3.4.1实际问题与一元一次方程
3.4.1实际问题与一元一次方程配套问题与工作量(许)
解得x=4.
6-4=2(m³),40X4=160(套)。 答:应用4m³钢材做A部件,2m³钢材做B部件,恰好配成这种仪 器160套。
• 2.一条地下管线由甲工程队单独铺设需要12天,由乙工程 队单独铺设需要24天。如果由这两个工程队从两端同时施 工,要多少天可以铺好这条管线?
解:设由这两个工程队从两端同时施工,要x天可以铺好这条管 线,根据题意得
列方程解应用题的步骤:
实际问题
数学问题 设未知数 列方 (一元一次方程) 程
实际问题的 答案
检验
解 方 程
数学问题的解
x=a
正确分析问题中的相等关系是列方程 的基础
检测练习
1.某车间每天能制作甲种零件500只,或者制作乙种零件250只, 甲、乙两种零件各一只配成一套产品,现要在30天内制作最多 的成套产品,则甲、乙两种零件各应制作多少天? 解:设 制作甲种零件x天,则制作乙种零件为(30-x)天 由题意得:500x=250(30-x) 解方程,得 500x=7500-250x 500x+250x=7500 750x=7500 x=10 30-x=20 答:制作甲种零件10天,乙种零件20天。
可以在方程两边先 系数化为1,得 x=10. 除以400,再解方程 生产螺母的人数为 22-x=12.
答:应分配10名工人生产螺钉,12名工人生产 螺母.
一、自主学习
变式:某车间有38名工人,每人每天可以生产1200个 螺钉或2000个螺母.2个螺钉需要配3个螺母,为使 每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母 的工人各多少名?
突破口:弄清“2个螺钉配3个螺母”这句话的意思和包含着的等量 关系. 意思是螺钉与螺母的比为2:3,即螺钉总数:螺母总数=2:3时, 螺钉和螺母刚好配套,包含的等量关系是:
3.4实际问题与一元一次方程(第1课时)-教学设计
归纳提升, 加强学习 让学生尝试归纳,总结,发言, 反思, 帮助学生养成 体会,反思,教师点评汇总。 系统整理知识的习 惯。
五、作业设计 作业:复习巩固作业和综合运用 1、2 题为全体学生必做;拓 广探索选做。 补充:某商品的进价是 1000 元,售价是 1500 元,由于销售 情况不好,商店决定降价出售,但又要保证利润率不低于 5%, 那么商店最多可打几折出售此商品? 巩固深化提高。
亏,再通过准确的计算检验你的判断。 (1)商品销售中的盈亏如何计算? (2)两件衣服的进价、售价分别是多少?你能求出问题中的 两件物品的进价吗? 解:设盈利 25%的那件衣服的进价是 x 元,它的商品利润就 是 0.25x.根据进价与利润的和等于售价,可以得到方程 x+0.25x=60. 由此得: x=48. 类似地,设另一件衣服的进价为 y 元,它的商品利润是-25% y,可以得到方程 Y-0.25y=60. 解得: y=80 元. (3)你能分析总的亏损情况吗? 分析:两件衣服的进价是 x+y=128 元,而两件衣服的售价是 120 元,进价大于售价,由此可以知道卖这两件衣服总的盈亏 是亏损 8 元。 教师提出问题,通过共同的探 究,想象、讨论、计算、推理, 逐步解开商品销售问题,理解 商品销售问题的解决方法。 通过让学生猜想, 激 发学生的积极性, 将 实际问题转化为数 学问题。逐步放手, 让学生自己解决, 验 证自己的猜想是否 正确, 培养学生用数 学的意识, 体会到数 学的使用价值。
理解问题本身是解 决问题的基础, 先出 示打折销售中的基 本概念, 结合实际给 学生讲解, 引导学生 找出数量关系, (一)自主探究 问题 1.某商品原来每件零售价是 a 元,现在每件降价 10% , 降价后每件零售价是 元 ; 问题 2:某种品牌的彩电降价 10%以后,每台售价为 a 元, 则该品牌彩电每台原价应为 元; 问题 3:某商品按定价的八折出售,售价是 14.8 元,则原定 价是 元 问题 4:某商场把进价为 1980 元的商品按标价的八折出售, 仍获利 10%,则该商品的标价为 元 问题 5:我国政府为解决老百姓看病问题,决定下调药品的价 格,某种药品在:2008 年涨价 30%后,2010 降价 70%至 a 元, 则这种药品在 2008 年涨价前价格为 元 (二)共同探究 例: (教科书探究 1)某商店在某一时间内以每件 60 元的价格 卖出两件衣服,其中一件盈利 25%,另一件亏损 25%,卖这 两件衣服总的是盈利还是亏损, 或是不亏不损?先大体估算盈 教师提出问题,学生通过研读 通过对商品销售过 教材,自主探究商品销售问 程所涉及的基本量、 题,经历讨论、计算、推理, 基本关系式的初步 加深对商品销售问题的理解。 了解, 为后续的学习 作好铺垫。
人教版七年级数学上册3.4《实际问题与一元一次方程(1)-配套问题和工程问题》教案
最后,我觉得自己在课堂上的语言表达和引导方式还有待改进。在今后的教学中,我将努力提高自己的教学水平,用更生动、更贴近学生生活的例子来讲解知识,使课堂氛围更加活跃,让学生在轻松愉快的氛围中学习数学。
人教版七年级数学上册3.4《实际问题与一元一次方程(1)-配套问题和工程问题》教案
一、教学内容
人教版七年级数学上册3.4节《实际问题与一元一次方程(1)-配套问题和工程问题》主要包括以下内容:
1.配套问题:通过实际生活情境,引入配套问题的概念,让学生理解并掌握如何建立一元一次方程解决配套问题。
-例如:某一个乙产品需要4个A零件和1个B零件。若工厂现有A零件20个,B零件18个,求甲、乙两种产品各能生产多少个?
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了如何运用一元一次方程解决配套问题和工程问题。通过实践活动和小组讨论,我们加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在小组讨论环节,学生们表现得积极主动,能够围绕实际问题展开讨论,并提出自己的观点。但在引导讨论时,我发现部分学生对于开放性问题的思考还不够深入,这可能是因为他们对问题的理解不够透彻。为此,我将在以后的课堂中尝试用更多实例和问题引导学生,帮助他们深入思考。
实践活动环节,学生们通过分组讨论和实验操作,加深了对一元一次方程的理解。但从实验结果来看,部分学生对实验操作还不够熟练,这可能影响他们对知识的掌握。因此,我考虑在接下来的课程中增加实践活动的时间,让学生有更多的机会动手操作,提高他们的实践能力。
3.4.1实际问题与一元一次方程配套问题
螺钉
螺母
x
22﹣x
1 200
2 000
1 200 x
2 000(22-x)
人数和为22人
螺母总产量是 螺钉的2倍
二、应用与探究
解:设应安排x名工人生产螺钉,(22-x)名 工人生产螺母. 依题意得: 2 000(22-x)=2×1 200x .
解方程,得:5(22-x)=6x,
110-5x=6x, x=10. 22-x=12. 答:应安排10名工人生产螺钉,12名工人生 产螺母.
4. 解:解这个方程;
5. 答:检验并答话.Leabharlann 二、应用与探究问题2:
例1 某车间有22名工人,每人每天 可以生产1 200个螺钉或2 000个螺母. 1 个螺钉需要配 2个螺母,为使每天生 产的螺钉和螺母刚好配套,应安排生 产螺钉和螺母的工人各多少名?
