2011年数学高考分类汇编解答题(理)03——立体几何

合集下载

2011-2017全国1卷分类汇编 立体几何

2011-2017全国1卷分类汇编 立体几何

2011-2017高考全国I 卷分类汇编——立体几何【2011年全国】(19)如图,四棱锥S ABCD -中,AB CD ,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====. (Ⅰ)证明:SD SAB ⊥;(Ⅱ)求AB 与平面SBC 所成角的大小.【2012年全国】(19)(本小题满分12分) 如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥。

(Ⅰ)证明:1DC BC ⊥(Ⅱ)求二面角11A BD C --的大小。

【2013年全国】18、(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°. (Ⅰ)证明AB ⊥A【2014年全国】19. (本小题满分12分)如图三棱锥111ABC AB C -中,侧面11BB C C 为菱形,A 11AB B C ⊥.(Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=Bc ,求二面角111A A B C --的余弦值.【2015年全国】(18)如图,,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC 。

(1)证明:平面AEC ⊥平面AFC(2)求直线AE 与直线CF 所成角的余弦值【2016年全国】(18)(本题满分为12分)如图,在已A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. (I )证明;平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【2017年全国】18.(12分)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.。

2011年高考全国各地数学卷·文科解答题分类汇编03:立体几何

2011年高考全国各地数学卷·文科解答题分类汇编03:立体几何

概率与统计1.(天津文)15.(本小题满分13分)编号为1216,,,A A A ⋅⋅⋅的16名篮球运动员在某次训练比赛中的得分记录如下: 运动员编号 1A2A3A4A5A6A7A8A得分 1535212825361834运动员编号 9A10A11A12A13A14A15A16A得分1726253322123138(Ⅰ)将得分在对应区间内的人数填入相应的空格;区间 [)10,20[)20,30[]30,40人数(Ⅱ)从得分在区间[)20,30内的运动员中随机抽取2人,(i )用运动员的编号列出所有可能的抽取结果;(ii )求这2人得分之和大于50的概率.2. (北京文)16.以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示. (1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差],)()()[(1222212x x x x x x ns n -+-+-=其中x 为n x x x ,,,21 的平均数)3. (全国新文)19.某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表 指标值分组 [90,94)[94,98)[98,102)[102,106)[106,110]频数 8 20 42 22 8 B 配方的频数分布表指标值分组 [90,94)[94,98)[98,102)[102,106)[106,110]频数 412423210(I )分别估计用A 配方,B 配方生产的产品的优质品率;(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润. 4. (辽宁文)19.某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(I )假设n =2,求第一大块地都种植品种甲的概率;(II )试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm 2)如下表:品种甲 403 397 390 404 388 400 412 406 品种乙419403412418408423400413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种? 附:样本数据n x x x ,,,21⋅⋅⋅的的样本方差])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=,其中x 为样本平均数.5. (江西文)16.某饮料公司对一名员工进行测试以便确定考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中的3杯为A 饮料,另外的2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料。

2011-2018年全国一卷立体几何理汇编 带答案

2011-2018年全国一卷立体几何理汇编  带答案

20116.(5分)(2011•新课标)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选D.【点评】本题考查简单空间图形的三视图,考查由三视图看出原几何图形,再得到余下的三视图,本题是一个基础题.15.(5分)(2011•新课标)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为8.【分析】由题意求出矩形的对角线的长,结合球的半径,球心到矩形的距离,满足勾股定理,求出棱锥的高,即可求出棱锥的体积.【解答】解:矩形的对角线的长为:,所以球心到矩形的距离为:=2,所以棱锥O﹣ABCD的体积为:=8.故答案为:8【点评】本题是基础题,考查球内几何体的体积的计算,考查计算能力,空间想象能力,常考题型.18.(12分)(2011•新课标)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.【分析】(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(Ⅱ)建立空间直角坐标系,写出点A,B,C,P的坐标,求出向量,和平面PAB的法向量,平面PBC的法向量,求出这两个向量的夹角的余弦值即可.【解答】(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则即,因此可取=(,1,)设平面PBC的法向量为=(x,y,z),则,即:可取=(0,1,),cos<>==故二面角A﹣PB﹣C的余弦值为:﹣.【点评】此题是个中档题.考查线面垂直的性质定理和判定定理,以及应用空间向量求空间角问题,查了同学们观察、推理以及创造性地分析问题、解决问题能力.2012 7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD ﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD ﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°。

2005 2011年高考分类汇编 数学立体几何

2005 2011年高考分类汇编 数学立体几何

立体几何(山东卷)右图是一个几何体的三视图,根据图中数据,可得该几何体的1、表面积是πB)10(A)9π((D)12π(C)11π从三视图可以看出该几何体是由一解析】考查三视图与几何体的表面积。

【个球和一个圆柱组合而成的,其表面及为22????.?2?212?1?S?43?1???1D 答案:GHIC△A,B,三边的中点)得到几何体如图、(广东卷)将正三棱柱截去三个角(如图1所示分别是2 )2,则该几何体按图2所示方向的侧视图(或称左视图)为(A A G HBBBBBBCC 侧视IEEED DEE ED.CA.B..F F2 1图图【解析】解题时在图2的右边放扇墙(心中有墙),可得答案A.答案:A67的某几何体的一条棱长为这条棱的投影是长为,3、(海南、宁夏理科卷)在该几何体的正视图中,线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为()2352224 D AC..B ..【解析】结合长方体的对角线在三个面的投影来理解计算。

如图m,n,k,由题意得设长方体的高宽高分别为kn222226??mn?k?k?7m1?n?,m22226?1)??1)?((ab ba1?m1?k??,,所以2222222?16?b2ab?8?b)?ab?2ab?a?8?a∴(?8??b?a,?a?b?4a?b?2时取等。

当且仅当答案:C4、(海南、宁夏理科卷)一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一9,底面周长为3,则这个球的体积为个球面上,且该六棱柱的体积为.8h22R)?a?(a hR有然显,为高,为长边面底且,的柱棱六,为径半的球令】析解【2.1??93?a244a?h?V?6???3??2??R?V?1??R??8433??h?336a????4答案:35、(海南、宁夏文科卷)一个六棱柱的底面是正六边形,其侧棱垂直底面。

已知该六棱柱的顶点都在同一3,底面周长为3,那么这个球的体积为个球面上,且该六棱柱的高为_________1??22?23?12R?解析】∵正六边形周长为3,得边长为,故其主对角线为1,从而球的直径【24?V?1R?∴球的体积∴34?答案:3?l,直线AB∥l,直线AC∈α,A⊥l,直α6、(海南、宁夏文科卷)已知平面⊥平面β,α∩β= l,点A线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()...A. AB∥m B. AC⊥m C. AB∥β D. AC⊥β?l?AC内,,但AC不一定在平面【解析】容易判断A、B、C三个答案都是正确的,对于D,虽然?相交、平行,故不一定垂直;故它可以与平面答案:DAD?BD,且E,F分别是AB,7、(江苏卷)在四面体ABCD中,CB=CD,BD的中点,EF面AC D;求证(I)直线BD BC面EFC?面。

2011年高考理科数学解答题18立体几何

2011年高考理科数学解答题18立体几何

P D CE BAG第2题B C ADP第3题2011年高考理科数学解答题18立体几何1. 常规问题例1.如图,在四棱锥O-ABCD 中,底面ABCD 是边长为1的菱形, ∠ABC=45,OA ⊥底面ABCD,OA=2,M 为OA 的中点,N 为BC 的中点。

(1)MN ∥平面OCD;(2)求异面直线AB 与MD 所成的角的大小; (3)求点B 到平面OCD 的距离。

例2.四棱锥P-ABCD 中,侧面PAD ⊥底面ABCD, 底面ABCD 是矩形, BC=2CD=2,又PA=PD, ∠APD=90,E 、G 分别是BC 、PE 的中点。

(1)求证:AD ⊥PE;(2)求二面角E-AD-G 的大小。

例3.如图,四棱锥P-ABCD 中,底面ABCD 是菱形,PA ⊥平面ABCD , PA=AD=2, ∠BAD=60.(1)求证:平面PBD ⊥平面PAC ; (2)求点A 到平面PBD 的距离; (3)求二面角A-PB-D 的余弦值。

2. 立体几何与三视图例4.一个多面体的直观图及三视图如图所示(其中M,N 分别是AF,BC 的中点)。

(1)求证:MN ∥平面CDEF ; (2)求二面角A-CF-B 的大小;(3)求多面体A-CDEF 的体积。

DO CN B M A 第1题NF BD AMC第4题E 侧视图 正视图 俯视图CA PDE B第6题C O E AB D 第7题a 2侧视图 俯视图 例5.一个多面体的直观图,主视图(正前方观察),俯视图(正上方观察),左视图(左侧正前方观察)如下图所示。

(1)求1A A 与平面ABCD 所成角的大小;(2)求平面11AA D 与平面ABCD 所成二面角的大小;(3)3. 存在性问题例6.如图,四边形ABCD 为矩形,且AD=4,AB=2,PA ⊥平面ABCD ,E 为BC 上的动点。

(1)当E 为BC 中点时,求证:PE ⊥DE;(2)设PA=2,线段BC 上存在这样的点E ,使得二面角P-ED-A 的大小为45,试确定点E 的位置。

2011年高考数学试题分类汇编-专题立体几何-理

2011年高考数学试题分类汇编-专题立体几何-理

2011年高考试题数学(理科)立体几何一、选择题:1。

(2011年高考山东卷理科11)下图是长和宽分别相等的两个矩形.给定下列三个命题: ①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如 下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是 (A )3 (B)2 (C )1 (D)0 【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以。

2.(2011年高考浙江卷理科3)若某几何体的三视图如图所示,则这个几何体的直观图可以是【答案】D【解析】由正视图可排除A 、B 选项;由俯视图可排除C 选项. 3。

