2019中考总复习几何与图形模块之《 角、相交线和平行线 》 复习训练试题(含答案))

合集下载

2019年中考总复习《角、相交线和平行线》专项复习练习含答案

2019年中考总复习《角、相交线和平行线》专项复习练习含答案

2019 初三数学中考复习角、相交线和平行线专项复习练习1.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( C )A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ与∠MOP互补2. 如图,直线a,b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为( C )A.120° B.90° C.60° D.30°3. 如图,点O在直线AB上,且OC⊥OD.若∠COA=36°,则∠DOB的大小为( B )A.36° B.54° C.64° D.72°4. 如图,直线a∥b,直线c分别与a,b相交于A,B两点,AC⊥AB于点A,交直线b于点C.已知∠1=42°,则∠2的度数是( C )A.38°B.42°C.48°D.58°5.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为( B )A.40° B.50° C.60° D.70°6.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为( C )A.50° B.40° C.30° D.20°7.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=( C )A.85° B.60° C.50° D.35°8.如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b上,则∠1+∠2的值为( A )A.90° B.85° C.80° D.60°9.如图,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为( B )A.50° B.40° C.45° D.25°,第7题图) ,第8题图)10.如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为( C )A.25° B.45° C.35° D.30°11.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度( B ) A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°12.如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是( D )A.∠1+∠6>180° B.∠2+∠5<180°C.∠3+∠4<180° D.∠3+∠7>180°13.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=( A )A.30° B.35° C.36° D.40°14.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=__50°__.15.如图,直线AB∥CD,BC平分∠ABD,若∠1=54°,则∠2=__72°__.16.如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE 于点E ,若∠A=42°,则∠D=__48°.,第14题图) ,第15题图)17.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是__15°__.18.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是__90__度.19.如图,点A ,C ,F ,B 在同一直线上,CD 平分∠ECB,FG ∥CD.若∠ECA 为α度,则∠GFB 为__90-α2__度.(用关于α的代数式表示)20. 如图,直线AB ,CD 相交于点O ,OA 平分∠EOC,若∠EOC∶∠EOD=2∶3,∠BOD=__36__度.21.如图,∠1=∠2,∠A =60°, 求∠ADC 等于多少度.解:∵∠1=∠2,∴AB ∥CD ,∴∠A +∠ADC =180°,∵∠A =60°,∴∠ADC =120°22.如图,直线l 1∥l 2,∠α=∠β,∠1=40°,求∠2等于多少度?解:如图,∵l 1∥l 2,∴∠3=∠1=40°,∵∠α=∠β,∴AB ∥CD ,∴∠2+∠3=180°,∴∠2=180°-∠3=180°-40°=140°2019-2020学年数学中考模拟试卷一、选择题1.一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (小时),航行的路程为S (千米),则S 与t 的函数图象大致是( )A. B.C. D.2.如图,AB ⊥BD ,CD ⊥BD ,垂足分别为B 、D ,AC 和BD 相交于点E ,EF ⊥BD 垂足为F .则下列结论错误的是( )A. B. C. D.3.方程1235x x =+的解为( ). A .1x =- B .0x =C .3x =-D .1x =4.不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A .0个B .5个C .6个D .无数个5.某课外小组的同学们在社会实践活动中调查了20户家庭莱月的用电量,如表所示:则这20户家庭该月用电量的众数和中位数、平均数分别是( ) A .180,160,164 B .160,180;164 C .160,160,164D .180,180,1646.为选拔一名选手参加全国中学生男子百米比赛,我市四名中学生参加了训练,他们成绩的平均数x 及其方差s 2如表所示:如果从中选拔一名学生去参赛,应派( )去. A .甲B .乙C .丙D .丁7.已知AB =10,C 是射线AB 上一点,且AC =3BC ,则BC 的长为( )A.2.5B.103C.2.5或5D.103或5 8.电影《流浪地球》中有一个名词“洛希极限”,它是指两大星体之间可以保持平稳运行的最小距离,其中地球与木星之间的洛希极限约为10.9万公里,数据“10.9万”用科学记数法表示正确的是( ) A .10.9×104B .1.09×104C .10.9×105D .1.09×1059.如图,在矩形纸片ABCD 中,3AB =,点E 在BC 上,将ABE ∆沿AE 折叠,点B 恰好落在CD 边上点F 处,且1CF =.则tan CFE ∠的值为( )A .12B .23C .3D 10.如图,AB A B ''=,A A '∠=∠,若ABC A B C '''∆≅∆,则还需添加的一个条件有( )A.1种B.2种C.3种D.4种11.在4, 5, 6, 6, 9这组数据中,去掉一个数后,余下的数据的中位数不变,且方差减小,则去掉的数是( ) A .4B .5C .6D .712.如图,在▱ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG =2BG ,S △BPG =1,则S ▱AEPH =( )A .3B .4C .5D .6二、填空题13.如图,在边长都是1的小正方形组成的网格中,、、、均为格点,线段相交于点.(Ⅰ)线段的长等于______;(Ⅱ)请你借助网格,使用无刻度...的直尺画出以为一个顶点的矩形,满足点为其对角线的交点,并简要说明这个矩形是怎么画的(不要求证明)______.14.如图,a ∥b ,∠1=110°,∠3=50°,则∠2的度数是_____.15.若方程x 2﹣4x+3=0的两根是等腰三角形的底和腰,则它的周长为_____. 16.使得关于x 的分式方程111x k kx x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k+≥-⎧⎨-≤⎩有且仅有5个整数解的所有k 的和为_____.17.直线a 、b 、c 、d 的位置如图所示,如果∠1=66°,∠2=66°,∠3=70°,那么∠4的度数是_____.18.计算:(2a+b )(2a ﹣b )+b (2a+b )=_____. 三、解答题19.如图,⊙O 是△ABC 的外接圆,AE 平分∠BAC 交⊙O 于点E ,∠ABC 的平分线BF 交AD 于点F ,交BC 于点D .(1)求证:BE =EF ;(2)若DE =4,DF =3,求AF 的长.20.某市卫生局为了了解该市社区医院对患者随访情况,随机抽查了部分社区医院一年来对患者随访的次数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)该市卫生局共抽查了社区医院的患者多少人?并补全条形统计图;(2)请直接写出在这次抽样调查中的众数是,中位数是;(3)如果该市社区医院患者有60000人,请你估计“随访的次数不少于7次”社区医院的患者有多少人.21.从共享单车,共享汽车等共享出行到共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速的普及,根据国家信息中心发布的中国分享经济发展报告2017显示,参与共享经济活动超6 亿人,比上一年增加约1亿人.(1)为获得北京市市民参与共享经济活动信息,下列调查方式中比较合理的是;A.对某学校的全体同学进行问卷调查B.对某小区的住户进行问卷调查C.在全市里的不同区县,选取部分市民进行问卷调查(2)调查小组随机调查了延庆区市民骑共享单车情况,某社区年龄在12~36岁的人有1000人,从中随机抽取了100人,统计了他们骑共享单车的人数,并绘制了如下不完整的统计图表.如图所示.骑共享单车的人数统计表根据以上信息解答下列问题:①统计表中的a=;b=;②补全频数分布直方图;③试估计这个社区年龄在20岁到32岁(含20岁,不含32岁)骑共享单车的人有多少人?22.如图①,在平面直角坐标系中,抛物线y=-12x2-72x-3交x轴于A、B两点(点A在点B的左侧),交y轴于点C.(1)求直线AC的解析式;(2)①点P是直线AC上方抛物线上的一个动点(不与点A、点C重合),过点P作PD⊥AC于点D,求PD的最大值;②当线段PD的长度最大时,点Q从点P出发,先以每秒1个单位长度的速度沿适当的路径运动到y轴上的点M处,再沿MC个单位长度的速度运动到点C停止,当点Q在整个运动过程中用时最少时,求点M的坐标;(3)如图②,将△BOC沿直线BC平移,点B平移后的对应点为点B',点O平移后的对应点为点O',点C平移后的对应点为点C',点S是坐标平面内一点,若以A、C、O'、S为顶点的四边形是菱形,求出所有符合条件的点O'的坐标.23.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.24.哈佛大学一项长达20年的研究表明,爱做家务的孩子跟不爱做家务的孩子相比,就业率为15:1,收人前者比后者高20%,而且婚姻更幸福,中国教育科学研究院对全国2万个学生家庭进行的调查也表明,孩子爱做家务的家庭比不爱做家务的家庭,孩子成绩优秀的比例高了27倍,为调查了解某区学生做家务的情况,随机发放调查表进行调查,要求被调查者从“A:不做家务,B,会煮饭或做简单的菜,C洗碗,D:保持自己的卧室清洁,E:洗衣服”五个选项中选择最常做的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题(1)本次调查中,一共调查了名市民;(2)扇形统计图中,“会煮饭或会做简单菜”对应的扇形圆心角是度;(3)补全条形统计图;(4)若某市有小学生约24万,请你估计做家务中“洗碗”的总人数.25.如图,在▱ABCD中,E、F为边BC上两点,BF=CE,AE=DF.(1)求证:△ABE≌△DCF;(2)求证:四边形ABCD是矩形.【参考答案】***一、选择题二、填空题13.;作图见解析.14.6015.716.517.110°.18.4a2+2ab三、解答题19.(1)见解析;(2)AF =214. 【解析】 【分析】(1)通过证明∠6=∠EBF 得到EB=EF ;(2)先证明△EBD ∽△EAB ,再利用相似比求出AE ,然后计算AE-EF 即可得到AF 的长. 【详解】(1)证明:∵AE 平分∠BAC , ∴∠1=∠4, ∵∠1=∠5, ∴∠4=∠5, ∵BF 平分∠ABC , ∴∠2=∠3,∵∠6=∠3+∠4=∠2+∠5, 即∠6=∠EBF , ∴EB =EF ;(2)解:∵DE =4,DF =3, ∴BE =EF =DE+DF =7, ∵∠5=∠4,∠BED =∠AEB , ∴△EBD ∽△EAB ,BE DE EA BE ∴=,即74EA 7=, ∴EA =494, ∴AF =AE ﹣EF =4921744-=.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.20.(1)600,图见解析(2)4次,5次;(3)9000. 【解析】 【分析】(1)根据随访4次的有240人,所占百分比为40%,可得共抽查了社区医院的患者人数;再用被抽查的患者人数减去其余4个组的人数求出随访7次的人数,补全条形统计图即可; (2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以“随访的次数不少于7次”的百分比,计算即可得解.【详解】解:(1)被抽查的社区医院的患者人数:240÷40%=600(人).所以该市卫生局共抽查了社区医院的患者600人.随访7次的人数:600﹣(240+120+150+30)=60(人),补全统计图如图所示:(2)社区医院一年来对患者随访的次数中4次的人数最多,所以众数是4次,600个数据中,按照随访的次数从少到多排列,第300和301个数据都是5次,所以中位数是5次;故答案为:4次,5次;(3)60000×6030600=9000(人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了中位数、众数的定义以及用样本估计总体的思想.21.(1)C;(2)①0.15,30;②见解析;③估计这个社区年龄在20岁到32岁(含20岁,不含32岁)骑共享单车的人有700人.【解析】【分析】(1)根据抽样调查的定义可得;(2)①根据“频率=频数÷总数”可分别求得a、b的值;②由①中所求数据可补全图形;③总人数乘以样本中第3、4、5组的频率之和可得答案.【详解】解:(1)调查方式中比较合理的是C,故答案为:C;(2)①a=15÷100=0.15,b=100×0.3=30,故答案为:0.15,30;②补全图形如下:③1000×(0.15+0.25+0.3)=700(人),答:估计这个社区年龄在20岁到32岁(含20岁,不含32岁)骑共享单车的人有700人.【点睛】本题考查条形图、频率分布表、样本估计总体等知识,解题的关键是记住频率=频数÷总数,频率之和为1,属于中考常考题型.22.(1)y=-12x-3;(2)①PD=5;②M(0,2);(3)满足条件的点O'的坐标为(610--,1810+)或或(3,-9)或(-65,185)或(910-,2710). 【解析】【分析】(1)分别求出抛物线y=-12x 2-72x-3与x 轴、y 轴的交点坐标,然后分别把A(-6,0), C(0,-3)代入直线AC 的解析式为y=kx+b 中,解二元一次方程组即可.(2)①由于PAC 的面积最大时,PD 最大时,利用三角形的面积公式求出的关系式,利用二次函数的性质求出△PAC 的面积最大值为272,利用S △PAC =12AC×PD,即可求出PD 的长.②利用勾股定理可求出,利用sin ∠OCN=ON MK CN CM ==,可求出, 从而可得点Q 在整个运动过程中的时间等于PK 的长,过点P 作PE ⊥y 轴于点E ,根据垂线段最短可知与y 轴交点即为M ,sin ∠OCN=sin ∠EPM=PE OC EM ON=,从而求出OM=2,即得M 的坐标.(3)①如图③、图④利用菱形的四条边相等,可得,根据点O'在直线y=-3x 上,设O'(m ,-3m),利用勾股定理建立等式,解出m 即可.②如图⑤、图⑥,同①可得.③如图⑦,同①可得.【详解】(1)解:对于抛物线y=-12x2-72x-3,令x=0,得到y=-3,∴C(0,-3),令y=0,得到x2+7x+6=0,解得x=-6或x=-1,∴A(-6,0),B(-1,0),设直线AC的解析式为y=kx+b,则有13,2 603b kk bb⎧=-=-⎧⎪⎨⎨-+=⎩⎪=-⎩解得,∴直线AC的解析式为y=-12x-3.(2)解:①如图①,设P(m,-12m2-72m-3),连接PA、PC,作PK∥y轴交AC于点K,则K(m,-12m-3),∵PD⊥AC,∴PD最大时,△PAC的面积最大,∵S△PAC=12×(-12m2-3m)×6=-32(m+3)2+272,∴m=-3时,△PAC的面积最大,最大值为272,此时P(-3,3),12×AC×PD=272,∴.②如图②,在x轴上取一点N(1,0),作直线CN,过点P作PK⊥CN于点K,交y轴于点M. ∵OC=3,ON=1,∴,∴sin ∠OCN=ON MK CN CM ==, ∴, ∴.点Q 在整个运动过程中的时间=1PM =, 根据垂线段最短可知,点M 即为所求的点,过点P 作PE ⊥y 轴于点E ,PE OC EM ON =, ∴EM=1,∴OM=2,∴M(0,2)(3)解:①如图③、图④,当四边形ACSO'是菱形时,设AS 交CO'于点K ,∵点O'在直线y=-3x 上,A(-6,0),设O'(m ,-3m),∴(m+6)2+(-3m)22,解得∴O'(610--,1810+)或(610-+,1810-; ②如图⑤、图⑥,当四边形ACO'S是菱形时,设CS交AO'于点K,∵点O'在直线y=-3x上,C(0,-3),设O'(m,-3m),∴m2+(-3m+3)22,解得m=3或m=-65,∴O'(3,-9)或(-65,185).③如图⑦,当四边形ASCO'是菱形时,设AC交SO'于点K,∵点O'在直线y=-3x上,C(0,-3),设O'(m,-3m),∴m2+(-3m+3)2)2+(m+3)2+(-3m+32),解得m=910-,∴O'(910-,2710)。

中考数学专题复习《线段、角、相交线与平行线》专项检测题(含答案)

中考数学专题复习《线段、角、相交线与平行线》专项检测题(含答案)

线段、角、相交线与平行线专项检测题一、选择题(下列每题所给的四个选项中只有一个正确答案)1.下列图形中,∠1与∠2是对顶角的是()2.下列图形中,∠2>∠1的是()3.如图,直线a∥b,∠A=38°,∠1=46°.则∠ACB的度数是()A. 84°B. 106°C. 96°D. 104°4.如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()A. 30°B. 35°C. 40°D. 45°5.如图,AB∥CD,CB平分∠ABD,若∠C=40°,则∠D的度数为()A. 90°B. 100°C. 110°D. 120°6.如图所示,已知AB∥CD,直线EF交AB于点E,交CD于点F,且EG平分∠FEB,∠1=50°,则∠2等于()A. 50°B. 60°C. 70°D. 80°7.如图,已知直线AB∥CD,直线EF与AB、CD相交于N、M两点,MG平分∠EMD,若∠BNE=30°,则∠EMG 等于()A. 15°B. 30°C. 75°D. 150°8.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A. 52°B. 38°C. 42°D. 60°9.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A. 125°B. 120° C . 140° D. 130°10.下列命题是真命题的是()A. 任何数的0次幂都等于1B. 顺次连接菱形四边中点的线段组成的四边形是正方形C. 图形的旋转和平移会改变图形的形状和大小D. 角平分线上的点到角两边的距离相等11.下列命题正确的是()A. 矩形的对角线互相垂直B. 两边和一角对应相等的两个三角形全等C. 分式方程x-22x-1+1=1.51-2x可化为一元一次方程x-2+(2x-1)=-1.5D. 多项式t2-16+3t因式分解为(t+4)(t-4)+3t12.下列命题中,正确的是()A. 函数y=x-3的自变量x的取值范围是x>3B. 菱形是中心对称图形,但不是轴对称图形C. 一组对边平行,另一组对边相等的四边形是平行四边形D. 三角形的外心到三角形的三个顶点的距离相等13在平面直角坐标系中,任意两点A(x1,y1),B(x2,y2),规定运算:①A⊕B=(x1+x2,y1+y2);②A⊕B=x1x2+y1y2;③当x1=x2且y1=y2时,A=B.有下列四个命题:(1)若A(1,2),B(2,-1),则A⊕B=(3,1),A⊗B=0;(2)若A⊕B=B⊕C,则A=C;(3)若A⊗B=B⊗C,则A=C;(4)对任意点A、B、C,均有(A⊕B)⊕C=A⊕(B⊕C)成立.其中正确命题的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题14.若∠α的补角为76°28′,则∠α=________.15.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=________度.16.如图,AB∥CD,AD与BC交于点E,若∠B=35°,∠D=45°,则∠AEC=________.17如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=________.18如图,直线a、b被第三条直线c所截,如果a∥b,∠1=70°,那么∠3的度数是________.19.如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=________.20.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF 于点F,∠AGF=130°,则∠F=________.21.下列命题:①对角线相等的四边形是矩形;②正多边形都是轴对称图形;③通过对足球迷健康状况的调查可以了解我国公民的健康状况;④球的主视图、左视图、俯视图都是圆;⑤如果一个角的两边与另一个角的两边分别平行,那么这两个角相等,其中是真命题的有________(只需填写序号).22.下列命题:①对角线互相垂直的四边形是菱形;②点G是△ABC的重心,若中线AD=6,则AG=3;③若直线y=kx+b经过第一、二、四象限,则k<0,b>0;④定义新运算:a※b=2a-b2,若(2x)※(x-3)=0,则x=1或9;⑤抛物线y=-2x2+4x+3的顶点坐标是(1,1).其中是真命题的有________.(只填序号)参考答案1. C【解析】A.∠1、∠2没有公共顶点,不是对顶角,故A选项错误;B.∠1、∠2两边不互为反向延长线,不是对顶角,故B选项错误;C.∠1、∠2有公共顶点,两边互为反向延长线,是对顶角,故C选项正确;D.∠1、∠2两边不互为反向延长线,不是对顶角,故D选项错误.2. C【解析】根据对顶角相等,平行四边形的性质和平行线的性质,可以知道A、B、D中∠1=∠2,而在C中,三角形的一个外角大于和它不相邻的一个内角,可得∠2>∠1,故选C.3. C【解析】∵a∥b, ∴∠ABC=∠1=46°,又∵∠A=38°,∴∠ACB=180°-∠A-∠ABC=180°-38°-46°=96°.4. C【解析】∵AB∥CD,∴∠FEB=∠C=70°.∵∠FEB是△AFE的一个外角,∴∠FEB=∠A+∠F,∴∠A=∠FEB-∠F=70°-30°=40°.5. B【解析】∵AB∥CD,∴∠C=∠ABC=40°,∵CB平分∠ABD,∴∠CBD=∠ABC=40°,∴∠D=180°-∠C-∠CBD=180°-40°-40°=100°.6. D【解析】∵EG平分∠BEF,∴∠BEF=2∠1,∵∠1=50°,∴∠BEF=100°,∵AB∥CD,∴∠BEF+∠2=180°,∴∠2=180°-∠BEF=180°-100°=80°.【一题多解】∵AB∥CD,∴∠1=∠EGF,∵EG平分∠FEB,∴∠1=∠FEG,∴∠FEG=∠EGF,∴由三角形内角和为180°得,∠2=180°-2∠EGF=180°-2×50°=80°.7. A【解析】∵AB∥CD,∴∠ENB=∠EMD=30°,又∵MG平分∠EMD,∴∠EMG=∠DMG=12∠EMD=15°.8. A【解析】如解图,∵直尺的两边互相平行,∴∠3=∠2=38°,∵∠1+∠3+∠4=180°,∠4=90°,∴∠1=180°-∠4-∠3=180°-90°-38°=52°.9. D【解析】如解图,在Rt△ABC中,∠A=90°,∵∠1=40°,∴∠3=90°-∠1=50°,∴∠4=180°-∠3=130°.∵EF∥MN,∴∠2=∠4=130°.选项逐项分析正误A任何非零数的0次幂都等于1×B 顺次连接菱形四边中点的线段组成的四边形是矩形×C图形的旋转和平移不会改变图形的形状和大小×D 根据角平分线的性质可知:角平分线上一点到角两边的距离相等√选项逐项分析正误A矩形的对角线相等,不一定垂直×B 已知两边及其夹角对应相等,两个三角形才能全等×C 方程两边同乘以2x-1,得x-2+(2x-1)=-1.5√D 没有把多项式化成整式的积的形式,不是因式分解×12. D【解析】选项逐项分析正误A函数y=x-3的自变量x的取值范围是x≥3×B 菱形是中心对称图形,也是轴对称图形,两条对角线所在直线就是对称轴×C 一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形×D三角形的外心是三边中垂线的交点,所以到三角形的三个顶点的距离相等√13. C【解析】设C(x3,y3)序号逐项分析正误(1)若A(1,2),B(2,-1),则A⊕B=(1+2,2+(-1))=(3,1),A⊗B=1×2+2×(-1)=0√(2) A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),若A⊕B=B⊕C,则,∴x1=x3,y1=y3,∴A=C√(3) A⊗B=x1x2+y1y2,B⊗C=x2x3+y2y3,若A⊗B=B⊗C,则x1x2+y1y2=x2x3+y2y3,并不能确定x1=x3,y1=y3,∴A不一定等于C×(4) (A ⊕B)⊕C =(x 1+x 2,y 1+y 2)⊕C =(x 1+x 2+x 3,y 1+y 2+y 3),A ⊕(B ⊕C)=A ⊕(x 2+x 3,y 2+y 3)=(x 1+x 2+x 3,y 1+y 2+y 3),∴(A ⊕B)⊕C =A ⊕(B ⊕C)√综上,正确命题有(1)(2)(4)共3个.14. 103°32′ 【解析】求一个角的补角,只需用180°减去它即可,但须注意进制,180°-76°28′=179°60′-76°28′=103°32′15. 45 【解析】∵△ABC 为等腰直角三角形,∠BAC =90°,∴∠ABC =45°.又∵m ∥n ,∴∠1=∠ABC =45°.16. 80° 【解析】∵AB ∥CD ,∴∠B =∠C =35°,∵∠AEC =∠C +∠D ,∴∠AEC =35°+45°=80°.【一题多解】∵AB ∥CD ,∴∠C =∠B =35°,又∵∠D =45°,∴∠CED =180°-∠C -∠D =100°.∴∠AEC =180°-∠CED =80°.17. 63°30′ 【解析】∵∠1=40°,∠2=40°,∴a ∥b, ∴∠4=180°-∠3=180°-116°30′=63°30′.18. 70° 【解析】因为a ∥b ,所以根据平行线的性质有∠1=∠2,又因为∠2和∠3为对顶角,所以∠2=∠3=70°.19. 20° 【解析】如解图,延长CB ,交直线m 于点D ,则∠CDA =40°,因为△ABC 为等边三角形,所以∠CBA =60°.根据三角形内外角的关系,得∠α=∠CBA -∠CDA =60°-40°=20°20. 9.5° 【解析】∵AB ∥CD ,∴∠BED =∠CDE =119°,∵EF 平分∠BED ,∴∠BEF =12∠BED =12×119°=59.5°,∵∠AGF =130°,∴∠EGF =180°-∠AGF =180°-130°=50°,∵∠BEF 是△EFG的外角,∴∠F=∠BEF-∠EGF=59.5°-50°=9.5°.序号逐项分析正误①对角线相等且互相平分的四边形是矩形×②正多边形都是轴对称图形√③足球迷比其他人更热爱运动,所以抽样调查的样本不具代表性×④从任意角度看球得到的平面图形都是圆√⑤如解图所示,∠1与∠2的两边分别平行,但不相等×序号逐项分析正误①对角线互相垂直平分的四边形是菱形,故①错×②重心到顶点的距离与重心到对边中点的距离之比为2∶1,画草图如解图,即AG∶GD=2∶1,若×。