二、应用与探究
列表分析:
产品类型 生产人数 单人产量 总产量
解 方 程
实际问题 的答案
检 验
一元一次方程 的解(x = a)
四、课堂练习
一套仪器由一个A部件和三个B部件构成. 用1 m3钢材可以做40个A部件或240个B部 件. 现要用6 m3钢材制作这种仪器,应用多 少钢材做A部件,多少钢材做B部件,恰好 配成这种仪器多少套?
解:设应用 x m3钢材做A部件,(6-x) m3 钢材 做B部件. 依题意得: 3×40 x=240 (6-x) . 解方程,得: x=4. 答:应用4 m3钢材做A部件,2 m3 钢材做B部件, 配成这种仪器160套.
二、应用与探究
问题3:以上问题还有其他的解决方法吗? 例如: 解:设应安排 x名工人生产螺母,(22-x)名 工人生产螺钉. 依题意得: 2×1200(22-x)=2 000x .
3_4_1实际问题与一元一次方程(第一课时)教案
3.4.1 实际问题与一元一次方程(第一课时)教案-------配套问题教学内容用一元一次方程探究配套问题教学目标知识技能1、能通过审题发现实际问题中的数量关系,能找出相等关系、列出方程;2、经历把实际问题抽象成数学方程的过程,体会方程是刻画现实世界的有效模型。
3、会用方程的思想方法解决实际问题中的配套问题。
数学思考1、通过列一元一次方程表达数量关系的过程,体会模型的思想;2、能独立思考,体会方程思想。
问题解决1、初步学会在具体的情境中从数学的角度去发现问题,并综合使用数学知识和方法解决实际问题中的简单配套问题;2、在合作交流过程中,培养语言表达的水平和倾听的素养。
情感态度在使用方程解决问题的过程中,进一步强化学以致用的思想意识,感受数学的抽象美和简洁美,激励学生积极思考、勇于探索的学习精神,体验成功的喜悦。
教学重点1、探究实际问题转化成数学方程的思路方法;2、列方程解决实际问题中的配套问题;教学难点在实际的配套问题中找到相等关系、建立方程模型、解决实际问题。
教学辅助手段学案、多媒体演示(PPT和展示平台)辅助教学教学设计一、创设情境提出问题教师通过多媒体展示艺术节相关的视频,引出本节课的活动主题——要求学生筹备一次校园文化艺术节。
(设计意图:利用学生们感兴趣的艺术节这个话题引起学生的注重,将本节课要求掌握的实际问题的解决串联成艺术节中会遇到的各个环节,在后面的自主探究、合作交流中一一表现。
)二、尝试发现探索新知问题22个老师培训初一和初二两个年级的同学参加团体操表演,每位老师每天能够培训初一年级12名同学或者初二年级的20名同学,表演要求2名初二同学与1名初一同学组成搭档,为了使每天培训的学生刚好配成搭档,应该怎样分配老师去培训?1、学生活动:阅读问题情境,画出文段中的关键信息;教师活动:给学生充分的时间独立思考后,引导学生找出问题中涉及到的数量和数量关系,2、师生活动:设适当的未知数,在找到的数量关系中提取相等关系;由“2名初二同学与1名初一同学组成搭档”可知“初二学生数量:初一学生数量= 2 :1”从而根据比例式中两内项之积等于两外项之积得到“参加表演的初一学生数量×2= 参加表演的初二学生数量”这个相等关系。
3.4.1实际问题与一元一次方程1(分配和配套问题)
(4 x – 25) 4x 本,减去缺的25本,这批书共 需要___ ______ 本.
甲种零件数量:乙种零件数量=
3:2
。
两个等量关系的问题:利用第一个等量关系设未知 数,第二个等量关系列方程。
用一元一次方程分析和解决实数学问题
(一元一次方程) 解 方 程
实际问题 的答案
数学问题的解
检验 (x=a)
抓住配套关系,设出未知数,根据配套关 系列出方程,通过解方程来解决问题
问题与练习4
七年级170名学生参加植树活动,如果 每个男生能挖树坑3个,每个女生能种树7 棵,正好能使每个树坑种上一棵树,则应 该安排男生、女生各有多少人?
问题与练习 5
某服装厂要生产某种型号的学生校服, 已知3m长的某种布料可做上衣2件或裤子3 条,一件上衣和一条裤子为一套,库内存这 种布料600m,应如何分配布料做上衣和做 裤子才能恰好配套?可以生产多少套衣服?
问题与练习2
某车间有工人85人,平均每人每天可 以加工大齿轮8个或小齿轮10个,又知1个 大齿轮和三个小齿轮配为一套,问应如何 安排劳力使生产的产品刚好成套?
问题与练习3
用白铁皮做罐头盒,每张铁皮可制盒身 25个,或制盒底40个,一个盒身与两个盒 底配成一套.现在有36张白铁皮,用多少 张制盒身,多少张制盒底,可使盒身与盒 底正好配套?
问题与练习 练习1.某水利工地派48人去挖土和运土,如果每人 每天平均挖土5方或运土3方,那么应怎样安排人员, 正好能使挖出的土及时运走?
