11-12学年高中数学 第三章 综合素质检测 新人教A版必修1
高中数学(人教a版)必修一:第1-3章-全册综合质量评估试卷(含答案) (2)
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
综合质量评估第一至第三章(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,3,4,5,6},A={1,2,3},B={2,3,4},则ð(A∪UB)=( )A.{2,3}B.{5,6}C.{1,4,5,6}D.{1,2,3,4}2.下列函数中,在(0,1)上为单调递减的偶函数的是( )A.y=B.y=x4C.y=x-2D.y=-3.由下表给出函数y=f(x),则f(f(1))等于( )A.1B.2C.4D.54.函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则a的取值范围是( )A.a≤2或a≥3B.2≤a≤3C.a≤2D.a≥35.(2012·安徽高考)(log29)·(log34)=( )A. B. C.2 D.46.(2012·天津高考)已知a=21.2,b=()-0.8,c=2log52,则a,b,c的大小关系为( )A.c<b<aB.c<a<bC.b<a<cD.b<c<a7.判断下列各组中的两个函数是同一函数的为( )(1)f(x)=,g(t)=t-3(t≠-3).(2)f(x)=,g(x)=.(3)f(x)=x,g(x)=.(4)f(x)=x,g(x)=.A.(1)(4)B.(2)(3)C.(1)(3)D.(3)(4)8.函数f(x)=1+log2x与g(x)=2-x+1在同一坐标系下的图象大致是( )9.若f(x)=,则f(x)的定义域为( )A.(-,0)B.(-,0]C.(,+∞)D.(0,+∞)10.(2012·广东高考)下列函数中,在区间(0,+∞)上为增函数的是( )A.y=ln(x+2)B.y=-C.y=()xD.y=x+11.给出下列四个等式:f(x+y)=f(x)+f(y),f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),f(xy)=f(x)f(y),下列函数中不满足以上四个等式中的任何一个等式的是( )A.f(x)=3xB.f(x)=x+x-1C.f(x)=log2xD.f(x)=kx(k≠0)12.某市房价(均价)经过6年时间从1200元/m2增加到了4800元/m2,则这6年间平均每年的增长率是( )A.-1B.+1C.50%D.600元二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.若函数f(x+1)=x2-1,则f(2)= .14.计算(的结果是.15.已知函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为.16.给出下列四个判断:①若f(x)=x2-2ax在[1,+∞)上是增函数,则a=1;②函数f(x)=2x-x2只有两个零点;③函数y=2|x|的最小值是1;④在同一坐标系中函数y=2x与y=2-x的图象关于y轴对称.其中正确的序号是.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)设集合A={x|0<x-a<3},B={x|x≤0或x≥3},分别求满足下列条件的实数a的取值范围:(1)A∩B= .(2)A∪B=B.18.(12分)(2012·冀州高一检测)计算下列各式的值:(1)(2-(-9.6)0-(+()-2.(2)log 3+lg 25+lg 4+.19.(12分)已知二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.(1)求f(x)的解析式.(2)当x∈[-1,1]时,不等式f(x)>2x+m恒成立,求实数m的范围. 20.(12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时,两类产品的收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的收益与投资额的函数关系.(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?21.(12分)定义在[-1,1]上的偶函数f(x),已知当x∈[0,1]时的解析式为f(x)=-22x+a2x(a∈R).(1)求f(x)在[-1,0]上的解析式.(2)求f(x)在[0,1]上的最大值h(a).22.(12分)(能力挑战题)设f(x)=ax2+x-a,g(x)=2ax+5-3a.(1)若f(x)在[0,1]上的最大值为,求a的值.(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得f(x1)=g(x0)成立,求a的取值范围.答案解析1.【解析】选B.因为A∪B={1,2,3,4},所以ð(A∪B)={5,6}.U2. 【解析】选C.y=x-2为偶函数,且在(0,1)上单调递减.3.【解析】选B.f(f(1))=f(4)=2.4.【解析】选A.