江苏2014高考数学 立体几何专题

合集下载

江苏省2014年高考数学(文)二轮复习简易通配套课件:常考问题16 立体几何中的向量方法

江苏省2014年高考数学(文)二轮复习简易通配套课件:常考问题16 立体几何中的向量方法

• 4 . 空间向量求角时考生易忽视向量的夹 角与所求角之间的关系 • (1)求线面角时,得到的是直线方向向量 和平面法向量的夹角的余弦,而不是线面 角的余弦; • (2)求二面角时,两法向量的夹角有可能 是二面角的补角,要注意从图中分析.
热点与突破
• 热点一 向量法证明平行与垂直 • 【例1】 如图,在直三棱柱ABC-A1B1C1 中, • △ ABC 为 等 腰 直 角 三 角 形 , ∠ BAC = 90°, • 且 AB = AA1 , D , E , F 分 别 为 B1A , C 1C , • BC的中点.求证: • (1)DE∥平面ABC;
• [规律方法] 证明平行、垂直关系时,若用 传统的几何法,难以找出问题与条件的关 系时,可采用向量法,但向量法要求计算 必须准确无误,利用向量法的关键是正确 求平面的法向量.
• • • • • •
【 训练 1】 如图,在直三棱柱 ADE-BCF 中, 面ABFE和面ABCD都是正方形且互相 垂直,M为AB的中点,O为DF的中点. 求证: (1)OM∥平面BCF; (2)平面MDF⊥平面EFCD.
→ → (2)易知AA1=(0,2 2,0),A1C1=(- 2,- 2, 5). 设平面 AA1C1 的法向量 m=(x,y,z), → m· A1C1=0, 则 → AA1=0, m·
- 2x- 即 2 2y=0.
2y+ 5z=0,
不妨令 x= 5,可得 m=( 5,0, 2). 同样地,设平面 A1B1C1 的法向量 n=(x1,y1,z1),
(1)证明
→ → → 以 A 为原点,AB,AD,AA1的方向分别为 x 轴、y 轴、z
轴的正方向建立空间直角坐标系(如图).设 AB=a,则 A(0,0,0),

2014年高考数学试题分类汇编 立体几何 word版含答案.

2014年高考数学试题分类汇编 立体几何  word版含答案.

2014年高考数学试题汇编立体几何一.选择题1. (2014福建)某空间几何体的正视图是三角形,则该几何体不可能是()圆柱圆锥四面体三棱柱A2. (2014新课标I如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为...6 .4【答案】:C【解析】:如图所示,原几何体为三棱锥,其中,,故最长的棱的长度为,选C3. (2014新课标II如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A. B. C. D.【答案】C4(2014浙江)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是A. 90B. 129C. 132D. 138D5. (2014江西一几何体的直观图如右图,下列给出的四个俯视图中正确的是()【答案】B【解析】俯视图为在底面上的投影,易知选:B6(2014重庆某几何体的三视图如图所示,则该几何体的表面积为()A.54B.60C.66D.72【答案】B【解析】7.(2014辽宁)某几何体三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】B【解析】8(2014湖南一块石材表示的几何体的三视图如图2所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.49(2014安徽一个多面体的三视图如图所示,则该多面体的表面积为(A)(B)(C)21 (D)187 A10. (2014湖北在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C. ④和③D.④和②点评:本题考查空间由已知条件,在空间坐标系中作出几何体的形状,再正视图与俯视图,容易题。

2014年高考立体几何(解析版)

2014年高考立体几何(解析版)

2014年高考真题立体几何汇编解析版16.(2014江苏)(本小题满分14 分)如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,,的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC .【答案】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系, 考查空间想象能力和推理论证能力.满分14分. (1)∵D E ,为PC AC ,中点 ∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF (2)∵D E ,为PC AC ,中点 ∴13DE PA == ∵E F ,为AC AB ,中点 ∴142EF BC == ∴222DE EF DF += ∴90DEF ∠=°,∴DE ⊥EF∵//DE PA PA AC ⊥,,∴DE AC ⊥ ∵AC EF E = ∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC .17.(2014山东)(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60,DAB ∠=22AB CD ==,M 是线段AB 的中点.(I )求证:111//C M A ADD 平面;B 1C 1D 1A 1DCBMA(II )若1CD 垂直于平面ABCD且1CD 平面11C D M 和平面ABCD 所成的角(锐角)的余弦值. 解:(Ⅰ)连接1AD1111D C B A ABCD - 为四棱柱,11//D C CD ∴ 11D C CD =又M 为AB 的中点,1=∴AM AM CD //∴,AM CD =11//D C AM ∴,11D C AM =11D AMC ∴为平行四边形 11//MC AD ∴又111ADD A M C 平面⊄ 111A D D A AD 平面⊂111//ADD A AD 平面∴(Ⅱ)方法一:11//B A AB 1111//D C B A共面与面1111D ABC M C D ∴作AB CN ⊥,连接N D 1 则NC D 1∠即为所求二面角在ABCD 中, 60,2,1=∠==DAB AB DC 23=∴CN 在CN D Rt 1∆中,31=CD ,23=CN 2151=∴N D 方法二:作AB CP ⊥于p 点以C 为原点,CD 为x 轴,CP 为y 轴,1CD 为z 轴建立空间坐标系,)0,23,21(),3,0,0(),3,0,1(11M D C -∴)3,23,21(),0,0,1(111-==∴M D D C设平面M D C 11的法向量为),,(111z y x =⎪⎩⎪⎨⎧=-+=∴03232101111z y x x )1,2,0(1=∴n 显然平面ABCD 的法向量为)0,0,1(2=n5551,cos 21==<∴n n 显然二面角为锐角,所以平面M D C 11和平面ABCD 所成角的余弦值为555515321523cos 11====∠∴N D NC CN D18.三棱锥A BCD -及其侧视图、俯视图如图所示。

2014高考数学立体几何真题

2014高考数学立体几何真题

33A.3 C.1 D. 22
G2 空间几何体的三视图和直观图
四、11.[2014·北京卷] 某三棱锥的三视图如图1-3所示,则该三棱锥最长棱的棱长为_____1-1所示,则该三棱锥的体积是(锥体体积公
数 学
G单元 立体几何
G1 空间几何体的结构
*一、19.、、[2014·安徽卷] 如图1-5所示,四棱锥P - ABCD的底面是边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH
.
图1-5
(1)证明:GH∥EF;
(2)若EB=2,求四边形GEFH的面积.
*二、 3.[2014·福建卷] 以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( )
A.2π B.π C.2 D.1
三、7.[2014·新课标全国卷Ⅱ] 正三棱柱ABC - A1B1C1的底面边长为2,侧棱长为3,D为BC中点,则三棱锥A - B1DC1的体积为( )
1式:V=Sh,其中S为底面面积,h为高)( )
3
图1-1 A.3 B.2 3 D.1
六、7.[2014·重庆卷] 某几何体的三视图如图1-2所示,则该几何体的体积为( )
1

2014年全国高考数学理科(立体几何部分)解析汇编

2014年全国高考数学理科(立体几何部分)解析汇编

【全国卷·新课标I ·第19题】如图,三棱柱ABC-A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C . (1)证明:AC=AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB=BC ,求二面角A-A 1B 1-C 1的余弦值.解:(1)∵面BB 1C 1C 为菱形∴BC 1⊥B 1C ,O 为B 1C 和BC 1的中点 ∵AB ⊥B 1C ∴B 1C ⊥面ABC 1令BC 1与B 1C 交于点O ,连接AO ∵AO ⊂面ABC 1 ∴B 1C ⊥AO ∵B 1O=CO∴AO 是B 1C 的中垂线 ∴AC=AB 1(2)因为AO 、BC 1、B 1C 两两互相垂直,以O 为坐标原点,分别以OB 、1OB 、OA 为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系令|OB|=1,由AC ⊥AB 1,∠CBB 1=60°,AB=BC 易得:11B C BC =设向量n =(x ,y ,z )是平面AA 1B 1的一个法向量,则:1113n AB =0n A B=0y z x z ⎧⋅=⎪⎪⎨⎪⋅-=⎪⎩由此,可取n =(1,3同理可得,平面A 1B 1C 1的一个法向量为:m =(1∴n m 1cos n,m =7|n ||m |7⋅〈〉==⋅1【全国卷·新课标II ·第18题】如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D-AE-C 为60°,AP=1,E-ACD 的体积.解:(1)连接BD 交AC 于O ,连接OE∵底面ABCD 为矩形 ∴O 为BD 的中点 ∵E 为PD 的中点 ∴PB ∥OE∵OE ⊂面AEC ,PB ⊄面AEC ∴PB ∥平面AEC (2)∵PA ⊥平面ABCD∴PA ⊥AB ,PA ⊥AD又AB ⊥AD ,即PA 、AB 、AD 两两互相垂直,以z 轴的正方向,建立如图所示的空间直角坐标系∵平面ADE与平面yOz 重合∴可取平面ADE 的一个法向量为n =(1,0,0) 设CD=a,由(a ∴AC =(a ,由∴AE =(0,设向量m =(x ,y ,z )是平面ACE的一个法向量,则m AC=031m AE=02ax y z ⎧⋅=⎪⎨⋅+=⎪⎩ 由此,可取m =(3,,3)∵二面角D-AE-C为60° ∴3n m 1cos n,m =cos602|n ||m |9o ⋅〈〉===⋅ 过点E 作EF ⊥AD 于F ∵PA ⊥平面ABCD ,即PA ⊥平面ACD ∴EF ⊥平面ACD∴EF 是三棱锥E-ACD 的高∴V E-ACD【全国卷·大纲版·第19题】如图,三棱柱ABC-A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB=90°,BC=1,AC=CC 1=2. (1)证明:AC 1⊥A 1B ;解:(1)∵点A 1在平面ABC 内的射影D 在AC 上∴A 1D ⊥平面ABC ∵A 1D ⊂平面ACC 1A 1 ∴平面ACC 1A 1⊥平面ABC ∵∠ACB=90°,即BC ⊥AC ∴BC ⊥平面ACC 1A 1 ∵AC 1⊂平面ACC 1A 1 ∴AC 1⊥BC连接A 1C ,由AC=CC 1知,侧面ACC 1A 1为菱形 ∴AC 1⊥A 1C∵BC 、A 1C ⊂平面A 1BC ∴AC 1⊥平面A 1BC ∵A 1B ⊂平面A 1BC ∴AC 1⊥A 1B(2)过点D 作DF ⊥AB 于F ,连接A 1F∵A 1D ⊥平面ABC ,AB ⊂平面ABC ∴AB ⊥A 1D ∴AB ⊥平面A 1DF ∴A 1F ⊥AB∴∠A 1FD 是二面角A 1-AB-C 的平面角∵AC=CC 1=2,A 1D ⊥AC在Rt △A 1DA 中,A 1A= CC 1=2ABCD A 1C 1EF【北京市·第17题】如图,正方形AMDE 的边长为2,B 、C 分别为AM 、MD 的中点,在五棱锥P-ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD 、PC 分别交于点G 、H . (1)求证:AB ∥FG ;(2)若PA ⊥底面ABCDE ,且PA=AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长PABMCDEFGH解:(1)∵AB ∥DE ,DE ⊂平面PDE且AB ⊄平面PDE ∴AB ∥平面PDE∵平面AFGB ∩平面PDE=FG AB ⊂平面AFGB ,FG ⊂平面PDE ∴AB ∥FG(2)由题知,AP 、AM 、AE 两两互相垂直,以A 为坐标原点,分别以AM 、AE 、AP 为x 轴、y 轴、z轴的正方向,建立如图所示的空间直角坐标系由AM=AE=PA=2,易得:B (1,0,0),F (0,1,1),C (2,1,0),P (0,0,2)∴BC =(1,1,0),AB =(1,0,0),AF =(0,1,1),PC =(2,1,-2)设向量m =(x ,y ,z )是平面ABF 的一个法向量则m AB=0m AF=0x y z ⎧⋅=⎪⎨⋅+=⎪⎩ 由此,可取m =(0,1,-1)设直线BC 与平面ABF 所成角为θ,则m BC 1sin cos m,BC =2|m ||BC |2θ⋅=〈〉==⋅∴直线BC 与平面ABF 所成角θ=6π设H (a ,b ,c ),点H 在棱PC 上,不妨PH =k PC ,其中0<k <1∵PC =(2,1,-2),PH =(a ,b ,c -2) ∴(a ,b ,c -2)=k (2,1,-2) ∴a =2k ,b =k ,c =2-2k ∴AH =(2k ,k ,2-2k )∵m =(0,1,-1)为平面ABF 的一个法向量且AH ⊂平面ABF∴m AH 0⋅= ∴k -2+2k =0,得k =23∴|PH|=2【天津市·第17题】如图,在四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD=DC=AP=2,AB=1,点E 为棱PC 的中点. (1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F-AB-P 的余弦值.解:(1)由题意知,AP 、AB 、AD 两两互相垂直,以A 为坐标原点,分别以AB 、AD 、AP 为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系易得:B (1,0,0),D (0,2,0),C (2,2,0),P (0,0,2)∴DC =(2,0,0)∵E 是PC 的中点 ∴E (1,1,1) ∴BE =(0,1,1)∵DC ·BE =0 ∴BE ⊥CD (2)∵PB =(-1,0,2),DB =(-1,2,0)设向量m =(x ,y ,z )是平面PBD 的一个法向量则m PB=20m DB=20x z x y ⎧⋅-+=⎪⎨⋅-+=⎪⎩ 由此,可取m =(2,1,1)设直线BE 与平面PBD 所成角为θ,则m BE sin cos m,BE =|m ||BE|6θ⋅=〈〉=⋅∴直线BE 与平面PBD(3)点F 在PC 上,不妨设PF =k PC ,其中0≤k ≤1设F (a ,b ,c ),由PC =(2,2,-2)得: (a ,b ,c -2)=k (2,2,-2) ∴a =2k ,b =2k ,c =2-2k ∴F (2k ,2k ,2-2k ) ∴BF =(2k -1,2k ,2-2k ) ∵BF ⊥AC ,且AC =(2,2,0)∴BF ·AC =0 即2(2k -1)+4k =0,得14k =∴AF =(2k ,2k ,2-2k )=(12,12,32) 又AB =(1,0,0)设向量n =(x ,y ,z )是平面ABF 的一个法向量则n AB=0113n AF=0222x x y z ⎧⋅=⎪⎨⋅++=⎪⎩ 由此,可取n =(0,3,-1)因为平面ABP 与平面xOz 重合,则可取平面ABP 的一个法向量为t =(0,1,0)n t cos n,t =|n||t |101⋅〈〉=⋅⋅∴二面角F-AB-P【重庆市·第19题】如图,四棱锥P-ABCD ,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB=2,∠BAD=3π,M 为BC 上的一点,且BM=12,MP ⊥AP . (1)求PO 的长;(2)求二面角A-PM-C 的正弦值解:(1)连接BD 、AC∵底面ABCD 是菱形,中心为O 且PO ⊥底面ABCD ∴OP 、AC 、BD 两两互相垂直以O 为坐标原点,分别以OA 、OB 、OP 为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系由AB=2,∠BAD=3π,易得A ,C (,B (0,1,0) ∴BC =(- ∵BM=12,BC=2 ∴BM - ∴M (设P(0,0,a ),则AP =(-,MP =∵AP ⊥MP∴=-3∴a =(2)由(1)知:AP =(-,MP =(3 设向量n =(x ,y ,z )是平面APM 的一个法向量则n AP=3033n MP=04z x y ⎧⋅-+=⎪⎪⎨⎪⋅-=⎪⎩由此,可取n =(1,52)同理可得,平面CPM 的一个法向量为: m=(1-2)∴n m cos n,m =|n ||m |40⋅〈〉==⋅∴二面角A-PM-C【江苏省·第16题】如图,在三棱锥P-ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点,已知PA ⊥AC ,PA=6,BC=8,DF=5.求证:(1)直线PA ∥平面DEF ;(2)平面BDE ⊥平面ABC解:(1)∵D 、E 分别是PC 、AC 的中点∴PA ∥DE∵DE ⊂平面DEF ,PA ⊄平面DEF ∴直线PA ∥平面DEF(2)∵D 、E 分别是PC 、AC 的中点∴DE=12PA=3 ∵E 、F 分别是AC 、AB 的中点 ∴EF=12BC=4 ∵DF=5 ∴DE 2+EF 2=DF 2∴∠DEF=90°,即DE ⊥EF ∵DE ∥PA ,PA ⊥AC ∴DE ⊥AC∵AC∩EF=E ∴DE ⊥平面ABC ∵DE ⊂平面BDE ∴平面BDE ⊥平面ABCPACDEF【浙江省·第20题】如图,在四棱锥A-BCDE 中,平面ABC ⊥平面BCDE ,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,(1)证明:DE ⊥平面ACD; (2)求二面角B-AD-E 的大小解:(1)在直角梯形BCDE 中,易求得∵在△ABC 中,∴AB 2+BC 2=AB 2∴∠ACB=90°,即AC ⊥BC∵平面ABC ⊥平面BCDE 且AC ⊂平面ACD ∴AC ⊥平面BCDE ∵DE ⊂平面BCDE∴AC ⊥DE∵∠CDE=90° ∴DE ⊥CD ∵CD ⊂平面ACD ∴DE ⊥平面ACD(2)由题,以D 为坐标原点,建立如图所示的空间直角坐标系易得E (1,0,0),B (1,1,0),A (0,2∴DE = (1,0,0),DA =(0,2DB = (1,1,0)设向量n =(x ,y ,z )是平面ADE 的一个法向量则n DE=0n DA=20x y ⎧⋅=⎪⎨⋅=⎪⎩ 由此,可取n =(0,-1同理可得,平面ADB 的一个法向量为:m =(1,-1∴n m cos n,m=|n ||m |3⋅〈〉==⋅⋅∴二面角B-AD-E【山东省·第17题】如图,在四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB=60°,AB=2CD=2,M 是线段AB 的中点.(1)求证:C 1M ∥平面A 1ADD 1;1解:(1)连接AD 1.∵M 是线段AB 的中点,AB=2 ∴AM=1∵C 1D 1=CD=1 ∴C 1D 1=AM ∵AM ∥CD ,CD ∥C 1D 1∴C 1D 1∥AM∴四边形AM C 1D 1是平行四边形 ∴C 1M ∥AD 1∵C 1M ⊄平面A 1ADD 1,AD 1⊂平面A 1ADD 1 ∴C 1M ∥平面A 1ADD 1(2)过点C 作CE ⊥AB 于E ,则CE ⊥CD∵CD 1⊥平面ABCD∴CD 1⊥CD ,CD 1⊥CE以C 为坐标原点,分别以CD 、CE 、1CD 为x轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐 标系由由∠DAB=60°,AB=2CD=2,在等腰梯形ABCD22∴MD =(11=(1,设向量n =(x ,y ,z )是平面C 1D 1M 的一个法向量则111n C D =01n MD =02x x y ⎧⋅=⎪⎨⋅=⎪⎩ 的一个法向量为m =∴n m cos n,m =|n ||m |5⋅〈〉==⋅⋅∴平面C 1D 1M 和平面ABCD 所成的角的余弦值为【江西省·第20题】如图,四棱锥P-ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD . (1)求证:AB ⊥PD ;(2)若∠BPC=90°,PC=2,问AB 为何值时,四棱锥P-ABCD 的体积最大?并求此时平面BPC 与平面DPC 夹角的余弦值.解:(1)∵底面ABCD 是矩形 ∴AB ⊥AD∵平面PAD ⊥平面ABCD 平面PAD ∩平面ABCD=AD ∴AB⊥平面PAD∵PD ⊂平面PAD ∴AB ⊥PD(2)∵∠BPC=90°,PC=2∴过点P 作PO ⊥AD 于O∵平面PAD ⊥平面ABCD ∴PO ⊥平面ABCD ∴V P-ABCD 过点O 作OE ⊥AD 交BC 于E ,连接PE设AB=x ,则OE=x 由前述,可建立如图所示的空间直角坐标系3∴PB =(6,BC =(-PD =(-2,DC = (0,设向量n =(x ,y ,z )是平面PBC 的一个法向量则n BC=606n PB=0x y z ⎧⋅-=⎪⎨⋅=⎪⎩由此,可取n =(0,1,1)同理可得,平面PDC 的一个法向量为:∴n m cos n,m =|n ||m |2⋅〈〉=⋅∴平面BPC 与平面DPC【广东省·第18题】如图,四边形ABCD 为正方形.PD ⊥平面ABCD ,∠DPC=30°,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E .(1)证明:CF ⊥平面ADF ; (2)求二面角D-AF-E 的余弦值.解:(1)∵PD ⊥平面ABCD ,AD ⊂平面ABCD∴AD ⊥PD∵四边形ABCD 为正方形 ∴AD ⊥CD ∵PD 、CD ⊂平面PCD ∴AD ⊥平面PCD∵CF ⊂平面PCD ∴CF ⊥AD ∵AF ⊥PC ,即CF ⊥AF 且AD 、AF ⊂平面ADF ∴CF ⊥平面ADF(2)因为PD 、CD 、AD 两两互相垂直,以D 为坐标原点,建立如图所示的空间直角坐标系设正方形ABCD 的边长为1,则AD=CD=1 ∴A (0,0,1),则DA =(0,0,1)由(1)知,DF ⊥PC ,在Rt △PDC 中,由∠DPC=30°,444∴EF =(0,,AE =(3DF =(34)设向量n =(x ,y ,z )是平面AEF 的一个法向量则3n EF=043n AE=0y x z ⎧⋅=⎪⎪⎨⎪⋅-=⎪⎩ 由此,可取n =(4,0同理可得,平面ADF 的一个法向量为:m =(31,0)∴n m cos n,m =|n ||m |19⋅〈〉==⋅∴二面角D-AF-E【湖南省·第19题】如图,四棱柱ABCD-A 1B 1C 1D 1的所有棱长都相等,AC∩BD=O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形. (1)证明:O 1O ⊥底面ABCD ;(2)若∠CBA=60°,求二面角C 1-OB 1-D 的余弦值解:(1)∵四边形ACC 1A 1为矩形∴A 1A ⊥AC由题知,四边形ABCD 和A 1B 1C 1D 1是菱形 ∴点O 是AC 、BD 的中点 点O 1是A 1C 1、B 1D 1的中点 ∴OO 1∥A 1A ∴OO 1⊥AC 同理可证:OO 1⊥BD ∵AC 、BC ⊂底面ABCD ∴O 1O ⊥底面ABCD (2)∵底面ABCD 是菱形∴AC ⊥BD由(1)知,AC 、BD 、O 1O 两两互相垂直 以O 为坐标原点,建立如图所示的空间直角坐标系。