3.4.1实际问题与一元一次方程导学案(调配问题)
3.4.1实际问题与一元一次方程----用列表法解决调配问题学习目标:1、如何用列表法列出一元一次方程解决实际问题的调配问题;2、利用一元一次方程解决实际问题,体会用方程解决实际问题的基本过程;3、通过列方程解决实际问题,感受数学的应用价值,增强学习数学的信心。
重点难点:用列表法列一元一次方程。
学习过程:问题:某车间有22名工人生产螺钉和螺母,每人每天平均生产螺钉1200或螺母2000个,一个螺钉要配两个螺母;为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?分析:设有X人生产螺钉,请填写下表中相关的量等量关系:列得方程:补全此题完整解题过程:解:设分配 x名工人生产螺钉,则生产螺母的人数为人.依题意,得:去括号,得:移项,得:合并同类项,得:系数化为1,得:所以生产螺母的人数为:.答:分配人生产螺钉,人生产螺母.可使每天生产的产品刚好配套。
方法规律:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程。
用一元一次方程解决实际问题的基本过程如下:这一过程包括设、列、解、检、答等步骤,即设未知数,列方程,解方程,检验所得结果,确定答案。
正确分析问题中的相等关系是列方程的基础。
巩固练习:用列表法列一元一次方程解下列问题:(1)一个服装车间,共有90人,每人每小时加工1件衣服或2条裤子,问怎样安排工作才能使衣服和裤子正好配套?(一件衣服配一条裤子)(2)某车间每天能生产甲种零件100个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套.要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?(3)一套仪器由一个A部件和三个B部件构成。
用1立方米钢材可做40个A部件或240个B部件。
现要用6立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?(4)某水利工地派40人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?(5)用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底45个一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?小结:本节课学习了用列表法列一元一次方程解决实际问题。
七数上册第三章一元一次方程3.4实际问题与一元一次方程(销售盈亏问题)同步练习(含解析新)
七数上册第三章一元一次方程3.4实际问题与一元一次方程(销售盈亏问题)同步练习(含解析新)七年级数学上册第三章一元一次方程3.4实际问题与一元一次方程(销售盈亏问题)同步练习(含解析新)下载文档七年级数学上册第三章一元一次方程3.4实际问题与一元一次方程(销售盈亏问题)同步练习(含解析新)第三章一元一次方程3.4.1 实际问题与一元一次方程(销售盈亏问题)一、选择题(共10小题)1.(·河北育华中学初一期末)一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元. 若设这件羽绒服的成本是x元,根据题意,可得到的方程是()A.x(1+50%x) 80%=x-250B.x(1+50%x) 80%=x+250C.(1+50%x) 80%=x-250D.(1+50%x) 80%=250-x[答案]B[解析]标价为:x(1+50%),则可列方程为:(1+50%)x×80%=x+250,故选:B.2.某品牌电脑降价15%后,每台售价a元,则这种电脑的原价为每台()元.A.0.85aB.0.15aC.D.[答案]D[解析]根据题意得,电脑的原价=a÷(1﹣15%)= 元,故选:D.3.某款服装进价120元件,标价x元件,商店对这款服装推出“买两件,第一件原价,第二件打六折”的促销活动,按促销方式销售两件该款服装,商店仍获利48元,则x的值为A.185 B.190 C.180 D.195[答案]C[分析]根据等量关系:第一件的售价第二件打六折的售价件的成本,依此列出方程求解即可.[详解]解:设标价x元件,依题意有,解得.故选:C.[名师点睛]考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即找、设、列、解、答.4.某件商品,按成本价提高40%后标价,又以8折优惠卖出,结果仍可获利15元,则这件商品的成本价为()A.115元 B.120元 C.125元 D.150元[答案]C[分析]设这件商品的成本价为x元,则这件商品的标价是(1+40%)x元;然后根据:这件商品的标价×80%-x=15,列出方程,求出x的值是多少即可.(1+40%)x×80%−x=15,所以1.4x×80%−x=15,整理,可得:0.12x=15,解得x=125,故选:C.[名师点睛]本题考查一元一次方程的实际应用,解题的关键是读懂题意得到等量关系.5.(·衡阳市第九中学初一期中)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品按220元销售,可获利10%,则这件商品的进价为( )A.120元 B.160元 C.200元 D.240元[答案]C[分析]这件商品的进价为x元,根据利润=销售价格−进价,即可得出关于x的一元一次方程,解之即可得出结论.[详解]解:这件商品的进价为x元,根据题意得:220−x=10%x,解得:x=200.故选:C.[名师点睛]本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.6.某商场将一种商品以每件60元的价格售出,盈利20%,那么该商品的进货价为()A.80元B.72元C.50元D.36元[答案]C[分析]设该商品的进货价为每件x元,根据售价﹣进价=利润列出方程,求解即可.[详解]设该商品的进货价为每件x元,根据题意,得:60﹣x=0.2x解得:x=50.故选C.[名师点睛]本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.在“元旦”期间,某电器按成本价提高后标价,再打八折销售,售价为元.设该电器的成本价为元,根据题意,下面所列方程正确的是()C. D.[答案]C[分析]设该电器的成本价为x元,求出成本价提高之后然后打折之后的价钱,据此列方程.[详解]解:设该电器的成本价为x元,由题意得,x(1+30%)×80%=2080,故选:C.[名师点睛]本题考查了由实际问题列出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8.一件衬衣的售价是120元,可获利20%,则这件衬衣的进价是()A.105元 B.100元 C.108元 D.118元[答案]B[分析]设这件衬衣的进价是元,利润可表示为(120-)元,根据获利20%,方程可列为:120-=20% ,求解即可.[详解]解:设这件衬衣的进价是元,利润可表示为(120-)元,则120-=20% ,解得=100.[名师点睛]本题主要考查了一元一次方程的应用.9.某商品的价格标签已丢失,售货员只知道”它的进价为80元,打七折出售后,仍可获利5%”你认为售货员应标在标签上的价格为()A.110元 B.120元 C.130元 D.140元[答案]B[分析]根据题意得等量关系为:售价×折扣-进价=利润,列出方程,解之即可得出答案.[详解]设售货员应标在标签上的价格为x元,依题可得:70%x-80=80×5%,解得:x=120.故答案为:B.[名师点睛]本题考查一元一次方程的实际应用-销售问题,解题的关键是根据题意找出等量关系.10.某种商品进价为a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以八折的优惠价开展促销活动,这时该商品的售价为()A.a元B.0.8a元C.0.92a元D.1.04a元[答案]D[分析]先算出提价后的售价,再算打折后的售价.[详解]价格提升30%后,售价为1.3a,后又打八折销售,故售价变为0.8 1.3a=1.04a,所以选D选项.[名师点睛]正确理解题意是解题的关键.二、填空题(共5小题)11.(·龙海市程溪中学初一期中)一件服装标价500元,若以6折销售,仍可获利20%,则这件服装进价为______元.[答案]250[分析]由题意可得等量关系:标价×60%=进价×(1+20%),把相关数值代入求解即可.[详解]解:设该服装的进价是x元.由题意得:500×60%=x×(1+20%),解得x=250,即进价为250元.故答案为:250.[名师点睛]本题考查一元一次方程的应用,仔细审题,找到等量关系是解题的关键.12.(·齐齐哈尔市期末)某种商品的进价是110元,售价是132元,那么这种商品的利润率是_____.[答案]20%[分析]设这种商品的利润率是x,根据“某种商品的进价是110元,售价是132[详解]设这种商品的利润率是x,根据题意得:110(1+x)=132,解得:x=0.2=20%,即这种商品的利润率是20%,故答案为:20%.[名师点睛]本题考查了一元一次方程的应用,正确找出等量关系,列出一元一次方程是解题的关键.13.