函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则其对称轴x=a≥3或x=a≤2.【误区警示】本题易出现选C或选D的错误,原因为没有想到在区间[2,3]上既可以单调递增也可以单调递减.5.【解题指南】先利用换底公式将各个对数化为同底的对数,再根据对数的运算性质求值.【解析】选D.log29×log34=×=×=4.6.【解析】选 A.b=()-0.8=20.8<a=21.2,c=2log52=log54<log55=1<b=20.8,所以c<b<a.【变式备选】已知三个数a=60.7,b=0.70.8,c=0.80.7,则三个数的大小关系是( )A.a>c>bB.b>c>aC.c>b>aD.a>b>c【解析】选A.a=60.7>1,b=0.70.8<1,c=0.80.7<1,又0.70.8<0.70.7<0.80.7,所以a>c>b.7.【解析】选A.f(x)=与g(t)=t-3(t≠-3)定义域、值域及对应关系均相同,是同一函数;g(x)==x与f(x)=x定义域,值域及对应关系均相同,是同一函数;故(1)(4)正确.8.【解析】选C.f(x)=1+log2x过点(1,1),g(x)=2-x+1也过点(1,1).9.【解析】选A.要使函数f(x)=的解析式有意义,自变量x需满足:lo(2x+1)>0,2x+1>0,即0<2x+1<1,解得-<x<0,故选A.【变式备选】函数f(x)=的值域是( )A.RB.[1,+∞)C.[-8,1]D.[-9,1]【解析】选C.0≤x≤3时,2x-x2∈[-3,1];-2≤x<0时,x2+6x∈[-8,0),故函数值域为[-8,1].10.【解题指南】本小题考查函数的图象及性质,要逐一进行判断.对于复合函数的单调性的判断要根据内外函数单调性“同则增,异则减”的原则进行判断.【解析】选A.对选项A,因为内外函数在(0,+∞)上都是增函数,根据复合函数的单调性,此函数在(0,+∞)上是增函数,故正确;对选项B,内函数在(0,+∞)上是增函数,外函数在(0,+∞)上是减函数,根据复合函数的单调性,此函数在(0,+∞)上是减函数,故不正确;对选项C,指数函数y=a x(0<a<1)在R上是减函数,故不正确;对选项D,函数y=x+在(0,1)上是减函数,在[1,+∞)上是增函数,故不正确.11.【解析】选B.f(x)=3x满足f(x+y)=f(x)f(y);f(x)=log2x满足f(xy)= f(x)+f(y);f(x)=kx(k≠0)满足f(x+y)=f(x)+f(y);故选B.12.【解析】选A.设这6年间平均每年的增长率是x,则1200(1+x)6=4800,解得1+x==,即x=-1.13.【解析】f(2)=f(1+1)=12-1=0.答案:014.【解析】(=(=(=2.答案:215.【解析】∵f(x)在[0,1]上为单调函数,∴最值在区间的两个端点处取得,∴f(0)+f(1)=a,即a0+log a(0+1)+a1+log a(1+1)=a,解得a=.答案:16.【解析】若f(x)=x2-2ax在[1,+∞)上是增函数,其对称轴x=a≤1,故①不正确;函数f(x)=2x-x2有三个零点,所以②不正确;③函数y=2|x|的最小值是1正确;④在同一坐标系中,函数y=2x与y=2-x的图象关于y 轴对称正确.答案:③④17.【解析】∵A={x|0<x-a<3},∴A={x|a<x<a+3}.(1)当A∩B=∅时,有解得a=0.(2)当A∪B=B时,有A⊆B,所以a≥3或a+3≤0,解得a≥3或a≤-3.18.【解析】(1)原式=(-1-(+()-2=(-1-()2+()2=-1=.(2)原式=log3+lg(25×4)+2=log3+lg 102+2=-+2+2=.19.【解析】(1)设f(x)=ax2+bx+c(a≠0),由题意可知:a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x;c=1.整理得:2ax+a+b=2x,∴∴f(x)=x2-x+1.(2)当x∈[-1,1]时,f(x)>2x+m恒成立,即x2-3x+1>m恒成立; 令g(x)=x2-3x+1=(x-)2-,x∈[-1,1],则g(x)min=g(1)=-1,∴m<-1.20.【解析】(1)设f(x)=k 1x,g(x)=k2,所以f(1)==k1,g(1)==k2,即f(x)=x(x≥0),g(x)=(x≥0).(2)设投资债券类产品x万元,则股票类投资为(20-x)万元. 依题意得:y=f(x)+g(20-x)=+(0≤x≤20),令t=(0≤t≤2),则y=+t=-(t-2)2+3,所以当t=2,即x=16万元时,收益最大,y max=3万元.21.【解析】(1)设x∈[-1,0],则-x∈[0,1],f(-x)=-2-2x+a2-x,又∵函数f(x)为偶函数,∴f(x)=f(-x),∴f(x)=-2-2x+a2-x,x∈[-1,0].(2)∵f(x)=-22x+a2x,x∈[0,1],令t=2x,t∈[1,2].∴g(t)=at-t2=-(t-)2+.当≤1,即a≤2时,h(a)=g(1)=a-1;当1<<2,即2<a<4时,h(a)=g()=;当≥2,即a≥4时,h(a)=g(2)=2a-4.综上所述,h(a)=22.【解析】(1)①当a=0时,不合题意.②当a>0时,对称轴x=-<0,所以x=1时取得最大值1,不合题意.③当a≤-时,0<-≤1,所以x=-时取得最大值-a-=.得:a=-1或a=-(舍去).④当-<a<0时,->1,所以x=1时取得最大值1,不合题意.综上所述,a=-1.(2)依题意a>0时,f(x)∈[-a,1],g(x)∈[5-3a,5-a],所以解得,a∈[,4],a=0时不符题意舍去.a<0时,g(x)∈[5-a,5-3a],f(x)开口向下,最小值为f(0)或f(1),而f(0)=-a<5-a,f(1)=1<5-a不符题意舍去,所以a∈[,4].关闭Word文档返回原板块。