2014年江苏高考数学真题及答案

2014年江苏高考数学真题及答案

2014年江苏高考数学真题及答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....位置上.... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲.2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为▲.3. 右图是一个算法流程图,则输出的n 的值是▲.4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲.5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),zxxk 它们的图象有一个横坐标为3π的交点,则ϕ的值是▲.6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有▲株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是▲.8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是▲.9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为▲.10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是▲.11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数) zxxk 过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是▲.12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是▲.202>n组距13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是▲.14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,学科网解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分zxxk 别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .(第16题)PD C EFB A17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形学科网保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,学科网求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,学科网总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”. (1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3} .考点:交集及其运算.专题:集合.分析:根据集合的基本运算即可得到结论.解答:解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}点评:本题主要考查集合的基本运算,比较基础.2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21 .考点:复数的基本概念;复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的有关概念,即可得到结论.解答:解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21点评:本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是 5 .考点:程序框图.专题:算法和程序框图.分析:算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.解答:解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.考点:古典概型及其概率计算公式.专题:概率与统计.分析:首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.解答:解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.点评:本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.考点:三角方程;函数的零点.专题:三角函数的求值;三角函数的图像与性质.分析:由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.解答:解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.点评:本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24 株树木的底部周长小于100cm.考点:频率分布直方图.专题:概率与统计.分析:根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.解答:解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.点评:本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是 4 .考点:等比数列的通项公式.专题:等差数列与等比数列.分析:利用等比数列的通项公式即可得出.解答:解:设等比数列{a n}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.点评:本题考查了等比数列的通项公式,属于基础题.8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.考点:棱柱、棱锥、棱台的体积;旋转体(圆柱、圆锥、圆台).专题:立体几何.分析:设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.解答:解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.点评:本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.考点:直线与圆的位置关系.专题:直线与圆.分析:求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.解答:解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.点评:本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).考点:二次函数的性质.专题:函数的性质及应用.分析:由条件利用二次函数的性质可得,由此求得m的范围.解答:解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P (2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.解答:解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3点评:本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22 .考点:向量在几何中的应用;平面向量数量积的运算.专题:平面向量及应用.分析:由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.解答:解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.点评:本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,).考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.解答:解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).点评:本题考查函数的图象以函数的零点的求法,数形结合的应用.14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.考点:余弦定理;正弦定理.专题:三角函数的图像与性质;解三角形.分析:根据正弦定理和余弦定理,利用基本不等式即可得到结论.解答:解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.点评:本题主要考查正弦定理和余弦定理的应用,利用基本不等式是解决本题的关键.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.考点:两角和与差的正弦函数;两角和与差的余弦函数.专题:三角函数的求值;三角函数的图像与性质.分析:(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.解答:解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.点评:本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.考点:平面与平面垂直的判定;直线与平面垂直的判定.专题:空间位置关系与距离;空间角;立体几何.分析:(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.点评:本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.考点:椭圆的简单性质;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.解答:解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,),且A,C关于x轴对称,∴C(,﹣),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.点评:本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?考点:圆的切线方程;直线与圆的位置关系.专题:直线与圆.分析:(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.解答:解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.点评:本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a ﹣1与a e﹣1的大小,并证明你的结论.考点:利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构u造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.解答:解:(1)∵f(x)=e x+e﹣x,∴f(﹣x)=e﹣x+e x=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(e x+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴e x+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=e x,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=e x+e﹣x﹣a(﹣x3+3x),则g′(x)=e x﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而e a﹣1<a e﹣1,②当a=e时,a e﹣1=e a﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e﹣1)lna,从而e a﹣1>a e﹣1.点评:本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.考点:数列的应用;等差数列的性质.专题:等差数列与等比数列.分析:(1)利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”即可得到a n,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出S n,对∀n∈N*,∃m∈N*使S n=a m,取n=2和根据d<0即可得出;(3)设{a n}的公差为d,构造数列:b n=a1﹣(n﹣1)a1=(2﹣n)a1,c n=(n﹣1)(a1+d),可证明{b n}和{c n}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.解答:解:(1)当n≥2时,a n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,S n=a n+1.∴数列{a n}是“H”数列.(2)S n==,对∀n∈N*,∃m∈N*使S n=a m,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{a n}的公差为d,令b n=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,b n+1﹣b n=﹣a1,c n=(n﹣1)(a1+d),对∀n∈N*,c n+1﹣c n=a1+d,则b n+c n=a1+(n﹣1)d=a n,且数列{b n}和{c n}是等差数列.数列{b n}的前n项和T n=,令T n=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使T n=b m成立,即{b n}为H数列.数列{c n}的前n项和R n=,令c m=(m﹣1)(a1+d)=R n,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使R n=c m成立,即{c n}为H数列.因此命题得证.点评:本题考查了利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”求a n、等差数列的前n 项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.考点:弦切角.专题:直线与圆.分析:利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.解答:证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.点评:本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.考点:矩阵与向量乘法的意义.专题:矩阵和变换.分析:利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y的值.解答:解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=点评:本题考查矩阵的乘法,考查学生的计算能力,属于基础题.【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.考点:直线的参数方程.专题:计算题;坐标系和参数方程.分析:直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.解答:解:直线l的参数方程为,化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.点评:本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.解答:证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.点评:本题考查不等式的证明,正确运用均值不等式是关键.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.解答:解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.点评:本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.考点:三角函数中的恒等变换应用;导数的运算.专题:函数的性质及应用;三角函数的求值.分析:(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.解答:解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵f n(x)为f n﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kf k﹣1(x)+xf k(x)]′=kf k﹣1′(x)+f k(x)+xf k′(x)=(k+1)f k(x)+xf k+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nf n﹣1()+f n()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.点评:本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力.。

2014-2019年高考数学真题分类汇编专题10:立体几何4(球的切接问题)带详细答案

2014-2019年高考数学真题分类汇编专题10:立体几何4(球的切接问题)带详细答案

2014-2019年高考数学真题分类汇编专题10:立体几何(球的切接问题)选择题1.(2014•大纲版理)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .814πB .16πC .9πD .274π 【考点】球的体积和表面积;球内接多面体【分析】正四棱锥P ABCD -的外接球的球心在它的高1PO 上,记为O ,求出1PO ,1OO ,解出球的半径,求出球的表面积.【解答】解:设球的半径为R ,则棱锥的高为4,底面边长为2,222(4)R R ∴=-+,94R ∴=, ∴球的表面积为29814()44ππ=. 故选:A .【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.2.(2014•陕西理)已知底面边长为1为( )A .323πB .4πC .2πD .43π 【考点】球的体积和表面积【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径1R =,最后根据球的体积公式,可算出此球的体积.【解答】解:正四棱柱的底面边长为1,又正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径1R = 根据球的体积公式,得此球的体积为34433V R ππ==. 故选:D .【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.3.(2015•新课标Ⅱ文)已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【考点】球的体积和表面积【分析】当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,利用三棱锥O ABC -体积的最大值为36,求出半径,即可求出球O 的表面积.【解答】解:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯⨯==,故6R =,则球O 的表面积为24144R ππ=, 故选:C .【点评】本题考查球的半径与表面积,考查体积的计算,确定点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大是关键.4.(2016•新课标Ⅱ文)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A .12πB .323πC .8πD .4π【考点】球的体积和表面积【分析】先通过正方体的体积,求出正方体的棱长,然后求出球的半径,即可求出球的表面积.【解答】解:正方体体积为8,可知其边长为2,所以球的表面积为24(3)12ππ=.故选:A .【点评】本题考查学生的空间想象能力,体积与面积的计算能力,是基础题.5.(2016•新课标Ⅲ文理)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )A .4πB .92πC .6πD .323π 【考点】棱柱、棱锥、棱台的体积【分析】根据已知可得直三棱柱111ABC A B C -的内切球半径为32,代入球的体积公式,可得答案. 【解答】解:AB BC ⊥,6AB =,8BC =, 10AC ∴=. 故三角形ABC 的内切圆半径681022r +-==, 又由13AA =, 故直三棱柱111ABC A B C -的内切球半径为32, 此时V 的最大值3439()322ππ=, 故选:B .【点评】本题考查的知识点是棱柱的几何特征,根据已知求出球的半径,是解答的关键.6.(2017•新课标Ⅲ文理)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .34πC .2πD .4π 【考点】棱柱、棱锥、棱台的体积;LR :球内接多面体【分析】推导出该圆柱底面圆周半径r =,由此能求出该圆柱的体积. 【解答】解:圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r ==,∴该圆柱的体积:2314V Sh ππ==⨯⨯=.故选:B .【点评】本题考查面圆柱的体积的求法,考查圆柱、球等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是中档题.7.(2018•新课标Ⅲ文理)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且面积为D ABC -体积的最大值为( )A .B .C .D .【考点】棱柱、棱锥、棱台的体积;球的内接多面体;【分析】求出,ABC ∆为等边三角形的边长,画出图形,判断D 的位置,然后求解即可.【解答】解:ABC ∆为等边三角形且面积为2AB =6AB =, 球心为O ,三角形ABC 的外心为O ',显然D 在O O '的延长线与球的交点如图:263O C '==,2OO '=, 则三棱锥D ABC -高的最大值为:6,则三棱锥D ABC -体积的最大值为:3163=. 故选:B .【点评】本题考查球的内接多面体,棱锥的体积的求法,考查空间想象能力以及计算能力.8.(2019•新课标Ⅰ理12)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为( )A .B .C . D【考点】球的体积和表面积,,多面体外接球体。