(2011年高考浙江卷理科4)下列命题中错误的是(A)如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面β(B )如果平面不垂直于平面β,那么平面α内一定不存在直线垂直于平面β (C )如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面 (D )如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β 【答案】D【解析】若面⊥α面β,在面α内与面的交线不相交的直线平行平面β,故A 正确;B 中若α内存在直线垂直平面β,则βα⊥,与题没矛盾,所以B 正确;由面⊥面的性质知选项C正确。

4.(2011年高考安徽卷理科6)一个空间几何体得三视图如图所示,则该几何体的表面积为(A) 48 (B)32+817 (C) 48+817(D) 80【答案】C【命题意图】本题考查三视图的识别以及空间多面体表面积的求法.【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,。

故S2+4=⨯4⨯2+4⨯2+4⨯4+4⨯17⨯2 2=48+817表【解题指导】:三视图还原很关键,每一个数据都要标注准确.5.(2011年高考辽宁卷理科8)如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确...的是( )(A)AC⊥SB(B)AB∥平面SCD(C) SA与平面SBD所成的角等于SC与平面SBD所成的角(D)AB与SC所成的角等于DC与SA所成的角答案: D解析:对于A:因为SD⊥平面ABCD,所以DS⊥AC。

2011高考数学立体几何题解

2011高考数学立体几何题解

学科网备战高考数学立体几何(Ⅰ)∵平面PCBM ⊥平面ABC ,AC BC ⊥,AC ⊂平面ABC ∴AC ⊥平面PCBM又∵BM ⊂平面PCBM ∴AC BM ⊥(Ⅱ)取BC 的中点N ,则1CN = 连接AN 、MN∵平面PCBM ⊥平面ABC ,平面PCBM 平面ABC BC=,PC BC ⊥ ∴PC ⊥平面ABC ∵//PM CN =,∴//MN PC =,从而MN ⊥平面ABC作NH AB ⊥于H ,连结MH ,则由三垂线定理知AB MH ⊥ 从而MHN ∠为二面角M AB C --的平面角∵直线AM 与直线PC 所成的角为60°,∴60AMN ∠=︒在ACN ∆中,由勾股定理得AN =在Rt AMN ∆中,cot MN AN AMN =⋅∠==在Rt BNH ∆中,sin 15AC NH BN ABC BN AB =⋅∠=⋅== 在Rt MNH ∆中,tan 5MN MHN NH ∠=== 故二面角M AB C --的大小为tan3arc (Ⅱ)如图以C 为原点建立空间直角坐标系C xyz - 设0(0,0,)P z 0(0)z >,有(0,2,0)B ,(1,0,0)A ,0(0,1,)M z 0(1,1,)AM z =- ,0(0,0,)CP z =由直线AM 与直线PC 所成的角为60°,得cos 60AM CP AM CP ⋅=⋅⋅︒即20z z =,解得0z =∴(AM =- ,(1,2,0)AB =- 设平面MAB 的一个法向量为1111(,,)n x y z =,则由00020n AM x y n AB x y ⎧⎧⋅=-++=⎪⎪⇒⎨⎨⋅=⎪⎪⎩-+=⎩,取1z =1(4,n =取平面ABC 的一个法向量为2(0,0,1)n = 则12cos ,n n <>121213n n n n ⋅===⋅由图知二面角M AB C --为锐二面角,故二面角M AB C --的大小为arccos 13(Ⅲ)多面体PMABC 就是四棱锥A BCPM -11111()(21)133232PMABC A PMBC PMBC V V S AC PM CB CP AC -==⋅⋅=⋅⋅+⋅⋅=⋅⋅+=75.(天津理19)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,E 是PC 的中点.(Ⅰ)证明CD AE ⊥;(Ⅱ)证明PD ⊥平面ABE ;(Ⅲ)求二面角A PD C--的大小.(Ⅰ)证明:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,CD ⊂平面ABCD ,故P A C D ⊥ AC CD PA AC A ⊥= ,∵,CD ⊥∴平面PAC而AE ⊂平面PAC ,CD AE ⊥∴(Ⅱ)证明:由PA AB BC ==,60ABC ∠=°,可得AC PA = E ∵是PC 的中点,AE PC ⊥∴由(Ⅰ)知,AE CD ⊥,且PC CD C = ,所以AE ⊥平面PCD而PD ⊂平面PCD ,AE PD ⊥∴PA ⊥∵底面ABCD PD ,在底面ABCD 内的射影是AD ,AB AD ⊥,AB PD ⊥∴ 又AB AE A = ∵,综上得PD ⊥平面ABE(Ⅲ)解法一:过点A 作AM PD ⊥,垂足为M ,连结EM 则(Ⅱ)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则EM PD ⊥ 因此AME ∠是二面角A PD C --的平面角由已知,得30CAD ∠=° 设AC a =,可得32PA a AD PD AE a ====,,, 在ADP Rt △中,AM PD ⊥∵,AM PD PA AD =∴··,则3a PA ADAM PD===·· 在AEM Rt △中,sin 4AE AME AM ==所以二面角A PD C --的大小是arcsin 4解法二:由题设PA ⊥底面ABCD ,PA ⊂平面PAD ,则平面PAD ⊥平面ACD ,交线为AD 过点C 作CF AD ⊥,垂足为F ,故CF ⊥平面PAD 过点F 作FM PD ⊥,垂足为M ,连结CM ,故CM PD ⊥ 因此CMP ∠是二面角A PD C --的平面角 由已知,可得30CAD ∠=°,设AC a =,ACDPEAD可得12PA a AD PD CF a FD =====,,,, FMD PAD ∵△∽△,FM FDPA PD=∴于是,3aFD PA FM PD ===·· 在CMF Rt △中,1tan 14aCF CMF FM === 所以二面角A PD C --的大小是76.(天津文19)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD AC CD ⊥⊥,,60ABC ∠=°,PA AB BC ==,E 是PC 的中点.(Ⅰ)求PB 和平面PAD 所成的角的大小;(Ⅱ)证明AE ⊥平面PCD ; (Ⅲ)求二面角A PD C --的大小.(Ⅰ)解:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,AB ⊂平面ABCD ,故PA AB ⊥ 又AB AD ⊥,PA AD A = ,从而AB ⊥平面PAD 故PB 在平面PAD 内的射影为PA ,从而APB∠为PB 和平面PAD 所成的角在Rt PAB △中,AB PA =,故45APB = ∠所以PB 和平面PAD 所成的角的大小为45(Ⅱ)证明:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,CD ⊂平面ABCD ,故CD PA ⊥ 由条件CD PC ⊥,PA AC A = ,CD ∴⊥面PAC又AE ⊂面PAC ,AE CD ∴⊥由PA AB BC = ,60ABC = ∠,可得AC PA =E 是PC 的中点,AE PC ∴⊥,PC CD C ∴= 综上得AE ⊥平面PCD(Ⅲ)解:过点E 作EM PD ⊥,垂足为M ,连结AM 由(Ⅱ)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则AM PD ⊥ 因此AME ∠是二面角A PD C --的平面角 由已知,可得30CAD = ∠ 设AC a =,可得PA a =,AD =,PD =,AE = ADAD在Rt ADP △中,AM PD ⊥ ,AM PD PA AD ∴=,则3PA AD AM PD =在Rt AEM △中,sin AE AME AM ==所以二面角A PD C --的大小arcsin 477.(浙江理19)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且2AC BC BD AE ===,M 是AB 的中点. (I )求证:CM EM ⊥;(II )求CM 与平面CDE 所成的角.方法一:(I )证明:因为AC BC =,M 是AB 的中点, 所以CM AB ⊥ 又EA ⊥平面ABC ,所以CM EM ⊥(II )解:过点M 作MH ⊥平面CDE ,垂足是H ,连结CH 交延长交ED 于点F ,连结MF ,MDFCM ∠是直线CM 和平面CDE 所成的角 因为MH ⊥平面CDE ,所以MH ED ⊥, 又因为CM ⊥平面EDM ,所以CM ED ⊥,则ED ⊥平面CMF ,因此E D ⊥设EA a =,2BD BC AC a ===,在直角梯形ABDE 中,AB =,M 是AB 的中点,所以3DE a =,EM =,MD =,得EMD △是直角三角形,其中90EMD = ∠,所以EM MDMF DE ==在Rt CMF △中,tan 1MFFCM MC==∠,所以45FCM = ∠,故CM 与平面CDE 所成的角是45 方法二:如图,以点C 为坐标原点,以CA ,CB 分别为x 轴和y 轴,过点C 作与平面ABC 垂直的直线为z 轴,建立直角坐标系C xyz -,设E A a =,则(2)A a 00,,,(020)B a ,,,(20)E a a ,, (022)D a a ,,,(0)M a a ,,(I )证明:因为()EM a a a =-- ,,,(0)CM a a =,,,所以0EM CM = ,故EM CM ⊥ (II )解:设向量001y z (),,n =与平面CDE 垂直,则CE ⊥ n ,CD ⊥ n , 即0CE =n ,0CD =n 因为(20)CE a a = ,,,(022)CD a a =,,, EDCMA(第19题)C所以02y =,02x =-,即(122)=-,,n ,cos 2CM CM CM ==,n n n, 直线CM 与平面CDE 所成的角θ是 n 与CM夹角的余角,所以45θ= ,因此直线CM 与平面CDE 所成的角是4578.(重庆理19)如题(19)图,在直三棱柱111ABC A B C -中,12AA =,1AB =,90ABC = ∠;点D E ,分别在 1BB ,1A D 上,且11B E A D ⊥,四棱锥1C ABDA -与直三棱柱的体积之比为3:5. (Ⅰ)求异面直线DE 与11B C 的距离;(Ⅱ)若BC =111A DC B --的平面角的正切值.解法一:(Ⅰ)因1111B C A B ⊥,且111B C BB ⊥,故11B C ⊥面11A ABB , 从而111B C B E ⊥,又1B E DE ⊥,故1B E 是异面直线11B C 与DE 的公垂线设BD 的长度为x ,则四棱椎1C ABDA -的体积1V 为111111()(2)366ABDA V S BC DB A A AB BC x BC ==+=+···· 而直三棱柱111ABC A B C -的体积2V 为21112ABC V S AA AB BC AA BC ===△···由已知条件12:3:5V V =,故13(2)65x +=,解之得85x =从而1182255B D B B DB =-=-=在直角三角形11A B D中,1A D ===,又因11111111122A B D S A D B E A B B D ==△··,故11111A B B D B E A D ==· (Ⅱ)如答(19)图1,过1B 作11B F C D ⊥,垂足为F ,连接1A F ,因ABCDE 1B1C 1A题(19)图DE 1B1C 1AF1111A B B C ⊥,111A B B D ⊥,故11A B ⊥面11B DC由三垂线定理知11C D A F ⊥,故11A FB ∠为所求二面角的平面角在直角11C B D △中,15C D ===,又因11111111122C BD S C D B F B C B D ==△··,故111119B C B D B F C D ==·,所以11111tan 2A B A FB B F == 解法二:(Ⅰ)如答(19)图2,以B 点为坐标原点O 建立空间直角坐标系O xyz -,则(000)B ,,,1(002)B ,,,(010)A ,,,1(012)A ,,,则1(002)AA = ,,,(010)AB =-,, 设1(02)C a ,,,则11(00)B C a = ,,,又设00(0)E y z ,,,则100(02)B E y z =-,,, 从而1110B C B E = ,即111B E B C ⊥又11B E DA ⊥,所以1B E 是异面直线11B C 与DE 的公垂线下面求点D 的坐标 设(00)D z ,,,则(00)BD z,, 因四棱锥1C ABDA -的体积1V 为11111()36ABDA V S BC BD AA AB BC ==+ 1(2)16z BC =+ 而直三棱柱111ABC A B C -的体积2V 为21112ABC V S AA AB BC AA BC ===△由已知条件12:3:5V V =,故13(2)65z +=,解得85z =,即8005D ⎛⎫ ⎪⎝⎭,, 从而12005DB ⎛⎫ ⎪⎝⎭ ,,,12015DA ⎛⎫= ⎪⎝⎭ ,,,00805DE y z ⎛⎫=- ⎪⎝⎭ ,,接下来再求点E 的坐标 由11B E DA ⊥,有110B E DA = ,即002(2)05y z +-= (1)又由1DA DE ∥得085215z y -=(2) 联立(1),(2),解得0429y =,04829z =,即44802929E ⎛⎫= ⎪⎝⎭,,,得141002929B E ⎛⎫=- ⎪⎝⎭ ,,答(19)图2故1B E ==(Ⅱ)由已知BC =12)C ,,从而12)5DC = ,,过1B 作11B F C D ⊥,垂足为F ,连接1A F ,设11(0)F x z ,,,则111(02)B F x z =- ,,,因为110B F DC =,故1124055z +-=① 因11805DF x z ⎛⎫=- ⎪⎝⎭ ,,且1DF DC∥18525z -=,即11205x +=②联立①②解得1x =14427z =,即4427F ⎫⎪⎭,则110127A F ⎫=--⎪⎭ ,,11027B F ⎫=-⎪⎭ ,1||B F =又11102(1)00275A F DC =--= ,故11A F DC ⊥,因此11A FB ∠为所求二面角的平面角 又11(010)A B =- ,,,从而1110A B B F = ,故11A B ⊥1B F ,11A B F △为直角三角形,所以11111||tan 2||A B A FB B F ==79.(重庆文19)如题19图,在直三棱柱111ABC A B C -中,90ABC ∠=°,13122AB BC AA ===,,;点D 在棱1BB 上,113BD BB =;11B E A D ⊥,垂足为E ,求:(Ⅰ)异面直线1A D 与11B C 的距离; (Ⅱ)四棱锥C ABDE -的体积.BA CDF E1A 1B 1C 题(19)图.解法一:(Ⅰ)由直三棱柱的定义知111B C B D ⊥,又因为90ABC ∠=°,因此1111B C A B ⊥,从而11B C ⊥平面11A B D 得111B C B E ⊥,又11B E A D ⊥故1B E 是异面直线11B C 与1A D 的公垂线由113BD BB =知143B D =,在11A B D Rt △中,53AD ===又因11111111122A B D S A B B D A D B E ==△··, 故111114143553A B B D B E A D ===··(Ⅱ)由(Ⅰ)知11B C ⊥平面11A B D ,又11BC B C ∥, 故BC ⊥平面ABDE ,即BC 为四棱锥C ABDE -的高, 从而所求四棱锥的体积V 为13C ABDEV V S BC -==··, 其中S 为四边形ABDE 的面积,如答(19)图1,过E 作1EF B D ⊥,垂足为F在1B ED Rt △中,1615ED ===又因1111122B ED S B E DE B D EF ==△··,故111625B E DE EF B D ==· 因1A AE △的边1A A 上的高1116912525h A B EF =-=-=, 故1111992222525A AE S A A h ===△··· 又因为11111114212233A B D S A B B D ===△···, 从而111119273225375ABB A A AE A B D S S S S =--=--=△△所以117337333752150V S BC ===···· 解法二:(Ⅰ)如答(19)图2,以B 点为坐标原点O 建立空间直角坐标系O xyz -,则11132(010)(012)(000)(002)020023A A B B C D ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,,,BACDFE1A1B1C答(19)图1因此1(002)AA = ,,,(010)AB =- ,,, 1132B C ⎛⎫=00 ⎪⎝⎭ ,,,1403A D ⎛⎫=-1- ⎪⎝⎭ ,,设00(0)E y z ,,,则100(02)B E y z =-,,, 因此1B E 11B C0=,从而111B C B E ⊥又由题设11B E A D ⊥,故1B E 是异面直线11B C 与1A D 的公垂线下面求点E 的坐标因11B E A D ⊥,即110B E A D = ,从而004(2)03y z --=, (1)又100(012)A E y z =-- ,,,且11A E A D ∥,得0012413y z --=············ (2) 联立(1),(2)解得01625y =,03825z =,即3802525E 16⎛⎫ ⎪⎝⎭,,,161202525B E 1⎛⎫=- ⎪⎝⎭ ,,所以145B E == (II )由BC AB ⊥,BC DB ⊥,故BC ⊥面ABDE ,即BC 为四棱锥C ABDE -的高因为1ABDE ABE BDE S S S AB =+= △△,,23BD = 而01138191222525ABE S AB z === △ 011216162232575BDE S BD y ===△ 故191673257575ABDE S =+=所以117337333752150C ABDE ABDE V S BC -===yx 答(19)图2。