(人教版A版最新)高中数学必修第一册 第三章综合测试02
第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数20()(31)f x x =+-的定义域是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .1,13⎛⎫⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .11,,133⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭2.已知函数1(2),()(3)(2),x f x f x x =+⎪⎩≥<则(1)(9)f f +等于( )A .2-B .7-C .27D .73.函数111y x -=+-的图像是下列图像中的( )ABCD4.若函数y ax =与by x=-在(0,)+∞上都是减函数,则2()f x ax bx =+在(0,)+∞上是( ) A .增函数B .减函数C .先增后减D .先减后增5.函数2()(2)1f x ax a x =+++是偶函数,则函数的单调递增区间为( ) A .[0,)+∞B .(,0]-∞C .(,)-∞+∞D .[1,)+∞6.函数2()(1)1f x mx m x =+-+在区间(,1]-∞上为减函数,则m 的取值范围是( )A .10,3⎛⎤ ⎥⎝⎦B .10,3⎡⎫⎪⎢⎣⎭C .10,3⎡⎤⎢⎥⎣⎦D .10,3⎛⎫ ⎪⎝⎭ 7.定义在R 上的偶函数()f x ,对任意()1212,[0,)x x x x ∈+∞≠,有()()21210f x f x x x --<,则( )A .(3)(2)(1)f f f -<<B .(1)(2)(3)f f f -<<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f -<<8.若函数,1,()(23)1,1ax f x x a x x ⎧⎪=⎨⎪-+⎩>≤是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫ ⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤ ⎥⎝⎦D .2,3⎛⎫+∞ ⎪⎝⎭9.设函数()f x 满足对任意的,m n (,m n 为正数)都有()()()f m n f m f n +=⋅且(1)2f =,则(2)(3)(2020)(1)(2)(2019)f f f f f f +++等于( )A .2 020B .2 019C .4 038D .4 04010.在函数([1,1])y x x =∈-的图像上有一点(,)P t t ,此函数图象与x 轴、直线1x =-及x t =围成图形的面积为S (如图的阴影部分所示),则S 与t 的函数关系的图象可表示为( )ABCD11.设奇函数()f x 在(0,)+∞上是增函数,且(2)0f =,则不等式()()0f x f x x --<的解集为( )A .(2,0)(2,)-+∞B .(2,0)(0,2)-C .(,2)(2,)-∞-+∞D .(,2)(0,2)-∞-12.已知定义在R 上的函数()f x ,若函数(1)y f x =+为偶函数,且()f x 对任意()1212,[1,)x x x x ∈+∞≠都有()()21210f x f x x x -->,若(1)(2)f a f a -≥,则实数a 的取值范围是( )A .[1,1]-B .(,1]-∞-C .[1,)+∞D .(,1][1,)-∞-+∞二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.设函数0()1,02x x f x x =⎨⎛⎫⎪ ⎪⎝⎭⎩≥<则((4))f f -=________.14.若函数2(1)2()1a x a f x x a -+-=+-为奇函数,则实数a =________. 15.设函数2()24f x x x =-+在区间[,]m n 上的值域是[6,2]-,则m n +的取值范围是________.16.已知函数29,3,()6,3,x f x x x x ⎧⎪=⎨-+⎪⎩≥<则不等式()22(34)f x x f x --<的解集是________.三、解答题(本大题共6小题,共70分.解答时写出必要的文字说明,证明过程或演算步骤)17.[10分]已知函数22(),[1,)x x af x x x++=∈+∞. (1)当12a =时,求函数()f x 的最小值; (2)若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围;(3)讨论函数的单调性.(只写出结论即可)18.[12分]设函数2()23,f x x x a x =--+∈R .(1)小鹏同学认为,无论a 取何值,()f x 都不可能是奇函数,你同意他的观点吗?请说明你的理由. (2)若()f x 是偶函数,求a 的值.(3)在(2)的情况下,画出()y f x =的图象并指出其单调递增区间。