初三中考数学复习 线段、角、相交线和平行线 专题复习练习题及答案

初三中考数学复习  线段、角、相交线和平行线  专题复习练习题及答案

中考数学复习线段、角、相交线和平行线一、考点分析1.直线、射线、线段2.角3.相交线4. 角的平分线与线段的垂直平分线5.平行线6.命题二、练习1. 一个角的余角是这个角的补角的,则这个角的度数是( )A.30° B.45° C.60° D.70°2. 下列命题中,属于真命题的是( )A.三点确定一个圆 B.圆内接四边形对角互余C.若a2=b2,则a=b D.若a3=b3,则a=b3. 如图,C,D是线段AB上两点,D是线段AC的中点,若AB=10 cm,BC=4 cm,则AD的长等于( )A.2 cm B.3 cm C.4 cm D.6 cm4. 如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2=( )A.64° B.63° C.60° D.54°5. 如图,与∠1是同旁内角的是( )A.∠2 B.∠3 C.∠4 D.∠56. 下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=0,则x2-2x=0.它们的逆命题一定成立的有( )A.①②③④ B.①④ C.②④ D.②7. 如图,AB∥CD,∠1=50°,则∠2的大小是( )A.50° B.120° C.130° D.150°8. 如图,在下列条件中,不能判定直线a与b平行的是( )A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°9. 如图,已知∠1=60°,如果CD∥BE,那么∠B的度数为( )A.70° B.100° C.110° D.120°10. 下列命题是真命题的是( )A.必然事件发生的概率等于0.5B.5名同学二模的数学成绩是92,95,95,98,110,则他们的平均分是98分,众数是95 C.射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则乙较甲稳定D.要了解金牌获得者的兴奋剂使用情况,可采用抽样调查的方法11. 图中是对顶角量角器,用它测量角的原理是____.,12. 如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2的度数是____.13. 如图,直线l1∥l2,若∠1=130°,∠2=60°,则∠3=____.14. 如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=____.15. 一个角的余角是54°38′,则这个角的补角是__________________.16. 如图,直线a∥b,BC平分∠ABD,DE⊥BC,若∠1=70°,求∠2的度数.17. 如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图③,当∠AOB=α,∠BOC=β时,猜想∠MON与α,β有数量关系吗?如果有,指出结论并说明理由.。

2019年中考专题《线段、角、相交线与平行线》综合训练题含答案

2019年中考专题《线段、角、相交线与平行线》综合训练题含答案

2019年 初三数学中考专题复习: 线段、角、相交线与平行线综合训练题1. 如图,直线a∥b,直线c 分别与a ,b 相交,∠1=50°,则∠2的度数为( )A .150°B .130°C .100°D .50°2. 如图,在△ABC 中,∠ACB=90°,C D∥AB,∠ACD=40°,则∠B 的度数为( )A .40°B .50°C .60°D .70°3. 如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .24. 能说明命题“对于任何实数a ,|a|> -a”是假命题的一个反例可以是( ) A .a =-2 B .a =13C .a =1D .a = 25. 已知AD ∥BC ,AB ⊥AD ,点E ,点F 分别在射线AD ,射线BC 上,若点E 与点B 关于AC 对称,点E 与点F 关于BD 对称,AC 与BD 相交于点G.则( )A .1+tan ∠ADB = 2 B .2BC =5CF C .∠AEB +22°=∠DEFD .4cos ∠AGB = 66. 如图,OB 是∠AOC 的角平分线,OD 是∠COE 的角平分线.如果∠AOB=40°,∠COE=60°,则∠BOD 的度数为( )A .50°B .60°C .65°D .70°7. 如图,直线a ,b 被直线c ,d 所截,若∠1=∠2,∠3=125°,则∠4的度数为( )A.55°B.60° C.70°D.75°8. 如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C=( )A.30° B.60° C.80° D.120°9. 已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是( )A.b=-1 B.b=2 C.b=-2 D.b=010. 如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有( )A.2条 B.3条 C.4条 D.5条11. 如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是度.12. 如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA为α度,则∠GFB为度(用关于α的代数式表示).13. 如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是_________.14. 如图,已知直线AB,CD相交于点O,OE,OF为射线,∠AOE=90°,OF平分∠AOC,∠AOF+∠BOD=51°,求∠EOD的度数.参考答案:1---10 BBCAA DAAAD 11. 90 12. ⎝⎛⎭⎪⎫90-α2 13. 55°14. 解:∵∠AOC=∠BOD,OF 平分∠AOC,∴∠AOF=12∠AOC=12∠BOD.∵∠AOF+∠BO D =51°, ∴∠AOF=17°,∠BOD=34°. ∵∠AOE=90°,∴∠BOE=180°-∠AOE=90°, ∴∠EOD=90°+34°=124°.2019-2020学年数学中考模拟试卷一、选择题1.下列各式中,不相等的是 ( ) A.32-和 3-2B.()23-和 23C.()32-和 32-D.()23-和 23-2.如图,在矩形ABCD 中,BC =2,AE ⊥BD ,垂足为E ,∠BAE =30°,则tan ∠DEC 的值是( )A.1B.C.D.3.如图,在Rt △ABC 中,∠C =90°,∠CBA =30°,AE 平分∠CAB 交BC 于D ,BE ⊥AE 于E ,给出下列结论:①BD =2CD ;②AE =3DE ;③AB =AC+BE ;④整个图形(不计图中字母)不是轴对称图形.其中正确的结论有( )A.1个B.2个C.3个D.4个4.浙江广厦篮球队5名场上队员的身高(单位:cm )是:184,188,190,192,194.现用一名身高为170cm 的队员换下场上身高为190cm 的队员,与换人前相比,场上队员的身高( ) A.平均数变小,方差变小 B.平均数变小,方差变大 C.平均数变大,方差变小D.平均数变大,方差变大5.正六边形被三组平行线划分成小的正三角形,则图中全体正三角形的个数是( )A .24B .36C .38D .766.已知抛物线y =3x 2+1与直线y =4cos α•x 只有一个交点,则锐角α等于( ) A .60°B .45°C .30°D .15°7.如图,在平面直角坐标系中,菱形OABC 的顶点A 的坐标为(4,3),点D 是边OC 上的一点,点E 在直线OB 上,连接DE 、CE ,则DE+CE 的最小值为( )A .5B +1C .D .2458.已知⊙A 的半径AB 长是5,点C 在AB 上,且3AC =,如果⊙C 与⊙A 有公共点,那么⊙C 的半径长r 的取值范围是( ) A .2r ≥B .8r ≤C .28r <<D .28r ≤≤9.下列说法中正确的是( ) A .两条对角线互相垂直的四边形是菱形 B .两条对角线互相平分的四边形是平行四边形 C .两条对角线相等的四边形是矩形D .两条对角线互相垂直且相等的四边形是正方形10.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于( )A .55︒B .60︒C .65︒D .70︒11.如图,BD 为⊙O 的直径,AC 为⊙O 的弦,AB =AC ,AD 交BC 于点E ,AE =2,ED =4,延长DB 到点F ,使得BF =BO ,连接FA .则下列结论中不正确的是( )A .△ABE ∽△ADB B .∠ABC =∠ADBC .AB =D .直线FA 与⊙O 相切12.已知关于x 的一元二次方程x 2﹣2kx+6=0有两个相等的实数根,则k 的值为( )A BC .2或3D二、填空题13.如图,菱形ABCD 的边长为12cm ,∠A =60°,点P 从点A 出发沿线路AB→BD 做匀速运动,点Q 从点D 同时出发沿线路DC→CB→BA 做匀速运动.已知点P ,Q 运动的速度分别为2cm/秒和2.5cm/秒,经过12秒后,P 、Q 分别到达M 、N 两点时,点P 、Q 再分别从M 、N 同时沿原路返回,点P 的速度不变,点Q 的速度改为vcm/秒,经过3秒后,P 、Q 分别到达E 、F 两点,若△BEF 与△AMN 相似,则v 的值为____.14.我们知道,一元二次方程x 2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,如果我们规定一个新数“i”使它满足i 2=﹣1(即x 2=﹣1有一个根为i ),并且进一步规定:一切实数可以与新数“i”进行四则运算,且原有的运算律和运算法则仍然成立,于是有:i 1=i ,i 2=﹣1,i 3=i 2•i=﹣i ,i 4=(i 2)2=(﹣1)2=1,从而对任意正整数n ,由于i 4n =(i 4)n =1n =1,i 4n+1=i 4n •i=1•i=i ,同理可得i 4n+2=﹣1,i 4n+3=﹣i ,那么,i 9=_____;i2019=_____.15.如图,AB 是⊙O 的弦,⊙O 的半径OC ⊥AB 于点D ,若AB =6cm ,OD =4cm ,则⊙O 的半径为_____cm .16.如图,在ABC ∠中,90A ∠=,点,D E 分别在,AC BC 边上,3BD CD DE ==,且1452C CDE ∠+∠=,若6AD =,则BC 的长是__________.17.如图,四边形ABCD 内接于⊙O ,E 为CD 的延长线上一点.若110B ∠=°,则ADE ∠的大小为____________.18.已知正比例函数2y x =-,那么y 的值随x 的值增大而________(填“增大或“减小”) 三、解答题19.图①、图②均是3×2的正方形网格,每个小正方形的顶点称为格点.线段AB 的端点均在格点上.在图①、图②给定的网格中各画一个△APC ,使点P 在线段AB 上,点C 为格点,且∠APC 的正切值为2.要求:(1)图①中的△APC 为直角三角形,图②中的△APC 为锐角三角形.(2)只用无刻度的直尺,保留适当的作图痕迹.20.如图,在平面直角坐标系中点A 在反比例函数图象上,一条抛物线的顶点是(1,2)且过点(2,3),解答下列问题.(1)求反比例函数的解析式;(2)求抛物线的解析式,并在已给的坐标系中画出这条抛物线; (3)根据图象直接判断方程2223x x x-=+在实数范围内有几个根.21.在△ABC 和△ADE 中,BA =BC ,DA =DE ,且∠ABC =∠ADE ,点E 在△ABC 的内部,连接EC ,EB 和ED ,设EC =k•BD(k≠0).(1)当∠ABC =∠ADE =60°时,如图1,请求出k 值,并给予证明; (2)当∠ABC =∠ADE =90°时:①如图2,(1)中的k 值是否发生变化,如无变化,请给予证明;如有变化,请求出k 值并说明理由; ②如图3,当D ,E ,C 三点共线,且E 为DC 中点时,请求出tan ∠EAC 的值.22.如图,直线y =x+b 与双曲线y =kx(k 为常数,k≠0)在第一象限内交于点A (1,2),且与x 轴、y 轴分别交于B ,C 两点. (1)求直线和双曲线的解析式;(2)点P 在x 轴上,且△BCP 的面积等于2,求P 点的坐标.23.先化简,再求值:(x+2)(x﹣2)+(2x﹣1)2﹣4x(x﹣1),其中x=24.如图,正方形ABCD的边长为2,E、F分别是AD、CD上两动点,且满足AE DF=,BE交AF 于点G。

2019届中考数学专题复习相交线与平行线专题训练含答案

2019届中考数学专题复习相交线与平行线专题训练含答案

相交线与平行线一、选择题1.在同一平面内,两条不重合直线的位置关系可能是( )。

A. 平行或相交B. 垂直或相交C. 垂直或平行D. 平行、垂直或相交2.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A. 70°B. 100°C. 110°D. 120°3. 如图AB∥CD,∠ABE=120°,∠ECD=25°,则∠E=()A.75°B.80°C.85°D.95°4.如图,过∠AOB边OB上一点C作OA的平行线,以C为顶点的角与∠AOB的关系是()A. 相等B. 互补C. 相等或互补D. 不能确定5.如图,已知直线a⊥c,直线b⊥c,若∠1=65°,则∠2的度数为()A. 20°B. 25°C. 50°D. 65°6.如图,已知直线a∥b,∠1=70°,那么∠2的度数是()A. 60°B. 80°C. 90°D. 110°7.下列叙述正确的有()个①内错角相等②同旁内角互补③对顶角相等④邻补角相等⑤同位角相等A. 4B. 3C. 1D. 08.如图,已知∠1=∠B,∠2=∠C,则下列结论不成立的是()A. ∠B=∠CB. AD∥BCC. ∠2+∠B=180°D. AB∥CD9.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A. 35°B. 45°C. 50°D. 55°10.如图,与∠1是同旁内角的角有()A. 0个B. 1个C. 2个D. 3个11.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互( )A. 平行B. 垂直C. 平行或垂直D. 平行或垂直或相交12.如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的值为()A. 20°B. 30°C. 40°D. 70°二、填空题13.推理填空:已知,如图∠1=∠2,∠3=∠4,求证:BC∥EF.证明:∵∠1=∠2∴________∥________ (________)∴________=∠5 (________)又∵∠3=∠4∴∠5=________ (________)∴BC∥EF (________)14.如图把三角板的直角顶点放在直线b上,若∠1=40°,则当∠2=________ 度时,a∥b.15.如图所示,OP∥QR∥ST,若∠2=120°,∠3=130°,则∠1=________度.16.如图,已知a∥b,∠1=55°,则∠2=________ °.17.如图所示,已知AB∥CD,分别探究下面图形中∠APC,∠PAB,∠PCD的关系,请你从四个图形中任选一个,说明你所探究的结论的正确性.①结论:(1)________(2)________(3)________(4)________②选择结论(1),说明理由.18.在同一平面内,两条直线的位置关系只有________、________.19.如图,∠DAB和∠B是直线DE和BC被直线________ 所截而形成的角,称它们为________ 角.20.如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.解:∵EF∥AD,∴∠2=________(________).又∵∠1=∠2,∴∠1=∠3(________).∵AB∥________(________).∴∠BAC+________=180°(________).∵∠BAC=80°,∴∠AGD=________.三、解答题21.已知:如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠AFE。

2019届初三数学中考复习 相交线与平行线 专项训练 含答案

2019届初三数学中考复习  相交线与平行线   专项训练 含答案

2019届初三数学中考复习相交线与平行线专项训练1. 下面四个图形中,∠1与∠2是邻补角的是( )2. 如图所示,直线AB,CD相交于点O,且∠AOD+∠BOC=100°,则∠AOC=( )A.150° B.130° C.100° D.90°3. 如图,PO⊥OR,OQ⊥PR,则点O到PR所在直线的距离是下列哪条线段的长( )A.PO B.RO C.OQ D.PQ4. 如图,∠1=15°,OA⊥OC,点B,O,D在同一直线上,则∠2的度数为( )A.75° B.15° C.105° D.165°5. 在同一平面内,下列语句正确的是( )A.过一点有无数条直线与已知直线垂直B.与一条直线垂直的直线有两条C.过一点有且只有一条直线与已知直线垂直D.两直线相交,则一定垂直6. 如图,直线AB⊥CD,垂足为O,EF是过点O的直线,若∠1=50°,则∠2的度数为( )A.40° B.50° C.60° D.70°7.如图,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能使a∥b成立的条件有( )A.1个 B.2个 C.3个 D.4个8.如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是( )A.25° B.35° C.45° D.50°9. 如图,下列说法不正确的是( )A.点B到AC的垂线段是线段ABB.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段D.线段BD是点B到AD的垂线段10. 如图,∠1和∠2是同位角的是( )A.②③ B.①②③ C.①②④ D.①④11. 如图所示,直线a,b被c所截,则∠1与∠2是( )A.同位角 B.内错角 C.对顶角 D.邻补角12. 如图,直线AB,CD被直线EF所截,则∠3的同旁内角是( )A.∠1 B.∠2 C.∠4 D.∠513. 如图,下列推理错误的是( )A.∵∠1=∠2,∴c∥d B.∵∠3=∠4,∴c∥dC.∵∠1=∠3,∴a∥b D.∵∠1=∠4,∴a∥b14. 如图,BD∥AC,BE平分∠ABD,交AC于点E.若∠A=50°,则∠1的度数为( )A.65° B.60° C.55° D.50°15. 已知直线m∥n,将一块含30°角的直角三角板ABC按如图所示的方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )A.20° B.30° C.45° D.50°16. 如图,直线EF分别交AB,CD于点E,F,且AB∥CD,若∠1=60°,则∠2=____.17. 如图所示,直线l1∥l2,∠1=20°,则∠2+∠3=____.18.如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,∠BCM为____度.19.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有____(填序号).20. 给出下列5个命题:①相等的角是对顶角;②互补的两个角中一定是一个为锐角,另一个为钝角;平行于同一条直线的两直线平行;④同旁内角的两个角的平分线互相垂直;一个非负数的绝对值是它本身,其中真命题是___________(填序号).21. 如图,直线AB,CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角为___________,∠BOE的邻补角为______________;(2)若∠AOC=70°,且∠BOE∶∠EOD=2∶3,求∠AOE的度数.22. 如图,直线AB,CD相交于点O,OE平分∠BOD,OE⊥OF,∠DOF=70°,求∠AOC的度数.23. 如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠1,求证:AD平分∠BA C.24. 如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD∥BC.25. 如图①,CE平分∠ACD,AE平分∠BAC,且∠EAC+∠ACE=90°.(1)请判断AB与CD的位置关系,并说明理由;(2)如图②,若∠E=90°且AB与CD的位置关系保持不变,当直角顶点E移动时,写出∠BAE与∠ECD的数量关系,并说明理由;(3)如图③,P为线段AC上一定点,点Q为射线CD上一动点,且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(不与点C重合),∠PQD,∠APQ与∠BAC有何数量关系?写出结论,并说明理由.26. 将一副学生用尺中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起.(1)若∠DCE=45°,则∠ACB的度数为________;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE之间存在什么数量关系?并说明理由;(4)当∠ACE<90°且点E在直线AC的上方时,是否存在AD与BC平行的情况?若存在,请直接写出∠ACE的值;若不存在,请说明理由.27. 如图①所示,已知BC∥OA,∠B=∠A=120°.(1)说明OB∥AC成立的理由;(2)如图②所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC 的度数;(3)在(2)的条件下,若左右平移AC,如图③所示,那么∠OCB∶∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值;(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.参考答案:1---15 DBCCC ADDCC BBCAD 16. 120° 17. 200° 18. 20 19. ①②④ 20. ③⑤21. (1) ∠BOD ∠AOE(2) ∵∠BOD=∠AOC=70°,∠BOE ∶∠EOD =2∶3,∴∠BOE =25∠B OD =28°,∴∠AOE =180°-∠BOE=152°.22. 解:∵OE⊥OF,∴∠EOF =90°.∵∠DOF =70°,∴∠DOE =20°.∵OE 平分∠BOD,∴∠BOD =40°,∴∠AOC =∠BOD=40°.23. 证明:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC =90°,∴AD∥EG,∴∠1=∠2,∠E=∠3.∵∠E=∠1,∴∠2=∠3,∴AD 平分∠BAC.24. 证明:∵AE 平分∠BAD,∴∠1=∠2.∵AB∥CD,∠CFE =∠E,∴∠1=∠CFE =∠E,∴∠2=∠E,∴AD ∥BC.25. 解:(1)AB ∥CD.理由:∵CE 平分∠ACD ,AE 平分∠BAC ,∴∠ACD =2∠ACE ,∠BAC =2∠EAC.又∵∠EAC +∠ACE =90°,∴∠ACD +∠BAC =180°,∴AB ∥CD. (2)∠BAE+∠ECD=90°,理由略.(3)∠PQD+∠APQ+∠BAC=360°,理由略. 26. (1) 135°(2)∵∠ACB=140°,∠ECB=90°,∴∠ACE=140°-90°=50°,∴∠DCE=90°-∠ACE=90°-50°=40°.(3)猜想:∠ACB+∠DCE=180°.理由:∵∠ACE=90°-∠DCE,∠ACB=∠ACE +90°,∴∠ACB=90°-∠DCE+90°=180°-∠DCE,即∠ACB+∠DCE=180°.(4)30°.27. 解:(1)∵BC∥OA,∴∠B +∠O=180°,∴∠O =180°-∠B=60°.∵∠A =120°,∴∠A +∠O=180°,∴OB ∥AC.(2)∵OE 平分∠BOF,∴∠BOE =∠FOE.∵∠FOC=∠AOC,∴∠EOF +∠COF=12∠AOB=12×60°=30°.即∠EOC=30°.(3)比值不改变.∵BC∥OA,∴∠OCB=∠AOC,∠OFB=∠AOF.∵∠FOC=∠AOC,∴∠AOF=2∠AOC,∴∠OFB=2∠OCB,即∠OCB∶∠OFB 的值为1∶2.(4)设∠AOC 的度数为x ,则∠OFB=2x.∵∠OEB=∠AOE,∴∠OEB=∠EOC+∠AOC =30°+x.∵∠OCA=180°-∠AOC-∠A=180°-x -120°=60°-x ,∠OEB =∠OCA,∴30°+x =60°-x ,解得x =15°,∴∠OCA=60°-x =60°-15°=45°.。