2011年高考数学试题分类解析(八)——立体几何

2011年高考数学试题分类解析(八)——立体几何

2 1 年 的高考 已经 落下帷 幕 ,综 观全 国各地 的数 学试 卷 , 平面所成 的角 、二面角 的计算问题. 0 1 不难 发现对立 体几何 内容 的考 查 ,都严 格遵 循 《 普通 高 中数 学 课程标准 ( 实验) ( 《 学大纲》 》或 教 )和 O 1 1 年高考考试说 明》
的概念 ;会用几何 法和 向量法解决 异面直 线所成 的角 、直线 与
思维.分析 和研 究 2 1 高考 立体几何试题 的命题特 点、热点 0 1年 容的复 习教 学具有很 好的导向性和前瞻性. 关键 词 :立体几何 ;试题特点 ;命题 意 图;复 习建议
题 型和创 新试题 的命题意 图和解 法 ,对做好 新一轮 立体 几何 内 平行 、垂直 的有 关性质 与判定 ;会 用几何 法和 向量 方法证 明有
好的指导性和前瞻性.

大纲 课程全 国文理卷 、四川文理 卷 、浙 江文理卷 、辽宁文 理卷

分 析 特 点
等 . 有个别试 卷以 “ t 题两 大题 ”的形 式出现 ,分值 为 2 也 -l , 9 分 ,占总分 比为 1 . 45 %,例如 江苏理科卷. 考查难度一般 为中等 ,解答题所处位置基本上 在前 3道题 。
N - 8 01 O7 2 1 —
J u n lo ie e Mah mais E u ain o r a fChn s te t d c t c o
21 0 1年
第 7 8期 —
摘要 :2 1 年 高考数 学已经落下帷幕 ,与 2 1 01 0 0年相 比,各 识别 三视 图所表示 的空 间几何体 ;理解三视 图和直观 图的联系 ,
三视 图 ;球 、柱 、锥 、台 的表 面积和体 积计算 ;空间位 置 离等.解答题 的考法 与往 年类似 ,仍然注重在一个具体 的立体几 关 系的判断与证明 ;空间角 、距离的计 算.