(·滁州市期末)一件商品,成本价5元,按市场标价的8折出售每件还获利2元,问市场标价_____元.[答案]8.75.[分析]此题可套用公式:利润=售价-成本价,设未知数,列方程求解即可.[详解]解:设市场标价为x元,则有:80%x﹣5=2解得:x=8.75.[名师点睛]本题考查一元一次方程的应用-打折问题,关键是售价=原价×折扣率.14.某药店经营的抗病毒药品,在市场紧缺的情况下提价100%,物价部门查处后,限定其提价的幅度只能是原价的10%,则该药品现在降价的幅度是_____%.[分析]设进价为a,则提价后售价为a(1+100%)=2a,现在的降价幅度为x%,等量关系为:提价后的价格×(1-x)=降价后的价格.[详解]解:设进价为a,则提价后售价为a(1+100%)=2a,现在的降价幅度为x%,根据题意得:2a(1﹣x%)=a(1+10%),解得:x=45.故答案为:45.[名师点睛]本题考查一元一次方程的应用,题中的百分数很多,充分理解这些百分数的含义是解题的关键.又以8折优惠卖出,结果每件皮衣比按原价卖多赚了180元,这种皮衣原价是_________元.[答案]1500[解析]设这种皮衣原价为x元,根据题意得(1+40%)x•80%-x=180,解得x=1500,故答案为1500.三、解答题(共5小题)16.(·扬州市期末)一商店在某一时间经销甲、乙两种商品,甲种商品以每件60售出(Ⅰ)甲种商品每件进价元;乙种商品每件售价元(Ⅱ)若该商店当时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲、乙两种商品各多少件?[答案](1)40;40(2)购进甲种商品40件,购进乙种商品10件[分析](1)设甲种商品每件进价为x元,乙种商品每件售价为y元,根据售价-进价=利润,即可分别得出关于x、y的一元一次方程,解之即可得出结论;(2)设购进甲种商品z件,则购进乙种商品(50-z)件,根据单价×数量=总价,即可得出关于z的一元一次方程,解之即可得出结论.[详解](1)设甲种商品每件进价为x元,乙种商品每件售价为y元,根据题意得:60﹣x=50%x,y﹣50=﹣20%×50,解得:x=40,y=40.故答案为:40;40.(2)设购进甲种商品z件,则购进乙种商品(50﹣z)件,根据题意得:40z+50(50﹣z)=2100,解得:z=40,∴50﹣z=50﹣40=10.答:购进甲种商品40件,购进乙种商品10件.[名师点睛]本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.17.(·重庆市期末)某商场推出新年大促销活动,其中标价为300元的某种商品打8折出售,这时商品的利润率仍有20%.(1)求该商品的成本价是多少?(2)该商品在降价前一周的销售额达到了12000元,要使该商品降价后一周内的销售额也要达到12000元,降价后一周内的销售数量应该比降价前一周内的销售数量增加m%,求m的值.[答案](1)该商品的成本价是200元;(2)m的值为25.[分析](1) 设商品的标价是x元,从而得出售价为0.8x,等量关系:实际售价=进价(1+利润率),列方程求解即可.(2)先算出降价前的销量,再列式计算即可.[详解](1)设该商品的成本价是x元,根据题意得:300×0.8﹣x=20%x,解得:x=200.答:该商品的成本价是200元.(2)降价前一周的销售量为12000÷300=40(件).根据题意得:300×0.8×40(1+m%)=12000,解得:m=25.答:m的值为25.[名师点睛]此题考查了一元一次方程的应用,与实际结合,首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.(·新乐市期末)某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?[答案]50元[分析]设这种书包的进价是x元,其标价是(1+60%)x元,根据“按标价8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元”,列出关于x的一元一次方程,解之即可.[详解]设这种书包的进价是x元,其标价是(1+60%)x元,由题意得:(1+60%)x•80%﹣x=14,解得:x=50,答:这种书包的进价是50元.[名师点睛]本题考查了一元一次方程的应用,正确找出等量关系,列出一元一次方程是解题的关键.。
《3.4实际问题与一元一次方程》作业设计方案-初中数学人教版12七年级上册
《3.4 实际问题与一元一次方程》作业设计方案(第一课时)一、作业目标本节课的作业目标是帮助学生更好地理解和掌握一元一次方程的解法,以及将实际问题转化为数学问题的能力。
通过完成本节作业,学生能够灵活运用一元一次方程解决生活中的实际问题,增强数学应用的意识和能力。
二、作业内容作业内容主要分为以下几个部分:1. 复习巩固:要求学生回顾一元一次方程的基本概念和解题步骤,加深对一元一次方程的理解。
2. 实际问题练习:选取5-8个实际问题,要求学生将问题中的信息转化为数学语言,建立一元一次方程,并求解。
问题类型包括购物问题、行程问题、分配问题等,旨在培养学生的数学建模能力和解决问题的能力。
3. 拓展提高:设置一定难度的题目,如含有多元、多次方程或复杂的实际情境等,引导学生对所学知识进行深度探究和应用。
三、作业要求在完成作业过程中,学生应遵循以下要求:1. 独立完成:学生应独立完成作业,不得抄袭他人答案或寻求他人帮助。
2. 认真审题:审清题目中的每一个条件,理解题目的实际背景和数学含义。
3. 规范书写:解答过程应清晰、规范,答案要准确无误。
4. 时间安排:合理安排时间,确保在规定时间内完成作业。
四、作业评价作业评价主要从以下几个方面进行:1. 正确性:答案是否准确无误。
2. 解题思路:解题思路是否清晰、有条理。
3. 规范性:书写是否规范、整洁。
4. 创新性:是否有独特的解题方法和思路。
五、作业反馈作业反馈是本节作业设计的重要环节,具体包括:1. 教师点评:教师对学生的作业进行详细点评,指出优点和不足。
2. 错误分析:对常见错误进行归类分析,帮助学生找出错误原因并加以改正。
3. 拓展延伸:针对学生的实际情况和需求,提供适当的拓展题目和思路,帮助学生进一步提高。
4. 学习建议:根据学生的作业情况,提出针对性的学习建议和方法,帮助学生更好地掌握一元一次方程的解法和应用。
通过以上的作业设计,使学生能够逐步提升自己的一元一次方程的应用能力和问题解决能力。
人教版七年级数学上册3.4《实际问题与一元一次方程(一)》(提高)知识讲解及解答
实际问题与一元一次方程(一)(提高)知识讲解【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.要点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?【答案与解析】解:设油箱里原有汽油x 公斤,由题意得:x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%解得:x=10答:油箱里原有汽油10公斤.【点评】等量关系为:油箱中剩余汽油+1=用去的汽油.举一反三:【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?【答案】解:设这个班有x 名学生,根据题意得:3x+24=4x -26解得:x =50所以3x+24=3×50+24=174答:这个班有50名学生,一共展出了174张邮票.类型二、行程问题1.车过桥问题2. 某桥长1200m ,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s ,而整个火车在桥上的时间是30s ,求火车的长度和速度.【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义.【答案与解析】解:设火车车身长为xm ,根据题意,得:120012005030x x +-=, 解得:x =300,所以12001200300305050x ++==. 答:火车的长度是300m ,车速是30m/s .【点评】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A 点表示火车头):(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度.举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?【答案】解:设从第一排上桥到排尾离桥需要x 分钟,列方程得:6928611864x ⎛⎫=-⨯+ ⎪⎝⎭, 解得:x =3答:从第一排上桥到排尾离桥需要3分钟.2.相遇问题(相向问题)3.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A 、B 两地间的路程.【答案与解析】解:设A 、B 两地间的路程为x 千米,由题意得:363624x x -+= 解得:x =108.答:A 、B 两地间的路程为108千米.【点评】根据“匀速前进”可知A 、B 的速度不变,进而A 、B 的速度和不变.利用速度和=小李和小明前进的路程和/时间可得方程.