2014高考数学立体几何汇编

2014高考数学立体几何汇编

2014高考立体几何汇编1.(辽宁).已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( B ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥2. (辽宁)某几何体三视图如图所示,则该几何体的体积为(B )A .82π- B .8π- C .82π- D .84π-3.(新课标二6.)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59 C. 1027D. 13【答案】 C..2710π54π34-π54π.342π944.2342π.546π96321C v v 故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为==∴=•+•=∴=•=∴π 4.(新课标二11).直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( )A. 110B. 25【答案】 C ..10305641-0||||θcos 2-1-,0(2-1,1-(∴).0,1,0(),0,1,1(),2,0,2(),2,2,0(,2,,111111C AN BM N M B A C C BC AC Z Y X C C A C B C 故选)。

,),,则轴,建立坐标系。

令为,,如图,分别以=+•======5.(大纲卷8).正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( A )A .814π B .16π C .9π D .274π6.(大纲卷11).已知二面角l αβ--为060,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,0135ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( B )A .14 BCD .127.(北京7)在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C,(D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则(D )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.(重庆7)某几何体的三视图如图所示,则该几何体的表面积为( B )A.54B.60C.66D.729.(江苏) 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是 ▲ .10.( 广东7).若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是(D )A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定 11.(天津)已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_______3m . 解:203p该几何体的体积为212042233p p p ?鬃=3m . 12.(陕西).已知底面边长为1顶点均在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π【答案】 D Dr r r r 选解得设球的半径为.π3434V ∴,1,4)2(11)2(,32222====++=π 13..猜想一般凸多面体中,E V F ,,所满足的等式是_________. 【答案】 2+=+E V F .2+=+E V F 经观察规律,可得14.(浙江)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是(D ) A. 902cm B. 1292cm C. 1322cm D. 1382cm俯视图侧视图正视图15.(湖北)在如图所示的空间直角坐标系xyzO-中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为(D )A.①和②B.③和①C. ④和③D.④和②16. (辽宁)(本小题满分12分)如图,ABCAB BC BD===,∆所在平面互相垂直,且2∆和BCDABC DBC∠=∠=,E、F分别为AC、DC的中点.120(1)求证:EF BC⊥;(2)求二面角E BF C--的正弦值.解(Ⅰ)证明:(方法一)过E作EO⊥BC,垂足为O,连OF,由△ABC≌△DBC可证出△EOC≌△FOC,所以∠EOC=∠FOC=2π,即FO⊥BC,又EO⊥BC,因此BC⊥面EFO,又EF⊂面EFO,所以EF⊥BC.(方法二)由题意,以B为坐标原点,在平面DBC内过B左垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图2所示的空间直角坐标系.易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而131(0,(,,0)22E F,所以33(,0,),(0,2,0)EF BC=-=,因此0EF BC⋅=,从而EF BC⊥,所以EF BC⊥.(Ⅱ)(方法一)在图1中,过O作OG⊥BF,垂足为G,连EG,由平面ABC⊥平面BDC,从而EO⊥平面BDC,又OG⊥BF,由三垂线定理知EG垂直BF.因此∠EGO为二面角E-BF-C的平面角;在△EOC中,EO=12EC=12BC·cos30°=2,由△BGO∽△BFC知,4BOOG FCBC=⋅=,因此tan∠EGO=2EOOG=,从而sin∠EGO即二面角E-BF-C(方法二)在图2中,平面BFC的一个法向量为1(0,0,1)n=,设平面BEF的法向量2(,,)n x y z=,又31(,,0),(,)2B F B E==,由22n BFn BE⎧⋅=⎪⎨⋅=⎪⎩得其中一个2(1,n=,设二面角E-BF-C的大小为θ,且由题意知θ为锐角,则ECA121212cos |cos ,|||||||5n nn n n n θ⋅=<>==⋅因sin θ5,即二面角E -BF -C 的正弦值为5.17(浙江)(本题满分15分)如图,在四棱锥BCDE A -中,平面⊥ABC 平面======∠=∠AC BE DE CD AB BED CDE BCDE ,1,2,90,02. (1)证明:⊥DE 平面ACD ; (2)求二面角E AD B --的大小解:(I )在直角梯形BCDE 中,由1DE BE ==,2CD =得,BD BC ==由2AC AB ==,则222AB AC B C =+,即A C B C ⊥,又平面⊥ABC 平面BCDE ,从而AC ⊥平面BCDE ,所以AC DE ⊥,又DE DC ⊥,从而DE ⊥平面ACD ; (II )方法一:作BF AD ⊥,与AD 交于点F ,过点F 作FG DE ,与AE 交于点G ,连结BG ,由(I )知,DE AD ⊥,则FG AD ⊥,,所以BFG ∠是二面角E AD B --的平面角,在直角梯形BCDE 中,由222CD BD BC =+,得BD BC ⊥,又平面⊥ABC 平面BCDE ,得BD ⊥平面ABC,从而,BD AB ⊥,由于AC ⊥平面BCDE ,得:AC CD ⊥,在Rt ACD 中,由2CD =,AC =AD =在Rt AED 中,1DE =,AD =,得AE,在Rt A B D 中,BD =2AB =,AD,得3BF =23AF AD =,从而23GF =,在,ABE ABG 中,利用余弦定理分别可得2cos 3BAE BG ∠==, 在BFG 中,222cos 2GF BF BG BFG BF GF +-∠==⋅,所以6BFG π∠=,即二面角E AD B --的大小是6π.方法二:以D 为原点,分别以射线,DE DC 为,x y 轴的正半轴,建立空间直角坐标系D xyz -如图所示,由题意可知各点坐标如下:()()()(()0,0,0,1,0,0,0,2,0,,1,1,0D E C A B ,设平面ADE 的法向量为()111,,m x y z =,平面ABD 的法向量为()222,,n x y z =,可算得(0,2,AD =-,()(1,1,0,1,2,DB AE ==-,由00m AD m AE ⎧⋅=⎪⎨⋅=⎪⎩得,1111102020y x y ⎧-=⎪⎨-=⎪⎩,可取(0,1,m =,由0n AD n BD ⎧⋅=⎪⎨⋅=⎪⎩得,22220200y x y ⎧-=⎪⎨+=⎪⎩,可取(1,1,2n =,于是3cos ,2m n m n m n⋅〈〉==, 由题意可知,所求二面角是锐角,故二面角E AD B --的大小是6π. 468101214161818.(天津)(本小题满分13分)如图,在四棱锥P ABCD -中,PA ^底面ABCD ,AD AB ^,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.(Ⅰ)证明 BE DC ^;(Ⅱ)求直线BE 与平面PBD 所成角的正弦值; (Ⅲ)若F 为棱PC 上一点,满足BF AC ^, 求二面角F ABP --的余弦值.解:(方法一)依题意,以点A 为原点建立空间直角坐标系(如图),可得()1,0,0B ,()2,2,0C ,()0,2,0D ,()0,0,2P .由E 为棱PC 的中点,得()1,1,1E . (Ⅰ)证明:向量()0,1,1BE =,()2,0,0DC =,故0B E D C ?. 所以,BE DC ^.(Ⅱ)解:向量()1,2,0BD =-,()1,0,2PB =-.设(),,n x y z =为平面PBD 的法向量,则0,0,n BD n PBìï?ïíï?ïî即20,20.x y x z ì-+=ïïíï-=ïî 不妨令1y =,可得()2,1,1n =为平面PBD 的一个法向量.于是有cos ,36n BE n BE n BE×===× 所以,直线BE 与平面PBD 所成角的正弦值为. (Ⅲ)解:向量()1,2,0BC =,()2,2,2CP =--,()2,2,0AC =,()1,0,0AB =. 由点F 在棱PC 上,设CF CP l =,01l#.故()12,22,2BF BC CF BC CP l l l l =+=+=--. 由BF AC ^,得0BF AC?,因此,()()2122220l l -+-=,解得34l =.即113,,222BF 骣÷ç=-÷ç÷ç桫. 设()1,,n x y z =为平面FAB 的法向量,则110,0,n AB n BFìï?ïíï?ïî即0,1130.222x x y z ì=ïïïíï-++=ïïî 不妨令1z =,可得()10,3,1n =-为平面FAB 的一个法向量. 取平面ABP 的法向量()20,1,0n =,则121211cos ,1010nn n n n n×===-×. 易知,二面角F AB P --.(方法二)(Ⅰ)证明:如图,取PD 中点M ,连接EM ,AM . 由于,E M 分别为,PC PD 的中点, 故//EM DC ,且12EM DC =,又由已知,可得//EM AB 且EM AB =,故四边形ABEM 为平行四边形,所以//BE AM . 因为PA ^底面ABCD ,故PA CD ^,而CD DA ^,从而CD ^平面PAD ,因为AM Ì平面PAD ,于是CD AM ^,又//BE AM ,所以BE CD ^.(Ⅱ)解:连接BM ,由(Ⅰ)有CD ^平面PAD ,得CD PD ^,而//EM CD ,故PD EM ^.又因为AD AP =,M 为PD 的中点,故PD AM ^,可得PD BE ^,所以PD ^平面BEM ,故平面BEM ^平面PBD .所以直线BE 在平面PBD 内的射影为直线BM ,而BE EM ^,可得EBM Ð为锐角,故EBM Ð为直线BE 与平面PBD 所成的角.依题意,有PD =,而M 为PD 中点,可得AM =BE =.故在直角三角形BEM 中,tanEM AB EBMBE BE ?==in 3s EMB ?. 所以,直线BE 与平面PBD 所成角的正弦值为3. (Ⅲ)解:如图,在PAC D 中,过点F 作//FH PA 交AC 于点H .因为PA ^底面ABCD ,故FH ^底面ABCD ,从而FH AC ^.又BF AC ^,得AC ^平面FHB ,因此AC BH ^.在底面ABCD 内,可得3CH HA =,从而3CF FP =.在平面PDC 内,作//FG DC 交PD 于点G ,于是3DG GP =.由于//DC AB ,故//GF AB ,所以,,,A B F G 四点共面. 由AB PA ^,AB AD ^,得AB ^平面PAD ,故AB AG ^. 所以PAG Ð为二面角F AB P --的平面角.在PAG D 中,2PA =,142PG PD ==,45APG ?,由余弦定理可得2AG =,os 0c 1PAG ?. 19(陕西)(本小题满分12分)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱CA DC BD ,,于点H G F ,,.(I )证明:四边形EFGH 是矩形;(II )求直线AB 与平面EFGH 夹角θ的正弦值. 解:(1).FG.⊥BCD ⊥,//∴,,AD//HG AD//EF,∴ADHG ADEF EFGH ⊂HG EF,EFGH,AD//HC AH EH//BC,∴EHBC EFGH,⊂EH EFGH,//B BCD⊥AD DC,⊥BD Δ,Δ为矩形所以,四边形,即面,且且共面和,面面同理且共面面面面且为等腰由题知,EHGF EF EF HG EF HG EF GC DG FB DF C RT BCD ====(2)510|,cos |sin 510252,cos ),0,1,1(0),,,()0,1-1(),2100(),1-20()0,0,1(),211,0(),0,1,0(),020(),100(,,,,(1)=><==>=<∴=======∴n AB z y x EHGF G E F B A z y x θ所以,,解得一个则法向量,设面,,,,,,,,,,轴建系,则为知,分别以由20.((江苏)本小题满分14分)如图,在三棱锥A B C P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA.5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .21.(新课标二18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,E-ACD 的体积. 解: (1)设AC 的中点为G, 连接EG 。

专题12 立体几何(基础篇)-2014年高考数学备考艺体生文化课百题突围系列(解析版)

专题12 立体几何(基础篇)-2014年高考数学备考艺体生文化课百题突围系列(解析版)

三视图【背一背基础知识】1.投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;正视图——光线从几何体的前面向后面正投影,得到的投影图;侧视图——光线从几何体的左面向右面正投影,得到的投影图;正视图——光线从几何体的上面向下面正投影,得到的投影图;注:(1)俯视图画在正视图的下方,“长度”与正视图相等;侧视图画在正视图的右边,“高度”与正视图相等,“宽度”与俯视图。

(简记为“正、侧一样高,正、俯一样长,俯、侧一样宽”.(2)正视图,侧视图,俯视图都是平面图形,而不是直观图。

3.直观图——是观察着站在某一点观察一个空间几何体而画出的图形。

直观图通常是在平行投影下画出的空间图形。

【讲一讲基本技能】1.必备技能:三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.一般地,若俯视图中出现圆,则该几何体可能是球或旋转体,若俯视图是多边形,则该几何体一般是多面体;若主视图和左视图中出现三角形,则该几何体可能为椎体。

2.典型例题例1 【广东省惠州市2014届高三第一次调研考试】若正三棱柱的三视图如图所示,该三棱柱的表面积是()A. 623+ B. 93C. 63+ D. 3例2一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱例3如图1-2,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【练一练趁热打铁】1.如图是一个几何体的三视图.若它的体积是33,则a=________.2. 【湖北省武汉市2014届高三10月调研测试数学(文)】一个几何体的三视图如图所示,则该几何体的表面积是()A.4+2 6 B.4+ 6 C.4+2 2 D.4+ 2【答案】A【解析】根据三视图可知该几何体是三棱锥,所以62422321222212+=⨯⨯⨯+⨯⨯⨯=S.如图所示:3.【广东省广州市执信、广雅、六中2014届高三10月三校联考(文)】如图,三棱柱的棱长为2,底面是边长为2的正三角形,1111CBAAA面⊥,正视图是边长为2的正方形,俯视图为正三角形,则左视图的面积为()A.4 B.22C.23D.2几何体的表面积和体积【背一背基础知识】1. .柱体、锥体、台体和球的表面积与体积(1)表面积公式 (2)体积公式①圆柱的表面积S =2πr (r +l ); ①柱体的体积V =Sh ; ②圆锥的表面积S =πr (r +l ); ②锥体的体积V =13Sh ;③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ③台体的体积V =13(S ′+SS ′+S )h ;④球的表面积S =4πR 2 ④球的体积V =43πR【讲一讲基本技能】1.必备技能:求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在。