2011-2019高考数学立体几何分类汇编(理)

2011-2019高考数学立体几何分类汇编(理)

2011-2019新课标(理科)立体几何分类汇编一、选填题【2012新课标】(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( B )()A 6 ()B 9 ()C 12 ()D 18【解析】选B 。

该几何体是三棱锥,底面是俯视图,高为3,此几何体的体积为11633932V =⨯⨯⨯⨯=【2012新课标】(11)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( A )()A 6 ()B 6 ()C 3 ()D 2【解析】ABC ∆的外接圆的半径3r =点O 到面ABC 的距离3d ==,SC 为球O 的直径⇒点S 到面ABC 的距离为2d =11233436ABC V S d ∆=⨯=⨯=另:1236ABC V S R ∆<⨯=排除,,B C D【2013新课标1】6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( A )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 3【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则222(2)4R R =-+,解得R=5,∴球的体积为3453π⨯=500π33cm ,故选A.【2013新课标1】8、某几何函数的三视图如图所示,则该几何的体积为( A )A 、16+8πB 、8+8πC 、16+16πD 、8+16π 【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2 高为4,上边放一个长为4宽为2高为2长方体,故其体积为21244222π⨯⨯+⨯⨯ =168π+,故选A .【2013新课标2】4. 已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,lβ,则( D ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l【解析】因为m ⊥α,l ⊥m ,l α,所以l ∥α.同理可得l ∥β。

2011年数学高考分类汇编解答题(理)03——立体几何

2011年数学高考分类汇编解答题(理)03——立体几何

03 立体几何1. (2011天津卷理)17.(本小题满分13分)如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =,1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与A 1B 1所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值; (Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B内,且MN ⊥平面11A B C ,求线段BM 的长.【解析】17.本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.满分13分.方法一:如图所示,建立空间直角坐标系,点B 为坐标原点. 依题意得(22,0,0),(0,0,0),(2,2,5)A B C - 111(22,22,0),(0,22,0),(2,2,5)A B C(I )解:易得11(2,2,5),(22,0,0)AC A B =--=-u u u r u u u u r , 于是1111112cos ,,||||322AC A B AC A B AC A B ⋅===⋅⨯u u u r u u u u ru u u r u u u u u r u u ur u u u u r 所以异面直线AC 与A 1B 1所成角的余弦值为2. (II )解:易知111(0,22,0),(2,2,5).AA AC ==--u u u r u u u u r设平面AA 1C 1的法向量(,,)m x y z =,则11100m A C m AA ⎧⋅=⎪⎨⋅=⎪⎩u u u u ru u u r即2250,220.x y z y ⎧--+=⎪⎨=⎪⎩ 不妨令5,x =可得(5,0,2)m =,同样地,设平面A 1B 1C 1的法向量(,,)n x y z =,则11110,0.n A C n A B ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u u r即2250,220.x y z x ⎧--+=⎪⎨-=⎪⎩不妨令5y =, 可得(0,5,2).n =于是2cos ,,||||777m n m n m n ⋅===⋅⋅从而35sin ,.7m n =所以二面角A —A 1C 1—B 的正弦值为35.7(III )解:由N 为棱B 1C 1的中点,得2325(,,).N 设M (a ,b ,0), 则2325(,,)222MN a b =--u u u u r 由MN ⊥平面A 1B 1C 1,得11110,0.MN A B MN AC ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u u r u u u u r u u u u r 即2()(22)0,22325()(2)()(2)50.222a ab ⎧-⋅-=⎪⎪⎨⎪-⋅-+-⋅-+⋅=⎪⎩解得2,22.4a b ⎧=⎪⎪⎨⎪=⎪⎩故22(,,0).M因此22(,,0)24BM =u u u u r ,所以线段BM 的长为10||.BM =u u u u r 方法二:(I )解:由于AC//A 1C 1,故111C A B ∠是异面直线AC 与A 1B 1所成的角. 因为1C H ⊥平面AA 1B 1B ,又H 为正方形AA 1B 1B 的中心,1122,5,AA C H ==可得1111 3.AC B C ==因此22211111111111112cos .23AC A B B C C A B AC A B +-∠==⋅所以异面直线AC 与A 1B 1(II )解:连接AC 1,易知AC 1=B 1C 1, 又由于AA 1=B 1A 1,A 1C 1=A 1=C 1,所以11AC A ∆≌11B C A ∆,过点A 作11AR A C ⊥于点R ,连接B 1R ,于是111B R AC ⊥,故1ARB ∠为二面角A —A 1C 1—B 1的平面角.在11Rt A RB ∆中,11111sin 3B R A B RA B =⋅∠== 连接AB 1,在1ARB ∆中,2221111114,,cos 2AR B R AB AB AR B R ARB AR B R+-==∠=⋅27=-,从而1sin ARB ∠=所以二面角A —A 1C 1—B 1的正弦值为7(III )解:因为MN ⊥平面A 1B 1C 1,所以11.MN A B ⊥ 取HB 1中点D ,连接ND ,由于N 是棱B 1C 1中点, 所以ND//C 1H且1122ND C H ==. 又1C H ⊥平面AA 1B 1B ,所以ND ⊥平面AA 1B 1B ,故11.ND A B ⊥ 又,MN ND N =I所以11A B ⊥平面MND ,连接MD 并延长交A 1B 1于点E , 则111,//.ME A B ME AA ⊥故 由1111111,4B E B D DE AA B A B A ===得1DE B E ==EM 交AB 于点F ,可得12.BF B E ==连接NE. 在Rt ENM ∆中,2,.ND ME ND DE DM ⊥=⋅故 所以252.4ND DM DE == 可得2.4FM =连接BM ,在Rt BFM ∆中,2210.4BM FM BF =+=2. (2011北京理)16.(本小题共14分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2,60AB BAD =∠=o .(Ⅰ)求证:BD ⊥平面;PAC (Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.【解析】(16)(共14分) 证明:(Ⅰ)因为四边形ABCD 是菱形,所以AC ⊥BD.又因为PA ⊥平面ABCD. 所以PA ⊥BD.所以BD ⊥平面PAC. (Ⅱ)设AC∩BD=O. 因为∠BAD=60°,PA=PB=2,所以BO=1,AO=CO=3.如图,以O 为坐标原点,建立空间直角坐标系O —xyz ,则P (0,—3,2),A (0,—3,0),B (1,0,0),C (0,3,0). 所以).0,32,0(),2,3,1(=-=AC PB 设PB 与AC 所成角为θ,则4632226||||cos =⨯=⋅⋅AC PB AC PB θ. (Ⅲ)由(Ⅱ)知).0,3,1(-=BC 设P (0,-3,t )(t>0), 则),3,1(t BP --=设平面PBC 的法向量),,(z y x m =, 则0,0=⋅=⋅m BP m BC所以⎪⎩⎪⎨⎧-+--=+-03,03tz y x y x 令,3=y 则.6,3t z x ==所以)6,3,3(tm =同理,平面PDC 的法向量)6,3,3(tn -=因为平面PCB ⊥平面PDC, 所以n m ⋅=0,即03662=+-t解得6=t 所以PA=6 3. (2011辽宁卷理)18.(本小题满分12分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12P D .(I )证明:平面PQC ⊥平面DCQ ; (II )求二面角Q —BP —C 的余弦值.【解析】18.解:如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D —xyz. (I )依题意有Q (1,1,0),C (0,0,1),P (0,2,0).则(1,1,0),(0,0,1),(1,1,0).DQ DC PQ ===-u u u r u u u r u u u r所以0,0.PQ DQ PQ DC ⋅=⋅=u u u r u u u r u u u r u u u r即PQ ⊥DQ ,PQ ⊥DC. 故PQ ⊥平面DCQ.又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ. …………6分(II )依题意有B (1,0,1),(1,0,0),(1,2,1).CB BP ==--u u u r u u u r设(,,)n x y z =是平面PBC 的法向量,则0,0,20.0,n CB x x y z n BP ⎧⋅==⎧⎪⎨⎨-+-=⋅=⎩⎪⎩u u u r u u u r即 因此可取(0,1,2).n =--设m 是平面PBQ 的法向量,则0,0.m BP m PQ ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r可取15(1,1,1).cos ,.5m m n =<>=-所以 故二面角Q —BP —C 的余弦值为15.5-………………12分 4. (全国大纲卷理)19.(本小题满分12分)(注意:在试题卷上作答无效.........) 如图,四棱锥S ABCD -中, AB CD ⊥,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====.(Ⅰ)证明:SD SAB ⊥平面;(Ⅱ)求AB 与平面SBC 所成角的大小.【解析】19.解法一:(I )取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE=CB=2, 连结SE ,则, 3.SE AB SE ⊥= 又SD=1,故222ED SE SD =+, 所以DSE ∠为直角。

2011年高考文科数学立体几何的综合测试题及参考答案

2011年高考文科数学立体几何的综合测试题及参考答案

易证得 Rt�ADC ≌ Rt�B1C1D �故 AD � B1D �
又 O 为 AB1的中点�故 OD � AB1 �∴ AB1 � 平面 A1BD
13��1�证明�∵ AD � 平面 ABE � AD // BC �
∴ BC � 平面 ABE �则 AE � BC


又 BF �平面 ACE �则 AE � BF
�2�在�1�的条件下�求异面直线 DE 与 CF 所成的角�
E
D
C
B
A
F


C · ·B
·
A

第 8 页 共 15 页
立体几何的综合答案
1、A � 2、A � 3、D� 4、C � 5、C� 8�② ④ ⑤ � 9、① ② ③ � 10、C �
6� 4 cm3 3
7�1.5 �
11��1�证明�连接 D1C 交 DC1 于 F �连结 EF �
D1 A1
D A
C1 B1
C E B
12�如图�三棱柱 ABC � A1B1C1 的所有棱长都相等�且 A1A � 底面 ABC � D为 C1C 的中点� AB1与 A1B 相交于点 O �连结 OD �
�1� 求证� OD// 平面 ABC ��2�求证� AB1 � 平面 A1BD 。
13 � 如 图 所 示 � 四 边 形 A B C D为 矩 形 � AD � 平 面 ABE � F 为 CE 上 的 点 � AE � EB � BC � 2� F 为CE 上的点�且 BF �平面 ACE
2011 年高考文科数学立体几何的综合测试题及参考答案
1� m 、 n 是不同的直线�� 、 � 、� 是不同的平面�有以下四个命题�

2011年立体几何大题和答案理科

2011年立体几何大题和答案理科

2013年全国高考理科数学试题分类汇编7:立体几何1.(2013辽宁)如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值2.(2013重庆)如图,四棱锥P A-中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.3.(2013浙江)如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大小.1.(2013上海)如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积. 2.(2013江苏)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点. 求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.3.(2013上海)如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.ABCDPQM(第20题图)ABCSGFEC 11A4.(2013广东)如图1,在等腰直角三角形ABC 中,90A∠=︒,6BC =,,D E 分别是,A C A B上的点,CD BE ==,O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=.(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.5.(2013天津)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC ,AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM 的长. 6.(2013新课标1)如图,三棱柱ABC-A 1B 1C 1中,CA=CB,AB=A A 1,∠B A A 1=60°.(Ⅰ)证明AB ⊥A 1C;(Ⅱ)若平面ABC⊥平面AA 1B 1B,AB=CB=2,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.7.(2013陕西)如图, 四棱柱ABCD-A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD , 1AB AA ==(Ⅰ) 证明: A 1C ⊥平面BB 1D 1D ;(Ⅱ) 求平面OCB 1与平面BB 1D 1D 的夹角θ的大小. 8.(2013江西)如图,四棱锥P A B-中,PA ,ABCD E BD ⊥平面为的中点,G PD 为的中点,B 1A 1C 1ACB. C O BDEA CDOBE'A 图1图21A3,12DAB DCB EA EB AB PA ∆≅∆====,,连接CE 并延长交AD 于F . (1) 求证:AD CFG ⊥平面;(2) 求平面BCP 与平面DCP 的夹角的余弦值. 9.(2013四川)如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值.10.(2013江苏)如图,在直三棱柱111A B C A B C-中,AC AB ⊥,2==AC AB ,41=AA ,点D 是BC 的中点 (1)求异面直线B A 1与D C 1所成角的余弦值 (2)求平面1ADC 与1ABA 所成二面角的正弦值.11.(2013大纲)如图,四棱锥P ABCD-中,902,ABC BAD BC AD PAB ∠=∠==∆,与PAD ∆都是等边三角形. (I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小.12.(2013山东)如图所示,在三棱锥P ABQ -中,PB ⊥平面ABQ ,BA BP BQ ==,,,,D C E F 分别是,,,A Q B Q A P B P 的中点, 2AQ BD =,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(Ⅰ)求证:AB GH ; (Ⅱ)求二面角D GH E --的余弦值.13.(2013年高考湖南卷(理))如图5,在直棱柱1111//ABCD A B C D AD BC -中,,90,,1BAD AC BD BC ∠=⊥=,13AD AA ==.(I)证明:1AC B D ⊥; (II)求直线111B C ACD 与平面所成角的正弦值.14.(2013福建)如图,在四棱柱1111ABCD A B C D -中,侧棱1C1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写16.(2013北京)如图,在三棱柱-111中,11是边长为4的正方形,平面⊥平面1C 1C ,AB=3,BC=5.(Ⅰ)求证:AA 1⊥平面ABC ;(Ⅱ)求二面角A 1-BC 1-B 1的余弦值;(Ⅲ)证明:在线段BC 1存在点D,使得AD ⊥A 1B ,并求1BDBC 的值.一、选择题17 .(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A .35003cm π B .38663cm π C .313723cm πD .320483cm π【答案】A18 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβABCD1A 1C 1B E是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D19 .(2013年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C20 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B .3C .3D .13【答案】A21 .(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A22 .(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A .1243V V V V <<< B.1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<【答案】C23 .(2013年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1BC.2D.2【答案】C24 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143 C .163D .6【答案】B25 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知n m ,为异面直线,⊥m 平面α,⊥n 平面β.直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则( )正视图俯视图侧视图第5题图A .βα//,且α//lB .βα⊥,且β⊥lC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l【答案】D26.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,的正三角形.若P 为底面111A B C的中心,则PA 与平面ABC 所成角的大小为( )A .512πB .3πC .4πD .6π【答案】B27.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为 ( )A .5603B .5803C .200D .240【答案】C28.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A.2B.C .132D.【答案】C29.(2013年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为,m n ,那么m n +=( )A .8B .9C .10D .11【答案】A30.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A .B .C .D .【答案】A31.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))在下列命题中,不是公理..的是 ( )A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线 【答案】A 32.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在空间中,过点A 作平面π的垂线,垂足为B ,记)(A f B π=.设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则( )A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为045 C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为060【答案】A 33.(2013年高考四川卷(理))一个几何体的三视图如图所示,则该几何体的直观图可以是【答案】D 二、填空题34.(2013年高考上海卷(理))在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y = 和1y =-围成的封闭图形记为D,如图中阴影部分.记D 绕y轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48π+,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________【答案】2216ππ+.35.(2013年高考陕西卷(理))某几何体的三视图如图所示, 则其体积为___3π_____.【答案】3π 36.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知圆O 和圆K 是球O的大圆和小圆,其公共弦长等于球O 的半径,32OK =,且圆O 与圆K 所在的平面所成的一个二面角为60,则球O 的表面积等于______.【答案】16π37.(2013年高考北京卷(理))如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E上,点P 到直线CC 1的距离的最小值为__________.【答案】 38.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2439.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________2cm .A BCADEF BC 1B【答案】2440.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A,P,Q 的平面截该正方体所得的截面记为S.则下列命题正确的是__①②③⑤___(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足1113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S【答案】①②③⑤41.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-42.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π43.(2013年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______【答案】3π三、解答题44.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值【答案】D 1 C 1 B 1A 1D C AB45.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,四棱锥P ABCD-中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.【答案】1.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))如图,圆锥顶点为p.底面圆心为o,其母线与底面所成的角为22.5°.AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°.(Ⅰ)证明:平面PAB 与平面PCD 的交线平行于底面; (Ⅱ)求cos COD ∠.【答案】解: (Ⅰ) PAB P D ,////C m AB CD CD PCD AB PCD ⋂=⊂⇒设面面直线且面面//AB m ⇒直线 ABCD m ABCD AB 面直线面//⇒⊂ . 所以,ABCD D P PAB 的公共交线平行底面与面面C . (Ⅱ) rPOOPF F CD r =︒︒=∠5.22tan .60,由题知,则的中点为线段设底面半径为. ︒-︒=︒∠==︒⋅︒⇒=︒5.22tan 15.22tan 245tan ,2cos 5.22tan 60tan 60tan ,2COD r OF PO OF . )223(3)],1-2(3[21cos ,1-25.22tan 12cos 2cos 22-==+∠=︒⇒-∠=∠COD COD COD 212-17cos .212-17cos =∠=∠COD COD 所以.法二:1.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大小.【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ⊂面BDC ,所以//PQ 面BDC ;ABCDPQM(第20题图)方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1//2PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以////P OQ H P Q O H ∴,且OH BCD ⊂,所以//PQ 面BDC ;(Ⅱ)如图8所示,由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥,过G 作GH BM ⊥于H ,连接CH ,所以C H G ∠就是C B M D--的二面角;由已知得到3BM ==,设BDC α∠=,所以cos ,sin ,sin ,,CD CG CBCD CG BC BD CD BDαααααα===⇒===, 在RT BCG ∆中,2sin BGBCG BG BCααα∠=∴=∴=,所以在R T B H G ∆中,2133HG α=∴=,所以在RT CHG ∆中tan tan 6033CG CHGHG ∠==== tan (0,90)6060BDC ααα∴=∈∴=∴∠=;2.(2013年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,11tan 6BC CC BC C =⋅∠==从而2ABC S BC ∆==因此该三棱柱的体积为16ABC V S AA ∆=⋅==.3.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分.如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点∵E.F 分别是SA.SB 的中点 ∴EF∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF∥平面ABC 同理:FG∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SABABCSGFEB 1A 1C 1ACBAF⊥SB∴AF⊥平面SBC 又∵BC ⊆平面SBC ∴AF⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC⊥平面SAB 又∵SA ⊆平面SAB∴BC⊥SA4.