举一反三:【高清课堂:实际问题与一元一次方程(一)388410二次相遇问题】【变式】甲、乙两辆汽车分别从A 、B 两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A 站34km ,已知甲车的速度是70km/h ,乙车的速度是52km/h ,求A 、B 两站间的距离.【答案】解:设A 、B 两站间的距离为x km ,由题意得:234347052x x -+= 解得:x=122答: A 、B 两站间的距离为122km. 3.追及问题(同向问题)4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了13,结果又用两小时才追上这辆卡车,求卡车的速度. 【答案与解析】解:设卡车的速度为x 千米/时,由题意得:1122(30)(1)(30)243x x x x x x +++=++-⨯+⨯ 解得:x=24答:卡车的速度为24千米/时.【点评】采用“线示”分析法,画出示意图.利用轿车行驶的总路程等于卡车行驶的总路程来列方程,理清两车行驶的速度与时间.4.航行问题(顺逆风问题)5.(武昌区联考)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A 、C 两地相距10千米,船在静水中的速度为7.5千米/时,求A 、B 两地间的距离.【思路点拨】由于C 的位置不确定,要分类讨论:(1)C 地在A 、B 之间;(2)C 地在A 地上游.【答案与解析】解:设A 、B 两地间的距离为x 千米.(1)当C 地在A 、B 两地之间时,依题意得.1047.5 2.57.5 2.5x x -+=+- 解这个方程得:x =20(千米)(2)当C 地在A 地上游时,依题意得:1047.5 2.57.5 2.5x x ++=+- 解这个方程得:203x = 答:A 、B 两地间的距离为20千米或203千米. 【点评】这是航行问题,本题需分类讨论,采用“线示”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.5.环形问题6.环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3倍,环城一周是20千米,求两个人的速度.【答案与解析】解;设最慢的人速度为x 千米/时,则最快的人的速度为x 千米/时, 由题意得:x×-x×=20 解得:x=10答:最快的人的速度为35千米/时,最慢的人的速度为10千米/时.【点评】这是环形路上的追及问题,距离差为环城一周20千米.相等关系为:最快的人骑的路程-最慢人骑的路程=20千米.举一反三:【变式】两人沿着边长为90m 的正方形行走,按A →B →C →D →A …方向,甲从A 以65m/min 的速度,乙从B 以72m/min 的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?【答案】解:设乙追上甲用了x 分钟,则有:72x -65x =3×902707x =(分) 答:乙第一次追上甲时走了2707227777⨯≈(m ) 此时乙在AD 边上 类型三、工程问题7.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?【答案与解析】解:设再过x 小时可把水注满.由题意得:11111()2()168689x +⨯++-= 解得:30421313x ==. 答:打开丙管后4213小时可把水放满. 【点评】相等关系:甲、乙开2h 的工作量+甲、乙、丙水管的工作量=1.举一反三:【变式】收割一块水稻田,若每小时收割4亩,预计若干小时完成,收割23后,改用新式农机,工作效率提高到原来的112倍,因此比预计时间提早1小时完成,求这块水稻田的面积.【答案】解:设这块水稻田的面积为x 亩,由题意得:21331144142x x x =++⨯ 解得:36x =.答:这块水稻田的面积为36亩.类型四、配套问题(比例问题、劳动力调配问题)8.某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5 m 3或运土3 m 3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?【答案与解析】解:设安排x 人挖土,则运土的有(120-x )人,依题意得:5x =3(120-x ),解得x =45.120-45=75(人).答:应安排45人挖土,75人运土.【点评】用参数表示挖土数与运土数,等量关系:挖土与运土的总立方米数应相等.举一反三:【高清课堂:实际问题与一元一次方程(一) 388410 配制问题】【变式】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A 种糖果x 千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.。
人教版数学七年级上册3.4.1实际问题与一元一次方程——配套问题教案
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯3.4实际问题与一元一次方程一、学习目标:会用一元一次方程解决两类问题:1、配套问题;2、工程问题。
二、预习检查:1、1只小鸡2只脚,1只小兔4只脚,那么x小鸡只脚,y只小兔只脚。
2、工程问题中的等量关系:工作总量= 。
3、一件工作,甲单独做x小时完成,乙单独做y小时完成,那么甲、乙的工作效率分别为、;甲、乙合作m天可以完成的工作量为。
三、新课教学:例 1 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?解:设分配x名工人生产螺钉,则(22-x)名工人生产螺母,根据题意,得:2×1200x=2000(22-x)解得x=10,22-x=12.答:所以为了使每天生产的产品刚好配套,应安排10人生产螺钉,12人生产螺母.例2:整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?分析:我们把总工作量看作 1 , 完成下列填空(1)1个人做1小时完成的工作量为(2)由x 人先做4小时,完成的工作量为(3)再增加2人和前一部分人一起做8小时,完成的工作量为(4)题中的相等关系是解:设应先安排x 人工作4小时,依题意得48(2)14040x x ++=去分母,得 4x+8(x+2)=40去括号,得 4x+8x+16=40移项,得 4x+8x=40-16合并,得 12x=24系数化为1,得 x=2答:应先安排2名工人工作4小时.四、小组合作:小组合作1:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?小组合作2:抗洪抢险中修补一段大堤,甲队单独施工12天完成,乙队单独施工8天完成;现在由甲队先工作两天,剩下的由两队合作完成,还需几天才能完成?五、当堂检测:检测1:用铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底刚好配套?检测2:一件工作,甲单独做需50天才能完成,乙独做需要45天完成。
七数上册第三章一元一次方程3.4实际问题与一元一次方程(球赛积分表)同步练习(含解析新)
七数上册第三章一元一次方程3.4实际问题与一元一次方程(球赛积分表)同步练习(含解析新)七年级数学上册第三章一元一次方程3.4实际问题与一元一次方程(球赛积分表)同步练习(含解析新)下载文档七年级数学上册第三章一元一次方程3.4实际问题与一元一次方程(球赛积分表)同步练习(含解析新)第三章一元一次方程3.4.1 实际问题与一元一次方程(球赛积分表)一、选择题(共10小题)1.(·中山市期末)在﹣赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=74[答案]C[详解]设曼城队一共胜了x场,则平了(30﹣x﹣4)场,依题意,得:3x+(30﹣x﹣4)=74,即3x+(26﹣x)=74.故选:C.[名师点睛]本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.2.(·广州市期末)足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场 B.4场 C.5场 D.6场[答案]C由题意得:3x+(14-5-x)=19,解得:x=5,即这个队胜了5场.故选C.[名师点睛]此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.3.(·大庆市期末)小彬是学校的篮球队长,在一场篮球比赛中,他一人得了25分,其中罚球得了5分,他投进的2分球比3分球多5个,则他本场比赛3分球进了()A.1个C.3个D.4个[答案]B[详解]解: 设他本场比赛3分球进了x个,根据题意得5+2(x+5)+3x=25,解得x=2.故他本场比赛3分球进了2个.[名师点睛]本题考查一元一次方程的应用:利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.解题关键是找出之间的相等关系列方程.4.