江苏省2014年高考数学(文)二轮复习专题提升训练:16 立体几何中的向量方法

江苏省2014年高考数学(文)二轮复习专题提升训练:16 立体几何中的向量方法

常考问题16 立体几何中的向量方法(建议用时:80分钟)1.(2013·新课标全国Ⅱ卷)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB .(1)证明:BC 1∥平面A 1CD ; (2)求二面角D -A 1C -E 的正弦值.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1的中点.又D 是AB 的中点,连接DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(2)解 由AC =CB =22AB 得,AC ⊥BC .以C 为坐标原点,CA→的方向为x 轴正方向,CB →的方向为y轴正方向,CC 1→的方向为z 轴正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2),CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎨⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m =(x 2,y 2,z 2)是平面A 1CE 的法向量, 则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.即⎩⎨⎧2y 2+z 2=0,2x 2+2z 2=0,可取m =(2,1,-2).从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D -A 1C -E 的正弦值为63.2.(2013·陕西卷)如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1= 2. (1)证明:A 1C ⊥平面BB 1D 1D ;(2)求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.(1)证明 由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立直角坐标系,如图.∵AB =AA 1=2, ∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0), A 1(0,0,1).由A 1B 1→=AB →,易得B 1(-1,1,1). ∵A 1C →=(-1,0,-1),BD →=(0,-2,0), BB 1→=(-1,0,1). ∴A 1C →·BD →=0,A 1C →·BB 1→=0, ∴A 1C ⊥BD ,A 1C ⊥BB 1, 又BD ∩BB 1=B , ∴A 1C ⊥平面BB 1D 1D .(2)解 设平面OCB 1的法向量n =(x ,y ,z ). ∵OC →=(-1,0,0),OB 1→=(-1,1,1), ∴⎩⎪⎨⎪⎧n ·OC →=-x =0,n ·OB 1→=-x +y +z =0,∴⎩⎨⎧x =0,y =-z ,取n =(0,1,-1), 由(1)知,A 1C →=(-1,0,-1)是平面BB 1D 1D 的法向量, ∴cos θ=|cos 〈n ,A 1C →〉|=12×2=12. 又∵0≤θ≤π2,∴θ=π3.3.如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =2AD =2CD =2,E 是PB 的中点.(1)求证:平面EAC ⊥平面PBC ;(2)若二面角P -AC -E 的余弦值为63,求直线P A 与平面EAC 所成角的正弦值.(1)证明 ∵PC ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥PC .∵AB =2,AD =CD =1,∴AC =BC = 2. ∴AC 2+BC 2=AB 2.∴AC ⊥BC . 又BC ∩PC =C ,∴AC ⊥平面PBC . ∵AC ⊂平面EAC , ∴平面EAC ⊥平面PBC .(2)解 如图,以点C 为原点,DA→,CD →,CP →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,则C (0,0,0),A (1,1,0),B (1,-1,0),设P (0,0,a )(a >0),则E ⎝ ⎛⎭⎪⎫12,-12,a 2,CA →=(1,1,0),CP →=(0,0,a ),CE→=⎝ ⎛⎭⎪⎫12,-12,a 2.取m =(1,-1,0),则m ·CA →=m ·CP →=0,m 为面P AC 的法向量.设n =(x ,y ,z )为面EAC 的法向量,则n ·CA →=n ·CE →=0,即⎩⎨⎧x +y =0,x -y +az =0,取x =a ,y =-a ,z =-2,则n =(a ,-a ,-2),依题意,|cos 〈m ,n 〉|=|m ·n ||m ||n |=a a 2+2=63,则a =2.于是n =(2,-2,-2),P A →=(1,1,-2).设直线P A 与平面EAC 所成角为θ,则sin θ=|cos 〈P A →,n 〉|=P A →·n |P A ||n |=23,即直线P A 与平面EAC 所成角的正弦值为23.4.(2013·辽宁卷)如图,AB 是圆的直径,P A 垂直圆所在的平面,C 是圆上的点.(1)求证:平面P AC ⊥平面PBC ;(2)若AB =2,AC =1,P A =1,求二面角C -PB -A 的余弦值.(1)证明 由AB 是圆的直径,得AC ⊥BC , 由P A ⊥平面ABC ,BC ⊂平面ABC ,得P A ⊥BC . 又P A ∩AC =A ,P A ⊂平面P AC ,AC ⊂平面P AC , 所以BC ⊥平面P AC .又BC ⊂平面PBC , 所以平面PBC ⊥平面P AC .(2)解 过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴、y 轴、z 轴建立空间直角坐标系.在Rt △ABC 中,因为AB =2,AC =1,所以BC = 3. 因为P A =1,所以A (0,1,0),B (3,0,0),P (0,1,1). 故C B →=(3,0,0),C P →=(0,1,1). 设平面BCP 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧C B →·n 1=0,C P →·n 1=0,所以⎩⎨⎧3x 1=0,y 1+z 1=0,不妨令y 1=1,则n 1=(0,1,-1). 因为A P →=(0,0,1),A B →=(3,-1,0), 设平面ABP 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧A P →·n 2=0,A B →·n 2=0,所以⎩⎨⎧z 2=0,3x 2-y 2=0,不妨令x 2=1,则n 2=(1,3,0). 于是cos 〈n 1,n 2〉=322=64.所以由题意可知二面角C -PB -A 的余弦值为64. 5.(2013·合肥第二次质检)在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,且P A ⊥平面ABCD . (1)求证:PC ⊥BD ;(2)过直线BD 且垂直于直线PC 的平面交PC 于点E ,且三棱锥E -BCD 的体积取到最大值. ①求此时四棱锥E -ABCD 的高; ②求二面角A -DE -B 的正弦值的大小.(1)证明 连接AC ,因为四边形ABCD 是正方形,所以BD ⊥AC .因为P A ⊥平面ABCD ,所以P A ⊥BD .又AC ∩P A =A ,所以BD ⊥平面P AC . 又PC ⊂平面P AC ,所以PC ⊥BD .(2)解 ①设P A =x ,三棱锥E -BCD 的底面积为定值,在△PBC 中,易知PB =x 2+1,PC =x 2+2,又BC =1,故△PBC 直角三角形.又BE ⊥PC ,得EC =1x 2+2,可求得该三棱锥的高h =x x 2+2=1x +2x.当且仅当x =2x ,即x =2时,三棱锥E -BCD 的体积取到最大值,所以h =24.此时四棱锥E -ABCD 的高为24.②以点A 为原点,AB ,AD ,AP 所在直线为坐标轴建立空间直角坐标系,则A (0,0,0),C (1,1,0),D (0,1,0),P (0,0,2),易求得CE =14CP . 所以AE →=AC →+14CP →=⎝ ⎛⎭⎪⎫34,34,24,AD →=(0,1,0).设平面ADE 的法向量n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧AE →·n =0,AD →·n =0,即⎩⎨⎧34x +34y +24z =0,y =0,令x =2,则n 1=(2,0,-3),同理可得平面BDE 的法向量n 2=CP →=(-1,-1,2),所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-22211.所以sin 〈n 1,n 2〉=3311.所以二面角A -DE -B 的正弦值的大小为3311.6.(2013·天津卷)如图,四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱AA 1的中点.(1)证明B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为26,求线段AM 的长.解 如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)证明:易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE →=0,所以B 1C 1⊥CE .(2)B 1C →=(1,-2,-1).设平面B 1CE 的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎨⎧x -2y -z =0,-x +y -z =0.消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1).由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1→=(1,0,-1)为平面CEC 1的一个法向量.于是cos 〈m ,B 1C 1→〉=m ·B 1C 1→|m ||B 1C 1→|=-414×2=-277,从而sin 〈m ,B 1C 1→〉=217,所以二面角B 1-CE -C 1的正弦值为217.(3)AE →=(0,1,0),EC 1→=(1,1,1),设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →+EM →=(λ,λ+1,λ).可取AB →=(0,0,2)为平面ADD 1A 1的一个法向量. 设θ为直线AM 与平面ADD 1A 1所成的角,则 sin θ=|cos 〈AM →,AB →〉|=|AM →·AB →||AM →||AB →|=2λλ2+(λ+1)2+λ2×2=λ3λ2+2λ+1, 于是λ3λ2+2λ+1=26,解得λ=13,所以AM = 2.。

2014数学高考考点狂练专题:立体几何

2014数学高考考点狂练专题:立体几何

立体几何1.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积 是【 】 (A)33π100cm (B) 33π208cm (C) 33π500cm (D) 33π3416cm 【答案】C 。

【考点】球的体积。

【分析】利用条件:球心到这个平面的距离是4cm 、截面圆的半径、球的半径、求出球的半径,然后求出球的体积:∵一平面截一球得到直径是6cm 的圆面,就是小圆的直径为6,又球心到这个平面的距离是4cm ,∴球的半径是:5cm 。

∴球的体积是:34500533ππ⋅⋅=(cm 3)。

故选C 。

2.在正三棱柱111ABC A B C -中,若AB=2,1AA 1=则点A 到平面1A BC 的距离为【】A .43B .23C .433 D .3 【答案】B 。

【考点】棱柱的结构特征,点到平面的距离。

【分析】过点A 作AD ⊥BC 于点D ,连接A 1D ,过点A 作AD ⊥面A 1BC 于点E ,则点E 在A 1D 上,AE 即为点A 到平面1A BC 的距离。

在Rt △ACD 中,AC=2,CD=1,∴。

在Rt △A 1DA 中,1AA 1=,,∴tan ∠A 1。

∴∠A 1DA=300。

在Rt △ADE 中,AE=AD·sin300=23。

故选B 。

3.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:①若γα⊥,γβ⊥,则βα||;②若α⊂m ,α⊂n ,β||m ,β||n ,则βα||;③若βα||,α⊂l ,则β||l ;④若l =βα ,m =γβ ,n =αγ ,γ||l ,则nm||其中真命题的个数是【】A.1 B.2 C.3 D.4【答案】B。

【考点】平面与平面之间的位置关系,空中间直线与直线之间的位置关系,空间中直线与平面之间的位置关系。

【分析】由空间中面面平面关系的判定方法,线面平等的判定方法及线面平行的性质定理,逐一对四个答案进行分析,即可得到答案:若α⊥γ,β⊥γ,则α与β可能平行也可能相交,故①错误;由于m,n不一定相交,故α∥β不一定成立,故②错误;由面面平行的性质定理,易得③正确;由线面平行的性质定理,我们易得④正确。

江苏2014高考数学-立体几何专题

江苏2014高考数学-立体几何专题

PABCOM(第16立体几何总练习16.如图,四棱锥P ABCD -中,底面ABCD 为菱形,060DAB ∠=,平面PCD ⊥底面ABCD ,E 是AB 的中点,G 为PA 上的一点. (1)求证:平面GDE ⊥平面PCD ; (2)若//PC 平面DGE ,求PGGA 的值.16. 如图,四棱锥P -ABCD 中,底面ABCD 为菱形,BD ⊥面PAC ,AC =10,PA =6,cos ∠PCA =45,M 是PC 的中点. (Ⅰ)证明PC ⊥平面BMD ;(Ⅱ)若三棱锥M -BCD 的体积为14,求菱形ABCD 的边长.16.(本小题满分14分)如图,在三棱锥P ABC -中,除棱PC 外,其余棱均等长,M 为棱AB 的中点,O 为线段MC 上 靠近点M 的三等分点.(1)若PO MC ⊥,求证:PO ⊥平面ABC ;(2)试在平面PAB 上确定一点Q ,使得//OQ 平面PAC ,且//OQ 平面PBC ,并给出证明.点E 在棱1CC 的延15(14分).如图,在长方体1111ABCD A B C D -中,PB CD E G长线上,且11112CC C E BC AB ====. (Ⅰ)求证:1D E ∥平面1ACB ; (Ⅱ)求证:平面11D B E ⊥平面1DCB ; (Ⅲ)求四面体11D B AC 的体积.16.、如图,已知E ,F 分别是正方形ABCD 边BC 、CD 的中点,EF 与AC 交于点O ,PA 、NC 都垂直于平面ABCD ,且4PA AB ==, 2NC =,M 是线段PA 上一动点.(Ⅰ)求证:平面PAC ⊥平面NEF ;(Ⅱ)若//PC 平面MEF ,试求:PM MA 的值;16.在四棱柱ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,底面ABCD 为菱形,∠BAD =60°,P 为AB 的中点,Q 为CD 1的中点.(1)求证:DP ⊥平面A 1ABB 1; (2)求证:PQ ∥平面ADD 1A 1.BEADC1A1B 1C 1D 第16题图17、(本题满分14分)如图,长方体1111D C B A ABCD -中,a AA AB ==1,a BC 2=,M 是AD 中点,N 是11C B 中点.(1)求证:1A 、M 、C 、N 四点共面; (2)求证:MC BD ⊥1;(3)求证:平面MCN A 1⊥平面11BD A ;16.(本小题满分14分)如图,在四棱锥P ABCD -中,AB ∥DC ,2DC AB =,AP AD =,PB ⊥AC ,BD ⊥AC ,E 为PD 的中点. 求证:(1)AE ∥平面PBC ;(2)PD ⊥平面ACE .16.如图,在四面体ABCD 中,AB AC DB DC ===,点E 是BC 的中点,点F 在线段AC 上,且AF AC λ=.(1)若EF ∥平面ABD ,求实数λ的值;(2)求证:平面BCD ⊥平面AED .B 1 ABCD QPA 1C 1D 1ABCD A 1B 1C 1D 1MN(第16题图)EABDF。