(2013年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11A【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯= 而1AD C ∆中,11AC DC AD ==,故132AD C S ∆= 所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.5.(2013年高考湖北卷(理))如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(I)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(II)设(I)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ 与平面ABC所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.【答案】解:(I)EF AC ,AC ABC ⊆平面,EF ABC ⊆平面第19题图EF ABC∴平面⊆平面又EF BEF∴EF l∴平面l PAC(II)连接DF,用几何方法很快就可以得到求证.(这一题用几何方法较快,向量的方法很麻烦,特别是用向量不能方便的表示角的正弦.个人认为此题与新课程中对立体几何的处理方向有很大的偏差.)6.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE ==O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=.(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD ==由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥, 理可证A O OE '⊥, 又ODOE O =,所以A O '⊥平面BCDE .(Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.结合图1可知,H 为AC 中点,故2OH =,从而AH '== 所以cos OH A HO A H '∠==',所以二面角A CD '--向量法:以O 点为原点,建立空间直角坐标系O xyz -则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则C D OBE'AH.CO BDEA CDOBE'A图1图200n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,n =- 由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,3n OA n OA n OA '⋅'===',即二面角A CD B '--.7.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2,E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM 的长.【答案】8.(2013年高考新课标1(理))如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C所成角的正弦值.【答案】(Ⅰ)取AB 中点E,连结CE,1A B ,1A E,∵AB=1AA ,1BAA ∠=060,∴1BAA ∆是正三角形,∴1A E ⊥AB, ∵CA=CB, ∴CE⊥AB, ∵1CE A E ⋂=E,∴AB⊥面1CEA,∴AB⊥1AC ;(Ⅱ)由(Ⅰ)知EC⊥AB,1EA ⊥AB,又∵面AB C⊥面11ABB A ,面ABC∩面11ABB A =AB,∴EC⊥面11ABB A ,∴EC⊥1EA ,∴EA,EC,1EA 两两相互垂直,以E 为坐标原点,EA 的方向为x 轴正方向,|EA |为单位长度,建立如图所示空间直角坐标系O xyz -, 有题设知A(1,0,0),1A(0,,0),C(0,0,),B(-1,0,0),则BC),1BB =1AA1A C),设n =(,,)x y z 是平面11CBB C 的法向量,则100BC BB ⎧∙=⎪⎨∙=⎪⎩n n ,即0x x ⎧=⎪⎨=⎪⎩,可取n∴1cos ,A C n =11|A C A C ∙n |n ||∴直线A 1C 与平面BB 1C 1C9.(2013年高考陕西卷(理))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA ==(Ⅰ) 证明: A 1C ⊥平面BB 1D 1D ;(Ⅱ) 求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.1A【答案】解:(Ⅰ) BD O A ABCD BD ABCD O A ⊥∴⊂⊥11,,面且面 ;又因为,在正方形AB CD中,BD C A AC A C A AC A BD A AC O A BD AC ⊥⊂⊥=⋂⊥11111,,故面且面所以;且. 在正方形AB CD 中,AO = 1 . .111=∆O A OA A RT 中,在O E C A OCE A E D B 1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又O O BD D D BB O D D BB BD =⋂⊂⊂111111E .E ,D D BB C A 111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O 为原点,以OC 为X 轴正方向,以OB 为Y 轴正方向.则)1,0,1()1,1,1(),100(),001(,0,1,0111-=⇒C A B A C B ,,,,)(.由(Ⅰ)知, 平面BB 1D 1D 的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OB A n 设平面OCB 1的法向量为,则0,0,2122=⋅=⋅OC n OB n n ).1-,1,0(法向量2=n 为解得其中一个21221|||||,cos |cos 212111=⋅=⋅=><=n n n n θ.1A所以,平面OCB 1与平面BB 1D 1D 的夹角θ为3π 10.(2013年高考江西卷(理))如图,四棱锥P A B-中,PA ,ABCD E BD ⊥平面为的中点,G PD 为的中点,3,12DAB DCB EA EB AB PA ∆≅∆====,,连接CE 并延长交AD 于F . (1) 求证:AD CFG ⊥平面;(2) 求平面BCP 与平面DCP 的夹角的余弦值.【答案】解:(1)在ABD ∆中,因为E 是BD 的中点,所以1EA EB ED AB ====,故,23BAD ABE AEB ππ∠=∠=∠=,因为DAB DCB ∆≅∆,所以EAB ECB ∆≅∆, 从而有FED FEA ∠=∠,故,EF AD AF FD ⊥=,又因为,PG GD =所以FG ∥PA . 又PA ⊥平面ABCD ,所以,GF AD ⊥故AD ⊥平面CFG .(3) 以点A 为坐标原点建立如图所示的坐标系,则3(0,0,0),(1,0,0),(2A B C D ,(4)3(0,0,)2P ,故133333(0),(,),(2222BC CP CD ==--=-,,, 设平面BCP 的法向量111(1,,)n y z =,则111102330222y y z ⎧=⎪⎪⎨⎪--+=⎪⎩ ,解得1123y z ⎧=⎪⎪⎨⎪=⎪⎩,即12(1,)3n =. 设平面DCP 的法向量222(1,,)n y z =,则22232330222y y z ⎧-=⎪⎪⎨⎪--+=⎪⎩,解得222y z ⎧=⎪⎨=⎪⎩,即2n=.从而平面BCP 与平面DCP 的夹角的余弦值为12124cos 416n n n n θ⋅===. 11.(2013年高考四川卷(理))如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值.1C【答案】解:()I 如图,在平面ABC 内,过点P 做直线l //BC ,因为l 在平面1A BC 外,BC 在平面1A BC 内,由直线与平面平行的判定定理可知, l //平面1A BC .由已知,AB AC =,D 是BC 的中点,所以,BC AD ⊥,则直线l AD ⊥.因为1AA ⊥平面ABC ,所以1AA ⊥直线l .又因为1,AD AA 在平面11ADD A 内,且AD 与1AA 相交,所以直线平面11ADD A()II 解法一:连接1A P ,过A 作1AE A P ⊥于E ,过E 作1EF A M ⊥于F ,连接AF .由()I 知,MN ⊥平面1AEA ,所以平面1AEA ⊥平面1A MN .所以AE ⊥平面1A MN ,则1A M AE ⊥.所以1A M ⊥平面AEF ,则1A M ⊥AF .故AFE ∠为二面角1A A M N --的平面角(设为θ).设11AA =,则由12AB AC AA ==,120BAC ∠=,有60BAD ∠=,2,1AB AD ==.又P 为AD 的中点,所以M 为AB 的中点,且1,12AP AM ==, 在1Rt AA P 中, 1A P =;在1Rt A AM 中, 1AM =从而,11AA AP AE A P ∙==11AA AM AF A M ∙==所以sin AE AF θ==.所以cos θ===. 故二面角1A A M N --的余弦值为5解法二: 设11AA =.如图,过1A 作1A E 平行于11B C ,以1A 为坐标原点,分别以111,A E A D ,1AA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点1A 重合).则()10,0,0A ,()0,0,1A .因为P 为AD 的中点,所以,M N 分别为,AB AC 的中点,故11,1,,122M N ⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭, 所以131,122A M ⎛⎫= ⎪ ⎪⎝⎭,()10,0,1A A =,()3,0,0NM =. 设平面1AA M 的一个法向量为()1111,,n x y z =,则1111,,n A M n A A ⎧⊥⎪⎨⊥⎪⎩即11110,0,n A M n A A ⎧∙=⎪⎨∙=⎪⎩故有()()()1111111,,,10,2,,0,0,10,x y z x y z ⎧⎫∙=⎪⎪⎪⎨⎝⎭⎪∙=⎩从而111110,20.x y z z ++=⎪=⎩取11x =,则1y =,所以()11,n =.设平面1A MN 的一个法向量为()2222,,n x y z =,则 212,,n A M n NM ⎧⊥⎪⎨⊥⎪⎩即2120,0,n A M n NM ⎧∙=⎪⎨∙=⎪⎩故有()())2222221,,,10,22,,0,x y z x y z ⎧⎛⎫∙=⎪ ⎪ ⎪⎪⎝⎭⎨⎪∙=⎪⎩从而222210,20.x y z ++=⎨⎪=⎩取22y =,则21z =-,所以()20,2,1n =-.设二面角1A A M N --的平面角为θ,又θ为锐角, 则1212cos n n n n θ∙===∙. 故二面角1A A M N --的余弦值为5 12.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.如图,在直三棱柱111A B C ABC -中,AC AB ⊥,2==AC AB ,41=AA ,点D 是BC 的中点(1)求异面直线B A 1与D C 1所成角的余弦值(2)求平面1ADC 与1ABA 所成二面角的正弦值.【答案】本题主要考察异面直线.二面角.空间向量等基础知识以及基本运算,考察运用空间向量解决问题的能力.解:(1)以{}1,,AA 为为单位正交基底建立空间直角坐标系xyz A -,则)0,0,0(A )0,0,2(B ,)0,2,0(C ,)4,0,0(1A ,)0,1,1(D ,)4,2,0(1C ∴)4,0,2(1-=A ,)4,1,1(1--=A∴10103182018,cos 11==>=<C A ∴异面直线B A 1与D C 1所成角的余弦值为10103 (2))0,2,0(= 是平面1ABA 的的一个法向量设平面1ADC 的法向量为),,(z y x =,∵)0,1,1(=,)4,2,0(1=AC 由1,AC ⊥⊥∴⎩⎨⎧=+=+0420z y y x 取1=z ,得2,2=-=x y ,∴平面1ADC 的法向量为)1,2,2(-=m 设平面1ADC 与1ABA 所成二面角为θ∴32324,cos cos =⨯-==><=θ, 得35sin =θ ∴平面1ADC 与1ABA 所成二面角的正弦值为35 13.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))如图,四棱锥P ABCD-中,902,ABC BAD BC AD PAB ∠=∠==∆,与PAD ∆都是等边三角形.(I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小.【答案】14.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))如图所示,在三棱锥P ABQ -中,PB ⊥平面ABQ ,BA BP BQ ==,,,,D C E F 分别是,,,AQ BQ AP BP 的中点, 2AQ BD =,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(Ⅰ)求证:AB GH ; (Ⅱ)求二面角D GH E --的余弦值.【答案】解:(Ⅰ)证明:因为,,,D C E F 分别是,,,AQ BQ AP BP 的中点,所以EF ∥AB ,DC ∥AB ,所以EF ∥DC ,又EF ⊂平面PCD ,DC ⊂平面PCD ,所以EF ∥平面PCD ,又EF ⊂平面EFQ ,平面EFQ平面PCD GH =, 所以EF ∥GH ,又EF ∥AB ,所以AB ∥GH .(Ⅱ)解法一:在△ABQ 中, 2AQ BD =,AD DQ =,所以=90ABQ ∠,即AB BQ ⊥,因为PB ⊥平面ABQ ,所以AB PB ⊥,又BP BQ B =,所以AB ⊥平面PBQ ,由(Ⅰ)知AB ∥GH ,所以GH ⊥平面PBQ ,又FH ⊂平面PBQ ,所以GH FH ⊥,同理可得GH HC ⊥,所以FHC ∠为二面角D GH E --的平面角,设2BA BQ BP ===,连接PC ,在t R △FBC 中,由勾股定理得,FC =在t R △PBC 中,由勾股定理得,PC =,又H 为△PBQ 的重心,所以13HC PC == 同理FH =,在△FHC 中,由余弦定理得552499cos 5529FHC +-∠==-⨯,即二面角D GH E --的余弦值为45-. 解法二:在△ABQ 中,2AQ BD =,AD DQ =,所以90ABQ ∠=,又PB ⊥平面ABQ ,所以,,BA BQ BP 两两垂直,以B 为坐标原点,分别以,,BA BQ BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,设2BA BQ BP ===,则(1,0,1)E ,(0,0,1)F ,(0,2,0)Q ,(1,1,0)D ,(0,1,0)C (0,0,2)P ,,所以(1,2,1)EQ =--,(0,2,1)FQ =-,(1,1,2)DP =--,(0,1,2)CP =-,设平面EFQ 的一个法向量为111(,,)m x y z =, 由0m EQ ⋅=,0m FQ ⋅=,得111112020x y z y z -+-=⎧⎨-=⎩取11y =,得(0,1,2)m =.设平面PDC 的一个法向量为222(,,)n x y z =由0n DP ⋅=,0n CP ⋅=, 得222222020x y z y z --+=⎧⎨-+=⎩取21z =,得(0,2,1)n =.所以4cos ,5m n m n m n ⋅==因为二面角D GH E --为钝角,所以二面角D GH E --的余弦值为45-. 15.(2013年高考湖南卷(理))如图5,在直棱柱1111//ABCD A B C D AD BC -中,,90,,1BAD AC BD BC ∠=⊥=,13AD AA ==.(I)证明:1AC B D ⊥; (II)求直线111B C ACD 与平面所成角的正弦值.【答案】解: (Ⅰ) AC BB ABCD BD ABCD BB D C B A ABCD ⊥⇒⊂⊥∴-111111,面且面是直棱柱D B AC BDB D B BDB AC B BB BD BD AC 11111,,⊥∴⊂⊥∴=⋂⊥,面。