(·重庆市期末)在12月4日全国普法日中,我去某校进行了法律知识竞赛,竞赛内容是10道有关中学生应该了解的法律常识,竞赛规则规定:答对一题得5分,不答或答错一题倒扣3分,若七年级1班某同学得了34分,则该同学答对题的个数是()A.9 B.8 C.7 D.6[答案]B[详解]解:设答对的题数为x道,则不答或答错的有(10﹣x)道,解得:x=8.∴该同学答对题的个数是8个.故选B.[名师点睛]本题考查了一元一次方程的应用,正确找出题目中的等量关系,根据等量关系列出方程是解决问题的关键.5.(·仙桃市期末)一次知识竞赛共有20道选择题,规定答对一道得5分,不做或错一题扣1分,结果某学生得分为88分,则他做对题数为()A.16 B.17 C.18 D.19[答案]C[详解]解:设他做对题数为x道,则不做或做错了(20-x)道,根据题意得:5x-(20-x)=88,解得:x=18.即他做对题数为18道.故选:C.[名师点睛]本题考查的知识点是一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.(·咸阳市期末)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5[答案]B[详解]设该队获胜x场,则负了(6-x)场.根据题意得3x+(6-x)=12,解得x=3.经检验x=3符合题意.故该队获胜3场.故选B.[名师点睛]本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键7.(·武汉市期末)一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A.17道 B.18道 C.19道 D.20道[答案]C[详解]设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.系.8.(·佛山市期末)在“足球进校园”活动中规定:胜一场得3分,平一场得1分,负一场得0分某班足球队踢了10场球,负了3场,得17分,这个足球队共胜了A.2场 B.4场 C.5场 D.7场[答案]C[详解]解:设这个足球队共胜了x场,则平了场,由题意,得,解得:.故选:C.[名师点睛]本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据三种比赛结果的得分之和为17分建立方程是关键.9.(·大连市期末)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,若小明得了94分,则小明答对的题数是()道.A.17 B.18 C.19 D.20[答案]B[详解]设小明答对了题,根据题意可得:,解得: .故选: .[名师点睛]此题主要考查了一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,正确利用代数式表示出小明的得分.10.(·锦州市期末)数学考试出了15道题,做对一题得4分,做错一题倒扣2分,若王刚做了全部15道题,共得36分,则他做对了( )A.10道题 B.11道题C.12道题 D.13道题[答案]B[详解]解:设做对了道,则做错了道,由题意得:,解得:=11.故答案选:B.[名师点睛]本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据做对的得分+做错的得分=最后总得分36建立方程是关键.二、填空题(共5小题)11.(·厦门市期末)在某足球比赛的前11场比赛中,A队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,设A队胜了x场,由题意可列方程为________________[答案][详解]设设该队共胜了x场,根据题意得:3x+(11-x)=23.故答案为:3x+(11-x)=23.[名师点睛]此题考查了列一元一次方程.列一元一次方程解足球赛问题的关键是抓住胜的场数与平的场数的关系,根据积分总数列出方程.12.(·河间市期末)在一场NBA篮球比赛中,姚明共投中a个2分球,b个3分球,还通过罚球得到9分.在这场比赛中,他一共得了____________分.[答案]2a+3b+9[详解]解:2×a+3×b+9=2a+3b+9(分).故答案为:2a+3b+9.[名师点睛]本题考查了一元一次方程的应用,解题关键是找出数量关系,再列式解答.13.(·仙桃市期末)下表是2015﹣赛季欧洲足球冠军杯第一阶段G组赛(G组共四个队,每个队分别与其它三个队进行主客场比赛各一场,即每个队要进行6场比赛)积分表的一部分.(备注:总积分=胜场积分+平场积分+负场积分)本次足球小组赛中切尔西队总积分是___分.球队场次胜平负总积分切尔西 6 ?? 1 ?基辅迪纳摩 6 3 2 1 11波尔图 6 3 1 2 10特拉维夫马卡比 6 0 0 6 0[答案]13[详解]解:由特拉维夫马卡比队负6场积0分,可知负一场积0分,根据基辅迪纳摩队和波尔图队的胜场数相同,负场数相差1,积分差1,得平一场得1分,设胜一场积x分,根据题意得3x+1=10解得x=3,即胜一场积3分,平一场积1分,负一场积0分,又因为胜场数=负场数,所以切尔西队胜1+1+2+6-3-3=4场,平6-4-1=1场,总积分是3×4+1=13场,故答案为13.[名师点睛]本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.14.(·高平市期末)某次数学测验,共16个选择题,评分标准为:答对一题给6分,答错一题扣2分,不答得0分.某个学生只有1题未答,他想自己的分数不低于70分,他至少要答对________道题.[答案]13[详解]解:设他要对x题,依题意得:6x-2(15-x)≥70,解之得x≥12.5;因为题数应该是整数,所以至少要对13题.故答案为:13.[名师点睛]解决本题的关键是读懂题意,找到符合题意的不等关系式组.准确的解不等式是需要掌握的基本计算能力.注意:根据题意,未知数应该是最小整数.个得3分,爸爸投中1个得1分,结果两人一共投中了20个,得分刚好相等.小丽投中了_____个.[答案]5[详解]设小丽投中x个,根据题意得出:3x=20﹣x解得:x=5.故答案为:5.[名师点睛]本题考查了一元一次方程的应用,根据已知得出等量关系是解题的关键.16.(·石家庄市期末)数学课上,教师出示某区篮球赛积分表如下:(1)从表中可以看出,负一场积多少分,胜一场积多少分;(2)请你帮忙算出二队胜了多少场?(3)在这次比赛中,一个队胜场总积分能不能等于它的负场总积分?(4)在计算五队、六队胜出场次的时候,老师还没等同学们计算出来就立刻说出了答案,老师解释说:“我是通过找到积分与胜场之间的数量关系求出来的”,请你说出其中的奥秘.[答案](1)负1场积分2分;胜1场积3分;(2)二队胜了7场;(3)不能;(4)[分析](1)根据三队负11场得22分,可知负1场,积2分;由一队胜10场负1场积分32分可得胜一场的积分;(2)设二队胜x场,负(11-x)场,根据积分29分列方程,求解即可;(3)设这次比赛一个队共胜x场,则负(11﹣x)场,然后根据得分列出方程求解即可;(4)设这次比赛一个队共胜x场,则负(11﹣x)场,积分为y,根据y=胜场积分+负场积分=3x+2(11﹣x)=x+22,即可得到结论.[详解](1)三队负11场得22分,可知负1场积分=22÷11=2(分);由一队胜10场可知,其负1场,故胜1场积分=(32-1×2)÷10=3(分);(2)设二队胜x场,负(11-x)场.根据题意得:3x+2(11-x)=29解得:x=7.答:二队胜了7场.(3)设这次比赛一个队共胜x场,则负(11﹣x)场,根据题意得:3x=2(11-x)解得:x= .∵比赛场次x是正整数,∴一个队胜场总积分不能等于它的负场总积分.(4)设这次比赛一个队共胜x场,则负(11﹣x)场,积分为y,根据题意得:y=3x+2(11﹣x)=x+22,∴积分与获胜的场数之差=22.[名师点睛]本题考查了一元一次方程的应用以及从统计表中获取信息的能力.根据题意找出相等关系是解答本题的关键.17.(·南平市期末)某校七年级组织知识竞赛,共设20道选择题,各题分值相同,每题必答.右表记录了5个参赛学生的得分情况.问:参赛者答对题数答错题数得分A 20 0 100B 19 1 94C 18 2 88E 10 10 40(1)答对一题得分,答错一题得分;(2)有一同学说:同学甲得了70分,同学乙得了90分,你认为谁的成绩是准确的?为什么?[答案](1)5,﹣1;(2)同学甲的成绩是准确的,同学乙的成绩不准确.[详解]解:(1)∵答对20道题,答错0道题,得分100分,∴答对一题得5分,∵答对19道题,答错1道题,得分94分,∴答错一题得﹣1分;(2)同学甲的成绩是准确的,同学乙的成绩不准确.设同学甲答对了x道,则答错了(20﹣x)道,由题意得:5x﹣(20﹣x)=70,解得:x=15,设同学乙答对了y道,则答错了(20﹣y)道,由题意得:5y﹣(20﹣y)=90,解得:y=18 ,因为x,y是做对题目个数,所以x,y是自然数.因此,同学甲的成绩是准确的,同学乙的成绩不准确.[名师点睛]此题主要考查了一元一次方程的应用,正确表示出得分情况是解题关键.18.(·永州市期末)某次知识竞赛共有20道题,每题答对得5分,答错或不答都扣3分.小明共得了68分,那么小明答对了几道题?[答案]小明答对了16道题.[详解]设小明答对了x道题.根据题意,得5x-3(20-x)=68,经检验x=16符合题意.答:小明答对了16道题.[名师点睛]本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