2014年全国高考真题分类——立体几何答案

2014年全国高考真题分类——立体几何答案

数 学 一、选择题1.A [解析] 由题意可知,该正方形旋转一周后所得的圆柱的底面半径r =1,高h =1,则该圆柱的侧面积S =2πrh =2π,故选A.2.B [解析] 设圆锥的底面圆半径为r ,底面积为S ,则L =2πr .由题意得136L 2h ≈13Sh ,代入S =πr 2化简得π≈3.类比推理,若V ≈275L 2h 时,π≈258.故选B.3.C [解析] 因为D 为BC 的中点,所以AD ⊥BC ,故AD ⊥平面BCC 1B 1,且AD =3,所以V 三棱锥A - B 1DC 1=13S △B 1DC 1×AD =13×12B 1C 1×BB 1×AD =13×12×2×3×3=1.4.A [解析] 如图所示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V =8-2×13×12×1×1×1=233.图1-35.D [解析] 由三视图可知,该几何体的正视图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一锐角顶点与一直角边中点的连线),故正视图是④;俯视图是一个斜三角形,三个顶点坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.故选D.6.B [解析] 由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可得R =6+8-102=2.7.C [解析] 根据三视图可知,该几何体是正方体切去两个体积相等的圆柱的四分之一后余下的部分,故该几何体体积V =23-12×π×12×2=8-π.8.B [解析] 此几何体是由长方体与三棱柱组合而成的,其体积为6×4×3+12×3×4×3=90 cm 3,故选B.9.C [解析] 该零件是一个由两个圆柱组成的组合体,其体积V =π×32×2+π×22×4=34π(cm 3),原毛坯的体积V 毛坯=π×32×6=54π(cm 3),被切部分的体积V 切=V 毛坯-V =54π-34π=20π(cm 3),所以V 切V 毛坯=20π54π=1027.10.B [解析] 从俯视图为矩形可以看出,此几何体不可能是三棱锥或四棱锥,其直观图如图,是一个三棱柱.11、D [解析] 由图可知,三棱锥的底面为边长为2的正三角形,左侧面垂直于底面,且为边长为2的正三角形,所以该三棱锥的底面积S =12×2×3,高h =3,所以其体积V=13Sh =13×3×3=1,故选D.12.C [解析] 由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥得到的.三棱柱的底面是一个两直角边长分别为3和4的直角三角形,高为5;截去的锥体的底面是两直角边的长分别为3和4的直角三角形,高为3,所以该几何体的体积为V =12×3×4×5-13×12×3×4×3=24.13.B [解析] 由题可知,若m ∥α,n ∥α,则m 与n 平行、相交或异面,所以A 错误;若m ⊥α,n ⊂α,则m ⊥n ,故B 正确;若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故C 错误;若m ∥α,m ⊥n ,则n ∥α或n ⊥α或n 与α相交,故D 错误.14.C [解析] A ,B ,D 中m 与平面α可能平行、相交或m 在平面内α;对于C ,若m ⊥β,n ⊥β,则m ∥n ,而n ⊥α,所以m ⊥α.故选C.15.B [解析] 由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可得R =6+8-102=2.16.C [解析] 由题意可知,旋转体是一个底面半径为1,高为1的圆柱,故其侧面积为2π×1×1=2π.17.A [解析] 如图所示,因为正四棱锥的底面边长为2,所以AE =12AC = 2.设球心为O ,球的半径为R ,则OE =4-R ,OA =R .又因为△AOE 为直角三角形,所以OA 2=OE 2+AE 2,即R 2=(4-R )2+2,解得R =94,所以该球的表面积S =4πR 2=4π⎝⎛⎭⎫942=81π4.18.D [解析] 由勾股定理得BC =20 m .如图,过P 点作PD ⊥BC 于D ,连接AD ,则由点A 观察点P 的仰角θ=∠P AD ,tan θ=PDAD.设PD =x ,则DC =3x ,BD =20-3x ,在Rt △ABD 中,AD =152+(20-3x )2=625-403x +3x 2,所以tan θ=x625-403x +3x 2=1625x 2-403x+3=1625⎝⎛⎭⎫1x -2036252+2725≤539,故tan θ的最大值为539,故选D.19.B [解析] 如图所示,取CF ,则EF ∥BD ,故EF 与CE 所成的角即为异面直线CE 与BD 所成的角.设正四面体的棱长为2,则CE =CF =3,EF=1.在△CEF 中,cos ∠CEF =CE 2+EF 2-CF 22CE ·EF =3+1-32×3×1=36,所以异面直线CE 与BD所成角的余弦值为36.图1-1二、填空题1、22 [解析] 该三棱锥的直观图如图所示,并且PB ⊥平面ABC ,PB =2,AB =2,AC =BC =2,P A =22+22=22,PC =22+(2)2=6,故P A 最长.2、.20π3[解析] 由三视图可知,该几何体为圆柱与圆锥的组合体,其体积V =π×12×4+13π×22×2=20π3.3、.32 [解析] 因为S 1S 2=πr 21πr 22=r 21r 22=94,所以r 1r 2=32.又圆柱的侧面积S 侧=2πrh ,所以S 侧1=2πr 1h 1=S 侧2=2πr 2h 2,则h 1h 2=r 2r 1=23,故V 1V 2=S 1h 1S 2h 2=94×23=32.4.12 [解析] 设该六棱锥的高是h .根据体积公式得,V =13×12×2×3×6×h ,解得h=1,则侧面三角形的高为1+(3)2=2,所以侧面积S =12×2×2×6=12.三、综合题1、(安徽)解析:(1)证明:因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH =GH ,所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC ,同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在平面ABCD 内,所以PO ⊥平面ABCD .又因为平面GEFH ⊥平面ABCD ,且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,所以GK ⊥平面ABCD . 又EF ⊂平面ABCD ,所以GK ⊥EF , 所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4,从而KB =14DB =12OB ,即K 是OB 的中点.再由PO ∥GK 得GK =12PO ,所以G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3,故四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18.2、(重庆)解析:(1)证明:如图所示,因为四边形ABCD 为菱形,O 为菱形的中心,连接OB ,则AO ⊥OB .因为∠BAD =π3,所以OB =AB ·sin ∠OAB =2sin π6=1.又因为BM =12,且∠OBM =π3,在△OBM 中,OM 2=OB 2+BM 2-2OB ·BM ·cos ∠OBM=12+⎝⎛⎭⎫122-2×1×12×cos π3=34,所以OB 2=OM 2+BM 2,故OM ⊥BM .又PO ⊥底面ABCD ,所以PO ⊥BC .从而BC 与平面POM 内的两条相交直线OM ,PO 都垂直,所以BC ⊥平面POM .(2)由(1)可得,OA =AB ·cos ∠OAB =2×cos 6= 3.设PO =a ,由PO ⊥底面ABCD ,知△POA 为直角三角形,故P A 2=PO 2+OA 2=a 2+3.又△POM 也是直角三角形,故PM 2=PO 2+OM 2=a 2+34.连接AM ,在△ABM 中,AM 2=AB 2+BM 2-2AB ·BM ·cos ∠ABM =22+⎝⎛⎭⎫122-2×2×12×cos 2π3=214. 由已知MP ⊥AP ,故△APM 为直角三角形,则P A 2+PM 2=AM 2,即a 2+3+a 2+34=214,解得a =32或a =-32(舍去),即PO =32.此时S 四边形ABMO =S △AOB +S △OMB =12·AO ·OB +12·BM ·OM =12×3×1+12×12×32 =5 38.所以四棱锥P -ABMO 的体积V 四棱锥P -ABMO =13·S 四边形ABMO·PO =13×5 38×32=516.3、(陕西)解析:(1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1, ∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG ,平面EFGH ∩ 平面ABC=EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH .同理EF ∥AD ,HG ∥AD ,∴EF ∥HG , ∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG , ∴四边形EFGH 是矩形.4(湖南)解析、连接BD ,由题设知,△ABD 是正三角形,又E 是AB 的中点,所以DE ⊥AB .而DO ∩DE =D(2)因为BC ∥AD ,所以ADO 是BC 与OD 所成的角.由(1)知,AB ⊥平面ODE ,所以AB ⊥OE .又DE ⊥AB ,于是∠DEO 是二面角α-MN -β的平面角,从而∠DEO =60°.不妨设AB =2,则AD =2,易知DE = 3.在Rt △DOE 中,DO =DE ·sin 60°=32.连接AO ,在Rt △AOD 中,cos ∠ADO =DO AD =322=34.故异面直线BC 与OD 所成角的余弦值为34.5、(新课标全国II)解析:(1)证明:设BD 与AC 的交点为O ,连接EO .因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)V =13×12×P A ×AB ×AD =36AB ,由V =34,可得AB =32. 作AH ⊥PB 交PB 于点H .由题设知BC ⊥平面P AB ,所以BC ⊥AH , 因为PB ∩BC =B ,所以AH ⊥平面PBC . 又AH =P A ·AB PB =31313,所以点A 到平面PBC 的距离为31313.6、(北京)解析:(1)证明:在三棱柱ABC - A 1B 1C 1中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1.所以平面ABE ⊥平面B 1BCC 1.(2)证明:取AB 的中点G ,连接EG ,FG .因为E ,F ,G 分别是A 1C 1,BC ,AB 的中点, 所以FG ∥AC ,且FG =12AC ,EC 1=12A 1C 1.因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形, 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .(3)因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3. 所以三棱锥E - ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.图1-67、(福建)解析:方法一:(1)证明:∵AB ⊥平面BCD ,CD ⊂平面BCD , ∴AB ⊥CD .又∵CD ⊥BD ,AB ∩BD =B ,AB ⊂平面ABD ,BD ⊂平面ABD , ∴CD ⊥平面ABD .(2)由AB ⊥平面BCD ,得AB ⊥BD .∵AB =BD =1,∴S △ABD =12.∵M 是AD 的中点, ∴S △ABM =12S △ABD =14.由(1)知,CD ⊥平面ABD ,∴三棱锥C - ABM 的高h =CD =1,因此三棱锥A - MBC 的体积 V A - MBC =V C ­ ABM=13S △ABM ·h =112.方法二:(1)同方法一.(2)由AB ⊥平面BCD ,得平面ABD ⊥平面BCD .且平面ABD ∩平面BCD =BD .如图所示,过点M 作MN ⊥BD 交BD 于点N , 则MN ⊥平面BCD ,且MN =12AB =12.又CD ⊥BD ,BD =CD =1,∴S △BCD =12.∴三棱锥A - MBC 的体积V A ­ MBC =V A ­ BCD -V M ­ BCD =13AB ·S △BCD -13MN ·S △BCD =112. 8、(广东)解析:9、(湖北)解析:证明:(1)连接AD 1,由ABCD - A 1B 1C 1D 1是正方体,知AD 1∥BC 1.因为F ,P 分别是AD ,DD 1的中点,所以FP ∥AD 1. 从而BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)如图,连接AC ,BD ,A 1C 1,则AC ⊥BD . 由CC 1⊥平面ABCD ,BD ⊂平面ABCD , 可得CC 1⊥BD .又AC ∩CC 1=C ,所以BD ⊥平面ACC 1A 1. 而AC 1⊂平面ACC 1A 1,所以BD ⊥AC 1.因为M ,N 分别是A 1B 1,A 1D 1的中点,所以MN ∥同理可证PN ⊥AC 1.又PN ∩MN =N ,所以直线AC 1⊥平面PQMN.00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2112,,2211.33CDE M CDE CDE CF DE PE S CD DE P CP MD VS MD ∆-∆=∴=∴==⋅=====∴=⋅==10、(上海)解析:11、(江苏)解析:证明: (1)因为D ,E 分别为棱PC ,AC 的中点, 所以DE ∥P A .又因为P A ⊄平面DEF ,DE ⊂平面DEF , 所以直线P A ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,P A =6,BC =8,所以DE ∥P A ,DE =12P A =3,EF =12BC =4.又因为DF =5,所以DF 2=DE 2+EF 2,所以∠DEF =90°,即DE ⊥EF .又P A ⊥AC ,DE ∥P A , 所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC . 又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC .12、(山东)解析:证明:(1)设AC ∩BE =O ,连接OF ,EC .由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC ,所以AE ∥BC ,AE =AB =BC , 所以O 为AC 的中点.又在△P AC 中,F 为PC 的中点,所以AP ∥OF . 又OF ⊂平面BEF ,AP ⊄平面BEF , 所以AP ∥平面BEF .(2)由题意知,ED ∥BC ,ED =BC ,所以四边形BCDE 为平行四边形, 所以BE ∥CD .又AP ⊥平面PCD ,所以AP ⊥CD ,所以AP ⊥BE . 因为四边形ABCE 为菱形, 所以BE ⊥AC .又AP ∩AC =A ,AP ,AC ⊂平面P AC , 所以BE ⊥平面P AC .13、(江西)解析:(1)证明:由AA 1⊥BC 知BB 1⊥BC .又BB 1⊥A 1B ,故BB 1⊥平面BCA 1,所以BB 1⊥A 1C .又BB 1∥CC 1,所以A 1C ⊥CC 1. (2)方法一:设AA 1=x .在Rt △A 1BB 1中,A 1B =A 1B 21-BB 21=4-x 2.同理,A 1C =A 1C 21-CC 21=3-x 2. 在△A 1BC 中,cos ∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ·A 1C =-x 2(4-x 2)(3-x 2),sin ∠BA 1C =12-7x 2(4-x 2)(3-x 2),所以S △A 1BC =12A 1B ·A 1C ·sin ∠BA 1C =12-7x 22.从而三棱柱ABC - A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22.因为x 12-7x 2=12x 2-7x 4=-7⎝⎛⎭⎫x 2-672+367,所以当x =67=427,即AA 1=427时,体积V 取到最大值377.(2)方法二:过A 1作BC 的垂线,垂足为D ,连接AD .由AA 1⊥BC ,A 1D ⊥BC ,得BC ⊥平面AA 1D ,故BC ⊥AD .又∠BAC =90°,所以S △ABC =12AD ·BC =12AB ·AC ,得AD =2217.设AA 1=x .在Rt △AA 1D 中,A 1D =AD 2-AA 21=127-x 2,S △A 1BC =12A 1D ·BC =12-7x 22.从而三棱柱ABC - A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22.因为x 12-7x 2=12x 2-7x 4=-7⎝⎛⎭⎫x 2-672+367,所以当x =67=427,即AA 1=427时,体积V 取到最大值377.14、(辽宁)解析解:(1)证明:由已知得△ABC ≌△DBC ,因此AC =DC .又G 为AD 的中点,所以CG ⊥AD ,同理BG ⊥AD .又BG ∩CG =G ,所以AD ⊥平面BGC . 又EF ∥AD ,所以EF ⊥平面BCG .(2)在平面ABC 内,作AO ⊥CB ,交CB 延长线于点O . 由平面ABC ⊥平面BCD ,知AO ⊥平面BDC .又G 为AD 的中点,所以G 到平面BDC 的距离h 是AO 在△AOB 中,AO =AB ·sin 60°=3,所以V 三棱锥D -BCG =V 三棱锥G -BCD =13·S △DBC ·h =13×12·BD ·BC ·sin 120°·32=12.15、(全国新课标I)解析:解:(1)证明:由已知得△ABC ≌△DBC ,因此AC =DC .又G 为AD 的中点,所以CG ⊥AD ,同理BG ⊥AD .又BG ∩CG =G ,所以AD ⊥平面BGC . 又EF ∥AD ,所以EF ⊥平面BCG .(2)在平面ABC 内,作AO ⊥CB ,交CB 延长线于点O . 由平面ABC ⊥平面BCD ,知AO ⊥平面BDC .又G 为AD 的中点,所以G 到平面BDC 的距离h 是AO 在△AOB 中,AO =AB ·sin 60°=3,所以V 三棱锥D -BCG =V 三棱锥G -BCD =13·S △DBC ·h =13×12·BD ·BC ·sin 120°·32=12. .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1. 又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO , 由于BC 1∩AO =O ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)作OD ⊥BC ,垂足为D ,连接AD .作OH ⊥AD ,垂足为H . 由于BC ⊥AO ,BC ⊥OD ,且AO ∩OD =O , 故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,且AD ∩BC =D , 所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形,又BC =1,可得OD =34. 因为AC ⊥AB 1,所以OA =12B 1C =12.由OH ·AD =OD ·OA ,且AD =OD 2+OA 2=74,得OH =2114. 又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为217.故三棱柱ABC - A 1B 1C 1的高为217.16、(四川)解析:(1)证明:因为四边形ABB 1A 1和ACC 1A 1都是矩形,所以AA 1⊥AB ,AA 1⊥AC .因为AB ,AC 为平面ABC 内的两条相交直线, 所以AA 1⊥平面ABC .因为直线BC ⊂平面ABC ,所以AA 1⊥BC .又由已知,AC ⊥BC ,AA 1,AC 为平面ACC 1A 1内的两条相交直线, 所以BC ⊥平面ACC 1A 1.(2)取线段AB 的中点M ,连接A 11,设O 为A 1C ,AC 1的交点.由已知,O 为AC 1的中点.连接MD ,OE ,则MD ,OE 分别为△ABC ,△ACC 1的中位线,所以MD 綊12AC ,OE 綊12AC ,因此MD 綊OE .连接OM ,从而四边形MDEO 为平行四边形,所以DE ∥MO . 因为直线DE ⊄平面A 1MC ,MO ⊂平面A 1MC . 所以直线DE ∥平面A 1MC .即线段AB 上存在一点M (线段AB 的中点),使直线DE ∥平面A 1MC .17、(天津)解析:(1)证明:如图所示,取PB 中点M ,连接MF ,AM .因为F 为PC 中点,所以MF ∥BC ,且MF =12BC .由已知有BC ∥AD ,BC =AD ,又由于E 为AD 中点,因而MF ∥AE 且MF =AE , 故四边形AMFE 为平行四边形,所以EF ∥AM .又AM ⊂平面P AB ,而EF ⊄平面P AB , 所以EF ∥平面P AB .(2)(i)证明:连接PE ,BE.因为P A =PD ,BA =BD ,而E 为AD 中点,所以PE ⊥AD ,BE ⊥AD ,所以∠PEB 为二面角P - AD -B 的平面角.在△P AD 中,由P A =PD =5,AD =2,可解得PE =2. 在△ABD 中,由BA =BD =2,AD =2,可解得BE =1. 在△PEB 中,PE =2,BE =1,∠PEB =60˚,由余弦定理,可解得PB =3,从而∠PBE =90˚,即BE ⊥PB .又BC ∥AD ,BE ⊥AD , 从而BE ⊥BC,因此BE ⊥平面PBC .又BE ⊂平面ABCD , 所以平面PBC ⊥平面ABCD .(ii)连接BF ,由(i)知,BE ⊥平面PBC ,所以∠EFB 为直线EF 与平面PBC 所成的角.由PB =3及已知,得∠ABP 为直角,而MB =12PB =32,可得AM =112,故EF =112.又BE =1,故在直角三角形EBF 中,sin ∠EFB =BE EF =21111.所以直线EF 与平面PBC 所成角的正弦值为21111.18、(浙江)解析:(1)证明:连接BD ,在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2,由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC .又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE .(2)在直角梯形BCDE 中,由BD =BC =2,DC =2,得BD ⊥BC .又平面ABC ⊥平面BCDE ,所以BD ⊥平面ABC .作EF ∥BD ,与CB 的延长线交于点F ,连接AF ,则EF ⊥平面ABC . 所以∠EAF 是直线AE 与平面ABC 所成的角.在Rt △BEF 中,由EB =1,∠EBF =π4,得EF =22,BF =22;在Rt △ACF 中,由AC =2,CF =322,得AF =262. 在Rt △AEF 中,由EF =22,AF =262, 得tan ∠EAF =1313. 所以,直线AE 与平面ABC 所成的角的正切值是1313.19.(全国券)解析:.解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C ,故平面AA 1C 1C ⊥平面ABC .又BC ⊥AC ,平面AA 1C 1C ∩平面ABC =AC ,所以BC ⊥平面AA 1C 1C .连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C . 由三垂线定理得AC 1⊥A 1B .(2)BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1, 故平面AA 1C 1C ⊥平面BCC 1B 1.作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1.又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3. 因为A 1C 为∠ACC 1的平分线,故A 1D =A 1E = 3.作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB , 故∠A 1FD 为二面角A 1­ AB ­ C 的平面角.由AD =AA 21-A 1D 2=1,得D 为AC 中点,所以DF =55,tan ∠A 1FD =A 1DDF=15, 所以cos ∠A 1FD =14.所以二面角A 1­ AB ­ C 的大小为arccos 14.。