新课标人教A版必修1高1年级第三章函数的应用自主检测试卷及答案
第三章自主检测(时间:120分钟 满分:150分)一、选择题(每小题5分,共50分)1.函数f (x )=x 2-4的零点是( ) A .1 B .-2C .2,-2D .不存在2.函数f (x )=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C.⎝⎛⎭⎫1,1e D .(e ,+∞) 3.f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,三个函数的增长速度比较,下列选项中正确的是( )A .f (x )>g (x )>h (x )B .g (x )>f (x )>h (x )C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )4.一水池有2个进水口,1 个出水口,进出水的速度如图3-1(1)、(2).某天0点到6点,该水池的蓄水量如图3-1(3)(至少打开一个进水口).给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.图3-1则正确的论断是( ) A .① B .①② C .①③ D .①②③ 5.某地区植被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加值y (单位:公顷)关于时间x (单位:年)的函数关系较为近似的是( )A .y =0.2xB .y =110(x 2+2x )C .y =2x 10D .y =0.2+log 16x6.若函数f (x )=ax +b 只有一个零点2,那么函数g (x )=bx 2-ax 的零点是( )A .0,2B .0,12C .0,-12D .2,-127.已知函数f (x )的一个零点x 0∈(2,3),在用二分法求精确度为0.01的x 0的一个值时,判断各区间中点的函数值的符号最少( )A .5次B .6次C .7次D .8次8.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内9.某商品零售价2013年比2012年上涨25%,欲控制2014年比2012年只上涨10%,则2014年应比2013年降价()A.15% B.12%C.10% D.50%10.将进货单价为80元的商品按90元出售,能卖出400个,根据经验,该商品若每个涨1元,其销售量就减少20个,为获得最大利润,售价应该为()A.92元B.94元C.95元D.88元二、填空题(每小题5分,共20分)11.函数f(x)=2ax+4a+6在区间(-1,1)上有零点,则实数a的取值范围是____________.12.某厂2003年的产值为a万元,预计产值每年以增长率为b的速度增加,则该厂到2015年的产值为____________.13.若方程2ax2-1=0在(0,1)内恰有一解,则实数a的取值范围是____________.14.函数f(x)=2x+x-2的零点有________个.三、解答题(共80分)15.(12分)讨论方程4x3+x-15=0在[1,2]内实数解的存在性,并说明理由.16.(12分)函数y=x2+(m+1)x+m的两个不同的零点是x1和x2,且x1,x2的倒数平方和为2,求m的值.17.(14分)某汽车运输公司购买了一批豪华大客车投入客运,据市场分析,每辆客车营运的总利润y万元与营运年数x(x∈N)的关系式为y=-x2+14x-24.(1)每辆客车从第几年起开始盈利?(2)每辆客车营运多少年,可使其营运的总利润最大?18.(14分)函数f(x)=(x-3)2和g(x)=x的图象如图3-2所示,设两函数交于点A(x1,y1),点B(x2,y2),且x1<x2.(1)请指出图3-2中曲线C1,C2分别对应哪一个函数?(2)若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{0,1,2,3,4,5,6},指出a,b的值,并说明理由.图3-219.(14分)某工厂现有甲种原料360 kg ,乙种原料290 kg ,计划利用这两种原料生产A ,B 两种产品共50件.已知生产一件A 产品,需要甲种原料9 kg ,乙种原料3 kg ,可获利润700元;生产一件B 产品,需用甲种原料4 kg ,乙种原料10 kg ,可获利润1200元.(1)按要求安排A ,B 两种产品的生产件数,有几种方案?请你设计出来;(2)设生产A ,B 两种产品获总利润y (单位:元),其中一种的生产件数为x ,试写出y 与x 之间的函数关系式,并利用函数性质说明(1)中哪种方案获利最大?