2011年高考试题分类汇编(立体几何)

2011年高考试题分类汇编(立体几何)

2011年高考试题分类汇编(立体几何)考点1 公理体系1.(2011·四川卷·文理科)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是A.12l l ⊥,23l l ⊥⇒1l ∥3lB.12l l ⊥,2l ∥3l ⇒1l ⊥3lC.1l ∥2l ∥3l ⇒1l ,2l ,3l 共面D.1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 2.(2011·浙江卷·理科)下列命题中错误的是A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,l αβ=,那么l ⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β 3.(2011·浙江卷·文科)若直线l 不平行于平面α,且l αØ,则 A.α内存在直线与异面 B.α内不存在与l 平行的直线 C.α内存在唯一的直线与l 平行 D.α内的直线与l 都相交4.(2011·江西卷·理科)已知1α,2α,3α是三个相互平行的平面,平面1α,2α之间的距离为1d ,平面2α,3α之间的距离为2d ,直线l 与1α,2α,3α分别相交于321,,p p p .那么“3221p p p p =”是“21d d =”的 A.充分不需要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件考点2 多面体 考点3 旋转体1.(2011·大纲全国卷·文理科)已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为A.7πB.9πC.11πD.13π考点4 组合体1.(2011S ABCD -的底面是边长为1的正方形,点,,,,S A B C D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为C.2.(2011·四川卷·文理科)半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是 .3.(2011·课标全国卷·理科)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6AB =,BC =O ABCD -的体积为 .4.(2011·课标全国卷·文科)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的163,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .考点5 解答题考法1 线线所成的角1.(2011·大纲全国卷·文科)已知正方体1111ABCD A BC D -中,E 为11C D 的中点,则异面直线AE 与BC 所成角的余弦值为 .2.(2011·陕西卷·理科)如图,在ABC ∆中,60ABC ∠=,90BAC ∠=,AD 是BC 上的高,沿AD 把ABD ∆折起,使90BDC ∠=.(Ⅰ)证明:平面ADB ⊥平面BDC ;(Ⅱ)设E 为BC 的中点,求DB AE 与夹角的余弦值.AC BDEDCBA考法2 线面所成的角1.(2011·大纲全国卷·文理科)如图,四棱锥S ABCD -中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB =BC =2,CD =SD =1.(Ⅰ)证明:SD ⊥平面SAB ;(Ⅱ)求AB 与平面SBC 所成的角的大小.2.(2011·天津卷·文科)如图,在四棱锥P ABCD -中,底面ABCD 为平行四 边形,45ADC ∠=,1AD AC ==,O 为AC 中点,PO ⊥平面ABCD ,2PO =,M 为PD 中点.(Ⅰ)证明:PB //平面ACM ; (Ⅱ)证明:AD ⊥平面PAC ;(Ⅲ)求直线AM 与平面ABCD 所成角的正切值.考法3 二面角1.(2011·课标全国卷·理科)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=,2AB AD =,PD ⊥底面ABCD . (Ⅰ)证明:PA BD ⊥;(Ⅱ)若PD AD =,求二面角A PB C --的余弦值.2.(2011·四川卷·理科)如图,在直三棱柱111ABC A B C -中,90BAC ∠=,11AB AC AA ===,D 是棱1CC 上的一点,P 是AD 的延长线与11AC 的延长线的交点且1PB ∥平面1BDA . (Ⅰ)求证:CD ∥1C D ;(Ⅱ)求二面角1A A D B --的平面角的余弦值; (Ⅲ)求点C 到平面1B DP 的距离.SDCBAABCD PA 1B 1C 1ABCDPABCDPMO3.(2011·四川卷·文科)如图,在直三棱柱111ABC A B C -中,90BAC ∠=,11AB AC AA ===,延长11AC 至点P ,使111C P AC =,连接AP 交棱1CC 于点D . (Ⅰ)求证:1PB ∥平面1BDA ;(Ⅱ)求二面角1A A D B --的平面角的余弦值.4.(2011·天津卷·理科)如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,1AA =1C H ⊥平面11AA B B , 且1C H =(Ⅰ)求异面直线与所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的长.5.(2011·江苏卷·理科)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB AD =,60BAD ∠=,E ,F 分别是AP ,AD 的中点. 求证:(Ⅰ)直线EF ∥平面PCD ; (Ⅱ)平面BEF ⊥平面PAD .ABCHC 1A 1B 1ABCDPA 1B 1C 1ABCDPE F6.(2011·陕西卷·文科)如图,在ABC ∆中,45,90ABC BAC ∠=∠=,AD 是BC 上的高,沿AD 把D AB ∆折起,使90BDC ∠= .(Ⅰ)证明:平面ADB ⊥平面BDC ; (Ⅱ)若1BD =,求三棱锥D ABC -的表面积. 考法4 距离1.(2011·大纲全国卷·文理科)已知直二面角βα--l , 点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂足,若2AB =,1AC BD ==,则D 到平面ABC 的距离等于1 2.(2011·课标全国卷·文科)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若1PD AD ==,求棱锥D PBC -的高.ABCDPEDCBAA BCD。

2011-2018高考数学立体几何分类汇编(理)

2011-2018高考数学立体几何分类汇编(理)

2011-2018 新课标(理科)立体几何分类汇编一、选填题【2012 新课标】(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( B )(A) 6 (B) 9 (C) (D)【解析】选 B 。

该几何体是三棱锥,底面是俯视图,高为3,此几何体的体积为V 1 13 26 3 3 9【2012 新课标】(11)已知三棱锥S ABC 的所有顶点都在球O 的求面上,ABC 是边长为1的正三角形,SC 为球O 的直径,且SC 2 ;则此棱锥的体积为( A )( A)26( B)36(C)23(D)22【解析】ABC 的外接圆的半径3r ,点O 到面ABC 的距离32 2 6d R r ,SC 为球3O 的直径点S到面ABC 的距离为 2 2 6d 此棱锥的体积为31 1 32 6 2V S 2dABC3 34 3 6另:1 3V S 2R 排除B, C, D ABC3 6【2013 新课标1】6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( A )500 π866 π1372 πA、 3 cm 3 cm3 B、 3 cm3 C、2048 π3 D、 3 cm3【解析】设球的半径为R,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则 2 ( 2)2 42R R ,解得R=5,∴球的体积为34 53500 π=33cm ,故选 A.【2013 新课标1】8、某几何函数的三视图如图所示,则该几何的体积为( A )A、16+8 π、B8+8 πC、16+16 π、D8+16 π【解析】由三视图知,该几何体为放到的半个圆柱底面半径为 2 高为4,上边放一个长为 4 宽为 2 高为 2 长方体,故其体积为11 222 4 4 2 2 =16 8 ,故选 A .【2013 新课标2】4. 已知m,n 为异面直线,m⊥平面α,n⊥平面β.直线l 满足l⊥m,l⊥n,l α,l β,则( D ) .A.α∥β且l∥α.Bα⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l【解析】因为m⊥α,l⊥m,l α,所以l∥α.同理可得l∥β。

2011高考数学分类汇编不等式 解析几何 立体几何 数列 应用题

2011高考数学分类汇编不等式 解析几何 立体几何 数列 应用题

2011年高考数学试题分类汇编 不等式1.(重庆理7)已知a >0,b >0,a+b=2,则y=的最小值是 A . B .4 C .D .5【答案】C2.(浙江理5)设实数满足不等式组若为整数,则的最小值是A .14B .16C .17D .19【答案】B3.(全国大纲理3)下面四个条件中,使成立的充分而不必要的条件是A .B .C .D .【答案】A4.(江西理2)若集合,则A .B .C .D .【答案】B5.(辽宁理9)设函数,则满足的x 的取值范围是 (A ),2] (B )[0,2] (C )[1,+) (D )[0,+)【答案】D6.(湖南理7)设m >1,在约束条件下,目标函数z=x+my 的最大值小于2,则m 的取值范围为 A .(1,) B .(,)C .(1,3 )D .(3,)【答案】A7.(湖北理8)已知向量a=(x +z,3),b=(2,y-z ),且a ⊥ b .若x ,y 满足不等式,则z 的取值范围为 A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3] 【答案】D8.(广东理5)。