2014年江苏省高考数学试卷(含解析版)

2014年江苏省高考数学试卷(含解析版)

2014年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.2.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.3.(5分)如图是一个算法流程图,则输出的n的值是.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.7.(5分)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P (2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,=2,则的值是.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(16分)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m 的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论.20.(16分)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n (n∈N*)成立.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修4-2:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【选修4-3:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【选修4-4:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).26.(10分)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n ∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3} .【考点】1E:交集及其运算.【专题】5J:集合.【分析】根据集合的基本运算即可得到结论.【解答】解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21.【考点】A1:虚数单位i、复数;A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的有关概念,即可得到结论.【解答】解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21【点评】本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.(5分)如图是一个算法流程图,则输出的n的值是5.【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.【解答】解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.【考点】CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.【解答】解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.【点评】本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.【考点】&5:三角方程;51:函数的零点.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.【解答】解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.【点评】本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24株树木的底部周长小于100cm.【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm 的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.【解答】解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.【点评】本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.(5分)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是4.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.【点评】本题考查了等比数列的通项公式,属于基础题.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.【考点】L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】5Q:立体几何.【分析】设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.【解答】解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.【点评】本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.【解答】解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.【点评】本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).【考点】3V:二次函数的性质与图象.【专题】51:函数的性质及应用.【分析】由条件利用二次函数的性质可得,由此求得m的范围.【解答】解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P (2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3.【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.【解答】解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,=2,则的值是22.【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,?=2,构造方程,进而可得答案.【解答】解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴?=(+)?(﹣)=||2﹣?﹣||2=25﹣?﹣12=2,故?=22,故答案为:22.【点评】本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,).【考点】53:函数的零点与方程根的关系.【专题】51:函数的性质及应用.【分析】在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.【解答】解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).【点评】本题考查函数的图象以函数的零点的求法,数形结合的应用.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.【考点】HP:正弦定理;HR:余弦定理.【专题】57:三角函数的图像与性质;58:解三角形;59:不等式的解法及应用.【分析】根据正弦定理和余弦定理,利用基本不等式即可得到结论.【解答】解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.【点评】本题主要考查正弦定理和余弦定理的应用,结合基本不等式的性质是解决本题的关键.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.【考点】GP:两角和与差的三角函数.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.【解答】解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.【点评】本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.【考点】LW:直线与平面垂直;LY:平面与平面垂直.【专题】5F:空间位置关系与距离;5G:空间角;5Q:立体几何.【分析】(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可.【解答】证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA?平面DEF,DE?平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE?平面BDE,∴平面BDE⊥平面ABC.【点评】本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.【考点】K3:椭圆的标准方程;K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.【解答】解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,﹣),且A,C关于x轴对称,∴C(,),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.【点评】本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?【考点】J7:圆的切线方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.【解答】解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.【点评】本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.(16分)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m 的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论.【考点】6E:利用导数研究函数的最值.【专题】53:导数的综合应用.【分析】(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.【解答】解:(1)∵f(x)=e x+e﹣x,∴f(﹣x)=e﹣x+e x=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(e x+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴e x+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=e x,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=e x+e﹣x﹣a(﹣x3+3x),则g′(x)=e x﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)?(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)?(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)?(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而e a﹣1<a e﹣1,②当a=e时,a e﹣1=e a﹣1,③当a∈(e,+∞)?(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e﹣1)lna,从而e a﹣1>a e﹣1.【点评】本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.(16分)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n (n∈N*)成立.【考点】83:等差数列的性质;8B:数列的应用.【专题】54:等差数列与等比数列.【分析】(1)利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”即可得到a n,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出S n,对?n∈N*,?m∈N*使S n=a m,取n=2和根据d<0即可得出;(3)设{a n}的公差为d,构造数列:b n=a1﹣(n﹣1)a1=(2﹣n)a1,c n=(n﹣1)(a1+d),可证明{b n}和{c n}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.【解答】解:(1)当n≥2时,a n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,S n=a n+1.∴数列{a n}是“H”数列.(2)S n==,对?n∈N*,?m∈N*使S n=a m,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{a n}的公差为d,令b n=a1﹣(n﹣1)a1=(2﹣n)a1,对?n∈N*,b n+1﹣b n=﹣a1,c n=(n﹣1)(a1+d),对?n∈N*,c n+1﹣c n=a1+d,则b n+c n=a1+(n﹣1)d=a n,且数列{b n}和{c n}是等差数列.数列{b n}的前n项和T n=,令T n=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对?n∈N*,都可找到m∈N*,使T n=b m成立,即{b n}为H数列.数列{c n}的前n项和R n=,令c m=(m﹣1)(a1+d)=R n,则m=.∵对?n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对?n∈N*,都可找到m∈N*,使R n=c m成立,即{c n}为H数列.因此命题得证.【点评】本题考查了利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”求a n、等差数列的前n项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【考点】N7:圆周角定理.【专题】5B:直线与圆.【分析】利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.【解答】证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.【点评】本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题.【选修4-2:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【考点】OB:矩阵与向量乘法的意义.【专题】5R:矩阵和变换.【分析】利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y的值.【解答】解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=【点评】本题考查矩阵的乘法,考查学生的计算能力,属于基础题.【选修4-3:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【考点】QH:参数方程化成普通方程.【专题】17:选作题;35:转化思想;49:综合法;5S:坐标系和参数方程.【分析】直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.【解答】解:直线l的参数方程为(t为参数),化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.故答案为:8.【点评】本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修4-4:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.【考点】R6:不等式的证明.【专题】14:证明题;59:不等式的解法及应用.【分析】由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.【解答】证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.【点评】本题考查不等式的证明,正确运用均值不等式是关键.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).【考点】CB:古典概型及其概率计算公式;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.【解答】解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X234P故X数学期望E(X)=.【点评】本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.26.(10分)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n ∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.【考点】63:导数的运算;GL:三角函数中的恒等变换应用.【专题】51:函数的性质及应用;56:三角函数的求值.【分析】(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.【解答】解:(1)∵f0(x)=,∴xf0(x)=sinx,(sinx)′,则两边求导,[xf0(x)]′=∵f n(x)为f n﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kf k﹣1(x)+xf k(x)]′=kf k﹣1′(x)+f k(x)+xf k′(x)=(k+1)f k(x)+xf k+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nf n﹣1()+f n()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.【点评】本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力.。