中考数学《相交线与平行线》专项复习综合练习题-附带答案

中考数学《相交线与平行线》专项复习综合练习题-附带答案

中考数学《相交线与平行线》专项复习综合练习题-附带答案一、单选题1.下列命题中,是假命题的是()A.两点之间线段最短B.对顶角相等C.同旁内角互补D.直角的补角仍然是直角2.如图,直线a∥b,∠1=70°,那么∠2的度数是()A.50°B.60°C.70°D.80°3.如图,下列四个条件中,能判断DF∥AC的是()A.∠AED=∠ACB B.∠EDC=∠DCFC.∠FDC=∠DCE D.∠ECF=∠EDF4.如图,七年级(下)教材第4页给出了利用三角尺和直尺画平行线的一种方法能说明AB∥DE的条件是()A.∠CAB=∠FDE B.∠ACB=∠DFE C.∠ABC=∠DEF D.∠BCD=∠EFG5.如图,把周长为10的△ABC沿BC方向平移1个单位得到△DFE,则四边形ABFD的周长为()A.14 B.12 C.10 D.86.如图所示下列条件中,①∠1=∠4;②∠2=∠4;③∠1=∠3;④∠5=∠4 其中能判断直线l1∥l2的有()A.1个B.2个C.3个D.4个7.轩轩准备参加马拉松比赛,得知一段跑道示意图(如图),其中AB∥DE 测得∠EDC=110°,∠ABC=130°则∠BCD的度数为()A.120°B.100°C.240°D.90°8.将一直角三角板与两边平行的硬纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°. 其中正确的个数是( )A.1 B.2 C.3 D.4二、填空题9.如图,已知AB∥CD ,∠1=130°,则∠2= .10.若∠α与∠β的两边分别平行,且∠α=(x+20)°∠β=(3x−40)°则∠α的度数为. 11.如图,AB∥CD 直线PQ分别交AB CD于点E F FG•是∠EFD的平分线交AB于点G ,若∠FEG=70°那么∠FGB等于.12.如图,DA是∠BDF的平分线∠3=∠4 若∠1=40°∠2=140°则∠CBD的度数为.13.如图,把一块三角板的60°角的顶点放在直尺的一边上若∠1=2∠2 则∠1= °.三、解答题14.已知:如图,AD⊥BC FG⊥BC.垂足分别为D G.且∠ADE=∠CFG.求证:DE∥AC.15.如图所示直线AB、CD、EF相交于点O ∠AOE=40°∠BOC=2∠AOC 求∠DOF.16.如图,AB⊥BF CD⊥BF∠1=∠2.求证:∠3=∠E.17.如图,直线AB与直线CD交于点C点P为直线AB、CD外一点根据下列语句画图并作答:(1)过点P画PQ//CD交AB于点Q;(2)过点P画PR⊥CD垂足为R;(3)点M为直线AB上一点连接PC连接PM.18.如图所示:(1)若DE//BC∠1=∠3∠CDF=90°求证:FG⊥AB .(2)若把(1)中的题设“DE//BC”与结论“FG⊥AB”对调所得命题是否是真命题?说明理由.参考答案1.C2.C3.C4.A5.B6.C7.A8.D9.50°10.70°或50°11.125º12.70°13.8014.证明:∵AD⊥BC FG⊥BC且∠ADE=∠CFG∴∠C+∠CFG=90°∠BDE+∠ADE=90°∴∠BDE=∠C∴DE∥AC.15.解:设∠AOC=x°则∠BOC=(2x)°.因为∠AOC与∠BOC是邻补角所以∠AOC+∠BOC=180°所以x+2x=180解得x=60所以∠AOC=60°.因为∠DOF与∠EOC是对顶角所以∠DOF=∠EOC=∠AOC-∠AOE=60°-40°=20°16.证明:如图所示:∵AB⊥BF CD⊥BF∴∠ABD=∠CDF=90°∴AB∥CD(同位角相等两直线平行)∴∠1=∠DGF∵∠1=∠2∴∠2=∠DGF(等量代换)∴CD∥EF(内错角相等两直线平行)∴∠3=∠E(两直线平行同位角相等).17.(1)解:如图所示如图所示直线PQ即为所求;(2)解:如图所示垂线段PR即为所求;(3)解:如图所示线段PC、PM即为所求.18.(1)解:∵DE//BC(已知)∴∠1=∠2 .(两直线平行内错角相等)∵∠1=∠3(已知)∴∠2=∠3(等量代换)∴DC//FG .(同位角相等两直线平行)∴∠BFG=∠FDC=90° .(两直线平行同位角相等)∴FG⊥AB .(垂直的定义);(2)解:是真命题理由如下:∵FG⊥AB(已知)∴∠BFG=90°=∠FDC∴DC//FG .(同位角相等两直线平行)∴∠2=∠3 .(两直线平行同位角相等)∵∠1=∠3(已知)∴∠1=∠2 .(等量代换)∴DE//BC .(内错角相等两直线平行)。

中考数学复习《角、相交线与平行线》经典题型及测试题(含答案)

中考数学复习《角、相交线与平行线》经典题型及测试题(含答案)

中考数学复习《角、相交线与平行线》经典题型及测试题(含答案)命题点分类集训命题点1 线段【命题规律】主要考查:①两点之间线段最短;②两点确定一条直线这两个基本事实.【命题预测】与图形的变换中立体图形的侧面展开结合,求两点之间的最短距离,另外也会与对称性结合,考查两线段和的最小值.1. 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A. 垂线段最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短1. D第1题图第2题图2. 如图,AB⊥AC,AD⊥BC,垂足分别为A,D.则图中能表示点到直线距离的线段共有( )A. 2条B. 3条C. 4条D. 5条2. D【解析】AD是点A到直线BC的距离;BA是点B到直线AC的距离;BD是点B到直线AD的距离;CA是点C到直线AB的距离;CD是点C到直线AD的距离,共5条,故答案为D.命题点2 角、余角、补角及角平分线【命题规律】主要考查:①角度的计算(度分秒之间的互化);②余角、补角的计算;③角平分线的性质.【命题预测】角、余角、补角及角平分线等基本概念是图形认识的基础,应给予重视.3. 下列各图中,∠1与∠2互为余角的是( )3. B4. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.4. 3【解析】如解图,过点P作PD⊥OA于点D,∵OP为∠AOB的平分线,PC⊥OB于点C,∴PD=PC,∵PC=3,∴PD=3,即点P到点OA的距离为3.5. 1.45°=________′.5. 87【解析】∵1°=60′,∴0.45°=27′,∴1.45°=87′.6. 已知∠A=100°,那么∠A的补角为________度.6. 80【解析】用180度减去已知角,就得这个角的补角.即∠A的补角为:180°-100°=80°.命题点3 相交线与平行线【命题规律】考查形式:①三线八角中同位角、内错角、同旁内角的识别或计算,有时综合对顶角、邻补角求角度;②综合角平分线、垂线求角度;③综合三角形的相关知识求角度;④根据角的关系判断两直线的关系.【命题预测】平行线性质是认识图形的基础知识,也是全国命题的潮流和方向.7. 如图,直线a,b被直线c所截,∠1与∠2的位置关系是( )A. 同位角B. 内错角C. 同旁内角D. 对顶角7. B【解析】根据相交线的性质及角的定义可知∠1与∠2的位置关系为内错角,故选B.第7题图第8题图第9题图8. 如图,已知a、b、c、d四条直线,a∥b,c∥d,∠1=110°,则∠2等于( )A. 50°B. 70°C. 90°D. 110°8. B【解析】如解图,∵a∥b,∴∠3+∠4=180°,∵c∥d,∴∠2=∠4,∵∠1=∠3,∴∠2=180°-∠1=70°,故本题选B.9. 如图,在下列条件中,不能..判定直线a与b平行的是( )A. ∠1=∠2B. ∠2=∠3C. ∠3=∠5D. ∠3+∠4=180°9. C【解析】逐项分析如下:选项逐项分析正误A∵∠1=∠2,即同位角相等,两直线平行,∴a∥b √B∵∠2=∠3,即内错角相等,两直线平行,∴a∥b √∵∠3、∠5既不是a与b被第三直线所截的同位角,也不是内错角,×C∴∠3=∠5,不能够判定a与b平行D∵∠3+∠4=180°,即同旁内角互补,两直线平行,∴a∥b √10. 如图,将一块直角三角板的直角顶点放在直尺的一边上,如果∠1=50°,那么∠2的度数是( )A. 30°B. 40°C. 50°D. 60°10. B 【解析】如解图,∠1+∠3=90°,∴∠3=90°-∠1=90°-50°=40°,由平行线性质得∠2=∠3=40°.11. 如图所示,AB ∥CD ,EF ⊥BD ,垂足为E ,∠1=50°,则∠2的度数为( )A . 50°B . 40°C . 45°D . 25°11. B 【解析】∵EF ⊥BD ,∠1=50°,∴∠D =90°-50°=40°,∵AB ∥CD ,∴∠2=∠D =40°.第10题图 第11题图 第12题图 第13题图12. 如图,AB ∥CD ,直线EF 与AB ,CD 分别交于点M ,N ,过点N 的直线GH 与AB 交于点P ,则下列结论错误的是( )A . ∠EMB =∠END B . ∠BMN =∠MNC C . ∠CNH =∠BPGD . ∠DNG =∠AME12. D 【解析】A.两直线平行,同位角相等,∴∠EMB =∠END ;B.两直线平行,内错角相等,∴∠BMN =∠MNC ;C.两直线平行,同位角相等,∴∠CNH =∠APH ,又∠BPG =∠APH ,∴∠CNH =∠BPG ;D.∠DNG 和∠AME 无法推导数量关系,故不一定相等,答案为D.13. 如图,直线a∥b,∠1=45°,∠2=30°,则∠P=________°.13. 75 【解析】如解图,过点P 作PH ∥a ∥b ,∴∠FPH =∠1,∠EPH =∠2,又∵∠1=45°,∠2=30°,∴∠EPF =∠EPH +∠HPF =30°+45°=75°.命题点4 命 题【命题概况】命题考查的知识点比较多,一般几个知识点结合考查,考查形式有:①下面说法错误(正确)的是;②写出命题…的逆命题;③能说明…是假命题的反例.【命题趋势】命题为新课标新增内容,考查知识比较综合,是全国命题点之一.14. (2016宁波)能说明命题“对于任何实数a ,|a|>-a”是假命题的一个反例可以是( )A . a =-2B . a =13C . a =1D . a = 214. A 【解析】由于一个正数的绝对值是它本身,它的相反数是一个负数,所以当a =13,1,2时,|a |>-a 总是成立,当a =-2时,|-2|=2=-(-2),此时|a |=-a ,故本题选A.15. 写出命题“如果a =b ,那么3a =3b”的逆命题...:________________________. 15. 如果3a =3b ,那么a =b 【解析】命题由条件和结论构成,则其逆命题只需将原来命题的条件和结论互换即可,即将结论作为条件,将条件作为结论. ∵命题“如果a =b ,那么3a =3b ,”中条件为“如果a =b ”,结论为“那么3a =3b ”,∴其逆命题为“如果3a =3b ,那么a =b ”.中考冲刺集训一、选择题1. 如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为( )A. 65°B. 55°C. 45°D. 35°第1题图第2题图第3题图2. 如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AED=( )A. 65°B. 115°C. 125°D. 130°3. 如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是( )A.75°36′B.75°12′C.74°36′D.74°12′二、填空题4. 如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=________.第4题图第5题图第6题图5. 如图,直线CD∥EF,直线AB与CD、EF分别相交于点M、N,若∠1=30°,则∠2=________.6. 如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放.若∠EMB=75°,则∠PNM等于________度.7. 如图,直线AB∥CD,BC平分∠ABD.若∠1=54°,则∠2=________°.第7题图第8题图第9题图8. 如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=________.9.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=________.答案与解析:1. B【解析】∵DA⊥AC,∠ADC=35°,∴∠ACD=90°-∠ADC=90°-35°=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选B.2. B【解析】∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=130°,∵AE平分∠CAB,∴∠EAB=12∠CAB=65°.又∵AB∥CD,∴∠AED+∠EAB=180°,∴∠AED=180°-∠EAB=180°-65°=115°.3. B【解析】根据平面镜反射原理可知,∠ADC=∠ODE,∵DC∥OB,∴∠ADC=∠AOE,∴∠ODE=∠AOE=37°36′,∴∠DEB=∠ODE+∠AOE=37°36′+37°36′=75°12′,故选B.4. 50°5. 30°6. 307. 72【解析】∵CD∥AB,∴∠CBA=∠1=54°,∠ABD+∠CDB=180°,∵CB平分∠ABD,∴∠DBC=∠CBA=54°,∴∠CDB=180°-54°-54°=72°,∴∠2=∠CDB=72°.8. 15°【解析】由两直线平行,内错角相等,可得∠A=∠AFE=30°,∠C=∠CFE,由∠AFC=15°,可得∠CFE=∠C=∠AFE-∠AFC=15°.第9题解图9. 2【解析】如解图,过点P作PE⊥OB于点E,∵OP平分∠AOB,∴PD=PE,∠AOB=2∠AOP=30°,∵PC∥OA,∴∠ECP=∠AOB=30°,∴PE=12PC=2,∴PD=PE=2.。

初中数学 中考中相交线与平行线 专题练习(含答案)

初中数学 中考中相交线与平行线  专题练习(含答案)