已知在平面直角坐标系上的区域由不等式组给定。

若14a b +7292,x y 250270,0x y x y x +-⎧⎪+-⎨⎪⎩>>≥,y ≥0,,x y 34x y +a b >1a b +>1a b ->22a b >33a b >{},{}x A x x B xx -2=-1≤2+1≤3=≤0A B ⋂={}x x -1≤<0{}x x 0<≤1{}x x 0≤≤2{}x x 0≤≤1⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x 2)(≤x f 1[-∞∞1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩11+∞+∞1x y +≤xOyD 02x y x ⎧≤≤⎪≤⎨⎪≤⎩为上的动点,点的坐标为,则的最大值为A .B .C .4D .3【答案】C9.(四川理9)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往地至少72吨的货物,派用的每辆车虚满载且只运送一次.派用的每辆甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z= A .4650元 B .4700元 C .4900元 D .5000元 【答案】C【解析】由题意设派甲,乙辆,则利润,得约束条件画出可行域在的点代入目标函数 10.(福建理8)已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域,上的一个动点,则·的取值范围是 A .[-1.0] B .[0.1]C .[0.2] D.[-1.2]【答案】C11.(安徽理4)设变量的最大值和最小值分别为 (A )1,-1 (B )2,-2 (C ) 1,-2(D ) 2,-1【答案】B12.(上海理15)若,且,则下列不等式中,恒成立的是A .B .C .D D .【答案】二、填空题13.(陕西理14)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

03 立体几何1. (2011天津卷理)17.(本小题满分13分)如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B的中心,1AA =1C H ⊥平面11AA B B ,且1C H =(Ⅰ)求异面直线AC 与A 1B 1所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值; (Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B内,且MN ⊥平面11A B C ,求线段BM 的长.【解析】17.本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.满分13分.方法一:如图所示,建立空间直角坐标系,点B 为坐标原点. 依题意得(0,0,0),A B C 11(2,0),,22,2,5)A B(I )解:易得11(2,2,5),(22,0,0)AC A B =--=-, 于是111111cos ,||||3AC A B AC A B AC A B ⋅===⋅⨯所以异面直线AC 与A 1B 1 (II )解:易知111(0,22,0),(2,AA AC ==- 设平面AA 1C 1的法向量(,,)m x y z =,则11100m A C m AA ⎧⋅=⎪⎨⋅=⎪⎩即0,0.⎧+=⎪⎨=⎪⎩不妨令x =可得m =,同样地,设平面A 1B 1C 1的法向量(,,)n x y z =,则11110,0.n A C n A B ⎧⋅=⎪⎨⋅=⎪⎩即0,0.⎧+=⎪⎨-=⎪⎩不妨令y =可得n =于是2cos ,,||||7m n m n m n ⋅===⋅从而sin ,7m n =所以二面角A —A 1C 1—B的正弦值为7(III )解:由N 为棱B 1C 1的中点,得N 设M (a ,b ,0),则2(,,222MN a b =-- 由MN ⊥平面A 1B 1C 1,得11110,0.MNA B MN AC ⎧⋅=⎪⎨⋅=⎪⎩即()(0,2()(()(0.222a ab ⎧-⋅-=⎪⎪⎨⎪-⋅+-⋅+=⎪⎩解得,24a b⎧=⎪⎪⎨⎪=⎪⎩故M因此2(24BM =,所以线段BM 的长为10||BM = 方法二:(I )解:由于AC//A 1C 1,故111C A B ∠是异面直线AC 与A 1B 1所成的角. 因为1CH ⊥平面AA 1B 1B ,又H 为正方形AA 1B 1B 的中心,11AA CH ==可得1111 3.AC B C ==因此2221111111111111cos 23AC A B B C C A B AC A B +-∠==⋅所以异面直线AC 与A 1B 1(II )解:连接AC 1,易知AC 1=B 1C 1, 又由于AA 1=B 1A 1,A 1C 1=A 1=C 1,所以11AC A ∆≌11B C A ∆,过点A 作11AR A C ⊥于点R ,连接B 1R ,于是111B R AC ⊥,故1ARB ∠为二面角A —A 1C 1—B 1的平面角.在11Rt A RB ∆中,11111sin 3B R A B RA B =⋅∠== 连接AB 1,在1ARB ∆中,2221111114,,cos 2AR B R AB AB AR B R ARB AR B R+-==∠=⋅27=-,从而1sin ARB ∠=所以二面角A —A 1C 1—B 1(III )解:因为MN ⊥平面A 1B 1C 1,所以11.MN A B ⊥ 取HB 1中点D ,连接ND ,由于N 是棱B 1C 1中点, 所以ND//C 1H且1122ND C H ==. 又1C H ⊥平面AA 1B 1B ,所以ND ⊥平面AA 1B 1B ,故11.ND A B ⊥ 又,MNND N =所以11A B ⊥平面MND ,连接MD 并延长交A 1B 1于点E , 则111,//.ME A B ME AA ⊥故 由1111111,4B E B D DE AA B A B A ===得12DE B E ==,延长EM 交AB 于点F ,可得1BF B E ==连接NE. 在Rt ENM ∆中,2,.ND ME ND DE DM ⊥=⋅故所以24ND DM DE ==可得4FM =连接BM ,在Rt BFM ∆中,4BM ==2. (2011北京理)16.(本小题共14分) 如图,在四棱锥P ABCD -中,PA ⊥平面A B C D ,底面A B C D 是菱形,2,60A B B A D =∠=.(Ⅰ)求证:BD ⊥平面;PAC (Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.【解析】(16)(共14分) 证明:(Ⅰ)因为四边形ABCD 是菱形,所以AC ⊥BD.又因为PA ⊥平面ABCD. 所以PA ⊥BD.所以BD ⊥平面PAC. (Ⅱ)设AC∩BD=O. 因为∠BAD=60°,PA=PB=2,所以BO=1,AO=CO=3.如图,以O 为坐标原点,建立空间直角坐标系O —xyz ,则P (0,—3,2),A (0,—3,0),B (1,0,0),C (0,3,0). 所以).0,32,0(),2,3,1(=-=AC PB 设PB 与AC 所成角为θ,则4632226cos =⨯=. (Ⅲ)由(Ⅱ)知).0,3,1(-= 设P (0,-3,t )(t>0), 则),3,1(t BP --=设平面PBC 的法向量),,(z y x m =, 则0,0=⋅=⋅m m所以⎪⎩⎪⎨⎧-+--=+-03,03tz y x y x 令,3=y 则.6,3t z x ==所以)6,3,3(tm =同理,平面PDC 的法向量)6,3,3(tn -=因为平面PCB ⊥平面PDC, 所以n m ⋅=0,即03662=+-t解得6=t 所以PA=6 3. (2011辽宁卷理)18.(本小题满分12分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12P D .(I )证明:平面PQC ⊥平面DCQ ; (II )求二面角Q —BP —C 的余弦值.【解析】18.解:如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D —xyz. (I )依题意有Q (1,1,0),C (0,0,1),P (0,2,0).则(1,1,0),(0,0,1),(1,1,0).DQ DC PQ ===- 所以0,0.PQ DQ PQ DC ⋅=⋅=即PQ ⊥DQ ,PQ ⊥DC. 故PQ ⊥平面DCQ.又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ. …………6分(II )依题意有B (1,0,1),(1,0),(12,1).C B B P ==--设(,,)n x y z =是平面PBC 的法向量,则0,0,20.0,n CB x x y z n BP ⎧⋅==⎧⎪⎨⎨-+-=⋅=⎩⎪⎩即因此可取(0,1,2).n =--设m 是平面PBQ 的法向量,则0,0.m BP m PQ ⎧⋅=⎪⎨⋅=⎪⎩可取(1,1,1).cos ,5m m n =<>=-所以 故二面角Q —BP —C的余弦值为5-………………12分 4. (全国大纲卷理)19.(本小题满分12分)(注意:在试题卷上作答无效.........) 如图,四棱锥S ABCD -中, AB CD ⊥,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====.(Ⅰ)证明:SD SAB ⊥平面;(Ⅱ)求AB 与平面SBC 所成角的大小.【解析】19.解法一:(I )取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE=CB=2, 连结SE,则,SE AB SE ⊥= 又SD=1,故222ED SE SD =+, 所以DSE ∠为直角。

…………3分由,,AB DE AB SE DESE E ⊥⊥=,得AB ⊥平面SDE ,所以AB SD ⊥。

SD 与两条相交直线AB 、SE 都垂直。

所以SD ⊥平面SAB 。

…………6分(II )由AB ⊥平面SDE 知, 平面ABCD ⊥平面SED 。

作,SF DE ⊥垂足为F ,则SF ⊥平面ABCD ,2S D S E SF DE ⨯== 作FG BC ⊥,垂足为G ,则FG=DC=1。

连结SG ,则SG BC ⊥, 又,BC FG SGFG G ⊥=,故BC ⊥平面SFG ,平面SBC ⊥平面SFG 。

…………9分作FH SG ⊥,H 为垂足,则FH ⊥平面SBC 。

SF FG FH SG ⨯==,即F 到平面SBC 的距离为7由于ED//BC ,所以ED//平面SBC ,E 到平面SBC 的距离d 设AB 与平面SBC 所成的角为α,则sin ,arcsin 77d EB αα=== …………12分解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C —xyz 。

设D (1,0,0),则A (2,2,0)、B (0,2,0)。

又设(,,),0,0,0.S x y z x y z >>>则(I )(2,2,),(,2,)AS x y z BS x y z =--=-,(1,,)DS x y z =-,由||||AS BS =得=故x=1。

由22||11,DS y z =+=得又由222||2(2)4,BS x y z =+-+=得即221410,,22y z y y z +-+===故 …………3分于是1333(1,,),(1,,),(1,,222222S AS BS =--=-, 13(0,,),0,0.22DS DS AS DS BS =⋅=⋅=故,,,DS AD DS BS AS BS S ⊥⊥=又所以SD ⊥平面SAB 。

…………6分(II )设平面SBC 的法向量(,,)a m n p =,则,,0,0.a BS a CB a BS a CB ⊥⊥⋅=⋅=又33(1,,),(0,2,0),2BSCB =-= 故30,220.m n p n ⎧-+=⎪⎨⎪=⎩…………9分取p=2得(2),(2,0,0)a AB ==-又。

cos ,7||||AB a AB a AB a ⋅==⋅故AB 与平面SBC 所成的角为arcsin75. (全国新课标理)(18)(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD. (Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD=AD ,求二面角A-PB-C 的余弦值。

相关文档
最新文档