2014年高考一轮复习数学教案:9.13 立体几何的综合问题

2014年高考一轮复习数学教案:9.13  立体几何的综合问题

9.13立体几何的综合问题●知识梳理 1.线与线、线与面、面与面间的平行、垂直关系. 2.空间角与空间距离. 3.柱、锥、球的面积与体积. 4.平面图形的翻折,空间向量的应用. ●点击双基 1.若 Rt△ABC 的斜边 BC 在平面α 内,顶点 A 在α 外,则△ABC 在α 上的射影是 A.锐角三角形 B.钝角三角形 C.直角三角形 D.一条线段或一钝角三角形 解析:当平面 ABC⊥α 时,为一条线段,结合选择肢,知选 D. 答案:D 2.长方体 AC1 的长、宽、高分别为 3、2、1,从 A 到 C1 沿长方体的表面的最短距离为D1 A1 D A 2 1 3 B B1 C C1A.1+ 3B.2+ 10C.3 2D.2 3解析:求表面上最短距离常把图形展成平面图形. 答案:C 3.设长方体的对角线长为 4, 过每个顶点的三条棱中总有两条棱与对角线的夹角为 60°, 则长方体的体积是 A.27 2 B.8 2 C.8 3 D.16解析:先求出长方体的两条棱长为 2、2,设第三条棱长为 x,由 22+22+x2=42  x=2 2 , ∴V=2×2×2 2 =8 2 . 答案:B 4.棱长为 a 的正方体的各个顶点都在一个球面上,则这个球的体积是_____________. 解析:易知球的直径 2R= 3 a.所以 R= 答案:3 4π 3 3π 3 a.所以 V= R= a. 2 2 33π 3 a 2 5.已知△ABC 的顶点坐标为 A(1,1,1) 、B(2,2,2) 、C(3,2,4) ,则△ABC 的 面积是_____________.解析: AB =(1,1,1) AC =(2,1,3) , ,cos〈 AB , AC 〉=6 3  14=42 ,∴ 7sinA=7 1 1 .∴S ABC = | AB || AC |sinA= 7 2 2 6 答案: 2 ●典例剖析3 · 14 ·7 = 76 . 2【例 1】 在直角坐标系 O—xyz 中, OA =(0,1,0) AB =(1,0,0) OC =(2,0, , , 0) OS =(0,0,1). , (1)求 SC 与 OB 的夹角α 的大小; (2)设 n=(1,p,q) ,且 n⊥平面 SBC,求 n; (3)求 OA 与平面 SBC 的夹角; (4)求点 O 到平面 SBC 的距离; (5)求异面直线 SC 与 OB 间的距离. 解: (1)如图, SC = OC - OS =(2,0,-1) OB = OA + AB =(1,1,0) , ,则 | SC |= 2 2  0 2  (1) 2 = 5 ,| OB |= 12  12  0 2 = 2 .z SA O B C x ycosα =cos〈 SC , OB 〉=SC  OB | SC || OB |=200 5 2=10 10 ,α =arccos . 5 5n· SC =0,(2)∵n⊥平面 SBC,∴n⊥ SC 且 n⊥ BC ,即 n· BC =0. ∵ SC =(2,0,-1) BC = OC - OB =(1,-1,0) , , ∴ 2-q=0, p=1, ∴ 即 n= (1, 2) 1, . 1-p=0. q=2,(3) 与平面 SBC 所成的角θ 和 OA 与平面 SBC 的法线所夹角互余, OA 故可先求 OA 与 n 所成的角.OA =(0,1,0) OA |=1,|n|= 12  12  2 2 = 6 . ,|∴cos〈 OA ,n〉=OA  n|OA||n | 1  6=1=6 , 6即〈 OA ,n〉=arccos6 6 π .∴θ = -arccos . 6 6 2(4)点 O 到平面 SBC 的距离即为 OC 在 n 上的投影的绝对值, ∴d=| OC ·2 n |= = |n | 66 . 3(5) OC 在异面直线 SC、OB 的公垂线方向上的投影的绝对值即为两条异面直线间的 距离,故先求与 SC、OB 均垂直的向量 m. 设 m=(x,y,1) ,m⊥ SC 且 m⊥ OB , 则 m· SC =0,且 m· OB =0. 2x-1=0, ∴ x+y=0, 即 x=1 , 2 1 y=- . 22 6=∴m=(m 1 1 ,- ,1) ,d′=| OC · |= |m | 2 26 . 3特别提示借助于平面的法向量,可以求斜线与平面所成的角,求点到平面的距离,类似地可以求 异面直线间的距离.本题选题的目的是复习如何求平面的法向量,以及如何由法向量求角、 求距离. 【例 2】 如图,已知一个等腰三角形 ABC 的顶角 B=120°,过 AC 的一个平面α 与顶 点 B 的距离为 1,根据已知条件,你能求出 AB 在平面α 上的射影 AB1 的长吗?如果不能,那 么需要增加什么条件,可以使 AB1=2?B  B1 C A解:在条件“等腰△ABC 的顶角 B=120°”下,△ABC 是不能唯一确定的,这样线段 AB1 也是不能确定的,需要增加下列条件之一,可使 AB1=2: ①CB1=2;②CB= 5 或 AB= 5 ;③直线 AB 与平面α 所成的角∠BAB1=arcsin ④∠ABB1=arctan2;⑤∠B1AC=arccos5 ; 515 7 ;⑥∠AB1C=π -arccos ;⑦AC= 15 ;⑧B1 4 8 5 1 到 AC 的距离为 ;⑨B 到 AC 的距离为 ;⑩二面角 B—AC—B1 为 arctan2 等等. 2 2 思考讨论本题是一个开放型题目,做这类题的思维是逆向的,即若 AB1=2,那么能够推出什么结 果,再回过来考虑根据这一结果能否推出 AB1=2. 【例 3】 (2004 年春季北京)如图,四棱锥 S—ABCD 的底面是边长为 1 的正方形,SD 垂直于底面 ABCD,SB= 3 ,SMDCAB(1)求证:BC⊥SC; (2)求面 ASD 与面 BSC 所成二面角的大小; (3)设棱 SA 的中点为 M,求异面直线 DM 与 SB 所成角的大小. 剖析:本题主要考查直线与平面的位置关系等基本知识,考查空间想象能力、逻辑思维 能力和运算能力. (1)证法一:∵底面 ABCD 是正方形, ∴BC⊥DC.∵SD⊥底面 ABCD, ∴DC 是 SC 在平面 ABCD 上的射影. 由三垂线定理得 BC⊥SC. 证法二:∵底面 ABCD 是正方形, ∴BC⊥DC.∵SD⊥底面 ABCD, ∴SD⊥BC.又 DC∩SD=D, ∴BC⊥平面 SDC.∴BC⊥SC. (2)解法一:∵SD⊥底面 ABCD,且 ABCD 为正方形,S A1 M D A B C B1 C1∴可以把四棱锥 S—ABCD 补形为长方体 A1B1C1S—ABCD,如上图,面 ASD 与面 BSC 所成的二面角就是面 ADSA1 与面 BCSA1 所成的二面角,∵SC⊥BC,BC∥A1S,∴SC⊥A1S. 又 SD⊥A1S,∴∠CSD 为所求二面角的平面角. 在 Rt△SCB 中,由勾股定理得 SC= 2 , 在 Rt△SDC 中,由勾股定理得 SD=1. ∴∠CSD=45°, 即面 ASD 与面 BSC 所成的二面角为 45°. 解法二:如下图,过点 S 作直线 l∥AD,l SM D A B C∴l 在面 ASD 上. ∵底面 ABCD 为正方形,∴l∥AD∥BC.∴l 在面 BSC 上. ∴l 为面 ASD 与面 BSC 的交线. ∵SD⊥AD,BC⊥SC,∴l⊥SD,l⊥SC. ∴∠CSD 为面 ASD 与面 BSC 所成二面角的平面角. (以下同解法一). (3)解法一:如上图,∵SD=AD=1,∠SDA=90°, ∴△SDA 是等腰直角三角形. 又 M 是斜边 SA 的中点, ∴DM⊥SA. ∵BA⊥AD,BA⊥SD,AD∩SD=D, ∴BA⊥面 ASD,SA 是 SB 在面 ASD 上的射影. 由三垂线定理得 DM⊥SB. ∴异面直线 DM 与 SB 所成的角为 90°. 解法二:如下图,取 AB 的中点 P,连结 MP、DP.SM D C P BA在△ABS 中,由中位线定理得 PM∥BS. ∴DM 与 SB 所成的角即为∠DMP. 又 PM2=3 5 2 ,DP2= ,DM2= . 4 4 4∴DP2=PM2+DM2.∴∠DMP=90°. ∴异面直线 DM 与 SB 所成的角为 90°. ●闯关训练 夯实基础 1.下图是一个无盖的正方体盒子展开后的平面图,A、B、C 是展开图上的三点,则在正 方体盒子中,∠ABC 的值为BCAA.180° B.120° C.60° D.45° 答案:C 2.在棱长为 1 的正方体 ABCD—A1B1C1D1 中,M、N 分别为 A1B1 和 BB1 的中点,那么直 线 AM 与 CN 所成的角为D1 A1 M B1 N D A B C C1A.arccos3 2B.arccos10 10C.arccos3 5D.arccos2 5解法一:∵ AM = AA1 + A1 M , CN = CB + BN , ∴ AM · CN =( AA1 + A1 M )( CB + BN )= AA1 · BN = · 而| AM |=1 . 21 1 = 45 .同理, 2( AA1  A1 M )  ( AA1  A1 M ) = | AA1 | 2  | A1 M | 2 =| CN |=5 . 21 2 2 如令α 为所求之角,则 cosα = = 2 = ,∴α =arccos .应选 D. 5 | AM | | CN | 5 5 4AM  CN解法二: 建立如图所示的空间直角坐标系, D 点视作原点 O, 把 分别以 DA 、DC 、DD1 的方向为 x 轴、y 轴、z 轴的正方向,则 A(1,0,0) 、M(1, ,1) 、C(0,1,0) 、N(1, 1,1 21 ). 2z D1 A1 M B1 N D A x C B y C11 1 ,1) CN =(1,0, ). , 2 2 1 1 1 故 AM · CN =0×1+ ×0+1× = , 2 2 2∴ AM =(0,5 1 | AM |= 0 2  ( ) 2  12 = , 2 2 5 1 | CN |= 12  0 2  ( ) 2 = . 2 2∴cosα =AM  CN | AM | | CN |=1 2 5 5  2 2=2 . 5∴α =arccos 答案:D2 . 53.图甲是一个正三棱柱形的容器,高为 2a,内装水若干.现将容器放倒,把一个侧面作 为底面,如图乙所示,这时水面恰好为中截面,则图甲中水面的高度为_____________.C1 A1 B1 E C C A B B B1 A F E1 C1 A1 F1甲F1 A1C1 B1乙E1F A EC B丙解析:设正三棱柱的底面积为 S,将图乙竖起得图丙,则 V 水=V 柱-V AEF A1E1F1 =S·2a -(1 3 3 3 S) ·2a= aS.设图甲中水面的高度为 x,则 S·x= aS,得 x= a. 4 2 2 2 3a 答案: 24.在三棱锥 P—ABC 中,底面是边长为 2 cm 的正三角形,PA=PB=3 cm,转动点 P 时, 三棱锥的最大体积为. 解析:点 P 到面 ABC 距离最大时体积最大,此时面 PAB⊥面 ABC,高 PD=2 2 .PA D BC3 2 6 1 × ×4×2 2 = . 4 3 3 2 6 答案: cm3 3V= 5.把长、宽各为 4、3 的长方形 ABCD,沿对角线 AC 折成直二面角,求顶点 B 和顶点 D 的距离. 解:如图,作 BE⊥AC 于 E,BAE DC∵二面角 B—AC—D 为直二面角,BE⊥AC, ∴BE⊥平面 ADC,DE  平面 ADC,BE⊥DE.9 12 ,AE= ,在△ADE 中,DE2=AE2+AD2-2AD·AE· 5 5 9 4 193 81 cos∠EAD= +16-2· ·4· = . 5 5 25 25 337 在 Rt△BDE 中,BD=BE2+ED2= . 5在 Rt△ABC 中,可得 BE= 培养能力 6.已知正方形 ABCD 的边长为 1,分别取边 BC、CD 的中点 E、F,连结 AE、EF、AF, 以 AE、EF、FA 为折痕,折叠使点 B、C、D 重合于一点 P. (1)求证:AP⊥EF; (2)求证:平面 APE⊥平面 APF; (3)求异面直线 PA 和 EF 的距离. (1)证明:如下图,∵∠APE=∠APF=90°,PE∩PF=P,∴PA⊥平面 PEF. ∵EF  平面 PEF,∴PA⊥EF.P A DFA G EFBEC(2)证明:∵∠APE=∠EPF=90°,AP∩PF=P,∴PE⊥平面 APF.又 PE  平面 PAE, ∴平面 APE⊥平面 APF. (3)解:在面 PEF 中,作 PG⊥EF,垂足为 G,∵AP 与面 PEF 垂直,PG  平面 PEF, ∴AP⊥PG, PG⊥EF, 是 AP 与 EF 的公垂线.在等腰 Rt△PEF 中, PG PE=PF=1 , 2∠EPF=90°,∴PG=EG=2 . 47.(文)如图,在四棱锥 P—ABCD 中,底面 ABCD 是一直角梯形,∠BAD=90°,AD ∥BC,AB=BC=a,AD=2a,PA⊥底面 ABCD,PD 与底面成 30°角.z P EA B x CDy(1)若 AE⊥PD,E 为垂足,求证:BE⊥PD; (2)求异面直线 AE 与 CD 所成的角. (1)证明:以 A 为原点,AB、AD、AP 所在直线为坐标轴,建立空间直角坐标系,则 A(0,0,0) ,B(a,0,0) ,D(0,2a,0) ,P(0,0,3 a) AB · PD =(a,0,0)(0, , · 32a,-3 a)=0,又 AE · PD =0, 3∴ PD ⊥ AB , PD ⊥ AE .∴PD⊥BE. (2)解:∵PA⊥面 ABCD,PD 与底面成 30°角,∴∠PDA=30°. 过 E 作 EF⊥AD,垂足为 F,则 AE=a,∠EAF=60°,AF= ∴E(0,3 1 a,EF= a, 2 23 1 a, a). 2 2 3 1 于是 AE =(0, a, a).又 C(a,a,0) ,D(0,2a,0) ,∴CD=(-a,a,0). 2 21 2 a 2 cos〈 AE , CD 〉= = 2 = , | AE | | CD | a  2 a 4AE  CD2 . 4 (理)四棱锥 P—ABCD 中,PC⊥平面 ABCD,PC=2,在四边形 ABCD 中,∠B=∠C=90°, CD∥AB,AB=4,CD=1,点 M 在 PB 上,且 MB=3PM,PB 与平面 ABC 成 30°角, (1)求证:CM∥面 PAD; (2)求证:面 PAB⊥面 PAD; (3)求点 C 到平面 PAD 的距离. 分析: 本题主要考查空间直角坐标系的概念、 空间点和向量的坐标表示以及用向量法证 明平行关系,同时考查向量研究空间图形的数学思想方法. 如下图,建立空间直角坐标系 O—xyz,C 为坐标原点 O,突破点在于求出相关的向量 所对应的坐标. (1)证明:如图,建立空间直角坐标系.∴异面直线 AE 与 CD 所成的角是 arccosz P M D B C (O )E x A y∵PC⊥平面 ABCD, ∴∠PBC 为 PB 与平面 ABC 所成的角,即∠PBC=30°. ∵|PC|=2,∴|BC|=2 3 ,|PB|=4. 得 D(1,0,0) 、B(0,2 3 ,0) 、A(4,2 3 ,0) 、P(0,0,2). ∵|MB|=3|PM|, ∴|PM|=1,M(0,3 3 , ) , 2 2 3 3 CM =(0, , ) DP =(-1,0,2) DA =(3,2 3 ,0). , , 2 2设 CM =x DP +y DA (x、y∈R) ,3 3 3 1 , )=x(-1,0,2)+y(3,2 3 ,0)  x= 且 y= , 2 2 4 4 3 1 DP + DA . ∴ CM = 4 4则(0, ∴ CM 、 DP 、 DA 共面.又∵C 平面 PAD,故 CM∥平面 PAD. (2)证明:过 B 作 BE⊥PA,E 为垂足. ∵|PB|=|AB|=4,∴E 为 PA 的中点. ∴E(2, 3 ,1) BE =(2,- 3 ,1). , 又∵ BE · DA =(2,- 3 ,1)(3,2 3 ,0)=0, · ∴ BE ⊥ DA ,即 BE⊥DA. 而 BE⊥PA,∴BE⊥面 PAD. ∵BE  面 PAB,∴面 PAB⊥面 PAD. (3)解:由 BE⊥面 PAD 知,平面 PAD 的单位向量 n0= ∴CD=(1,0,0)的点 C 到平面 PAD 的距离 d=|n0· CD |=|BE=1(2,- 3 ,1).| BE | 2 21 2 2(2,- 3 ,1)(1,0,0)|= ·2 . 2探究创新 8.(2003 年北京宣武区二模题)如图,AB 为圆柱 OO1 的母线,BD 为圆柱 OO1 下底面 直径,AB=BD=2,点 C 为下底面圆周⊙O 上的一点,CD=1.A O1BO CD(1)求三棱锥 C—ABD 的体积; (2)求面 BAD 与面 CAD 所成二面角的大小; (3)求 BC 与 AD 所成角的大小. 分析:本题主要考查直线、平面的位置关系,考查圆柱的有关概念,考查直线、平面所 成角的概念及求法,考查空间想象能力和推理能力. 解: (1)∵AB 为圆柱 OO1 的母线,∴AB⊥下底面. ∴AB 为棱锥 A—BCD 的高.而点 C 在⊙O 上,∴△BCD 为直角三角形,∠BCD=90°. ∵BD=2,CD=1,∴BC= 3 .∴V三棱锥C —ABD=V三棱锥A —BCD=31×21×1×3×2=33.(2)过B 作BE ⊥AD ,垂足为E ,过点B 作BF ⊥AC ,垂足为点F ,连结EF .由BD 为底面圆的直径,得BC ⊥CD .∵AB ⊥平面BCD ,BC ⊥CD ,AB∴AC ⊥CD .而AC ∩BC =C , ∴CD ⊥平面ABC . 而CD ⊂平面ADC ,∴平面ABC ⊥平面ADC ,且它们的交线为AC . ∵BF ⊂平面ABC ,BF ⊥AC ,垂足为点F , ∴BF ⊥平面ACD .而BE ⊥AD ,AD ⊂平面ACD ,∴EF ⊥AD .平面ABD ∩平面ACD =AD ,∴∠BEF 是面ABD 与面ACD 所成的二面角的平面角. 由BE =21AD =2,AC =7,AB =2,可求出BF =7212.∴sin ∠BEF =BEBF =27212=742.∵∠BEF 为锐角,∴∠BEF =arcsin 742.故所求二面角的大小为arcsin742.(3)过点D 在下底面作DG ∥BC 交⊙O 于点G ,则∠GDA 为BC 与AD 所成的角.连结BG 、AG ,由BD 是⊙O 的直径,得GD ⊥BG ,则AG ⊥DG ,BC =GD.A B∴cos ∠GDA =ADGD =223=46.∴∠GDA =arccos46.∴所求BC 与AD 所成的角的大小为arccos 46.●思悟小结1.利用向量解立体几何问题,要仔细分析问题特点,把已知条件用向量表示,把一些待求的量用基向量或其他向量表示,将几何的位置关系的证明问题或数量关系的运算问题转化为典型的向量运算,以算代证,以值定形.这种方法可减少复杂的空间结构分析,使得思路简捷、方法清晰、运算直接,能迅速准确地解决问题.2.线线垂直、两异面直线的夹角、两点间的距离等问题的解决往往借助于向量坐标.正方体、长方体、底面有一角为直角的直棱柱、底面为菱形的直四棱柱、四棱锥等凡能出现三条两两垂直直线的图形,常常考虑空间直角坐标系.3.在综合问题中,首先要注意是否构建直角坐标系,能较易建立直角坐标系的,尽量建立直角坐标系.其次要注意向量运算与基本性质相结合的论述,这是今后的方向,可以“形到形”,可以“数到形”,注意数形结合,向量方法与传统方法各有千秋,相得益彰.必须熟练掌握向量的基本知识和技能,尤其提出如下几点:(1)怎样选择应用基底(不设直角坐标系)和建立直角坐标系及坐标系建立技巧; (2)法向量的应用对处理角和距离的重要性;(3)怎样用向量解决立体几何中的几大常见题型;(4)准确判断是否选用向量处理问题,明确向量解题的缺点; (5)空间向量是怎样由平面向量拓展而来的.●教师下载中心 教学点睛要给学生归纳、总结,使学生系统地掌握线线、线面、面面的位置关系,特别是平行与垂直的判定与性质,通过对照,深刻理解异面直线所成的角、斜线与平面所成的角、二面角的平面角,理解点到面的距离、异面直线的距离.通过解题总结证明立体几何问题的常见方法,注意培养学生的空间想象能力.拓展题例【例1】 已知直线a ∥α,且a 与α间的距离为d ,a 在α内的射影为a ′,l 为平面α内与a ′平行的任一直线,则a 与l 之间的距离的取值范围是A.[d ,+∞)B.(d ,+∞)C.(0,d ]D.{d }解析:如图,在a 上任取一点P 作PO ⊥a ′,垂足为O ,过O 作OA ⊥l ,垂足为A ,连结PA .则P A ⊥l ,P A ⊥a ,故P A 就是a 与l 之间的距离.在Rt △POA 中,PA >PO =d ,选B.答案:B【例2】 如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b ,那么圆柱被截后剩下部分的体积是__________.ab解析:两个相同的几何体倒立一个,对应合缝,恰好形成一个圆柱体. 答案:21πr 2(a +b)【例3】 (2003年北京西城区一模题)如图,正三棱柱ABC —A 1B 1C 1的所有棱长均为2,P 是侧棱AA 1上任意一点.A1(1)求证:B 1P 不可能与平面ACC 1A 1垂直; (2)当BC 1⊥B 1P 时,求线段AP 的长;(3)在(2)的条件下,求二面角C —B 1P —C 1的大小.(1)证明:连结B 1P ,假设B 1P ⊥平面ACC 1A 1,则B 1P ⊥A 1C 1. 由于三棱柱ABC —A 1B 1C 1为正三棱柱,A1P∴AA 1⊥A 1C 1. ∴A 1C 1⊥侧面ABB 1A 1. ∴A 1C 1⊥A 1B 1, 即∠B 1A 1C 1=90°.这与△A 1B 1C 1是等边三角形矛盾. ∴B 1P 不可能与平面ACC 1A 1垂直.(2)解:取A 1B 1的中点D ,连结C 1D 、BD 、BC 1, 则C 1D ⊥A 1B 1,又∵AA 1⊥平面A 1B 1C 1, ∴AA 1⊥C 1D .∴C 1D ⊥平面ABB 1A 1. ∴BD 是BC 1在平面ABB 1A 1上的射影.∵BC 1⊥B 1P ,∴BD ⊥B 1P .∴∠B 1BD =90°-∠BB 1P =∠A 1B 1P .又A 1B 1=B 1B =2,∴△BB 1D ≌△B 1A 1P ,A 1P =B 1D =1.∴AP =1.(3)解:连结B 1C ,交BC 1于点O ,则BC 1⊥B 1C .又BC 1⊥B 1P ,∴BC 1⊥平面B 1CP . 过O 在平面CPB 1上作OE ⊥B 1P ,交B 1P 于点E ,连结C 1E ,则B 1P ⊥C 1E , ∴∠OEC 1是二面角C —B 1P —C 1的平面角. 由于CP =B 1P =5,O 为B 1C 的中点,连结OP ,∴PO ⊥B 1C ,OP ·OB 1=OE ·B 1P .∴OE =530.∴tan ∠OEC 1=OEOC 1=315.∴∠OEC 1=arctan315.故二面角C —B 1P —C 1的大小为arctan 315.。