相交线与平行线第一部分知识梳理1.邻补角的定义:将一个角的一边反向延长,与另一边所形成的角,与原角是一对邻补角。

邻补角与互补的关系:互补不一定互为邻补,但互为邻不一定互补2、对顶角的定义:将一个角的两边都反向延长,所形成的角与原角是一对对顶角对顶角的性质:相等.3.当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫另一直线的垂线,它们的交点叫垂足.如图,用几何语言表示:Array方式⑴∵∠AOC=90°∴ AB⊥CD,垂足是O方式⑵∵ AB⊥CD于O∴∠AOC=90°56、点到直线的距离:垂线段的长度叫点到直线的距离7.在同一平面内,过一点有且只有一条直线与已知直线垂直.注意:垂线是一条直线,垂线段是一条线段,它们都是图形.点到直线的距离是垂线段的长度,是一个数量,不能说“垂线段”是距离.8.识别同位角、内错角、同旁内角的关键是要抓住“三线八角”,只有“三线”出现且必须是两线被第三线所截才能出现这三类角;9. 现在所说的两条直线的位置关系,是两条直线在“同一平面”的前提下提出来的,它们的位置关系只有两种:一是相交(有一个公共点),二是平行(没有公共点).10.平行线的定义:在同一平面内,没有公共点的两条直线叫做平行线.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.平行线的传递性:平行于同一直线的两直线相互平行.11.两条直线平行的判定方法:⑴平行线的定义,⑵平行线的传递性,⑶平行线的判定公理:同位角相等,两直线平行⑷平行线的判定定理1:内错角相等,两直线平行⑸平行线的判定定理2:同旁内角互补,两直线平行12.两条直线平行的性质:⑴根据平行线的定义⑵平行线的性质公理:两直线平行,同位角相等⑶平行线的性质定理1:两直线平行,内错角相等⑷平行线的性质定理2:两直线平行,同旁内角互补⑸平行线间的距离处处相等.13.命题的定义:判断一件事情的语句,叫做命题.每个命题都是由题设和结论组成.每个命题都可以写成“如果……,那么……”的形式,用“如果”开始的部份是题设,用“那么”开始的部份是结论,正确的命题叫做真命题,错误的命题叫做假命题.从长期的实践活动中总结出来的正确命题叫做公理,通过正确的推理得出的真命题叫做定理(或推论).14、平移的特征:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点;(3)连接各组对应的线段平行且相等.即,在平面内,将一个图形沿某一移动一定的距离,图形的这种移动,叫做平移变换,简称平移.图形平移的方向,不一定是水平的.图形经过平移后,改变了图形的位置,不改变图形的形状和图形的大小.(填“改变”或“不改变”)第二部分中考链接一、相交线1.(2018•邵阳)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为() A.20°B.60°C.70°D.160°1题图2题图3题图2.(2019浙江绍兴)如图,墙上钉着三根木条a,b,c,量得170∠=︒,2100∠=︒,那么木条a,b所在直线所夹的锐角是() A.5︒ B.10︒ C.30︒ D.70︒3、(2018•河南)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.二、垂线1、(2018•杭州)若线段AM,AN分别是△ABC的BC边上的高线和中线,则()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN2、(2019·江苏常州)如图,在线段PA、PB、PC、PD中,长度最小的是()A.线段PA B.线段PB C.线段PC D.线段PD3题图4题图3、(2019贵州毕节)如图,△ABC中,CD是AB边上的高,CM是AB边上的中线,点C到边AB 所在直线的距离是()A.线段CA的长度B.线段CM的长度C.线段CD的长度D.线段CB的长度4、(2019广东广州)如图,点A,B,C在直线l上,PB⊥l,PA=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是cm.第2图BP三、平行线的性质1、(2017潍坊)如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠α D.∠α+∠β=90°1 2lab CB A1题图2题图 3题图4题图2.( 2017济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是().A.40°B.45°C.50°D.60°3.(2017临沂)30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50° B.60° C.70° D.80°4.(贵州2017)如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°5、(辽宁2017)过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD为()A.162°B.152°C.142°D.128°5题图6题图7题图8题图6、(2017攀枝花市)如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33° B.57° C.67° D.60°7、(2017黄冈)已知:如图,直线a∥b,∠1=50°∠2=∠3,则∠2的度数为()A.50° B. 60° C. 65° D. 75°8、(2018潍坊)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是( )A.45°B. 60°C. 75°D.82.5°9.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=() A.30° B.25°C.20°D.15°10.(2018滨州)如图,直线AB∥CD,则下列结论正确的是()A、∠1=∠2B、∠3=∠4C、∠1+∠3=180°D、∠3+∠4=180°9题图10题图12题图13题图11.(2018•东营)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.12.(2018•泰安)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14° B.16°C.90°﹣αD.α﹣44°13.(2018•临沂)如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是()A.42°B.64°C.74°D.106°14.(2018•枣庄)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20° B.30°C.45°D.50°15.(2018菏泽)如图,直线a∥b,等腰直角三角形的两个顶点分别落在直线a、b上,若130∠=,则2∠的度数是()A.45° B.30° C.15° D.10°14题图 15题图 16题图 17题图 18题图16.(2018•孝感)如图,直线AD∥BC,若∠1=42°,∠BAC=78°,则∠2的度数为()A.42°B.50°C.60°D.68°17.(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°18.(2018•自贡)在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若∠1=55°,则∠2的度数是()A.50°B.45°C.40°D.35°19、(2018•怀化)如图,直线a∥b,∠1=60°,则∠2=()A.30°B.60°C.45°D.120°19题图 20题图21题图22题图20.(2018•绵阳)如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°21.(2018•泸州)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°22.(2018•乌鲁木齐)如图把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30°C.40°D.50°23.(2018•衢州)如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E 处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°23题图 24题图 26题图 27题图24.(2018•新疆)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°25.(2018•铜仁市)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm26.(2018•黔南州)如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°27.(2018•广东)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°28.(2018•十堰)如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是()A.62°B.108°C.118°D.152°28题图 29题图 30题图 31题图29.(2018•恩施州)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135° C.145°D.155°30.(2018•内江)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°31.(2018•陕西)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()个A.1 B.2 C.3 D.432.(2018•淮安)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35°B.45°C.55°D.65°32题图 33题图 34题图35题图33.(2018•荆门)已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°34.(2018•随州)如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25°B.35°C.45°D.65°35.(2018•遵义)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为( )A .35°B .55°C .56°D .65° 36.(2019日照)如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为( )A .35° B .45° C .55° D .65°36题图 37题图 38题图 39题图37. (2019东营)将一副三角板(∠A =30°,∠E =45°)按如图所示方式摆放,使得 B A ∥EF ,则∠AOF 等于( )A .75° B.90° C.105° D .115°38、(2019枣庄)按如图所示的位置放置,使含30︒角的三角板的一条直角边和含45︒角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45︒ B .60︒ C .75︒ D .85︒39、 (2019山东淄博) 如图,小明从A 处出发沿北偏东40°方向行走至B 处,又从点B 处沿东偏南20°方向行走至C 处,则∠ABC 等于( )A .130° B .120° C .110° D .100°40、(2019济南).如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A. 20B. 35C. 55D. 7040题图 41题图 42题图41、(2019临沂)如图,a ∥b ,若∠1=100°,则∠2的度数是( )A .110°B .80°C .70°D .60°42、 (2019 滨州)如图,AB ∥CD ,∠FGB=154°,FG 平分∠EFD,则∠AEF 的度数等于( )A .26°B .52°C .54°D .77°43、 (2019山东泰安) 如图,直线l 1∥l 2,∠1=30°,则∠2+∠3=A.150°B.180°C.210°D.240°43题图44题图45题图44.(2019山东菏泽)如图,a∥b,若∠1=100°,则∠2的度数是()A.110°B.80°C.70°D.60°45、(2019宿迁)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A. 105° B. 100° C. 75° D. 60°46、(2019随州)如图,直线l1∥l2,直角三角板的直角顶点C在直线l1上,一锐角顶点B 在直线l2上,若∠1=35°,则∠2的度数是() A.65° B.55° C.45° D.35°47、(2019四川乐山)如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于() A.45°B.50°C.55°D.60°46题图 47题图 48题图48、(2019四川省凉山市)如图,BD∥EF, AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为() A. 135° B.125°C. 115° D.105°49. (2019四川攀枝花)如图, AB∥CD, AD=CD,∠1=50°,则∠2的度数是()A.55° B.60° C.65°D.70°49题图 50题图 51题图52题图50.(2019四川南充)如图,直线a,b被直线c所截,//∠=︒,则2(a b,180∠=) A.130︒B.120︒C.110︒D.100︒.51、(2019四川成都)将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为()A.10°B.15°C.20°D.30°52、(2019四川资阳)如图,l1∥l2,点O在直线l1上,若∠AOB=90°,∠1=35°,则∠2的度数为()A.65°B.55°C.45°D.35°53、(2019四川泸州)如图,BC⊥DE,垂足为点C,AC∥BD,∠B=40°,则∠ACE的度数为()A.40°B.50°C.45°D.60°53题图 54题图 55题图56题图54、(2019湖南省岳阳市)如图,已知BE平分∠ABC,且BE∥DC,若∠ABC=50°,则∠C的度数是()A.20º B.25º C.30º D.50º55.(2019湖南湘西)如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为()A.40°B.90°C.50°D.100°56、(2019浙江宁波)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°57.(2019甘肃天水)一把直尺和一块三角板ABC(含30°、60°角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F和点A,且∠CED=50°,那么∠BFA的大小为()A.145°B.140°C.135°D.130°57题图58题图59题图60题图58.(2019甘肃)如图,将一块含有30︒的直角三角板的顶点放在直尺的一边上,若148∠=︒,那么2∠的度数是() A.48︒B.78︒C.92︒D.102︒59.(2019湖北鄂州)如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为()A.45°B.55°C.65°D.75°60、(2019湖北宜昌)如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=135°,则∠β等于()A.45° B.60°C.75°D.85°61、(2019湖北十堰)如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=()A.50°B.45°C.40°D.30°61题图62题图63题图64题图62、(2019湖北仙桃)如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是()A.20°B.25°C.30°D.35°63、(2019湖北孝感)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°64.(2019湖北荆州)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=40°,则∠2的度数为()A.10°B.20°C.30°D.40°65.(2019江苏宿迁)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105°B.100°C.75°D.60°65题图66题图 67题图66. (2019广东深圳)如图,已知l1∥AB,AC为角平分线,下列说法错误的是()A.∠1=∠4B.∠1=∠5 C.∠2=∠3 D.∠1=∠367. (2019广西北部湾)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()。

中考数学专题复习《相交线与平行线》测试卷(附带答案)

中考数学专题复习《相交线与平行线》测试卷(附带答案)

