感器(包括磁电式、压电式、电感式、应变式)两大类。
在本节中,主要介绍各类振动参量测试仪器及传感器的基本原理、构造与使用方法。
一、惯性式传感器惯性式传感器有位移、速度及加速度传感器三种。
它的特点是直接对机械量(位移速度、加速度)进行测量,故输入、输出均为机械量。
常用的惯性式位移传感器有:机械式测振仪、地震仪等。
惯性式传感器的工作原理及其特性曲线在振动传感果中最具有代表性,其他类型传感器大都是在此基础上发展而得到的。
在惯性式传感器中,质量弹簧系统将振动参数转换成了质量块相对于仪器壳体的位移,使传感器可以正确反映振动体的位移、速度和加速度。
但由于测试工作的需要,传感器除应正确反映振动体的振动外,还应不失真地将位移、速度和加速度等振动参量转换为电量,以便用电量进行量测。
一般地,桥梁结构、厂房、民用建筑的一阶自振频率在零点几到十几赫兹之间,这就要求传感器具有很低的自振频率。
为降低an,必须加大质量块m。
因此一般惯性式位移传感器的体积较大也较重,使用时对被测系统有一定影响,特别对于一些质量较小的振动体就不太适用。
当被测对象振动频率与惯性式传感器的固有频率之比变化时,可以测量不同的振动参量。
更接近于物此时,测得的壳体位移接近于物体的位移。
若选用较大的阻尼系数,δ体位移,此时惯性式传感器可用于动位移的测量,故称为位移传感器。
压电式传感器振动实验报告
压电式传感器振动实验报告一、实验背景压电传感器是一种常用的传感器,它通过检测压电结构上的振动来测量物体的运动,从而获取物体的位置、位移等信息。
本实验旨在观察压电传感器振动的特性,总结出压电传感器的研究结论。
二、实验目的1、掌握压电传感器的原理;2、熟悉实验设备;3、观察压电传感器在不同频率振动情况下的振动特性;4、总结出压电传感器研究的结论。
三、实验设备本实验使用的是基于德国宇航技术有限公司(DLR)提供的DLR-100压电传感器,该传感器具有5组电极,其中一组用于振动传感(另外4组为框架接触检测)。
实验使用的振动发生器是美国凯利(Kelley)公司的Khlert型振动发生器,其输出振动频率范围为0-200 Hz,输出振幅范围为0.1-200 mV。
本实验使用的振动放大器是美国凯利(Kelley)公司的Khlert型振动放大器,其输出振幅范围为0.1-200 mV,振动波形为正弦波。
四、实验步骤1、安装压电传感器:将压电传感器安装在振动台和振动源上,确保压电传感器的垂直;2、连接电源:使用相应的电源线将压电传感器、振动发生器和振动放大器相互连接;3、调整振动参数:调节振动发生器的频率和振幅,使振动指定的参数;4、观察压电传感器振动特性:观察压电传感器在不同频率振动情况下的振动特性;5、数据分析:将获得的数据进行分析,得出压电传感器的研究结论。
五、实验结果1、在实验中,压电传感器的波形很稳定,在振动频率从0到100 Hz时,压电传感器的灵敏度变化趋势比较平缓,在100 Hz以上时,压电传感器的灵敏度开始下降;2、当调整振动频率到200 Hz时,压电传感器的灵敏度较低,但在此频率以下时,压电传感器的灵敏度依然较高;3、当调整振动振幅时,压电传感器的灵敏度也有明显的变化,在较小的振幅下灵敏度较高,随着振幅增大,灵敏度逐渐降低。
六、实验结论本实验表明,压电传感器在不同频率振动情况下的灵敏度具有一定的变化规律,可以根据实际应用需要来调整振动参数。
3.3压电式压力传感器
四、压电式传感器的测量电路
1、压电元件常用连接形式
➢ 在实际使用中,如仅用单片压电元件工作 的话,要产生足够的表面电荷就要很大的作用力, 因此一般采用两片或两片以上压电元件组合在一 起使用。 ➢ 由于压电元件是有极性的,因此连接方法 有两种:并联连接和串联连接。
(a)
(b)
(1)并联: (2)串联:
2. 逆压电效应
极化方向上施加交变电场 产生机械变形
去外加电场,变形消失
逆压电效应动画演示
机械能
正压电效应
压电介质
电能
逆压电效应
三、压电材料
1、常见压电材料
(1)压电晶体 压电晶体是一种单晶体。
例如:
石英晶体; 酒石酸钾钠等
石英晶体外形图
天然形成的石英晶体外形图
(2)压电陶瓷
压电陶瓷是一种人工制造的多晶体。 例如:钛酸钡、锆钛酸铅、铌酸锶等