2014年高考江苏数学试题及答案(word解析版)

2014年高考江苏数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的体积公式:V sh =圆柱,其中s 为圆柱的表面积,h 为高.圆柱的侧面积公式:=S cl 圆柱,其中c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2014年江苏,1,5分】已知集合{2134}A =--,,,,{123}B =-,,,则A B =_______.【答案】{13}-,【解析】由题意得{1,3}A B =-.(2)【2014年江苏,2,5分】已知复数2(52i)z =+(i 为虚数单位),则z 的实部为_______. 【答案】21【解析】由题意22(52i)25252i (2i)2120i z =+=+⨯⨯+=+,其实部为21.(3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n 的值是_______. 【答案】5【解析】本题实质上就是求不等式220n >的最小整数解.220n >整数解为5n ≥,因此输出的5n =. (4)【2014年江苏,4,5分】从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______. 【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==.(5)【2014年江苏,5,5分】已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为3π的交点,则ϕ的值是_______. 【答案】6π【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】24注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1. 本试卷共4页,包含填空题(第1题—第14题)、解答题(第15题 - 第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是________. 【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12VV 的值是_______. 【答案】32【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==. (9)【2014年江苏,9,5分】在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为________.255【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为2222(1)3512d +⨯--==+,所求弦长为2292552245l r d =--. (10)【2014年江苏,10,5分】已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是________.【答案】20⎛⎫ ⎪⎝⎭【解析】据题意222()10(1)(1)(1)10f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩,解得202m <<. (11)【2014年江苏,11,5分】在平面直角坐标系xOy 中,若曲线2b y ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是________. 【答案】3-【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得11a b =-⎧⎨=-⎩,所以2a b +=-.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的值是________.【答案】22【解析】由题意,14AP AD DP AD AB =+=+,3344BP BC CP BC CD AD AB =+=+=-, 所以13()()44AP BP AD AB AD AB ⋅=+⋅-2213216AD AD AB AB =-⋅-,即1322564216AD AB =-⋅-⨯,解得22AD AB ⋅=.(13)【2014年江苏,13,5分】已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是________. 【答案】()102,【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大, 7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线 y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数 21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈. (14)【2014年江苏,14,5分】若ABC ∆的内角满足sin 2sin 2sin A B C +=,则cos C 的最小值是_______.【答案】624-【解析】由已知sin 2sin 2sin A B C +=及正弦定理可得22a b c +=,2222222()2cos 22a b a b a b c C ab ab ++-+-==223222262262884a b ab ab ab ab ab +---=≥=,当且仅当2232a b =,即23a b =时等号成立,所以cos C 的最小值为624-. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知()2απ∈π,,5sin 5α=.(1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.解:(1)∵()5sin 25ααπ∈π=,,,∴225cos 1sin 5αα=--=-, ()210sin sin cos cos sin (cos sin )444210αααααπππ+=+=+=-.(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,, ∴()()3314334cos 2cos cos2sin sin 2666252510ααα5π5π5π+-=+=-⨯+⨯-=-.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,, 的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC . 解:(1)∵D E ,为PC AC ,中点∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF .(2)∵D E ,为PC AC ,中点,∴132DE PA ==∵E F ,为AC AB ,中点,∴142EF BC ==,∴222DE EF DF +=,∴90DEF ∠=°,∴DE ⊥EF ,∵//DE PA PA AC ⊥,,∴DE AC ⊥, ∵AC EF E =,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且22BF =,求椭圆的方程;(2)若1FC AB ⊥,求椭圆离心率e 的值.解:(1)∵()4133C ,,∴22161999a b+=,∵22222BF b c a =+=,∴22(2)2a ==,∴21b =,∴椭圆方程为2212x y +=. (2)设焦点12(0)(0)()F c F c C x y -,,,,,,∵A C ,关于x 轴对称,∴()A x y -,,∵2B F A ,,三点共线,∴b yb c x +=--,即0bx cy bc --=①∵1FC AB ⊥,∴1yb xc c⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩ ∴()2222222a c bc C b c b c --, C 在椭圆上,∴()()222222222221a c bc b c b c a b--+=,化简得225c a =,∴5c a = 5. (18)【2014年江苏,18,16分】如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?. 解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0),直线BC 的斜率43BC k tan BCO =∠=--.又因为AB ⊥BC ,所以直线AB 的斜率34AB k =.设点B 的坐标为(a ,b ),则k BC =041703b a -=--, k AB =60304b a -=-,解得a =80,b=120.所以BC 22(17080)(0120)150-+-=.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 的半径为r m,OM =d m ,(0≤d ≤60).由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=,由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤.故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO =45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =368053MD MD r MF OF OM d ===--所以68035dr -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤,故当d =10时,68035dr -=最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.(19)【2014年江苏,19,16分】已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明 你的结论.解:(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数.(2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤,∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1x x xm ---+-≤对(0)x ∈+∞,恒成立.令e (1)x t t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立. ∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立,∴13m -≤. (3)'()e e x xf x -=-,当1x >时'()0f x >∴()f x 在(1)+∞,上单调增,令3()(3)h x a x x =-+,'()3(1)h x ax x =--,∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减,∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2ef a =+<,即()11e 2e a >+. ∵e-1e 111ln ln ln e (e 1)ln 1e a a a a a a ---=-=--+,设()(e 1)ln 1m a a a =--+,则e 1e 1'()1a m a a a---=-=,()11e 2e a >+.当()11e e 12ea +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减,因此()m a 至多有两个零点,而(1)(e)0m m ==,∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2ea +<<时,()0m a <,e 11e a a -->;当e a =时,()0m a =,e 11e a a --=. (20)【2014年江苏,20,16分】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列";(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列",求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立. 解:(1)当2n ≥时,111222n n n n n n a S S ---=-=-=,当1n =时,112a S ==,∴1n =时,11S a =,当2n ≥时,1n n S a +=,∴{}n a 是“H 数列”.(2)1(1)(1)22n n n n n S na d n d --=+=+,对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+-,取2n =得1(1)d m d +=-,12m d=+,∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-.(3)设{}n a 的公差为d ,令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=-,1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+,则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列. {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+. 当1n =时1m =;当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N .因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N ,即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立, 即{}n c 为“H 数列”,因此命题得证.数学Ⅱ【选做】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21—A )【2014年江苏,21-A ,10分】(选修4—1:几何证明选讲)如图,AB 是圆O 的直径,C 、 D是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .解:因为B ,C 是圆O 上的两点,所以OB =OC .故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B =∠D .因此∠OCB =∠D .(21—B)【2014年江苏,21—B ,10分】(选修4-2:矩阵与变换)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α, x y ,为实数,若A α=B α,求x y ,的值. 解:222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=,. (21-C )【2014年江苏,21—C ,10分】(选修4—4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为212222x t y t⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24y x =交于A B ,两点,求线段AB 的长.解:直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+=,∴交点(12)A ,,(96)B -,,故||82AB =.(21-D )【2014年江苏,21—D ,10分】(选修4-5:不等式选讲)已知0x >,0y >,证明:()()22119x y x y xy ++++≥. 解:因为x >0, y 〉0, 所以1+x +y 2≥2330xy >,1+x 2+y ≥2330x y >,所以(1+x +y 2)( 1+x 2+y )≥223333xy x y ⋅=9xy . 【必做】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ 注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷只有解答题,供理工方向考生使用.本试,21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.(22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,, 中的最大数,求X 的概率分布和数学期望()E X .解:(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况,∴取出的2个球颜色相同的概率1053618P ==.(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X ===;3131453639C C C C 13(3)C 63P X +===; 11(2)1(3)(4)14P X P X P X ==-=-==.∴X 的概率分布列为:故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=.(23)【2014年江苏,23,10分】已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()1444n n nf f -πππ+成立.解:(1)由已知,得102sin cos sin ()()x x x f x f x x x x '⎛⎫'===-⎪⎝⎭, 于是21223cos sin sin 2cos 2sin ()()x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭,所以12234216(),()22f f πππππ=-=-+, 故122()()1222f f πππ+=-.(2)由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=,即01()()cos sin()2f x xf x x x π+==+,类似可得122()()sin sin()f x xf x x x π+=-=+, 2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. (i )当n =1时,由上可知等式成立.(ii )假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+,所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii )可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. 令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以1()()444n n nf f πππ-+n ∈*N ).。

高考数学 专题四 42立体几何名师指导历炼试题 理(含解

高考数学 专题四 42立体几何名师指导历炼试题 理(含解

2014高考数学 专题四 4-2立体几何名师指导历炼试题 理(含解析)新人教A 版1.(交汇新)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱ABCD -A 1B 1C 1D 1形状和大小完全相同的两个四棱柱拼接成一个新的四棱柱.规定:若拼接成的新四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f (k ),写出f (k )的解析式(直接写出答案,不必说明理由).2.(角度新)如图,AB 为圆O 的直径,点E ,F 在圆O 上,且AB ∥EF ,矩形ABCD 所在的平面和圆O 所在的平面互相垂直,且AB =2,AD =EF =1.(1)求证:AF⊥平面CBF;(2)设FC的中点为M,求证:OM∥平面DAF;(3)设平面CBF将几何体EF ABCD分成的两个锥体的体积分别为V F-ABCD,V F-CBE,求V F-ABCD∶V F-CBE.[历炼]1.命题意图:本小题主要考查直线与直线、直线与平面的位置关系、柱体的概念及表面积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、分类与整合思想、化归与转化思想.解析:(1)证明:取CD的中点E,连接BE.∵AB∥DE,AB=DE=3k,∴四边形ABED为平行四边形,∴ BE ∥AD 且BE =AD =4k.在△BCE 中,∵ BE =4k ,CE =3k ,BC =5k ,∴ BE 2+CE 2=BC 2,∴ ∠BEC =90°,即BE ⊥CD.又BE ∥AD ,∴ CD ⊥AD.∵ AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴ AA 1⊥CD.又AA 1∩AD =A ,∴ CD ⊥平面ADD 1A 1.(2)以D 为原点,DA →,DC →,DD 1→的方向为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系,则A(4k,0,0),C(0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),所以AC →=(-4k,6k,0),AB 1→=(0,3k,1),AA 1→=(0,0,1). 设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧ AC →·n =0,AB 1→·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2, 得n =(3,2,-6k ). 设AA 1与平面AB 1C 所成角为θ,则sin θ=|cos 〈AA 1→,n 〉|=⎪⎪⎪⎪⎪⎪AA 1→·n |AA 1→||n |=6k 36k 2+13=67, 解得k =1,故所求k 的值为1.(3)共有4种不同的方案.f (k )=⎩⎨⎧ 72k 2+26k ,0<k ≤518,36k 2+36k ,k >518.2.解析:(1)证明:∵ 平面ABCD ⊥平面ABEF ,CB ⊥AB , 平面ABCD ∩平面ABEF =AB ,∴ CB ⊥平面ABEF .∵ AF ⊂平面ABEF ,∴ AF ⊥CB .又∵ AB 为圆O 的直径,∴ AF ⊥BF ,∵ CB ∩BF =B ,∴ AF ⊥平面CBF .(2)证明:设DF 的中点为N ,连接AN ,MN ,则MN 綊12CD .又AO 綊12CD ,则MN 綊AO ,所以四边形MNAO 为平行四边形,∴ OM ∥AN .又AN ⊂平面DAF ,OM ⊄平面DAF ,∴ OM ∥平面DAF .(3)过点F 作FG ⊥AB 于G ,∵ 平面ABCD ⊥平面ABEF ,∴ FG ⊥平面ABCD ,∴ V F -ABCD =13S ABCD ·FG =23FG .∵ CB ⊥平面ABEF ,∴ V F -CBE =V C -BFE =13S △BFE ·CB =13·12EF ·FG ·CB =16FG , ∴ V F -ABCD ∶V F -CBE =4∶1.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
P
A
B
C
O
M
(第
16
立体几何总练习
16.如图,四棱锥P ABCD -中,底面ABCD 为菱形,060DAB ∠=,平面PCD ⊥底面ABCD ,E
是AB 的中点,G 为PA 上的一点. (1)求证:平面GDE ⊥平面PCD ; (2)若//PC 平面DGE ,求PG
GA 的值.
16. 如图,四棱锥P -ABCD 中,底面ABCD 为菱形,BD ⊥面PAC ,AC =10,PA =6,cos ∠PCA =
4
5
,M 是PC 的中点.
(Ⅰ)
证明PC ⊥平面BMD ;
(Ⅱ)若三棱锥M -BCD 的体积为14,求菱形ABCD 的边长.
16.(本小题满分14分)
如图,在三棱锥P ABC -中,除棱PC 外,其余棱均等长,M 为棱AB 的中点,O 为线段MC 上
靠近点M 的三等分点.
(1)若PO MC ⊥,求证:PO ⊥平面ABC ;
(2)试在平面PAB 上确定一点Q ,使得//OQ 平面PAC ,且//OQ 平面PBC ,并给出证明.
P
A B C
D E G
2
15(14分).如图,在长方体1111ABCD A B C D -中,点E 在棱1CC 的延长线上,且
111
12
CC C E BC AB ===
=. (Ⅰ)求证:1D E ∥平面1ACB ; (Ⅱ)求证:平面11D B E ⊥平面1DCB ; (Ⅲ)求四面体11D B AC 的体积.
16.、如图,已知E ,F 分别是正方形ABCD
边BC 、CD 的中点,EF 与AC 交于点O ,
PA 、NC 都垂直于平面ABCD ,且4PA AB ==, 2NC =,M 是线段PA 上一动点.
(Ⅰ)求证:平面PAC ⊥平面NEF ;(Ⅱ)若//PC 平面MEF ,试求:PM MA 的值;
B
E
A
D
C
1
A
1
B 1
C 1
D 第16题图
3
16.在四棱柱ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,底面ABCD 为菱形,∠BAD =60°,P 为AB 的中点,Q 为CD 1的中点.
(1)求证:DP ⊥平面A 1ABB 1; (2)求证:PQ ∥平面ADD 1A 1.
17、(本题满分14分)
如图,长方体1111D C B A ABCD -中,a AA AB ==1,a BC 2=
,M 是AD 中点,N 是
11C B 中点.
(1)求证:1A 、M 、C 、N 四点共面; (2)求证:MC BD ⊥1;
(3)求证:平面MCN A 1⊥平面11BD A ;
16.(本小题满分14分)
如图,在四棱锥P ABCD -中,AB ∥DC ,2DC AB =,AP AD =,PB ⊥AC ,BD ⊥AC ,E 为PD 的中点. 求证:(1)AE ∥平面PBC ;
(2)PD ⊥平面ACE .
16.如图,在四面体ABCD 中,AB AC DB DC ===,点E 是BC 的中点,点F 在线段AC 上,且AF AC λ
=.
(1)若EF ∥平面ABD ,求实数λ的值;
(2)求证:平面BCD ⊥平面AED .
B 1 A
B
C
D Q
P
A 1
C 1
D 1
A B
C
D
A 1
B 1
C 1
D 1
M
N
(第16题图)
E
A
B
C D
F。

相关文档
最新文档