中考数学专题复习《相交线与平行线》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.解答题(共15小题)1.已知:∠AOB=α(0°<α<90°)一块三角板CDE中∠CED=90°∠CDE=30°将三角板CDE如图所示放置使顶点C落在OB边上经过点D作直线MN∥OB交OA 边于点M且点M在点D的左侧.(1)如图若CE∥OA∠NDE=45°则α=°(2)若∠MDC的平分线DF交OB边于点F①如图当DF∥OA且α=60°时试说明:CE∥OA②如图当CE∥OA保持不变时试求出∠OFD与α之间的数量关系.2.如图(1)AB∥CD猜想∠BPD与∠B∠D的数量关系并说明理由.①读下列过程并填写理由.解:猜想∠BPD+∠B+∠D=360°.理由:过点P作EF∥AB.∴∠B+∠BPE=180°.()∵AB∥CD(已知)EF∥AB(辅助线的作法).∴CD∥EF.()∴∠EPD+∠CDP=180°.∴∠B+∠BPE+∠EPD+∠D=360°.∴∠B+∠BPD+∠D=360°.②仿照上面的解题方法观察图(2)已知AB∥CD猜想图中的∠BPD与∠B∠D的数量关系并说明理由.③观察图(3)和图(4)已知AB∥CD直接写出图中的∠BPD与∠B∠D的数量关系不必说明理由.3.如图1 将一副直角三角板放在同一条直线AB上其中∠ONM=30°∠OCD=45°(1)观察猜想将图1中的三角尺OCD沿AB的方向平移至图②的位置使得点O与点N重合CD与MN相交于点E则∠CEN=°.(2)操作探究将图1中的三角尺OCD绕点O按顺时针方向旋转使一边OD在∠MON的内部如图3 且OD恰好平分∠MON CD与NM相交于点E求∠CEN的度数(3)深化拓展将图1中的三角尺OCD绕点O按沿顺时针方向旋转一周在旋转的过程中当边OC 旋转°时边CD恰好与边MN平行.(直接写出结果)4.问题探究:如图①已知AB∥CD我们发现∠E=∠B+∠D.我们怎么证明这个结论呢?张山同学:如图②过点E作EF∥AB把∠BED分成∠BEF与∠DEF的和然后分别证明∠BEF=∠B∠DEF=∠D.李思同学:如图③过点B作BF∥DE则∠E=∠EBF再证明∠ABF=∠D.问题解答:(1)请按张山同学的思路写出证明过程(2)请按李思同学的思路写出证明过程问题迁移:(3)如图④已知AB∥CD EF平分∠AEC FD平分∠EDC.若∠CED=3∠F请直接写出∠F的度数.5.如图由线段AB AM CM CD组成的图形像∑称为“∑形BAMCD”.(1)如图 1 ∑形BAMCD中若AB∥CD∠AMC=60°则∠A+∠C =°(2)如图2 连接∑形BAMCD中B D两点若∠ABD+∠BDC=160°∠AMC=α试猜想∠BAM与∠MCD的数量关系并说明理由(3)如图3 在(2)的条件下当点M在线段BD的延长线上从上向下移动的过程中请直接写出∠BAM与∠MCD所有可能的数量关系.6.如图1 E点在BC上∠A=∠D∠ACB+∠BED=180°.(1)求证:AB∥CD(2)如图2 AB∥CD BG平分∠ABE与∠EDF的平分线交于H点若∠DEB比∠DHB大60°求∠DEB的度数.(3)在(1)的结论下保持(2)中所求的∠DEB的度数不变如图3 BM平分∠EBK DN平分∠CDE作BP∥DN则∠PBM的度数是否改变?若不变请求值若改变请说明理由.7.如图点D点E分别在△ABC边AB AC上∠CBD=∠CDB DE∥BC∠CDE的平分线交AC于F点.(1)求证:∠DBF+∠DFB=90°(2)如图②如果∠ACD的平分线与AB交于G点∠BGC=50°求∠DEC的度数.(3)如图③如果H点是BC边上的一个动点(不与B C重合)AH交DC于M点∠CAH的平分线AI交DF于N点当H点在BC上运动时∠DEC+∠DMH∠ANF的值是否发生变化?如果变化说明理由如果不变试求出其值.8.已知直线AB∥CD点E F分别在直线AB CD上点P是直线AB与CD外一点连接PE PF.(1)如图1 若∠AEP=45°∠DFP=105°求∠EPF的度数(2)如图2 过点E作∠AEP的角平分线EM交FP的延长线于点M∠DFP的角平分线FN交EM的反向延长线交于点N若∠M与3∠N互补试探索直线EP与直线FN 的位置关系并说明理由(3)若点P在直线AB的上方且不在直线EF上作∠DFP的角平分线FN交∠AEP的角平分线EM所在直线于点N请直接写出∠EPF与∠ENF的数量关系.9.实验证明平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图一束光线m射到平面镜上被a反射到平面镜b上又被b镜反射若被b 反射出的光线n与光线m平行且∠1=50°则∠2=°∠3=°(2)在(1)中若∠1=55°则∠3=°若∠1=40°则∠3=°(3)由(1)(2)请你猜想:当两平面镜a b的夹角∠3=°时可以使任何射到平面镜a上的光线m经过平面镜a b的两次反射后入射光线m与反射光线n平行请说明理由.10.如图已知直线l1∥l2l3l4和l1l2分别交于点A B C D点P在直线l3或l4上且不与点A B C D重合.记∠AEP=∠1 ∠PFB=∠2 ∠EPF=∠3.(1)若点P在图(1)位置时求证:∠3=∠1+∠2(2)若点P在图(2)位置时请直接写出∠1 ∠2 ∠3之间的关系(3)若点P在图(3)位置时写出∠1 ∠2 ∠3之间的关系并给予证明(4)若点P在C D两点外侧运动时请直接写出∠1 ∠2 ∠3之间的关系.11.当光线经过镜面反射时入射光线反射光线与镜面所夹的角对应相等例如:在图①图②中都有∠1=∠2 ∠3=∠4.设镜子AB与BC的夹角∠ABC=α.(1)如图①若α=90°判断入射光线EF与反射光线GH的位置关系并说明理由.(2)如图②若90°<α<180°入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系并说明理由.(3)如图③若α=120°设镜子CD与BC的夹角∠BCD=γ(90°<γ<180°)入射光线EF与镜面AB的夹角∠1=m(0°<m<90°)已知入射光线EF从镜面AB开始反射经过n(n为正整数且n≤3)次反射当第n次反射光线与入射光线EF平行时请直接写出γ的度数.(可用含有m的代数式表示)12.已知:直线a∥b点A和点B是直线a上的点点C和点D是直线b上的点连接AD BC设直线AD和BC交于点E.(1)在如图1所示的情形下若AD⊥BC求∠ABE+∠CDE的度数(2)在如图2所示的情形下若BF平分∠ABC DF平分∠ADC且BF与DF交于点F当∠ABC=64°∠ADC=72°时求∠BFD的度数(3)如图3 当点B在点A的右侧时若BF平分∠ABC DF平分∠ADC且BF DF 交于点F设∠ABC=α∠ADC=β用含有αβ的代数式表示∠BFD的补角.13.如图1 AB∥CD E为AB上一点点P在线段CE上且PD∥CF.(1)求证:∠AEC+∠DCF=∠DPE(2)如图2 在线段CF上取点H使∠HPF=∠HFP若CD平分∠ECF PQ平分∠EPH∠HPQ+∠AEC=90°试判断PF与EF的大小关系.14.将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起.(1)若∠DCE=45°则∠ACB的度数为(2)若∠ACB=140°求∠DCE的度数(3)猜想∠ACB与∠DCE之间存在什么数量关系?并说明理由(4)当∠ACE<90°且点E在直线AC的上方时这两块三角尺是否存在AD与BC平行的情况?若存在请直接写出∠ACE的值若不存在请说明理由.15.(1)光线从空气中射入水中会产生折射现象同时光线从水中射入空气中也会产生折射现象如图1 光线a从空气中射入水中再从水中射入空气中形成光线b根据光学知识有∠1=∠2 ∠3=∠4 请判断光线a与光线b是否平行并说明理由(2)如图2 直线EF上有两点A C分别引两条射线AB CD.已知∠BAF=150°∠DCF=80°射线AB CD分别绕点A点C以1度/秒和3度/秒的速度同时顺时针转动设时间为t秒当射线CD转动一周时两条射线同时停止.则当直线CD与直线AB互相垂直时t=秒.参考答案与试题解析一.解答题(共15小题)1.已知:∠AOB=α(0°<α<90°)一块三角板CDE中∠CED=90°∠CDE=30°将三角板CDE如图所示放置使顶点C落在OB边上经过点D作直线MN∥OB交OA 边于点M且点M在点D的左侧.(1)如图若CE∥OA∠NDE=45°则α=45°(2)若∠MDC的平分线DF交OB边于点F①如图当DF∥OA且α=60°时试说明:CE∥OA②如图当CE∥OA保持不变时试求出∠OFD与α之间的数量关系.【考点】平行线的判定与性质.【专题】线段角相交线与平行线推理能力.【答案】(1)45(2)①证明过程见解答②150°−12α.【分析】(1)过点E作EF∥MN根据MN∥OB可得EF∥OB根据平行线的性质可得∠AOB=45°(2)①根据平行线的性质和角平分线定义即可说明CE∥OA②当CE∥OA保持不变时总有∠ECB=α在直角三角形DCE中∠DCE=60°可得∠DCB=60°+α根据MN∥OB和角平分线定义即可求出∠OFD与α之间的数量关系.【解答】解:(1)如图过点E作EF∥MN∴∠DEF=∠NDE=45°∵∠CED=90°∴∠FEC=45°∵MN∥OB∴EF∥OB∴∠BCE=∠FCE=45°∵AO∥CE∴∠AOB=∠ECB=45°则α=45°故答案为:45(2)①∵DF∥OA∴∠DFC=∠AOB=α=60°∵MN∥OB∴∠MDF=∠DFC∵DF平分∠MDC∴∠CDF=∠MDF=60°在直角三角形DCE中∠DCE=60°∴∠CDF=∠DCE∴CE∥DF∵DF∥OA∴CE∥OA②∵当CE∥OA保持不变时总有∠ECB=α在直角三角形DCE中∠DCE=60°∴∠DCB=60°+α∵MN∥OB∴∠MDC=∠DCB=60°+α且∠DFC=∠MDF ∵DF平分∠MDC∴∠DFC=∠MDF=30°+1 2α∴∠OFD=180°−∠DFC=180°−(30°+12α)=150°−12α.【点评】本题考查了平行线的判定与性质解决本题的关键是掌握平行线的判定与性质.2.如图(1)AB∥CD猜想∠BPD与∠B∠D的数量关系并说明理由.①读下列过程并填写理由.解:猜想∠BPD+∠B+∠D=360°.理由:过点P作EF∥AB.∴∠B+∠BPE=180°.(两直线平行同旁内角互补)∵AB∥CD(已知)EF∥AB(辅助线的作法).∴CD∥EF.(平行线公理的推论)∴∠EPD+∠CDP=180°.∴∠B+∠BPE+∠EPD+∠D=360°.∴∠B+∠BPD+∠D=360°.②仿照上面的解题方法观察图(2)已知AB∥CD猜想图中的∠BPD与∠B∠D 的数量关系并说明理由.③观察图(3)和图(4)已知AB∥CD直接写出图中的∠BPD与∠B∠D的数量关系不必说明理由.【考点】平行线的判定与性质.【答案】见试题解答内容【分析】①根据平行线的性质得到的∠B+∠BPE=180°∠EPD+∠CDP=180°.等量代换即可得到结论②首先过点P作PE∥AB由AB∥CD可得PE∥AB∥CD根据两直线平行内错角相等即可得∠1=∠B∠2=∠D则可求得∠BPD=∠B+∠D.③由AB∥CD根据两直线平行内错角相等与三角形外角的性质即可求得∠BPD与∠B∠D的关系.【解答】解:①猜想∠BPD+∠B+∠D=360°.理由:过点P作EF∥AB.∴∠B+∠BPE=180°.(两直线平行同旁内角互补)∵AB∥CD(已知)EF∥AB(辅助线的作法).∴CD∥EF.(平行线公理的推论)∴∠EPD+∠CDP=180°.∴∠B+∠BPE+∠EPD+∠D=360°.∴∠B+∠BPD+∠D=360°.故答案为:两直线平行同旁内角互补平行线公理的推论②∠BPD=∠B+∠D.理由:如图2 过点P作PE∥AB∵AB∥CD∴PE∥AB∥CD∴∠1=∠B∠2=∠D∴∠BPD=∠1+∠2=∠B+∠D③如图(3):∠BPD=∠D﹣∠B.理由:∵AB∥CD∴∠1=∠D∵∠1=∠B+∠P∴∠D=∠B+∠P即∠BPD=∠D﹣∠B如图(4):∠BPD=∠B﹣∠D.理由:∵AB∥CD∴∠1=∠B∵∠1=∠D+∠P∴∠B=∠D+∠P即∠BPD=∠B﹣∠D.【点评】此题考查了平行线的性质与三角形外角的性质.此题难度不大解题的关键是注意掌握两直线平行内错角相等定理的应用注意辅助线的作法.3.如图1 将一副直角三角板放在同一条直线AB上其中∠ONM=30°∠OCD=45°(1)观察猜想将图1中的三角尺OCD沿AB的方向平移至图②的位置使得点O与点N重合CD与MN相交于点E则∠CEN=105°.(2)操作探究将图1中的三角尺OCD绕点O按顺时针方向旋转使一边OD在∠MON的内部如图3 且OD恰好平分∠MON CD与NM相交于点E求∠CEN的度数(3)深化拓展将图1中的三角尺OCD绕点O按沿顺时针方向旋转一周在旋转的过程中当边OC 旋转75或255°时边CD恰好与边MN平行.(直接写出结果)【考点】平行线的判定平移的性质.【专题】常规题型.【答案】见试题解答内容【分析】(1)在△CEN中依据三角形的内角和定理求解即可(2)根据角平分线的定义求出∠DON=45°利用内错角相等两直线平行求出CD∥AB 再根据两直线平行同旁内角互补求解即可(3)当CD在AB上方时CD∥MN设OM与CD相交于F根据两直线平行同位角相等可得∠OFD=∠M=60°然后根据三角形的内角和定理列式求出∠MOD即可得解当CD在AB的下方时CD∥MN设直线OM与CD相交于F根据两直线平行内错角相等可得∠DFO=∠M=60°然后利用三角形的内角和定理求出∠DOF再求出旋转角即可.【解答】解:(1)∵∠ECN=45°∠ENC=30°∴∠CEN=105°.故答案为:105°.(2)∵OD平分∠MON∴∠DON=12∠MON=12×90°=45°∴∠DON=∠D=45°∴CD∥AB∴∠CEN=180°﹣∠MNO=180°﹣30°=150°.(3)如图1 CD在AB上方时设OM与CD相交于F ∵CD∥MN∴∠OFD=∠M=60°在△ODF中∠MOD=180°﹣∠D﹣∠OFD=180°﹣45°﹣60°=75°当CD在AB的下方时设直线OM与CD相交于F∵CD∥MN∴∠DFO=∠M=60°在△DOF中∠DOF=180°﹣∠D﹣∠DFO=180°﹣45°﹣60°=75°∴旋转角为75°+180°=255°综上所述当边OC旋转75°或255°时边CD恰好与边MN平行.故答案为:75或255.【点评】本题考查了旋转的性质三角形的内角和定理三角形的一个外角等于与它不相邻的两个内角的和的性质直角三角形两锐角互余的性质熟记各性质并熟悉三角板的度数特点是解题的关键.4.问题探究:如图①已知AB∥CD我们发现∠E=∠B+∠D.我们怎么证明这个结论呢?张山同学:如图②过点E作EF∥AB把∠BED分成∠BEF与∠DEF的和然后分别证明∠BEF=∠B∠DEF=∠D.李思同学:如图③过点B作BF∥DE则∠E=∠EBF再证明∠ABF=∠D.问题解答:(1)请按张山同学的思路写出证明过程(2)请按李思同学的思路写出证明过程问题迁移:(3)如图④已知AB∥CD EF平分∠AEC FD平分∠EDC.若∠CED=3∠F请直接写出∠F的度数.【考点】平行线的性质.【专题】线段角相交线与平行线三角形推理能力.【答案】(1)(2)证明见解析部分.(3)36°.【分析】(1)如图②中过点E作EF∥AB利用平行线的性质证明即可.(2)如图③中过点B作BF∥DE交CD的延长线于G.利用平行线的性质证明即可.(3)设∠AEF=∠CEF=x∠CDF=∠EDF=y则∠F=x+y根据∠AEC+∠CED+∠DEB=180°构建方程求出x+y可得结论.【解答】解:(1)如图②中过点E作EF∥AB∵AB∥CD EF∥AB∴AB∥EF∥CD∴∠B=∠BEF∠D=∠DEF∴∠BED=∠BEF+∠DEF=∠B+∠D.(2)如图③中过点B作BF∥DE交CD的延长线于G.∵DE∥FG∴∠EDC=∠G∠DEB=∠EBF∵AB∥CG∴∠G=∠ABF∴∠EDC=∠ABF∴∠DEB=∠EBF=∠ABE+∠ABF=∠ABE+∠EDC.(3)如图④中∵EF平分∠AEC FD平分∠EDC∴∠AEF=∠CEF∠CDF=∠EDF设∠AEF=∠CEF=x∠CDF=∠EDF=y则∠F=x+y ∵∠CED=3∠F∴∠CED=3x+3y∵AB∥CD∴∠BED=∠CDE=2y∵∠AEC+∠CED+∠DEB=180°∴5x+5y=180°∴x+y=36°∴∠F=36°.【点评】本题考查平行线的性质平角的性质等知识解题的关键是学会添加常用辅助线利用平行线的性质解决问题.5.如图由线段AB AM CM CD组成的图形像∑称为“∑形BAMCD”.(1)如图1 ∑形BAMCD中若AB∥CD∠AMC=60°则∠A+∠C=60°(2)如图2 连接∑形BAMCD中B D两点若∠ABD+∠BDC=160°∠AMC=α试猜想∠BAM与∠MCD的数量关系并说明理由(3)如图3 在(2)的条件下当点M在线段BD的延长线上从上向下移动的过程中请直接写出∠BAM与∠MCD所有可能的数量关系.【考点】平行线的性质.【专题】线段角相交线与平行线三角形推理能力.【答案】(1)60°(2)∠BAM+∠MCD=α+20°(3)∠BAM﹣∠MCD=α+20°或∠BAM﹣∠MCD=20°或∠MCD﹣∠BAM=α﹣20°.【分析】(1)过M作MN∥AB利用平行线的性质计算可求求解(2)过A点作AP∥CD交BD于点P利用平行线的性质及三角形的内角和定理可求得∠BAP=20°结合(1)的结论可求解(3)可分两种情况:当D C位于AM两侧时当D C位于AM同侧时利用平行线的性质及三角形外角的性质可分别计算求解.【解答】解:(1)过M作MN∥AB∵AB∥CD∴AB∥MN∥CD∴∠AMN=∠A∠MCD=∠C∴∠A+∠C=∠AMN+∠MCD=∠AMC=60°故答案为:60°(2)∠BAM+∠MCD=α+20°.理由:过A点作AP∥CD交BD于点P∴∠APB=∠D∵∠BAP+∠APB+∠B=180°∠B+∠D=160°∴∠BAP=180°﹣160°=20°由(1)可得∠AMC=∠P AM+∠MCD∵∠AMC=α∴∠P AM+∠MCD=α∴∠BAM+∠MCD=α+20°(3)如图当D C位于AM两侧时∵∠ABD+∠BDC=160°∠CDM+∠BDC=180°∴∠CDM﹣∠ABD=20°∵∠AMQ=∠B+∠BAM∠CMQ=∠MCD+∠CDM∠AMC=α∴α=∠AMQ﹣∠CMQ=∠B+∠BAM﹣(∠MCD+∠CDM)=∠BAM﹣∠MCD﹣20°即∠BAM﹣∠MCD=α+20°当A C M三点共线时∠AMC=α=0°∴∠BAM﹣∠MCD=20°当D C位于AM同侧时∵∠ABD+∠BDC=160°∠CDM+∠BDC=180°∴∠CDM﹣∠ABD=20°∵∠AMO=∠B+∠BAM∠CMO=∠MCD+∠CDM∠AMC=α∴α=∠CMO﹣∠AMO=∠MCD+∠CDM﹣(∠B+∠BAM)=∠MCD﹣∠BAM+20°即∠MCD﹣∠BAM=α﹣20°.综上∠BAM﹣∠MCD=α+20°或∠MCD﹣∠BAM=α﹣20°.【点评】本题主要考查平行线的性质三角形外角的性质三角形的内角和定理掌握平行线的性质是解题的关键.6.如图1 E点在BC上∠A=∠D∠ACB+∠BED=180°.(1)求证:AB∥CD(2)如图2 AB∥CD BG平分∠ABE与∠EDF的平分线交于H点若∠DEB比∠DHB大60°求∠DEB的度数.(3)在(1)的结论下保持(2)中所求的∠DEB的度数不变如图3 BM平分∠EBK DN平分∠CDE作BP∥DN则∠PBM的度数是否改变?若不变请求值若改变请说明理由.【考点】平行线的判定与性质.【专题】证明题线段角相交线与平行线运算能力推理能力.【答案】(1)证明过程请看解答(2)100°(3)40°.(1)如图1 延长DE交AB于点F根据∠ACB+∠BED=180°∠CED+∠BED 【分析】=180°可得∠ACB=∠CED所以AC∥DF可得∠A=∠DFB又∠A=∠D进而可得结论(2)如图2 作EM∥CD HN∥CD根据AB∥CD可得AB∥EM∥HN∥CD根据平行线的性质得角之间的关系再根据∠DEB比∠DHB大60°列出等式即可求∠DEB 的度数(3)如图3 过点E作ES∥CD设直线DF和直线BP相交于点G根据平行线的性质和角平分线定义可求∠PBM的度数.【解答】(1)证明:如图1 延长DE交AB于点F∵∠ACB+∠BED=180°∠CED+∠BED=180°∴∠ACB=∠CED∴AC∥DF∴∠A=∠DFB∵∠A=∠D∴∠DFB=∠D∴AB ∥CD(2)如图2 作EM ∥CD HN ∥CD∵AB ∥CD∴AB ∥EM ∥HN ∥CD∴∠1+∠EDF =180° ∠MEB =∠ABE∵BG 平分∠ABE∴∠ABG =12∠ABE∵AB ∥HN∴∠2=∠ABG∵CF ∥HN∴∠2+∠β=∠3∴12∠ABE +∠β=∠3 ∵DH 平分∠EDF∴∠3=12∠EDF∴12∠ABE +∠β=12∠EDF ∴∠β=12(∠EDF ﹣∠ABE )∴∠EDF ﹣∠ABE =2∠β设∠DEB =∠α∵∠α=∠1+∠MEB=180°﹣∠EDF+∠ABE=180°﹣(∠EDF﹣∠ABE)=180°﹣2∠β∵∠DEB比∠DHB大60°∴∠α﹣60°=∠β∴∠α=180°﹣2(∠α﹣60°)解得∠α=100°∴∠DEB的度数为100°(3)∠PBM的度数不变理由如下:如图3 过点E作ES∥CD设直线DF和直线BP相交于点G∵BM平分∠EBK DN平分∠CDE∴∠EBM=∠MBK=12∠EBK∠CDN=∠EDN=12∠CDE∵ES∥CD AB∥CD∴ES∥AB∥CD∴∠DES=∠CDE∠BES=∠ABE=180°﹣∠EBK ∠G=∠PBK由(2)可知:∠DEB=100°∴∠CDE+180°﹣∠EBK=100°∴∠EBK﹣∠CDE=80°∵BP∥DN∴∠CDN=∠G∴∠PBK=∠G=∠CDN=12∠CDE∴∠PBM=∠MBK﹣∠PBK=12∠EBK−12∠CDE=12(∠EBK﹣∠CDE)=12×80°=40°.【点评】本题考查了平行线的判定与性质解决本题的关键是掌握平行线的判定与性质.7.如图点D点E分别在△ABC边AB AC上∠CBD=∠CDB DE∥BC∠CDE的平分线交AC于F点.(1)求证:∠DBF+∠DFB=90°(2)如图②如果∠ACD的平分线与AB交于G点∠BGC=50°求∠DEC的度数.(3)如图③如果H点是BC边上的一个动点(不与B C重合)AH交DC于M点∠CAH的平分线AI交DF于N点当H点在BC上运动时∠DEC+∠DMH∠ANF的值是否发生变化?如果变化说明理由如果不变试求出其值.【考点】平行线的性质.【答案】见试题解答内容【分析】(1)根据DE∥BC得到∠EDB+∠DBC=180°再利用角平分线的性质即可解答(2)根据FD⊥AB∠BGC=50°得到∠DHG=40°利用外角的性质得到∠FDC+∠HCD=40°再根据DF平分∠EDC CG平分∠ACD得到∠EDC=2∠FDC∠ACD=2∠HCD得到∠EDC+∠ACD=2(∠FDC+∠HCD)=80°利用三角形内角和为180°∠DEC=180°﹣(∠EDC+∠ACD)=180°﹣80°=100°.(3)不变根据∠DMH+∠DEC=2(∠ADF+∠DAN)∠ANF=∠ADF+∠DAN即可解答.【解答】解:(1)如图1∵DE∥BC∴∠EDB+∠DBC=180°∴∠EDF+∠FDC+∠CDB+∠DBC=180°∵∠CDB=∠DBC∠EDF=∠FDC∴2∠FDC+2∠CDB=180°∴∠FDC+∠CDB=90°∴FD⊥BD∴∠DBF+DFB=90°.(2)如图2∵∠BGC=50°FD⊥BD∴∠DHG=40°∴∠FDC+∠HCD=40°∵DF平分∠EDC CG平分∠ACD∴∠EDC=2∠FDC∠ACD=2∠HCD∴∠EDC+∠ACD=2(∠FDC+∠HCD)=80°∴∠DEC=180°﹣(∠EDC+∠ACD)=180°﹣80°=100°.(3)不变如图3∵∠DMH +∠DEC =2(∠ADF +∠DAN ) ∠ANF =∠ADF +∠DAN∴∠DEC+∠DMH ∠ANF =2(∠ADF+∠DAN)∠ADF+∠DAN =2.【点评】本题考查了平行线的性质 三角形角平分线 外角的性质 三角形内角和定理 解决本题的关键是利用三角形的角平分线 外角得到角之间的关系.8.已知 直线AB ∥CD 点E F 分别在直线AB CD 上 点P 是直线AB 与CD 外一点 连接PE PF .(1)如图1 若∠AEP =45° ∠DFP =105° 求∠EPF 的度数(2)如图2 过点E 作∠AEP 的角平分线EM 交FP 的延长线于点M ∠DFP 的角平分线FN 交EM 的反向延长线交于点N 若∠M 与3∠N 互补 试探索直线EP 与直线FN 的位置关系 并说明理由(3)若点P 在直线AB 的上方且不在直线EF 上 作∠DFP 的角平分线FN 交∠AEP 的角平分线EM 所在直线于点N 请直接写出∠EPF 与∠ENF 的数量关系.【考点】平行线的性质 余角和补角.【专题】线段角相交线与平行线推理能力.【答案】(1)120°(2)EP∥FN理由见解析(3)∠EPF+2∠ENF=180°或∠EPF=2∠ENF﹣180°.【分析】(1)过P作PQ∥AB根据平行线的性质可得∠EPF=120°(2)EP∥FN根据角平分线的定义和三角形外角的性质可得∠4=2∠1=∠AEP进而可得结论(3)根据角平分线的定义和平行线的性质分情况讨论即可.【解答】解:(1)如图过P作PQ∥AB∵AB∥CD∴PQ∥CD∴∠QPE=∠AEP=45°∠QPF=∠180°﹣∠DFP=180°﹣105°=75°∴∠EPF=∠QPE+∠DFP=45°+75°=120°.故∠EPF=120°(2)EP∥FN如图理由:∵EM平分∠AEP FN平分∠MFD∴∠AEP=2∠1 ∠MFD=2∠3由(1)得∠M=∠1+∠CFM=∠1+(180°﹣2∠3)=∠1+(180°﹣2∠4)∵AB∥CD∴∠3=∠4由三角形外角的性质可得∠N=∠4﹣∠2=∠4﹣∠1∵∠M与3∠N互补∴∠1+(180°﹣2∠4)+3(∠4﹣∠1)=180°整理得∠4=2∠1=∠AEP∴EP∥FN(3)①∠EPF+2∠ENF=180°.如图∵AB∥CD∴∠CFH=∠EHF∠EKF=∠DFK∵FN平分∠DFP ME平分∠AEP∴∠CFH=180°﹣2∠DFK∠AEP=2∠AEM=2∠KEN由外角的性质得∠EPF=∠EHF﹣∠AEP=180°﹣2∠DFK﹣2∠AEM∠ENF=∠EKF+∠KEN=∠DFK+∠AEM∴∠EPF=180°﹣2∠ENF∴∠EPF+2∠ENF=180°.②∠EPF=2∠ENF﹣180°.如图∵AB∥CD∴∠PKB=∠PFD=2∠DFN由外角的性质得∠EPF=∠PKB﹣∠BEP=∠PKB﹣(180°﹣2∠MEP)=2∠DFN+2∠AEM﹣180°由(1)得∠ENF=∠DFN+∠NEK=∠DFN+∠AEM∴2∠ENF=2∠DFN+2∠AEM∴∠EPF=2∠ENF﹣180°.【点评】本题考查平行线判定和性质角平分线的定义三角形外角与内角的关系根据题意理清各角之间的关系是解题关键.9.实验证明平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图一束光线m射到平面镜上被a反射到平面镜b上又被b镜反射若被b 反射出的光线n与光线m平行且∠1=50°则∠2=100°∠3=90°(2)在(1)中若∠1=55°则∠3=90°若∠1=40°则∠3=90°(3)由(1)(2)请你猜想:当两平面镜a b的夹角∠3=90°时可以使任何射到平面镜a上的光线m经过平面镜a b的两次反射后入射光线m与反射光线n 平行请说明理由.【考点】平行线的判定与性质三角形内角和定理.【专题】跨学科.【答案】见试题解答内容【分析】根据入射角与反射角相等可得∠1=∠4 ∠5=∠6.(1)根据邻补角的定义可得∠7=80°根据m∥n所以∠2=100°∠5=40°根据三角形内角和为180°即可求出答案(2)结合题(1)可得∠3的度数都是90°(3)证明m∥n由∠3=90°证得∠2与∠7互补即可.【解答】解:(1)100°90°.∵入射角与反射角相等即∠1=∠4 ∠5=∠6根据邻补角的定义可得∠7=180°﹣∠1﹣∠4=80°根据m∥n所以∠2=180°﹣∠7=100°所以∠5=∠6=(180°﹣100°)÷2=40°根据三角形内角和为180°所以∠3=180°﹣∠4﹣∠5=90°(2)90°90°.由(1)可得∠3的度数都是90°(3)90°(2分)理由:因为∠3=90°所以∠4+∠5=90°又由题意知∠1=∠4 ∠5=∠6所以∠2+∠7=180°﹣(∠5+∠6)+180°﹣(∠1+∠4)=360°﹣2∠4﹣2∠5=360°﹣2(∠4+∠5)=180°.由同旁内角互补两直线平行可知:m∥n.【点评】本题是数学知识与物理知识的有机结合充分体现了各学科之间的渗透性.10.如图已知直线l1∥l2l3l4和l1l2分别交于点A B C D点P在直线l3或l4上且不与点A B C D重合.记∠AEP=∠1 ∠PFB=∠2 ∠EPF=∠3.(1)若点P在图(1)位置时求证:∠3=∠1+∠2(2)若点P在图(2)位置时请直接写出∠1 ∠2 ∠3之间的关系(3)若点P在图(3)位置时写出∠1 ∠2 ∠3之间的关系并给予证明(4)若点P在C D两点外侧运动时请直接写出∠1 ∠2 ∠3之间的关系.【考点】平行线的性质三角形的外角性质.【专题】证明题探究型.【答案】见试题解答内容【分析】此题四个小题的解题思路是一致的过P作直线l1l2的平行线利用平行线的性质得到和∠1 ∠2相等的角然后结合这些等角和∠3的位置关系来得出∠1 ∠2 ∠3的数量关系.【解答】解:(1)证明:过P作PQ∥l1∥l2由两直线平行内错角相等可得:∠1=∠QPE∠2=∠QPF∵∠3=∠QPE+∠QPF∴∠3=∠1+∠2.(2)∠3=∠2﹣∠1证明:过P作直线PQ∥l1∥l2则:∠1=∠QPE∠2=∠QPF∵∠3=∠QPF﹣∠QPE∴∠3=∠2﹣∠1.(3)∠3=360°﹣∠1﹣∠2.证明:过P作PQ∥l1∥l2同(1)可证得:∠3=∠CEP+∠DFP∵∠CEP+∠1=180°∠DFP+∠2=180°∴∠CEP+∠DFP+∠1+∠2=360°即∠3=360°﹣∠1﹣∠2.(4)过P作PQ∥l1∥l2①当P在C点上方时同(2)可证:∠3=∠DFP﹣∠CEP∵∠CEP+∠1=180°∠DFP+∠2=180°∴∠DFP﹣∠CEP+∠2﹣∠1=0即∠3=∠1﹣∠2.②当P在D点下方时∠3=∠2﹣∠1 解法同上.综上可知:当P在C点上方时∠3=∠1﹣∠2 当P在D点下方时∠3=∠2﹣∠1.【点评】此题主要考查的是平行线的性质能够正确地作出辅助线是解决问题的关键.11.当光线经过镜面反射时入射光线反射光线与镜面所夹的角对应相等例如:在图①图②中都有∠1=∠2 ∠3=∠4.设镜子AB与BC的夹角∠ABC=α.(1)如图①若α=90°判断入射光线EF与反射光线GH的位置关系并说明理由.(2)如图②若90°<α<180°入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系并说明理由.(3)如图③若α=120°设镜子CD与BC的夹角∠BCD=γ(90°<γ<180°)入射光线EF与镜面AB的夹角∠1=m(0°<m<90°)已知入射光线EF从镜面AB开始反射经过n(n为正整数且n≤3)次反射当第n次反射光线与入射光线EF平行时请直接写出γ的度数.(可用含有m的代数式表示)【考点】平行线的性质列代数式.【专题】综合题压轴题分类讨论线段角相交线与平行线几何直观运算能力推理能力.【答案】见试题解答内容【分析】(1)在△BEG中∠2+∠3+α=180°α=90°可得∠2+∠3=90°根据入射光线反射光线与镜面所夹的角对应相等可得∠FEG+∠EGH=180°进而可得EF∥GH(2)在△BEG中∠2+∠3+α=180°可得∠2+∠3=180°﹣α根据入射光线反射光线与镜面所夹的角对应相等可得∠MEG=2∠2 ∠MGE=2∠3 在△MEG中∠MEG+∠MGE+β=180°可得α与β的数量关系(3)分两种情况画图讨论:①当n=3时根据入射光线反射光线与镜面所夹的角对应相等及△GCH内角和可得γ=90°+m.②当n=2时如果在BC边反射后与EF 平行则α=90°与题意不符则只能在CD边反射后与EF平行根据三角形外角定义可得∠G=γ﹣60°由EF∥HK且由(1)的结论可得γ=150°.【解答】解:(1)EF∥GH理由如下:在△BEG中∠2+∠3+α=180°α=90°∴∠2+∠3=90°∵∠1=∠2 ∠3=∠4∴∠1+∠2+∠3+∠4=180°∵∠1+∠2+∠FEG=180°∠3+∠4+∠EGH=180°∴∠FEG+∠EGH=180°∴EF∥GH(2)β=2α﹣180°理由如下:在△BEG中∠2+∠3+α=180°∴∠2+∠3=180°﹣α∵∠1=∠2 ∠1=∠MEB∴∠2=∠MEB∴∠MEG=2∠2同理可得∠MGE=2∠3在△MEG中∠MEG+∠MGE+β=180°∴β=180°﹣(∠MEG+∠MGE)=180°﹣(2∠2+2∠3)=180°﹣2(∠2+∠3)=180°﹣2(180°﹣α)=2α﹣180°(3)90°+m或150°.理由如下:①当n=3时如图所示:∵∠BEG=∠1=m∴∠BGE=∠CGH=60°﹣m∴∠FEG=180°﹣2∠1=180°﹣2m∠EGH=180°﹣2∠BGE=180°﹣2(60°﹣m)∵EF∥HK∴∠FEG+∠EGH+∠GHK=360°则∠GHK=120°则∠GHC=30°由△GCH内角和得γ=90°+m.②当n=2时如果在BC边反射后与EF平行则α=90°与题意不符则只能在CD边反射后与EF平行如图所示:根据三角形外角定义得∠G=γ﹣60°由EF∥HK且由(1)的结论可得∠G=γ﹣60°=90°则γ=150°.综上所述:γ的度数为:90°+m或150°.【点评】本题考查了平行线的性质列代数式解决本题的关键是掌握平行线的性质注意分类讨论思想的利用.12.已知:直线a∥b点A和点B是直线a上的点点C和点D是直线b上的点连接AD BC设直线AD和BC交于点E.(1)在如图1所示的情形下若AD⊥BC求∠ABE+∠CDE的度数(2)在如图2所示的情形下若BF平分∠ABC DF平分∠ADC且BF与DF交于点F当∠ABC=64°∠ADC=72°时求∠BFD的度数(3)如图3 当点B在点A的右侧时若BF平分∠ABC DF平分∠ADC且BF DF 交于点F设∠ABC=α∠ADC=β用含有αβ的代数式表示∠BFD的补角.【考点】平行线的性质余角和补角垂线.【专题】线段角相交线与平行线推理能力.【答案】(1)∠BED=90°(2)∠BFD=68°(3)∠BFD的补角=12α−12β.【分析】(1)过点E作EG∥AB根据a∥b可得EG∥CD得∠ABE+∠CDE=∠BED =90°(2)过点F作FH∥AB结合(1)的方法根据BF平分∠ABC DF平分∠ADC即可求∠BFD的度数(3)过点F作FH∥AB结合(1)的方法根据BF平分∠ABC DF平分∠ADC设∠ABC=α∠ADC=β即可用含有αβ的代数式表示∠BFD的补角.【解答】解:(1)过点E作EG∥AB∵a∥b∴EG∥CD∴∠ABE=∠BEG∠CDE=∠DEG∴∠ABE+∠CDE=∠BEG+∠DEG=∠BED∵AD⊥BC∴∠ABE+∠CDE=∠BED=90°(2)如图过点F作FH∥AB∵a∥b∴FH∥CD∴∠ABF=∠BFH∠CDF=∠DFH∴∠BFD=∠ABF+∠CDF=∠BFH+∠DFH∵BF平分∠ABC DF平分∠ADC∠ABC=64°∠ADC=72°∴∠ABF=12∠ABC=32°∠CDF=12∠ADC=36°∴∠BFD=∠ABF+∠CDF=68°(3)如图过点F作FH∥AB∵a∥b∴FQ∥CD∴∠ABF+∠BFQ=180°∠CDF=∠DFQ∴∠BFD=∠BFQ+∠DFQ=180°﹣∠ABF+∠CDF∵BF平分∠ABC DF平分∠ADC∠ABC=α∠ADC=β∴∠ABF=12∠ABC=12α∠CDF=12∠ADC=12β∴∠BFD=180°﹣∠ABF+∠CDF=180°−12α+12β∴∠BFD的补角=12α−12β.【点评】本题考查了平行线的性质角平分线定义解决本题的关键是掌握平行线的性质.13.如图1 AB∥CD E为AB上一点点P在线段CE上且PD∥CF.(1)求证:∠AEC+∠DCF=∠DPE(2)如图2 在线段CF上取点H使∠HPF=∠HFP若CD平分∠ECF PQ平分∠EPH∠HPQ+∠AEC=90°试判断PF与EF的大小关系.【考点】平行线的性质.【专题】线段角相交线与平行线推理能力.【答案】(1)证明过程详见解答(2)PF<EF.【分析】(1)根据平行线的性质可得∠AEC=∠ECD∠PDC=∠DCF然后根据外角的性质即可证得结论(2)设∠ECD=∠FCD=α则∠ECF=2α设∠HPF=∠HFP=β根据平行线的性质可推出∠EPD=∠ECF=2α∠FPD=∠PFH=β∠AEC=∠ECD=α从而得出∠EPH=2α+2β根据已知条件∠HPQ+∠AEC=90°可得出2α+β=90°进一步得出结果.【解答】(1)证明:∵AB∥CD∴∠AEC=∠ECD∵PD∥CF∴∠PDC=∠DCF∵∠DPE=∠ECD+∠PDC∴∠DPE=∠AEC+∠DCF(2)∵CD平分∠ECF∴∠ECF=2∠ECD=∠2FCD设∠ECD=∠FCD=α则∠ECF=2α设∠HPF=∠HFP=β∵PD∥CF∴∠EPD=∠ECF=2α∠FPD=∠PFH=β∴∠HPD=∠FPH+∠FPD=β+β=2β∴∠EPH=∠EPD+∠HPD=2α+2β∵PQ平分∠EPH∴∠HPQ=12∠EPH=12(2α+2β)=α+β∵AB∥CD∴∠AEC=∠ECD=α∵∠HPQ+∠AEC=90°∴(α+β)+α=90°∴2α+β=90°∴∠EPF+∠HFP=90°∴∠EPF=∠CPF=90°∴PF<EF.【点评】本题主要考查了平行线的性质角平分线的定义等知识解决问题的关键是设参数简明地表达角之间数量关系.14.将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起.(1)若∠DCE=45°则∠ACB的度数为135°(2)若∠ACB=140°求∠DCE的度数(3)猜想∠ACB与∠DCE之间存在什么数量关系?并说明理由(4)当∠ACE<90°且点E在直线AC的上方时这两块三角尺是否存在AD与BC平行的情况?若存在请直接写出∠ACE的值若不存在请说明理由.【考点】平行线的判定余角和补角.【答案】见试题解答内容【分析】(1)根据∠DCE和∠ACD的度数求得∠ACE的度数再根据∠BCE求得∠ACB的度数(2)根据∠BCE和∠ACB的度数求得∠ACE的度数再根据∠ACD求得∠DCE的度数(3)根据∠ACE=90°﹣∠DCE以及∠ACB=∠ACE+90°进行计算即可得出结论(4)当∠ACE=30°时CB∥AD时根据平行线的判定即可解决问题【解答】解:(1)∵∠DCE=45°∠ACD=90°∴∠ACE=45°∵∠BCE=90°∴∠ACB=90°+45°=135°故答案为:135°(2)∵∠ACB=140°∠ECB=90°∴∠ACE=140°﹣90°=50°∴∠DCE=90°﹣∠ACE=90°﹣50°=40°(3)猜想:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE即∠ACB+∠DCE=180°(4)30°理由:∵∠ACD=∠ECB=90°∴∠ACE=∠DCB=30°∴∠D=∠DCB=30°∴CB∥AD.【点评】本题主要考查了平行线的性质以及直角三角形的性质解题时注意分类讨论思想的运用分类时注意不能重复也不能遗漏.15.(1)光线从空气中射入水中会产生折射现象同时光线从水中射入空气中也会产生折射现象如图1 光线a从空气中射入水中再从水中射入空气中形成光线b根据光学知识有∠1=∠2 ∠3=∠4 请判断光线a与光线b是否平行并说明理由(2)如图2 直线EF上有两点A C分别引两条射线AB CD.已知∠BAF=150°∠DCF=80°射线AB CD分别绕点A点C以1度/秒和3度/秒的速度同时顺时针转动设时间为t秒当射线CD转动一周时两条射线同时停止.则当直线CD与直线AB互。