电介质在沿一定方向上受到外力 产生变形
内部产生极化现象,表面产生电荷
外力去掉,回到不带电状态
压电效应动画演示
极化现象的理解:未极化来自:不具压电性E加外电场
撤销外电场
n 压电效应:某些晶体在一定方向受到外力作用时,内部
将产生极化现象,相应的在晶体的两个表面产生符号相反 的电荷 ;当外力作用除去时,又恢复到不带电状态。当 作用力方向改变时,电荷的极性也随着改变,这种现象称 为压电效应。
C 2C, q 2q,U U
C 1 C, q q,U 2U 2
2、压电式传感器的等效电路
压电式传感器的等效电路:压电传感器在受外力作用时,在两个 电极表面聚集电荷,电荷 量相等,极性相反,相当于一个以压 电材料 为电介质的电容器。其电容量为:C0=ε0 εA/d
传感器技术实验指导书(孙红兵)
传感器技术实验指导书淮阴师范学院物理与电子电气工程学院2012.9.10THSRZ-1型传感器系统综合实验装置简介实验台主要由试验台部分、三源板部分、处理(模块)电路部分和数据采集通讯部分组成。
1. 实验台部分这部分设有1k~10kHz 音频信号发生器、1~30Hz 低频信号发生器、直流稳压电源±15V、+5V、±2-±10V、2-24V可调四种、数字式电压表、频率/转速表、定时器以及高精度温度调节仪组成。
2. 三源板部分热源:0~220V交流电源加热,温度可控制在室温~120 o C转动源:2~24V直流电源驱动,转速可调在0~4500 RPM(转/分)振动源:装有振动台1Hz—30Hz(可调)3. 处理(模块)电路部分包括电桥、电压放大器、差动放大器、电荷放大器、电容放大器、低通滤波器、涡流变换器、相敏检波器、移相器、温度检测与调理、压力检测与调理等共十个模块。
4. 数据采集、分析部分为了加深对自动检测系统的认识,本实验台增设了USB数据采集卡及微处理机组成的微机数据采集系统(含微机数据采集系统软件)。
14位A/D转换、采样速度达300kHz,利用该系统软件,可对学生实验现场采集数据,对数据进行动态或静态处理和分析,并在屏幕上生成十字坐标曲线和表格数据,对数据进行求平均值、列表、作曲线图等处理,能对数据进行分析、存盘、打印等处理,实现软件为硬件服务。
二、实验内容结合本装置的数据采集系统,不用外配示波器,可以完成大部分常用传感器的实验及应用。
实验一、 金属箔应变片的性能研究实验1 金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V 、±4V 电源、万用表(自备)。
三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=K ε,式中ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=Δl/l 为电阻丝长度相对变化。
压电式传感器测振动实验
压电式传感器测振动实验
一、实验目的:
了解压电传感器的测量振动的原理和方法。
二、基本原理:
压电式传感器由惯性质量块和受压的压电片等组成。
(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。
三、需用器件与单元:
振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。
双踪示波器。
四、实验步骤:
1、压电传感器已装在振动台面上。
2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。
图14-1 压电式传感器性能实验接线图
3、将压电传感器输出两端插入到压电传感器实验模板两输入端,见图14-1,与传感
器外壳相连的接线端接地,另一端接R1。
将压电传感器实验模板电路输出端V o1,接R6。
将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。
4、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波
器波形。
5、改变低频振荡器的频率,观察输出波形变化。
6、用示波器的两个通道同时观察低通滤波器输入端和输出端波形。
压电式震动传感器原理