3.4.1实际问题与一元一次方程(1)教案
说明:以上表格为每课时教案书写格式。
要求:严格按教研室下发的教案书写格式及内容进行编写(表格式),严禁网上下载。
根据学情可在打印教案的备注栏进行改动。
字体、字号要求:首页为课程标准对本学段的教学要求(题目居中,四号仿宋体,正文为小四号仿宋体),第二页是教学进度安排表,第三页是单元课教案(课题、单元目标、单元重点、难点,课时计划。
这些字是四号仿宋体加粗,其余内容是小四号仿宋体)接下来是每课时教案:包括课题(居中,四号仿宋体);课标对本节教学要求、教学目标、教学重点、难点、教学准备、教学时间、教学过程、板书设计、作业安排、课后记这些字是四号仿宋体加粗;其余均为小四号仿宋体。
行距均为22磅。
页边距上下左右各2cm,装订线0.5cm。
课后记每节课都有,需手写。
3月1日下班前将一周的教案交各学年主任。
集体备课教案里的研课及议课内容需手写。
人教版七年级数学上册3.4.1《实际问题与一元一次方程(第1课时)》说课稿
人教版七年级数学上册3.4.1《实际问题与一元一次方程(第1课时)》说课稿一. 教材分析《实际问题与一元一次方程(第1课时)》是人教版七年级数学上册第三章第四节的一部分。
本节课的主要内容是让学生通过解决实际问题,引入一元一次方程的概念,并掌握一元一次方程的解法。
教材中给出了丰富的例题和练习题,旨在让学生在解决实际问题的过程中,体会数学与生活的紧密联系,培养学生的数学应用能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于代数知识有一定的了解。
但学生在解决实际问题时,往往不能将数学知识与生活实际相结合,对于如何将实际问题转化为数学问题,以及如何运用一元一次方程解决问题还比较陌生。
因此,在教学过程中,需要引导学生将实际问题抽象为一元一次方程,并通过实例让学生体会一元一次方程在解决实际问题中的作用。
三. 说教学目标1.知识与技能目标:理解一元一次方程的概念,掌握一元一次方程的解法,能够运用一元一次方程解决简单的实际问题。
2.过程与方法目标:通过解决实际问题,培养学生将实际问题转化为数学问题的能力,提高学生的数学应用能力。
3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,培养学生学习数学的兴趣,增强学生克服困难的信心。
四. 说教学重难点1.教学重点:一元一次方程的概念,一元一次方程的解法。
2.教学难点:如何将实际问题转化为数学问题,运用一元一次方程解决实际问题。
五. 说教学方法与手段本节课采用讲授法、引导法、讨论法等多种教学方法,以学生为主体,教师为引导者,通过实例让学生在解决实际问题的过程中,自主探索一元一次方程的解法。
同时,利用多媒体教学手段,展示实际问题的图像和数据,直观地引导学生理解和掌握一元一次方程。
六. 说教学过程1.导入:通过一个简单的实际问题,引导学生思考如何用数学方法解决问题,激发学生的学习兴趣。
2.新课讲解:讲解一元一次方程的概念和解法,通过实例让学生理解一元一次方程的解法。
3.4.1实际问题与一元一次方程
3.4 再探实际问题 与一元一次方程 (1)
大放血 清仓处理 跳楼价 大亏本
5折酬宾 折酬宾
销售中的盈亏 某商店在某一时间以每件60元的价格 某商店在某一时间以每件 元的价格 卖出两件衣服,其中一件盈利25﹪ 卖出两件衣服,其中一件盈利 ﹪,另 一件亏损25﹪ 一件亏损 ﹪,卖这两件衣服总的是盈 利还是亏损,或是不盈不亏? 利还是亏损,或是不盈不亏?
¥60
¥60
解:设盈利25%的那件衣服的进价是x元, 设盈利25%的那件衣服的进价是x 25%的那件衣服的进价是 另一件的进价为y元,根据题意,得 另一件的进价为y 根据题意,
x+0.25x=60 解得 x=48
y-0.25y=60 解得 y=80
60+60-48-80=-8(元 业
课后作业
1、必做题:课本108页习题3.4第3题 必做题:课本108页习题3.4第 108页习题3.4 2、选做题:课本108页习题 第4题 、选做题:课本 页习题3.4第 题 页习题
1、国家规定个人发表文章或出书获 得稿费的纳税计算方法是:( :(1 得稿费的纳税计算方法是:(1)稿 费不高于800元的不纳税;( 800元的不纳税;(2 费不高于800元的不纳税;(2)稿 费高于800元又不高于4000 800元又不高于4000元的应 费高于800元又不高于4000元的应 交超过800元那一部分稿费14% 800元那一部分稿费14%的 交超过800元那一部分稿费14%的 ;(3 稿费高于4000 4000元的应交 税;(3)稿费高于4000元的应交 全部稿费的11%的税。 11%的税 全部稿费的11%的税。王老师曾获 得一笔稿费,并交纳个人所得税280 得一笔稿费,并交纳个人所得税280 那么王老师的这笔稿费共多少元? 元,那么王老师的这笔稿费共多少元?
人教版七年级数学上册3.4《实际问题与一元一次方程(1)—— 配套问题和工程问题》教案
第三章一元一次方程3.4实际问题与一元一次方程第课时1一、教学目标1.会通过列方程解决“配套问题”和“工程问题”.2.培养学生数学建模能力、分析能力、解决问题的能力.二、教学重点及难点重点:将实际问题抽象为方程,列方程解应用题.难点:将实际问题抽象为方程的过程中,如何找等量关系.三、教学用具电脑、多媒体、课件.四、相关资源五、教学过程(一)温故知新解一元一次方程的一般步骤是什么呢?师生活动:学生思考,回答问题,教师边聆听边板书.小结:解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1.设计意图:复习旧知识的目的是检验上一节课的学习效果,为本节课进一步学习起到一个基石的作用.(二)例题分析例1 某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1 个螺钉需要配2 个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?师生活动:教师提示学生思考以下问题:(1)“1 个螺钉配2 个螺母”这句话是什么意思,包含着什么等量关系?(2)本问题有哪些等量问题?1学生讨论后,独立尝试列方程.在本问题中“1 个螺钉配 2 个螺母”中包含的等量关系较 隐蔽,是本问题的难点,要让学生真正理解其中的含义.教师巡视检查学生完成的情况.然 后让学生打开教材,把自己的解法和教材上的相比较,看一看过程中有什么不足之处,修改 以后思考下面问题.你的解法与教材上是否相同?如果相同,你是否能换一种设未知数的方法解决这个问 题?如果不同,请与其他同学交流讨论比较两种方法间的异同点.解:设应安排 x 名工人生产螺钉,(22-x )名工人生产螺母.依题意得:2 000(22-x )=2×1 200x .解方程,得:5(22-x )=6x ,110-5x =6x ,x =10.22-x =12.答:应安排 10 名工人生产螺钉,12 名工人生产螺母.另解:设应安排 x 名工人生产螺母,(22-x )名工人生产螺钉.依题意得:2×1 200(22-x )=2 000x .解方程,得:x =12.22-x =10.答:应安排 10 名工人生产螺钉,12 名工人生产螺母.例 2 整理一批图书,由一个人做要 40 h 完成.现计划由一部分人先做 4 h ,然后增加 2 人与他们一起做 8 h ,完成这项工作.假设这些人的工作效率相同,具体应该先安排多少人工 作?师生活动:学生先自主探究讨论,教师可以点拨以下问题:(1)人均效率为________.(指一个人 1 小时的工作量).(2)若设先由 x 人做 4 小时,完成的工作量是________.再增加 2 人和前一部分人一起 做 8 小时,两段完成的工作量之和是________.师生共同完成本题的解答过程,教师要书写出规范完整的答案.教师点评:工作量=人均效率×人数×工作时间,这是在此类问题中常用的数量关系. 解:设安排 x 人先做 4 h . 8 x +2 4x 依题意得: + 40=1. 40 2解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2 人先做 4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流, 最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和 解决实际问题.(三)练习巩固1.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 m钢材可以做 40 个 A 部件或 240 3 个 部件.现要用 6 m钢材制作这种仪器,应用多少钢材做 部件,多少钢材做 部件,恰 B 3 A B 好配成这种仪器多少套?解:设应用 m 钢材做 部件,(6- )m钢材做 部件. x 3 A x 3 B 依题意得:3×40 x =240 (6-x ).