2019年中考数学真题汇编 图形初步、相交线、平行线(20题)

2019年中考数学真题汇编 图形初步、相交线、平行线(20题)

图形初步、相交线、平行线(20题)一、选择题1.若一个角为,则它的补角的度数为()A. B.C.D.【答案】C【解析】一个角为,则它的补角的度数为:故答案为:C.【分析】根据补角的定义,若两个角之和为180°,则这两个角互为补角,即可求解。

2.如图,直线a,b被直线c所截,那么∠1的同位角是()A. ∠2B. ∠3 C. ∠4 D. ∠5【答案】C【解析】解:∵直线a,b被直线c所截,∴∠1的同位角是∠4故答案为:C【分析】两条直线被第三条直线所截,位于两条直线的同一侧,第三条直线的同旁,呈“F”形的角是同位角,即可得出答案。

3.如图,直线AB∥CD,则下列结论正确的是()A. ∠1=∠2B. ∠3=∠4 C. ∠1+∠3=180° D. ∠3+∠4=180°【答案】D【解析】:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故答案为:D.【分析】根据二直线平行,同旁内角互补得出∠3+∠5=180°,根据对顶角相等及等量代换得出∠3+∠4=180°,4.如图是正方体的表面展开图,则与“前”字相对的字是()A. 认B. 真C. 复D. 习【答案】B【解析】观察正方形的展开图,可得出与“前”字相对的字是“真”.【分析】观察正方形的展开图,可得出答案。

5.如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是()A. 图①B. 图② C. 图③ D. 图④【答案】A【解析】:图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.故答案为:A.【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.6.如图,直线被所截,且,则下列结论中正确的是( )A. B. C.D.【答案】B【解析】:∵a∥b,∴∠3=∠4.故答案为:B.【分析】根据两直线平行,同位角相等,由此即可得出答案.7.如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是()。

初三中考数学复习线段、角、相交线和平行线专题复习练习题及答案

初三中考数学复习线段、角、相交线和平行线专题复习练习题及答案

2019 初三中考数学复习线段、角、订交线和平行线专题复习练习题11. 一个角的余角是这个角的补角的3,则这个角的度数是()A .30°B.45°C.60°D.70°2. .以下命题中,属于真命题的是()A .三点确立一个圆B.圆内接四边形对角互余C.若 a2=b2,则 a=b D.若3a=3b,则 a=b3.如图, C,D 是线段 AB 上两点, D 是线段 AC 的中点,若 AB = 10 cm,BC =4 cm,则 AD 的长等于 ()A .2 cm B. 3 cm C.4 cm D.6 cm4.如图,直线 AB ∥CD,直线 EF 与 AB ,CD 订交于点 E,F,∠BEF 的均分线与 CD 订交于点 N.若∠ 1=63°,则∠ 2=()A .64°B.63°C.60°D.54°5. 如图,与∠ 1 是同旁内角的是 ()A .∠2B.∠ 3C.∠ 4D.∠ 56.以下命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若 x=0,则 x2-2x=0.它们的抗命题必定建立的有()A .①②③④B.①④C.②④D.②7. 如图, AB ∥CD,∠ 1=50°,则∠ 2 的大小是 ()A .50°B.120°C.130°D.150°8. 如图,在以下条件中,不可以判断直线 a 与 b 平行的是 ()A .∠1=∠ 2B.∠2=∠ 3C.∠3=∠ 5D.∠3+∠ 4=180°9. 如图,已知∠ 1=60°,假如 CD∥BE,那么∠ B 的度数为 ()A .70°B.100°C.110°D.120°10. 以下命题是真命题的是()A .必定事件发生的概率等于0.5B.5 名同学二模的数学成绩是92,95,95,98,110,则他们的均匀分是98 分,众数是 95C.射击运动员甲、乙分别射击10 次且击中环数的方差分别是 5 和 18,则乙较甲坚固D.要认识金牌获取者的欢乐剂使用状况,可采纳抽样检查的方法11.图中是对顶角量角器,用它丈量角的原理是 ____.12.如图,已知直线 a∥b,△ABC 的极点 B 在直线 b 上,∠C=90°,∠1=36°,则∠ 2 的度数是 ____.13.如图,直线 l1∥l2,若∠ 1=130°,∠ 2=60°,则∠ 3=____.14.如图, AB ∥CD∥EF,若∠ A=30°,∠ AFC=15°,则∠ C=____.15.一个角的余角是 54°38,′则这个角的补角是 __________________.16.如图,直线 a∥b,BC 均分∠ ABD ,DE⊥BC,若∠ 1=70°,求∠ 2 的度数.17.如图, OM 是∠ AOC 的均分线, ON 是∠ BOC 的均分线.(1)如图①,当∠ AOB 是直角,∠ BOC=60°时,∠ MON 的度数是多少?(2)如图②,当∠ AOB =α,∠BOC=60°时,猜想∠ MON 与α的数目关系;(3)如图③,当∠ AOB =α,∠BOC=β时,猜想∠MON 与α,β有数目关系吗?如果有,指出结论并说明原因.参照答案:1---10BDBDD DCCDB11. 对顶角相等 12. 54° 13. 70° 14. 15° 15. 144°38′16. 解:∵直线 a ∥b ,∴∠1=∠ ABD =70°,∵ BC 均分∠ ABD ,∴∠ EBD =12∠ABD =35°,∵ DE ⊥BC ,∴∠ 2=90°-∠ EBD =55°17. 解:(1)如图①,∵∠ AOB =90°,∠ BOC =60°,∴∠ AOC = 90°+ 60°1=150°,∵ OM 均分∠ AOC ,ON 均分∠ BOC ,∴∠ MOC =2∠AOC =75°,1∠NOC =2∠BOC =30°,∴∠ MON =∠ MOC -∠ NOC =45°1(2) 如图②,∠ MON =2α,原因:∵∠ AOB =α,∠BOC = 60°,∴∠ AOC =α1 1+60°,∵OM 均分∠ AOC ,ON 均分∠ BOC ,∴∠ MOC =2∠AOC =2α+30°, ∠NOC =1∠BOC =30°∴∠ MON =∠ MOC -∠ NOC =(1α+30°)-30°= 1α2 221(3)如图③,∠ MON =2α,与β的大小没关.原因:∵∠ AOB =α,∠BOC =β,∴∠ AOC =α+β.∵OM 是∠ AOC 的均分线, ON 是∠ BOC 的均分线,1111β,∴∠MON =∠ MOC -∴∠ MOC=∠AOC = (α+β),∠ NOC=∠BOC=2222∠NOC=11112(α+β-β=α,即∠ MON =α) 222。

2019届中考数学复习第四章三角形4.1角、相交线与平行线练习

2019届中考数学复习第四章三角形4.1角、相交线与平行线练习

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……角、相交线与平行线命题点1 余角、补角(8年1考)命题解读:题型为选择题,分值为3分,主要考查补角(余角)的概念及性质。

1.(2018·陕西中考)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个拓展变式1.若∠α的补角是它的余角的3倍,则∠α=_______。

命题点2 利用相交线与平行线求角(8年6考)命题解读:题型为选择题或填空题,分值为3分。

主要考查平行线的性质、角的平分线的性质、三角形外角的计算、余角及补角的计算等。

2.(2017·陕西中考)如图,直线a∥b,Rt△AB C的直角顶点B落在直线a上。

若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°3.(2014·陕西中考)如图,AB∥CD,∠A=45°,∠C=28°,则∠AEC的大小为()A.17°B.62°C.63°D.73°4.(2015·陕西中考)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F。

若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′5.(2016·陕西中考)如图,AB∥CD,AE平分∠CAB交CD于点E。

若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°6.(2013·陕西中考)如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D的大小为()A.65°B.55°C.45°D.35°7.(2011·陕西中考)如图,AC∥BD,AE平分∠BAC交BD于点E。