压电式震动传感器原理
压电式震动传感器是一种常用于检测震动和振动的传感器。
其原理基于压电效应。
压电效应是指某些物质在受到机械应力时,会产生电荷或电势差。
压电材料常用的有石英、铁电体和陶瓷材料,其中陶瓷材料最常用。
压电式震动传感器的工作原理如下:
1. 当外界产生震动或振动时,传感器内的压电材料会受到应力变化。
2. 应力变化会导致压电材料的结晶结构发生变化,产生电荷或电势差。
3. 电荷或电势差会通过传感器内的电路被放大和处理。
4. 处理后的电信号可以被测量、分析和转化为相应的震动或振动数据。
压电式震动传感器的特点包括灵敏度高、频率响应宽、响应速度快,适用于各种环境和应用场景。
不过由于压电材料的特性,压电式震动传感器对高温、湿度和腐蚀性环境比较敏感,需要注意保护和使用条件。
总之,压电式震动传感器通过利用压电效应,将机械振动转化为电信号,实现对震动和振动的检测和监测。
压电式雨量传感器试验标准
压电式雨量传感器试验标准压电式雨量传感器是一种常用于测量降雨量的传感器,其原理是利用压电效应将降雨引起的压力转化为电信号进行测量。
为了能够保证压电式雨量传感器的准确性和可靠性,需要制定一套相应的试验标准。
一、试验前准备首先需要明确压电式雨量传感器的型号和规格,并进行安装和调试。
传感器安装的位置需要确保能够充分接收降雨,而且不受其他因素干扰。
安装完成后,需要根据传感器的使用说明书进行调试,确保传感器正常工作。
二、外观检查对于压电式雨量传感器的外观进行检查,包括传感器的整体结构、连接线的完好性和传感器表面的污染情况等。
如果有损坏或者污染等情况需要及时处理。
三、误差测试误差测试是对压电式雨量传感器的准确度进行评估的重要指标。
通过在实际降雨条件中与标准雨量计进行对比,测量传感器的测量值与实际降雨量之间的误差。
可以通过不同强度的降雨情况来进行多次测试,并计算测量误差的平均值。
四、线性度测试线性度测试是评估压电式雨量传感器输出信号与输入压力之间的线性关系的指标。
通过在不同降雨强度下,测量传感器输出信号的变化情况,绘制出传感器输出信号与实际降雨量之间的关系曲线,并计算出线性相关系数来评估线性度。
五、稳定性测试稳定性测试是评估压电式雨量传感器长期使用情况下的稳定性的指标。
通过在一段时间内进行连续测量,记录传感器的输出值,并计算其标准差来评估传感器的长期稳定性。
同时需要注意排除其他因素对传感器输出的影响。
六、抗干扰性测试抗干扰性测试是评估压电式雨量传感器抗干扰能力的指标。
通过在降雨和非降雨情况下进行测试,检测传感器在不同干扰条件下的输出变化情况。
常见的干扰源包括风、震动、电磁辐射等。
七、环境适应性测试环境适应性测试是评估压电式雨量传感器对不同环境条件下的适应能力的指标。
测试需要在不同温度、湿度和气压等环境条件下进行,并观察传感器的输出变化情况,以评估其环境适应性。
八、耐久性测试耐久性测试是评估压电式雨量传感器在长期使用过程中耐久性能的指标。
压电式传感器实验报告
压电式传感器实验报告压电式传感器实验报告引言:压电式传感器是一种常用的传感器,利用压电效应将压力、力或加速度等物理量转换为电信号。
本实验旨在通过实际操作,了解压电式传感器的工作原理、特性及应用,并通过实验数据分析,探讨其在工程领域中的应用前景。
实验装置与步骤:实验装置包括压电式传感器、信号放大电路、数据采集卡和计算机等。
首先,将压电式传感器连接至信号放大电路,再将信号放大电路与数据采集卡相连,最后将数据采集卡连接至计算机。
在实验过程中,需要注意保持实验环境的稳定,避免外界干扰。
实验一:压电式传感器的特性测试在此实验中,我们将测试压电式传感器的灵敏度、频率响应和线性度等特性。
首先,将压电式传感器固定在测试台上,然后通过施加不同大小的压力来模拟实际应用中的不同工况。
同时,通过改变施加压力的频率,测试传感器的频率响应特性。
最后,记录并分析实验数据,得出传感器的灵敏度和线性度等参数。
实验二:压电式传感器在振动测量中的应用压电式传感器在振动测量中有着广泛的应用。
在此实验中,我们将利用压电式传感器测量不同振动源的振动信号,并通过数据采集卡将信号传输至计算机进行分析。
通过对振动信号的频谱分析,我们可以了解振动源的频率成分及其强度,从而为工程设计提供参考依据。