解方程,得: =4. x 答:应用 4 m钢材做 部件,2 m 钢材做 部件,配成这种仪器 160 套. 3 A 3 B 2.一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要 24 天.如果 由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 天可以铺好这条管线. xx x 依题意得: + = , 1 12 243解方程,得:x=.8答:两个工程队从两端同时施工,要天可以铺好这条管线.8设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计.实际问题与一元一次方程34配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:4解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2 人先做 4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流, 最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和 解决实际问题.(三)练习巩固1.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 m钢材可以做 40 个 A 部件或 240 3 个 部件.现要用 6 m钢材制作这种仪器,应用多少钢材做 部件,多少钢材做 部件,恰 B 3 A B 好配成这种仪器多少套?解:设应用 m 钢材做 部件,(6- )m钢材做 部件. x 3 A x 3 B 依题意得:3×40 x =240 (6-x ).解方程,得: =4. x 答:应用 4 m钢材做 部件,2 m 钢材做 部件,配成这种仪器 160 套. 3 A 3 B 2.一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要 24 天.如果 由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 天可以铺好这条管线. xx x 依题意得: + = , 1 12 243解方程,得:x=.8答:两个工程队从两端同时施工,要天可以铺好这条管线.8设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计.实际问题与一元一次方程34配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:4解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2 人先做 4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流, 最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和 解决实际问题.(三)练习巩固1.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 m钢材可以做 40 个 A 部件或 240 3 个 部件.现要用 6 m钢材制作这种仪器,应用多少钢材做 部件,多少钢材做 部件,恰 B 3 A B 好配成这种仪器多少套?解:设应用 m 钢材做 部件,(6- )m钢材做 部件. x 3 A x 3 B 依题意得:3×40 x =240 (6-x ).解方程,得: =4. x 答:应用 4 m钢材做 部件,2 m 钢材做 部件,配成这种仪器 160 套. 3 A 3 B 2.一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要 24 天.如果 由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 天可以铺好这条管线. xx x 依题意得: + = , 1 12 243解方程,得:x=.8答:两个工程队从两端同时施工,要天可以铺好这条管线.8设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计.实际问题与一元一次方程34配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:4。
人教版七年级上册(新)第三章《3.4实际问题与一元一次方程(1)-销售中的盈亏》教案
1.教学重点
-本节课的核心内容是使学生掌握利用一元一次方程解决销售中的盈亏问题。
-重点讲解如何根据已知条件建立一元一次方程,包括理解等量关系和如何将实际问题转化为数学模型。
-强调售价、成本、利润之间的关系,以及何通过方程求解得到售价或盈亏的具体数值。
-例如,在案例中,重点讲解如何将商店的总盈利目标(3000元)转化为方程形式,并求解出相应的售价。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实际问题与一元一次方程(1)-销售中的盈亏》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过商店打折促销的情况?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索销售盈亏的奥秘。
五、教学反思
在本次教学过程中,我发现学生们对于一元一次方程解决销售盈亏问题表现出较大的兴趣。他们在课堂上积极参与讨论,提出自己的想法,这让我感到很欣慰。但同时,我也注意到在这个环节中存在一些问题。
首先,部分学生在理解一元一次方程的应用时还存在困难。他们在将实际问题转化为数学方程的过程中,对于如何确定未知数和等量关系还不够明确。针对这一点,我需要在今后的教学中加强对这部分内容的讲解和练习,让学生能够更熟练地运用方程解决实际问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了利用一元一次方程解决销售盈亏问题的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这个问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版七年级数学上册:3.4《实际问题与一元一次方程》说课稿
人教版七年级数学上册:3.4 《实际问题与一元一次方程》说课稿一. 教材分析《实际问题与一元一次方程》是人教版七年级数学上册第三章第四节的内容。
这一节的内容是在学生已经学习了代数基础知识和一元一次方程的基础上进行讲解的,目的是让学生能够将所学的代数知识应用到解决实际问题中。
教材通过引入一些生活中的实际问题,让学生学会用一元一次方程来表示问题,并通过解方程来求解问题的方法。
二. 学情分析七年级的学生已经具备了一定的代数知识,对于一元一次方程也有了一定的了解。
但是,学生可能对于如何将实际问题转化为方程表示还是有一定的困难。
因此,在教学过程中,我需要引导学生如何将实际问题转化为方程,并通过解方程来求解问题。
三. 说教学目标1.知识与技能:学生能够理解实际问题与一元一次方程之间的关系,学会将实际问题转化为方程表示,并能够通过解方程来求解问题。
2.过程与方法:学生能够通过解决实际问题,培养解决问题的能力和思维方法。
3.情感态度与价值观:学生能够感受到数学与生活的紧密联系,增强对数学的兴趣和信心。
四. 说教学重难点1.教学重点:学生能够理解实际问题与一元一次方程之间的关系,学会将实际问题转化为方程表示,并能够通过解方程来求解问题。
2.教学难点:学生对于如何将实际问题转化为方程表示可能有一定的困难,需要进行引导和讲解。
五. 说教学方法与手段在教学过程中,我将采用问题驱动的教学方法,引导学生通过解决实际问题来学习一元一次方程的应用。
同时,我会利用多媒体教学手段,展示一些实际问题的图片或视频,帮助学生更好地理解和解决问题。
六. 说教学过程1.导入:通过展示一些实际问题的图片或视频,引导学生思考如何用数学方法来解决这些问题。
2.新课导入:介绍实际问题与一元一次方程之间的关系,讲解如何将实际问题转化为方程表示。
3.案例讲解:通过一些具体的案例,讲解如何将实际问题转化为方程表示,并通过解方程来求解问题。
4.学生练习:让学生尝试解决一些实际问题,巩固所学的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
---调配问题
一、复习与回顾
Company Logo
调配问题是指从甲处调一些人(或物)到乙处, 使之符合一定数量关系,或从第三方调入一些 人(或物)到甲、乙两处,使之符合一定数量 关系。其基本相等关系:甲数+乙数=总数。此 类问题中常有不同的设未知数的方法,由于此 类问题中至少有两个相等关系,故可先用其中 某个相等关系设未知数,再用另外的相等关系 列方程,这样列出的方程有的简单,有的复杂
例2:
x人,则乙车间分配 (98-x)人 x x
x=16 所以 98-x=82
这类问题要搞清人(或物)数的变化, 常见题型有: 1.既有调入又有调出 2.只有调入没有调出,调入部分变化, 其余不变 3.只有调出没有调入,调出部分变化, 其余不变
Hale Waihona Puke