2019届中考数学复习《相交线与平行线》专题提升训练含答案

2019届中考数学复习《相交线与平行线》专题提升训练含答案

2019届初三数学中考复习相交线与平行线专项复习练习1.如图,直线AB,CD相交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理依据是( )A.同角的余角相等 B.对顶角相等C.同角的补角相等 D.等角的补角相等2. 如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余 D.不能确定3. 如图是一跳远运动员跳落沙坑时留下的痕迹,则表示该运动员成绩的是( )A.线段AP1的长 B.线段AP2的长 C.线段BP3的长 D.线段CP3的长4. 如图,已知直线b,c被直线a所截,则∠1与∠2是一对( )A.同位角 B.内错角 C.同旁内角 D.对顶角5. 若a⊥b,c⊥d,则a与c的关系是( )A.平行 B.垂直 C.相交 D.以上都不对6. 如图,用两个相同的三角板按照如图所示的方式作平行线,能解释其中道理的是( )A.同位角相等,两直线平行 B.内错角相等,两直线平行C.同旁内角互补,两直线平行 D.以上都不对7. 如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=( )A.55° B.125° C.135° D.140°8. 下列语句中,错误的是( )A.一条直线有且只有一条垂线 B.不相等的两个角一定不是对顶角C.直角的补角必是直角 D.两直线平行,同旁内角互补9. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为( )A.8 B.9 C.10 D.1110. 如图,下列条件中不能判定AB∥CD的是( )A.∠3=∠4 B.∠1=∠5C.∠1+∠4=180° D.∠3=∠511. 如图,直线AB,CD相交于点O,若∠AOD=28°,则∠BOC=__________,∠AOC=___________.12. 如图所示,OA⊥OB,∠AOC=120°,则∠BOC等于______度.13. 自来水公司为某小区A改造供水系统,如图所示,沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短、工程造价最低,其根据是__________________.14. 如图所示,∠B与____________是直线_________和直线_______被直线________所截得的同位角.15. 如图是一个平行四边形,请用符号表示图中的平行线:_________________.16. 如图,已知∠B=40°,要使AB∥CD,需要添加一个条件,这个条件可以是__________________.17. 如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.参考答案:1---10 CCBAD BBACD11. 28° 152°12. 3013. 垂线段最短14. ∠FAC AC BC FB15. AB∥CD,AD∥BC16. ∠BED=40°17. 解:∵∠AEC=42°,∴∠AED=180°-∠AEC=138°.∵EF平分∠AED,∴∠DEF=∠AED=69°.又∵AB∥CD,∴∠AFE=∠DEF=69°.2019-2020学年数学中考模拟试卷一、选择题1.一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是( ) A .360° B .540°C .180°或360°D .540°或360°或180°2.如图,在ΔABC 中,AB AC =,AD BC ⊥,垂足为D ,E 是AC 的中点.若DE 5=,则AB 的长为( )A .2.5B .7.5C .8.5D .103.如图,水平的讲台上放置的圆柱笔筒和长方体形粉笔盒,它的俯视图是( )A .B .C .D .4.如图,在Rt △ABC 中,∠ACB=90°,斜边AB 的垂直平分线交AB 于点D ,交BC 于点E ,已知AB=5,AC=3,则△ACE 的周长为( )A.5B.6C.7D.85.在Rt △ABC 中,∠C =90°,sinA =35,BC =6,则AB =( ) A .4B .6C .8D .106.如图,已知∠BED =55°,则∠B+∠C =( )A.30°B.35°C.45°D.55°7.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与交于B、C 两点,则弦BC的长的最小值为( )A.22 B.24 C.D.8.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是()A.a>2B.a<2C.a<2且a≠1D.a<-29.不等式组12314xx-<⎧⎨+⎩…的整数解的个数是()A.6 B.5 C.4 D.310.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有()个.A.3B.4C.2D.111.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2019的坐标为()A.(-2,0)B.04(,)C.(2,-4)D.(-2,-2)12.如图,四边形ABCD 为⊙O 的内接四边形,∠AOC =110°,则∠ADC =( )A .55°B .110°C .125°D .70°二、填空题13.从﹣4、﹣3、﹣1、﹣12、0、1这6个数中随机抽取一个数a ,则关于x 的分式方程2ax x -+2322x x x =--的解为整数,且二次函数y =ax 2+3x ﹣1的图象顶点在第一象限的概率是____. 14.分解因式:269mx mx m -+=_____.15.函数y=11x-x 的取值范围是_____. 16.如图,在平面直角坐标系中,过点A(4,5)分别作x 轴、y 轴的平行线,交直线y=-x+6于B 、C 两点.若函数 (0 )ky x x=>的图象与△ABC 的边有公共点,则k 的取值范围是_______.17.已知关于x 的一元二次方程x 2﹣4x+m ﹣1=0有两个相等的实数根,则m 的值为_____; 方程的根为_____.18.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同,从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片,两次抽取的卡片上数字之和为奇数的概率是_____. 三、解答题19.国家“一带一路”倡议提出以后,得到全世界的广泛参与,助推我国界经济的发展,某校数学兴趣小组为了解所在城市市民对“一带一路”倡议的关注情况,在本市街头随机调查了部分市民,并根据调查结果制成了如下尚不完善的统计图表(1)填空:此次调查人数为 ,m = ,n = (2)请补全条形统计图.(3)根据调查结果,可估计本市120万市民中,高度关注“一带一路”倡议的有多少人?20.在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE∥DB交AB 的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.21.某幼儿园购买了A,B两种型号的玩具,A型玩具的单价比B型玩具的单价少9元,已知该幼儿园用了3120元购买A型玩具的件数与用4200元购买B型玩具的件数相等.(1)该幼儿园购买的A,B型玩具的单价各是多少元?(2)若A,B两种型号的玩具共购买200件,且A型玩具数量不多于B型玩具数量的3倍,则购买这些玩具的总费用最少需要多少元?22.在阳光体育活动时间,小亮、小莹、小芳和小刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中小刚的概率;(2)如果确定小亮做裁判,用“手心”“手背”的方法决定其余三人哪两人打第一场,游戏规则是:三人同时伸“手心、手背”的中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.23.如图,在平面直角坐标系中,△ABC的三个顶点为:A(1,1),B(4,4),C(5,1).(1)若△ABC和△A1B1C1关于原点O成中心对称图形,画出△A1B1C1;(2)在x轴上存在一点P,满足点P到点B1与点C1距离之和最小,请直接写出PB1+PC1的最小值为.24.先化简,再求值:211211x x x x ⎛⎫÷-= ⎪-+⎝⎭,其中 25.如图,Rt △ADB 中,∠ADB =90°,∠DAB =30°,⊙O 为△ADB 的外接圆,DH ⊥AB 于点H ,现将△AHD 沿AD 翻折得到△AED ,AE 交⊙O 于点C ,连接OC 交AD 于点G . (1)求证:DE 是⊙O 的切线; (2)若AB =10,求线段OG 的长.【参考答案】*** 一、选择题二、填空题 13.16. 14.m(x-3)2 15.x≥﹣2且x≠1 16.5≤k≤20 17.x 1=x 2=2. 18.49三、解答题19.(1) 200,20,0.15;(2)见解析;(3) 12万人 【解析】 【分析】(1)由B 种关注情况的频数及其频率可得样本容量,再根据频率=频数÷总人数可得m 、n 的值; (2)根据(1)中所求结果可补全条形图;(3)总人数乘以样本中A 种关注情况的频率即可得. 【详解】(1)此次调查的人数为100÷0.5=200(人), m =200×0.1=20,n =30÷200=0.15, 故答案为:200,20,0.15;(2)补全条形图如下:(3)可估计本市120万市民中,高度关注“一带一路”倡议的有120×0.1=12(万人).【点睛】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(1)证明见解析;.【解析】【分析】(1)根据平行四边形的判定和菱形的判定证明即可;(2)根据菱形的性质和勾股定理解答即可.【详解】(1)∵AB∥DC,∴∠CAB=∠ACD.∵AC平分∠BAD,∴∠CAB=∠CAD.∴∠CAD=∠ACD,∴DA=DC.∵AB=AD,∴AB=DC.∴四边形ABCD是平行四边形.∵AB=AD,∴四边形 ABCD是菱形;(2)∵四边形 ABCD是菱形,∠DAB=60°,∴∠OAB=30,∠AOB=90°.∵AB=4,∴OB=2,AO=OC=2.∵CE∥DB,∴四边形 DBEC是平行四边形.∴CE=DB=4,∠ACE=90°.∴OE===.【点睛】本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.21.(1)该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)购买这些玩具的总费用最少需要5650元. 【解析】 【分析】(1)根据题意可以得到相应的分式方程,从而可以求得该幼儿园购买的A ,B 型玩具的单价各是多少元; (2)根据题意可以得到费用与购买A 型和B 型玩具之间的关系,从而可以解答本题. 【详解】解:(1)设购买A 型玩具的单价是x 元,则购买B 型玩具的单价是(x+9)元,312042009x x =+, 解得,x =26,经检验,x =26是原分式方程的解, ∴x+9=35,答:该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)设购买A 型玩具a 件,则购买B 型玩具(200﹣a )件,所需费用为w 元, w =26a+35(200﹣a )=﹣9a+7000, ∵a≤3(200﹣a ), ∴a≤150,∴当a =150时,w 取得最小值,此时w =﹣9×150+7000=5650, 答:购买这些玩具的总费用最少需要5650元. 【点睛】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和分式方程的知识解答. 22.(1)13;(2)14. 【解析】 【分析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中小刚的概率即可; (2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率. 【详解】解:(1)∵确定小亮同学打第一场,∴再从小莹、小芳和小刚中随机选取一人打第一场,恰好选中小刚同学的概率为13; (2)画树状图如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与小刚不同的结果有2个,则小莹和小芳打第一场的概率为14.【点睛】此题考查了概率公式、列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.23.(1)见解析;(2【解析】【分析】(1)分别作出三角形ABC三顶点关于原点的对称点,再顺次连接即可得;(2)作点C1关于x轴的对称点C′,连接B1C′与x轴的交点即为所求点P,继而利用勾股定理求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P即为所求,PB1+PC1.【点睛】本题主要考查作图﹣旋转变换,解题的关键是熟练掌握旋转变换的定义和性质,并据此得出变换后的对应点.24【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值. 【详解】 原式=()()11xx x +-÷111x x +-+ =()()11xx x +-•1x x+ =11x -,当时,原式.【点睛】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.在解答此类题目时要注意通分及约分的灵活应用. 25.(1)见解析;(2)52【解析】 【分析】(1)连接半径,由同圆的半径相等得:OA=OD ,利用等边对等角可知:∠OAD=∠ODA ,利用翻折的性质可知:∠OAD=∠EAD ,∠E=∠AHD=90°,证OD ∥AE ,得∠ODE=90°,所以DE 与⊙O 相切;(2)先证明△OAC 是等边三角形,再证明OG ∥BD ,根据中位线定理可知:BD=2OG=5,于是得到结论. 【详解】解:(1)连接OD , ∵OA =OD , ∴∠OAD =∠ODA ,由翻折得:∠OAD =∠EAD ,∠E =∠AHD =90°, ∴∠ODA =∠EAD , ∴OD ∥AE ,∴∠E+∠ODE =180°, ∴∠ODE =90°, ∴DE 与⊙O 相切;(2)∵将△AHD 沿AD 翻折得到△AED , ∴∠OAD =∠EAD =30°, ∴∠OAC =60°, ∵OA =OD ,∴△OAC 是等边三角形, ∴∠AOG =60°, ∵∠OAD =30°,∴∠AGO=90°,∴OG=12AO=52.【点睛】本题考查了切线的判定、平行线的性质和判定、翻折的性质、等边三角形的性质和判定,在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,并熟练掌握等边三角形的性质和判定,明确翻折前后的两条边和角相等.2019-2020学年数学中考模拟试卷一、选择题1.如图,正△AOB 的边长为5,点B 在x 轴正半轴上,点A 在第一象限,反比例函数y =kx(x >0)的图象分别交边AO ,AB 于点C ,D ,若OC =2BD ,则实数k 的值为( )A .BCD .2.下面的几何图形中,是轴对称图形但不是中心对称图形的是( )A.等边三角形B.圆C.平行四边形D.正六边形3.用百度搜索关键词“北京大学”,百度找到相关结果约39700000个,把数据39700000用科学记数法表示为( ) A .3.97×105B .39.7×108C .3.97×107D .3.97×1094.已知△ABC ∼△DEF ,且△ABC 的面积为2cm 2,△DEF 的面积为8m 2,则△ABC 与△DEF 的相似比是( ) A .1:4B .4:1C .1:2D .2:15.如图,在菱形ABCD 中,AC 与BD 相交于点O .将菱形沿EF 折叠,使点C 与点O 重合.若在菱形ABCD 内任取一点,则此点取自阴影部分的概率为( )A .23B .35C .34D .586.计算(3x ﹣1)(3x+1)的结果是( ) A .3x 2﹣1B .3x 2+1C .9x 2+1D .9x 2﹣17.下列计算正确的是( ) A .224a a a += B .()2326a a =C .()23533a aa -=-gD .623422a a a ÷=8.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22S S >乙甲;②22S S <甲乙.③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的是( )A.①③B.①④C.②④D.②③9.下面四个图形中,能判断∠1>∠2的是( )A .B .C .D .10.规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作,若,则该等腰三角形的顶角为( )A.B.C.D.11.已知抛物线()()y x a x a 1=+--(a 为常数,a 0≠).有下列结论:①抛物线的对称轴为1x 2=;②方程()()x a x a 11+--=有两个不相等的实数根;③抛物线上有两点P(x 0,m),Q(1,n),若m n <,则00x 1<<;其中,正确结论的个数为( )A .0B .1C .2D .312.有甲、乙两个不同的水箱,容量分别为a 升和b 升,且已各装了一些水.若将甲中的水全倒入乙箱之后,乙箱还可以继续装20升水才会满;若将乙箱中的水倒入甲箱,装满甲箱后,乙箱里还剩10升水,则a ,b 之间的数量关系是( ) A .b =a+15 B .b =a+20C .b =a+30D .b =a+40二、填空题13.一元二次方程20x x -=的解为___________.14.如图,在3×3的方格中(共有9个小格),每个小方格都是边长为1的正方形,O 、B 、C 是格点,则扇形OBC 的面积等于___(结果保留π)15.定义符号{}min a,b 的含义为:当a b ≥时,{}min a,b b =;当a b <时,{}min a,b a.=如:{}min 1,33-=-,{}min 4,2--= 4.-则{}2min x 2,x -+-的最大值是______.16.如图,ABCD 中,AD CD > ,按下列步骤作图:①分别以点A 、C 为圆心,大于12AC 的长为半径画弧,两弧的交点分别为点F 、G ;②过点F 、G 作直线FG ,交边AD 于点E ,若CDE △ 的周长为11,则ABCD 的周长为______.17.已知174a 2+10b 2+19c 2﹣4ab =13a ﹣2bc ﹣19,则a ﹣2b+c =_____.18.用一组a ,b 的值说明命题“若a 2>b 2,则a >b”是错误的,这组值可以是a=____,b=____. 三、解答题19.已知:如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,AB =AC .连结AD ,交⊙O 于H ;直线HF 交BC 的延长线于G . (1)求证:圆心O 在AD 上; (2)求证:CD =CG ;(3)若AH :AF =3:4,CG =10,求HF 的长.20.如图,一次函数y =x ﹣2的图象与反比例函数y =kx(k >0)的图象相交于A 、B 两点,与x 轴交于点C ,连接OA 、OB ,且tan ∠AOC =13. (1)求反比例函数的解析式;(2)D 是y 轴上一点,且△BOD 是以OB 为腰的等腰三角形,请你求出所有符合条件的D 点的坐标.21.(1)计算:()011()2019-2sin 603π-+--+︒(2)化简:2222631121x x x x x x x ++-÷+--+ 22.郑州市创建国家生态园林城市实施方案已经出台,到2019年5月底,市区主城区要达到或超过《国家生态园林城市标准》各项指标要求.郑州市林荫路推广率要超过85%,在推进此活动中,郑州市某小区决定购买A 、B 两种乔木树,经过调查,获取信息如下:如果购买A 种树木40棵,B 种树木60棵,需付款11400元;如果购买A 种树木50棵,B 种树木50棵,需付款10500元.(1)A 种树木与B 种树木的单价各多少元?(2)经过测算,需要购置A 、B 两种树木共100棵,其中B 种树木的数量不多于A 种树木的三分之一,如何购买付款最少?最少费用是多少元?请说明理由.23.如图,∠BCA =90°,点O 在△ABC 的斜边AB 上,以OB 为半径的⊙O 经过点B ,与AC 相切于点D ,连结BD .(1)求证;BD 平分∠ABC ;(2)若∠ABC =60°,OB =2,计算△ABC 的面积.24.如图1,有一个“z”字图形,其中AB ∥CD ,AB :CD :BC =1:2:3. (1)如图2,若以BC 为直径的⊙O 恰好经过点D ,连结AO . ①求cosC .②当AB =2时,求AO 的长.(2)如图3,当A ,B ,C ,D 四点恰好在同一个圆上时.求∠C 的度数.25.材料1:经济学家将家庭或个人在食品消费上的支出与总消费支出的比值称作恩格尔系数.即:恩格尔系数=食品消费支出总额消费支出总额×100%.恩格尔系数可以用来刻划不同的消费结构,也能间接反映一个国家(地区)不同的发展阶段.联合国粮农组织的规定如表所示:(注:在50%﹣60%之间是指含50%,不含60% 的所有数据,以此类推) 材料2:2014年2月22日国家统计局上海调查总队报道:2013年上海市居民家庭生活消费总支出人均13425元.其中食品支出人均5334元(包括粮食支出450元,蔬菜及制品支出438元,肉禽蛋奶及制品支出1393元,水产品支出581元),衣着支出人均771元,居住支出人均2260元,公用事业支出人均694元,交通通信支出人均1719元,文化教育支出人均964元,医疗保健支出人均1181元,其它支出人均502元. 根据上述材料,(1)分别计算出“食品”、“衣着”、“居住”、“公用事业”、“交通通信”、“文化教育”和“医疗保健”占家庭生活消费总支出的百分比,并补充完成下列扇形统计图.(百分号前保留一位小数,圆心角精确到1°)(2)计算上海市居民的恩格尔系数,并判断2013年上海市居民的生活水平.【参考答案】*** 一、选择题二、填空题 13.120,1x x == 14.54π15.1216.22 17.-14.18.3a =-, 1b =- 三、解答题19.(1)见解析(2)见解析(3)9 【解析】【分析】(1)根据切线的性质得到AF=AE,根据等腰三角形的性质即可得到结论;(2)连接DF,由(1)知,DH是⊙O的直径,得到∠DFH=90°,根据余角的性质得到∠FDH=∠G,根据切线的性质得到∠AFH=∠GFC=∠FDH,于是得到结论;(3)根据切线的性质得到∠ADF=∠AFH,根据相似三角形的性质得到34AH AFAF AD==,设AF=3x,AD=4x,根据勾股定理列方程得到AF=1807,AD=2407,设FH=3m,DF=4m,根据勾股定理即可得到结论.【详解】解:(1)证明:∵⊙O是△ABC的内切圆,切点分别是D、E、F,∴AF=AE,∵AB=AC,∴CF=BE,∵CF=CD,BD=BE,∴CD=BD,∴AD平分∠CAB,∴圆心O在AD上;(2)连接DF,由(1)知,DH是⊙O的直径,∴∠DFH=90°,∴∠FDH+∠FHD=90°,∵∠G+∠FHD=90°,∴∠FDH=∠G,∵AC与⊙O相切,∴∠AFH=∠GFC=∠FDH,∴∠GFC=∠G,∴CG=CF=CD;(3)∵AF与⊙O相切,∴∠ADF=∠AFH,∵∠DAF=∠FAH,∴△AFH∽△ADF,∴34 AH AFAF AD==,∴设AF=3x,AD=4x,∵CG=10,∴CF=CD=10,∴AC=3x+10,∵AC2=AD2+CD2,∴(3x+10)2=(4x)2+102,∴x =607, ∴AF =1807,AD =2407,∴AH =34AF =1357,∴DH =AD ﹣AH =1057,∵△AFH ∽△ADF , ∴34AH AF FH AF AD DF ===, ∴设FH =3m ,DF =4m , ∵DH =5m =1057, ∴m =3, ∴FH =9.【点睛】本题考查了三角形的内切圆和内心,切线的判定和性质,相似三角形,直角三角形的性质,等腰三角形的性质,正确的识别图形是解题的关键.20.(1)3y x=;(2)点D 坐标为(0)或(0)或(0,﹣6). 【解析】 【分析】如图,作AE ⊥OC 于E, 由13AE tan AOC OE ∠==,可以假设3AE a OE a ==,,可得3A a a (,),再利用待定系数法即可解决问题.(2)分两种情况分别求解即可解决问题. 【详解】解:(1)如图,作AE ⊥OC 于E .∵13AE tan AOC OE ∠==,∴可以假设3AE a OE a ==, ,∴3A a a (,), ∵点A 在直线2y x=﹣上, ∴32a a =﹣ ,∴a =1,∴A (3,1),把A (3,1)代入k y x=上, ∴3k = , ∴3y x =. (2)由23y x y x =-⎧⎪⎨=⎪⎩,解得3113x x y y ==-⎧⎧⎨⎨==-⎩⎩或 , ∴13B (﹣,﹣) ,∴OB① 当OD OB =时,120(0D D (, , ② 当BO BD =时,6OD =,∴3)(06D ,- ,综上所述,满足条件的点D坐标为120(0D D (,或3)(06D ,-. 【点睛】本题主要考查了反比例函数综合题,反比例函数的应用,一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握基本知识,学会用分类讨论的思想思考问题是解题关键.21.(1)4;(2)21x + 【解析】【分析】(1)原式第一项根据负整数指数幂的意义化简,第二项根据零指数幂的意义化简,第三项根据绝对值的意义化简,第四项代入特殊角三角函数值进行计算即可得解;(2)先把分式的分子与分母进行因式分解,把除法转化为乘法,约分化简,最后进行加法运算即可。