实验三:压电式传感器在压力测量中的应用压电式传感器在压力测量中也有着重要的应用。
在此实验中,我们将利用压电式传感器测量不同压力下的电信号,并通过数据采集卡将信号传输至计算机进行分析。
通过对压力信号的变化趋势进行分析,我们可以了解被测对象的压力状态及其变化规律,从而为工程设计提供参考依据。
实验结果与分析:通过实验数据的分析,我们可以得出压电式传感器的灵敏度、频率响应、线性度等参数。
同时,我们还可以通过对振动信号和压力信号的分析,了解被测对象的振动状态和压力状态。
这些分析结果对于工程设计和故障诊断等领域具有重要的参考价值。
结论:压电式传感器是一种常用的传感器,具有灵敏度高、频率响应广、线性度好等优点。
简谐振动幅值测量的实验原理、方法和报告
一、实验目的1、了解振动位移、速度、加速度之间的关系;2、学会用压电传感器测量简谐振动位移、速度、加速度幅值。
二、实验装置简图图1-11、简支梁2、振动传感器3、接触式激振器三、实验仪器简介INV-1601C型振动教学实验仪四、实验原理由简谐振动方程:x (t )=x 0sin(ωt+φ)简谐振动信号基本参数包括:频率、幅值和初相位,幅值的测定主要有三个物理量,位移、速度、加速度,可采用相应的传感器来测量,也可通过积分和微分来测量,它们之间的关系如下:根据简谐振动方程,设振动位移、速度、加速度分别为x 、v 、a ,其幅值分别为x 0、v 0、a 0:()()ϕω+=t x t x sin 0()()()ϕωϕωω+=+==t v t x dtdx t v cos cos 00()()()ϕωϕωω+=+-==t a t x dtx d t a sin sin 00222式中:ω——振动角频率φ——初相位所以可以看出位移、速度和加速度幅值大小的关系是:v0=ω·x0,a0=ω2·x0,a0=ω·v0(1-1)振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感器、加速度传感器进行测量,还可以采用具有微积分功能的放大器进行测量。
在进行测量时,传感器通过换能器把加速度、速度、位移信号转换成电信号,经过放大器放大,然后通过数据采集处理分析仪进行模数转换成数字信号,采集到的数字信号为电压变化量,通过软件在计算机上显示出来,这时读取的数值为电压值,通过标定值进行换算,就可以算出振动量的大小。
五、实验步骤1、将接触式激振器固定在支架基座上,并保证激振器顶杆对简支梁有一定的预压力(不要露出顶杆上的红线标志),将激振器的专用连接线与INV-1601C型振动教学实验仪(简称“振教仪”)的“功率输出”接口相连。
2、把加速度传感器与振教仪通道1的“加速度计输入”接头相连后,放置在简支梁的中部。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压电式传感器测量振动实验
一、实验目的:了解压电传感器的测量振动的原理和方法。
二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。
(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于效应,压电晶片上产生正比于运动加速度的表面电荷。
三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板、双踪示波器。
四、实验步骤:
1、压电传感器已装在振动台面上。
2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。
3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的
接线端接地,另一端接R1。
将压电传感器实验模板电路输出端V o1,接R6。
将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。
4、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波
器波形。
5、用示波器的两个通道同时观察低通滤波器输入端和输出端波形。