(遵义专版)2019年中考数学总复习第1节线段、角、相交线和平行线(精练)试题

(遵义专版)2019年中考数学总复习第1节线段、角、相交线和平行线(精练)试题

第四章图形的初步认识与三角形、四边形第一节线段、角、相交线和平行线1.(2019常德中考)若一个角为75°,则它的余角的度数为( D )A.285° B.105° C.75° D.15°2.(2019自贡中考)如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=( C ) A.45° B.50° C.55° D.60°(第2题图)(第3题图)3.(2019百色中考)如图,直线a,b被直线c所截,下列条件能使a∥b的是( B )A.∠1=∠6 B.∠2=∠6C.∠1=∠3 D.∠5=∠74.(东营中考)如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于( C )A.30° B.35° C.40° D.50°(第4题图)(第5题图)5.(襄阳中考)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为( C )A.50° B.40° C.30° D.20°6.(2019福州中考)下列图形中,由∠1=∠2能得到AB∥CD的是( B ),A),B),C),D)7.(湘西中考)如图,直线CD∥EF,直线AB与CD,EF分别相交于点M,N,若∠1=30°,则∠2=__30°__.8.(2019荆州中考)一把直尺和一块三角板ABC(含30°,60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D,点E,另一边与三角板的两直角边分别交于点F,点A,且∠CDE=40°,那么∠BAF的大小为( D )A.40° B.45° C.50° D.10°(第8题图)(第9题图)9.(2019宁波中考)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( D ) A.20° B.30° C.45° D.50°10.(枣庄中考)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是( B ) A.75°36′ B.75°12′ C.74°36′ D.74°12′(第10题图)(第11题图)11.(昆明中考)如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为__40°__.12.(宜宾中考)如图,直线a∥b,∠1=45°,∠2=30°,则∠P=__75°__.(第12题图)(第13题图)13.(2019德州中考)如图,利用直尺和三角板过已知直线l外一点P作直线l平行线的方法,其理由是__同位角相等,两直线平行__.2019-2020学年数学中考模拟试卷一、选择题1.如图为二次函数y=ax2+bx+c (a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当-1<x<3时,y>0 其中正确的个数为()A.1B.2C.3D.42.已知:32251025x xx x-++﹣M=55xx-+,则M=( )A.x2B.25xx+C.2105x xx-+D.2105x xx++3.如图,在△ABC中,∠B的平分线为BD,DE∥AB交BC于点E,若AB=9,BC=6,则CE长为()A.185B.165C.145D.1254.如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°5.合肥市教育教学研究室为了了解该市所有毕业班学生参加2019年安徽省中考一模考试的数学成绩情况(满分:150分,等次:A等,130分:150分;B等,110分:129分;C等,90分:109分;D 等,89分及以下),从该市所有参考学生中随机抽取部分学生进行调查,并根据调查结果制作了如下的统计图表(部分信息未给出):2019年合肥市一模数学成绩频数分布表2019年合肥市一模教学成绩频数分布直方图根据图表中的信息,下列说法不正确的是( ) A .这次抽查了20名学生参加一模考试的数学成绩 B .这次一模考试中,考试数学成绩为B 等次的频率为0.4C .根据频数分布直方图制作的扇形统计图中等次C 所占的圆心角为105︒D .若全市有20000名学生参加中考一模考试,则估计数学成绩达到B 等次及以上的人数有12000人 6.广阔无垠的太空中有无数颗恒星,其中离太阳系最近的一颗恒星称为“比邻星”,它距离太阳系约4.2光年.光年是天文学中一种计量天体时空距离的长度单位,1光年约为9500000000000千米.则“比邻星”距离太阳系约为( ) A .13410⨯千米B .12410⨯千米C .139. 510⨯千米D .129. 510⨯千米7.一个不透明的布袋里装有1个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为( ) A .16B .15C .13D .128.已知AB 是圆O 的直径,AC 是弦,若AB =4,AC =,则sin ∠C 等于( )A .2B .12C .3D .39.二次函数y=ax 2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A .B .C .D .10.如图,点O 是等边三角形ABC 内的一点,BOC=150∠︒,将BCO ∆绕点C 按顺时针旋转60︒得到ACD ∆,则下列结论不正确的是( )A.BO=ADB.DOC=60∠︒C.OD AD ⊥D.OD//AB11.如果a 2+2a ﹣1=0,那么代数式(a ﹣4a )•22a a -的值是( )A.1B.12D.212.已知函数6y x -= 与y =﹣x+1的图象的交点坐标是(m ,n ),则11m n+的值为( ) A .﹣16 B .16C .﹣6D .6二、填空题13.如图,在平面直角坐标系中,四边形ABOC 是正方形,点A 的坐标为(1,1),弧1AA 是以点B 为圆心,BA 为半径的圆弧;弧12A A 是以点O 为圆心,1OA 为半径的圆弧,弧23A A 是以点C 为圆心,2CA 为半径的圆弧,弧34A A 是以点A 为圆心,3AA 为半径的圆弧.继续以点B ,O ,C ,A 为圆心按上述作法得到的曲线12345AA A A A A …称为正方形的“渐开线”,则点2019A 的坐标是__________.14.如图,在四边形ABCD中,AB//CD,AC、BD相交于点E,若AB1CD4=,则AEAC=______.15.分解因式:mn2﹣6mn+9m=_____.16.正方形EFGH的顶点在边长为3的正方形ABCD边上,若AE=x,正方形EFGH的面积为y,则y与x 的函数关系式为______.17.已知函数,那么______.18.张老师上班途中要经过1个十字路口,十字路口红灯亮30秒、黄灯亮5秒、绿灯亮25秒,张老师希望上班经过路口是绿灯,但实际上这样的机会是___.三、解答题19.“腹有诗书气自华,阅读路伴我成长”,我区某校学生会以“每天阅读1小时”为问卷主题,对学生最喜爱的书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅末完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)把折线统计图(图1)补充完整;(2)该校共有学生1200名,请估算最喜爱科普类书籍的学生人数.20.如图所示,△ABC中,AB=AC,AD平分∠BAC,点G是BA延长线上一点,点F是AC上一点,AG=AF,连接GF并延长交BC于E.(1)若AB=8,BC=6,求AD的长;(2)求证:GE⊥BC.21.为丰富学生的课余生活,学校准备购买部分体育器材,以满足学生们的需求.学校对“我最喜爱的体育运动”进行了抽样调查(每个学生只选一次),根据调查结果绘成如图所示的两幅不完整统计图,请你根据统计图提供的信息解答下列问题.(1)求m、n的值;(2)若该校有2000名学生,请你根据样本数据,估算该校喜欢踢足球的学生人数是多少?22.已知,如图,BD为⊙O的直径,点A、C在⊙O上并位于BD的两侧,∠ABC=45°,连结CD、OA并延长交于点F,过点C作⊙O的切线交BD延长线于点E.(1)求证:∠F=∠ECF;(2)当DF =6,tan ∠EBC =12,求AF 的值.23.(1)计算:10124303)cos -︒⎛⎫-++-- ⎪⎝⎭(2)先化简,再求值:2222121111a a a a a a a +-+⋅---+,其中a =﹣12. 24.如图,正比例函数y =﹣2x 与反比例函数y =kx的图象相交于A (m ,4),B 两点. (1)求反比例函数的表达式及点B 的坐标; (2)当﹣2x≤kx时,请直接写出x 的取值范围.25.计算: (1)﹣30﹣(12)﹣2﹣(14)2010×(﹣4)2011(2)(﹣3a )3﹣(﹣a )•(﹣3a )2.【参考答案】*** 一、选择题二、填空题 13.(2019,1)-14.1 515.m(n﹣3)2 16.y=2x2﹣6x+9 17.218.5 12.三、解答题19.(1)见解析;(2)320人.【解析】【分析】(1)用文学的人数除以所占的百分比计算即可得总人数,根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(2)用总人数乘以科普所占的百分比,计算即可得解.【详解】解:(1)一共调查了45÷30%=150(名),艺术的人数:150×20%=30(名),其它的人数:150×10%=15(名);补全折线图如图:(2)最喜爱科普类书籍的学生人数为:40150×1200=320(人),答:估算最喜爱科普类书籍的学生有320人.【点睛】考查折线统计图, 用样本估计总体, 扇形统计图,是中考常考题型,难度一般.20.(2)证明见解析.【解析】【分析】(1)根据题意可知AD⊥BC,BD=CD=3,再根据勾股定理即可解答(2)根据题意可知GA=GF,得到∠G=∠AFG,再通过∠BAC=∠G+∠AFG=2∠AFG,∠BAC=2∠CAD,得到AD∥EG,即可解答【详解】(1)∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD=3,在Rt△ABD中,AD=.(2)∵GA=GF,∴∠G=∠AFG,∵∠BAC=∠G+∠AFG=2∠AFG,∠BAC=2∠CAD,∴∠AFG=∠CAD,∴AD∥EG,∵AD⊥BC,∴GE⊥BC.【点睛】此题考查了直角三角形的定理和性质,解题关键在于利用两角相等证明两条线平行21.(1)m=40,n=60;(2)该校喜欢踢足球的学生人数是400人.【解析】【分析】(1)根据喜爱篮球的人数÷其所占的百分比得到总人数,再由总人数乘以喜爱排球的人数所占百分比得到n,用总人数-喜爱篮球人数-喜爱排球的人数-喜爱其他人数,即可确定出m的值;(2)求出喜欢踢足球的学生人数所占的百分比,乘以2000即可得到结果.【详解】(1)70÷35%=200(人)n=200×30%=60,m=200﹣70﹣60﹣40=40;(2)2000×40200=400 (人)答:该校喜欢踢足球的学生人数是400人.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.22.(1)详见解析;(2)【解析】【分析】(1)连结OC,根据切线的性质得到OC⊥CE,根据圆周角定理得到∠AOC=90°,计算即可证明;(2)DC=x,根据正切的定义用x表示出BC、BD、OC,根据正切的定义列式计算即可.【详解】(1)证明:连结OC,∵CE切圆O于C,∴OC⊥CE,∴∠OCF+∠FCE=90°,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∴∠F+∠OCF=90°,∴∠F=∠ECF;(2)设DC=x,∵OB=OC,∴∠OBC=∠OCB,∵BD为圆O的直径∴∠BCO+∠OCD=90°,∵∠ECD+∠OCD=90°,∴∠OBC=∠ECD,∵∠F=∠ECD,∴∠F=∠EBC,在Rt△BCD中,tan∠EBC=12,则BC=2DC=2x,BD,∴OC=OA x,在Rt△FOC中,tanF=tan∠EBC=1 2∴FC,即6+x x,解得,x=4,∴OF =2OC =∴AF =OF ﹣AO = 【点睛】本题考查的是切线的性质、锐角三角函数的定义、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键. 23.(1)4;(2)1a,-2. 【解析】 【分析】(1)根据零指数幂、负整数指数幂的意义,特殊角的三角函数值以及绝对值的意义进行计算; (2)将原式的分子、分母因式分解,约分后计算减法,再代值计算即可. 【详解】(1) )0+(13)﹣1+4cos30°﹣=1+3+4×2﹣==4; (2)2222121111a a a a a a a+-+-+-- =22111(1)(1(1)1a a a a a a a +--+--+())=21(1)(1)a aa a a a +-++=1(1)a a a ++=1a, 当a =﹣12 时,原式=11-2=﹣2.【点睛】本题考查了实数的混合运算,分式的化简求值.解答(1)题的关键是根据零指数幂、负整数指数幂的意义,特殊角的三角函数值以及绝对值的意义进行计算;解答(2)题的关键是把分式化到最简,然后代值计算. 24.(1)8y x=- ,B (2,﹣4);(2)﹣2≤x<0或x≥2. 【解析】【分析】(1)将A 坐标代入正比例函数2y x =-求出m 的值,将(24A -,)代入反比例解析式求k 的值,根据A 、B 关于O 点对称即可确定出B 坐标;(2)根据图象和交点坐标找出正比例函数图象位于反比例函数图象下方时x 的范围即可. 【详解】解:(1)将4A m (,)代入正比例函数2y x =-得:42m =-, 解得2m =-,∴(24A ﹣,),∵反比例函数ky x=的图象经过24A (﹣,) , ∴248k =-⨯=- , 则反比例解析式为8y x=- , ∵A 、B 关于O 点对称 ∴B (2,﹣4);(2)由图象得:当2kx x≤﹣时,x 的取值范围为20x -≤<或2x ≥. 【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键. 25.(1)-1;(2)﹣18a 3 【解析】 【分析】(1)直接利用负指数幂的性质以及积的乘方运算法则化简得出答案;(2)直接利用积的乘方运算法则以及结合单项式乘以单项式运算法则计算得出答案. 【详解】(1)原式=﹣1﹣4+(14×4)2010×4 =﹣5+4 =﹣1;(2)原式=﹣27a 3+a•9a 2 =﹣27a 3+9a 3 =﹣18a 3. 【点睛】此题主要考查了负指数幂的性质以及积的乘方运算、积的乘方运算法则以及单项式乘以单项式运算,正确掌握运算法则是解题关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形上,AB 与CD 相交于点O ,则tan ∠AOD 等于( )A .12B .2C .1D2.在使用科学计算器时,依次按键的方法如图所示,显示的结果在数轴上对应的点是( )A.点DB.点CC.点BD.点A3.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为( ) A .7B .8C .9D .104.在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其它差别,从这个袋子中随机摸出一个球,摸到红球的概率为( ) A .1B .14C .12D .345.港珠澳大桥是中国第一例集桥、双人工岛、隧道为一体的跨海通道. 其中海底隧道是由33个巨型沉管连接而成,沉管排水总量约76000吨. 将数76000用科学记数法表示为( ) A .47.610⨯B .37610⨯C .50.7610⨯D .57.610⨯6.在ABC ∆中,E 、F 是BC 边上的三等分点,BM 是AC 边上的中线,AE 、AF 分BM 为三段的长分别是x 、y 、z ,若这三段有x y z >>,则::x y z 等于( )A .3:2:1B .4:2:1C .5:2:1D .5:3:27.如图,小明想用长为12米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD ,则矩形ABCD 的最大面积是( )平方米.A .16B .18C .20D .24 8.分式方程的解是( )A.B.C.D.9.若点()1A -3y ,,()2B -1y ,,()3C 2y ,在反比例函数2k +1y=x (k 为常数)的图象上,则123y y y ,,的大小关系是( )A.213y y y <<B.123y y y <<C.231y y y <<D.321y y y <<10.如图是某市一天内的气温变化情况,则下列说法中错误的是( )A .这一天的最高气温是24CB .从2时至14时,气温在逐渐升高C .从14时至24时,气温在逐渐降低D .这一天的最高气温与最低气温的差为14C11.下列条件中,能判定四边形是平行四边形的条件是( ) A .一组对边平行,另一组对边相等 B .一组对边平行,一组对角相等 C .一组对边平行,一组邻角互补 D .一组对边相等,一组邻角相等 12.下列说法中正确的是( )A .三角形三条角平分线的交点到三个顶点的距离相等B .三角形三条角平分线的交点到三边的距离相等C .三角形三条中线的交点到三个顶点的距离相等D.三角形三条中线的交点到三边的距离相等二、填空题13.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.14.若2x=3,2y=5,则22x+y=_____.15.用一组的值说明命题“若,则”是错误的,这组值可以是a=___.16.某校为了加强学生的综合体能素质,准备购买些体育用品,已知购买5个篮球和3个足球共需900元,购买3个篮球和5个足球共需860元,则篮球和足球的售价分别是多少元?设篮球的售价是x元,足球的售价是y元,依题意,可列出方程组为_____.17.今有甲、乙、丙三名候选人参与某村村长选举,共发出1800张选票,得票数最高者为当选人,且废票不计入任何一位候选人的得票数内.全村设有四个投票点,目前第一、第二、第三投票点已公布投票结果,剩下第四投票点尚未公布投票结果,如表所示:(单位:票)三名候选人_____有机会当选村长(填甲、乙、丙),并写出你的推断理由_____.18_____.三、解答题19.(1)计算:(﹣2)2﹣(π﹣3.14)0;(2)化简:(x﹣3)(x+3)+x(2﹣x).20.如图,在Rt△ABC中,∠C=90°,EF⊥AB于点F,交AC于点E,且AF=BF,若AB=10,3A=.求线段EF长.sin521.如图,在△ABC中,AD是△ABC的中线,点E是AD的中点,连接BE并延长,交AC于点F.(1)根据题意补全图形.(2)如果AF=1,求CF的长.22.央视“经典咏流传”开播以来受到社会广泛关注,我市也在各个学校开展了传承经典的相关主题活动“戏曲进校园”.某校对此项活动的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图,请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是人,扇形统计图中B部分所对应的扇形圆心角的度数为,并补全条形统计图;(2)若该校共有学生1800人,请根据上述调查结果估计该校学生中A类有多少人;(3)在A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树状图或列表法求出被抽到的两个学生性别相同的概率.23.在女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数关系分別如图中线段OA和折线OBCD所示.(1)谁先到终点,当她到终点时,另一位同学离终点多少米?(请直接写出答案)(2)起跑后的60秒内谁领先?她在起跑后几秒时被追及?请通过计算说明.24.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.25.某社区准备五一组织社区内老年人去到县参加采摘节,现有甲、乙两家旅行社表示对老年人优惠,甲旅行社的优惠方式为:在原来每人100元的基础上,每人按照原价的60%收取费用;乙旅行社的优惠方式为:在收取一个600元固定团费的基础上,再额外收取每人40元.设参加采摘节的老年人有x人,甲、乙两家旅行社实际收费为1y元、2y元.(Ⅰ)根据题意,填写下表:(Ⅱ)求1y、2y关于x的函数关系式(不用写出自变量的取值范围)?(Ⅲ)如果50x>,选择哪家旅行社合算?【参考答案】***一、选择题二、填空题13或.14.15.-1,-2(答案不唯一)16.53900 35860 x yx y+=⎧⎨+=⎩17.甲或丙∵第一、第二、第三投票箱甲得票数为:200+286+97=583;乙得票数为:211+85+41=337;丙得票数为:147 + 244 + 205 =596:∴596﹣583=13丙目前领先甲13票,所以,第四投票所甲赢丙14票以上,则甲当选,故甲可能当选;第四投票所甲赢丙13票以下,则丙当选,故丙可能当选;而596﹣337=259>250,若第四投票点的250票皆给乙,乙的总票数仍然比丙低,故乙不可能当选,即:甲或丙有机会当选村长,18三、解答题19.(1);(2)2x﹣9.【解析】【分析】(1)先计算负整数指数幂,零指数幂,化简二次根式,然后计算加减法;(2)先利用平方差公式和单项式乘多项式去括号,然后计算加减法.【详解】(1)原式=4﹣(2)原式=x2﹣9+2x﹣x2=2x﹣9.【点睛】考查了平方差公式,实数的运算,单项式乘多项式,零指数幂等知识点,熟记计算法则即可解答,属于基础题.20.EF=15 4【解析】【分析】由已知AF=BF,AB=10,可以求出AF的长,由sinA=35EFAE=,用同一未知数表示出AE,EF,用勾股定理列方程即可求出.【详解】解:∵AF=BF,AB=10,∴1AB52AF==又EF⊥AB,∴∠AFE=90°,在Rt△AFE中sinA=35 EFAE=,设EF=3x,那么AE=5x,根据勾股定理有(5x)2﹣(3x)2=52,∴x=54,∴5153344 EF x==⨯=;【点睛】此题主要考查了解直角三角形和勾股定理应用,用同一未知数表示出AE,EF,是解决问题的关键.21.(1)如图所示,见解析;(2)CF=2.【解析】【分析】(1)根据线段垂直平分线的作法画出图形即可;(2)过点D作DG∥BF,交AC于点G,根据三角形中位线定理即可得出结论.【详解】(1)如图,(2)作DH∥AC交BF于H,如图,∵DH∥AF,∴∠EDH=∠EAF,∠EHD=∠EFA,∴△EDH≌△EAF,∴DH=AF=1,∵点D为BC的中点,DH∥CF,∴DH为△BCF的中位线,∴CF=2DH=2.【点睛】本题考查的是作图-复杂作图,熟知线段垂直平分线的作法是解答此题的关键.22.(1)50,216°,图见解析;(2)A类有180人;(3) 2 5【解析】【分析】(1)用A类人数除以它所占的百分比得到调查的总人数,用B类人数所占的百分比乘以360°得到扇形统计图中B部分所对应的扇形圆心角的度数,然后计算C类的人数后补全条形统计图;(2)用1800乘以样本中A类人数所占的百分比即可;(3)画树状图展示所有20种等可能的结果数,找出被抽到的两个学生性别相同的结果数,然后根据概率公式计算.【详解】解:(1)5÷10%=50,所以被调查的总人数是50人,扇形统计图中B部分所对应的扇形圆心角的度数=360°×3050=216°C类的人数为50﹣5﹣30﹣5=10(人),条形统计图为:(2)1800×10%=180,所以根据上述调查结果估计该校学生中A类有180人;(3)画树状图为:共有20种等可能的结果数,其中被抽到的两个学生性别相同的结果数为8,所以被抽到的两个学生性别相同的概率=820=25.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.23.(1)小莹比小梅先到终点,此时小梅距离终点200米;(2)小梅在起跑后5407秒时被追及.【解析】【分析】(1)小莹比小梅先到终点,此时小梅距离终点200米;(2)根据图象可以知道跑后的60秒内小梅领先,根据线段的交点坐标可以求出小梅被追及时间.【详解】(1)小莹比小梅先到终点,此时小梅距离终点200米; (2)根据图象可以知道跑后的60秒内小梅领先, 小莹的速度为:800401809= (米/秒), 故线段OA 的解析式为:y =409x , 设线段BC 的解析式为:y =kx+b ,根据题意得:60300180600k b k b +=⎧⎨+=⎩,解得k 2.5b 150=⎧⎨=⎩, ∴线段BC 的解析式为y =2.5x+150, 解方程40 2.51509x x =+,得5407x =, 故小梅在起跑后5407秒时被追及. 【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一. 24.(1)详见解析;(2)75° 【解析】 【分析】①求出∠ABE=∠CBD ,然后利用“边角边”证明△ABE 和△CBD 全等即可;②先根据等腰直角三角形的锐角都是45°求出∠CAB ,再求出∠BAE ,然后根据全等三角形对应角相等求出∠BCD ,再根据直角三角形两锐角互余其解即可; 【详解】①证明:∵∠ABC=90°,D 为AB 延长线上一点, ∴∠ABE=∠CBD=90°, 在△ABE 和△CBD 中,AB CB ABE CBD BE BD ⎧⎪∠∠⎨⎪⎩=== , ∴△ABE ≌△CBD (SAS ); ②∵AB=CB ,∠ABC=90°, ∴∠CAB=45°, ∵∠CAE=30°,∴∠BAE=∠CAB-∠CAE=45°-30°=15°,∵△ABE ≌△CBD , ∴∠BCD=∠BAE=15°,∴∠BDC=90°-∠BCD=90°-15°=75°; 【点睛】考查了全等三角形的判定与性质,是基础题;掌握判定是关键.25.(Ⅰ)甲旅行社:600,1200;乙旅行社:1000,1400;(Ⅱ)160y x =;240600y x =+;(Ⅲ)当50x >时,选择乙旅行社比较合算.【解析】 【分析】(Ⅰ)根据甲、乙两旅行社的优惠方法填表即可;(Ⅱ)根据甲、乙两旅行社的优惠方法,找出甲旅行社收费y 1,乙旅行社收费y 2与旅游人数x 的函数关系式;(Ⅲ)当x 50>时,根据(Ⅱ)的解析式,求出1y 与2y 的差,根据一次函数的增减性得出哪家旅行社合算. 【详解】 解:(Ⅰ)(Ⅱ)110060%60y x =⨯=;240600y x =+; (Ⅲ)设1y 与2y 的差为y 元.则6040600y x x =-+(),即20600y x =-,当0y =时,即206000x -=,得30x =. ∵200>,∴y 随x 的增大而增大. 又当50x =时,4000y =>∴当50x >时,选择乙旅行社比较合算. 【点睛】本题考查一次函数的应用—方案选择问题,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019中考总复习几何与图形模块之《角、相交线和平行线》复习训练试题时间60分钟满分120分一选择题(每小题5分,共85分)1.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ与∠MOP互补2. 如图,直线a,b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为( )A.120° B.90° C.60° D.30°3. 如图,点O在直线AB上,且OC⊥OD.若∠COA=36°,则∠DOB的大小为( )A.36° B.54° C.64° D.72°4. 如图,直线a∥b,直线c分别与a,b相交于A,B两点,AC⊥AB于点A,交直线b于点C.已知∠1=42°,则∠2的度数是( )A.38°B.42°C.48°D.58°5.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为( )A.40° B.50° C.60° D.70°6.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为( )A.50° B.40° C.30° D.20°7.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=( )A.85° B.60° C.50° D.35°8.如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b上,则∠1+∠2的值为( )A.90° B.85° C.80° D.60°9.如图,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为( )A.50° B.40° C.45° D.25°,第7题图) ,第8题图)10.如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为( )A.25° B.45° C.35° D.30°11.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度( )A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°12.如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是( )A.∠1+∠6>180° B.∠2+∠5<180°C.∠3+∠4<180° D.∠3+∠7>180°13.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=( )A.30° B.35° C.36° D.40°二,填空题(每小题5分,共35分)14.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=____.15.如图,直线AB∥CD,BC平分∠ABD,若∠1=54°,则∠2=____.16.如图,AB∥CD,AE交CD于点C,DE⊥AE于点E,若∠A=42°,则∠D=__.,第14题图) ,第15题图)17.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是____.18.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是____度.19.如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为____度.(用关于α的代数式表示)20. 如图,直线AB,CD相交于点O,OA平分∠EOC,若∠EOC∶∠EOD=2∶3,∠BOD=____度.三,解答题(共20分)21.如图,∠1=∠2,∠A=60°,求∠ADC等于多少度.22.如图,直线l1∥l2,∠α=∠β,∠1=40°,求∠2等于多少度?答案1.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( C )A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ与∠MOP互补2. 如图,直线a,b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为( C )A.120° B.90° C.60° D.30°3. 如图,点O在直线AB上,且OC⊥OD.若∠COA=36°,则∠DOB的大小为( B )A.36° B.54° C.64° D.72°4. 如图,直线a∥b,直线c分别与a,b相交于A,B两点,AC⊥AB于点A,交直线b于点C.已知∠1=42°,则∠2的度数是( C )A.38°B.42°C.48°D.58°5.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为( B )A.40° B.50° C.60° D.70°6.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为( C )A.50° B.40° C.30° D.20°7.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=( C )A.85° B.60° C.50° D.35°8.如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b上,则∠1+∠2的值为( A )A.90° B.85° C.80° D.60°9.如图,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为( B )A.50° B.40° C.45° D.25°,第7题图) ,第8题图)10.如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n和m上,边BC 与直线n所夹的角为25°,则∠α的度数为( C )A.25° B.45° C.35° D.30°11.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度( B )A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°12.如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是( D )A.∠1+∠6>180° B.∠2+∠5<180°C.∠3+∠4<180° D.∠3+∠7>180°13.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=( A )A.30° B.35° C.36° D.40°14.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=__50°__.15.如图,直线AB∥CD,BC平分∠ABD,若∠1=54°,则∠2=__72°__.16.如图,AB∥CD,AE交CD于点C,DE⊥AE于点E,若∠A=42°,则∠D=__48°.,第14题图) ,第15题图)17.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是__15°__.18.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是__90__度.19.如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为__90-α2__度.(用关于α的代数式表示)20. 如图,直线AB,CD相交于点O,OA平分∠EOC,若∠EOC∶∠EOD=2∶3,∠BOD=__36__度.21.如图,∠1=∠2,∠A=60°,求∠ADC等于多少度.解:∵∠1=∠2,∴AB∥CD,∴∠A+∠ADC=180°,∵∠A=60°,∴∠ADC=120°22.如图,直线l1∥l2,∠α=∠β,∠1=40°,求∠2等于多少度?∠3=180°,∴∠2=180°-∠3=180°-40°=140°。

相关文档
最新文档