最大利润是多少?20.(14分)通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f (x )表示学生掌握和接受概念的能力[f (x )的值越大,表示接受能力越强],x 表示提出概念和讲授概念的时间(单位:分),有以下的关系式:f (x )=⎩⎪⎨⎪⎧-0.1x 2+2.6x +43(0<x ≤10),59(10<x ≤16),-3x +107(16<x ≤30).(1)开讲多少分钟后,学生的接受能力最强?能持续多少分钟?(2)开讲后5分钟与开讲后20分钟比较,学生的接受能力在哪一个时间段强一些?(3)一道数学难题,需要55的接受能力以及13分钟时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这道难题?(4)如果每隔5分钟测量一次学生的接受能力,再计算平均值M =f (5)+f (10)+…+f (30)6,它能高于45吗?综合能力检测(时间:120分钟 满分:150分)一、选择题(每小题5分,共50分)1.函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1]2.已知U ={y |y =log 2x ,x >1},P =⎩⎨⎧⎭⎬⎫y |y =1x ,x >2,则∁U P =( )A.⎣⎡⎭⎫12,+∞ B.⎝⎛⎭⎫0,12 C .(0,+∞)D .(-∞,0)∪⎣⎡⎭⎫12,+∞ 3.设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a =( )A. 2 B .2 C .2 2 D .44.设f (x )=g (x )+5,g (x )为奇函数,且f (-7)=-17,则f (7)的值等于( ) A .17 B .22 C .27 D .12 5.已知函数f (x )=x 2-ax -b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是( ) A .-1和-2 B .1和2 C.12和13 D .-12和-136.下列函数中,既是偶函数又是幂函数的是( ) A .f (x )=x B .f (x )=x 2C .f (x )=x -2D .f (x )=x -1 7.直角梯形ABCD 如图Z-1(1),动点P 从点B 出发,由B →C →D →A 沿边运动,设点P 运动的路程为x ,△ABP 的面积为f (x ).如果函数y =f (x )的图象如图Z-1(2),那么△ABC 的面积为( )(1) (2)图Z-1A .10B .32C .18D .168.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2, x >0,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1个B .2个C .3个D .4个9.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是( )A .幂函数B .对数函数C .指数函数D .一次函数10.甲用1000元人民币购买了一支股票,随即他将这支股票卖给乙,获利10%,而后乙又将这支股票返卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格九折将这支股票卖给了乙,在上述股票交易中( )A .甲刚好盈亏平衡B .甲盈利1元C .甲盈利9元D .甲亏本1.1元 二、填空题(每小题5分,共20分)11.计算:⎝⎛⎭⎫lg 14-lg25÷10012-=__________.12.已知f (x )=(m -2)x 2+(m -1)x +3是偶函数,则f (x )的最大值是__________.13.y =f (x )为奇函数,当x <0时,f (x )=x 2+ax ,且f (2)=6;则当x ≥0时,f (x )的解析式为__________.14.函数y =2x -1x +1,x ∈[3,5]的最小值为________;最大值为________.三、解答题(共80分)15.(12分)已知全集U =R ,集合A ={x |log 2(11-x 2)>1},B ={x |x 2-x -6>0},M ={x |x 2+bx +c ≥0}.(1)求A ∩B ;(2)若∁U M =A ∩B ,求b ,c 的值.16.(12分)已知函数f (x )=bxax 2+1(b ≠0,a >0).(1)判断f (x )的奇偶性;(2)若f (1)=12,log 3(4a -b )=12log 24,求a ,b 的值.17.(14分)方程3x 2-5x +a =0的一根在(-2,0)内,另一根在(1,3)内,求参数a 的取值范围.18.(14分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600时,能租出多少辆车?(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大收益为多少元?19.(14分)已知函数f (x )=2x +2ax +b ,且f (1)=52,f (2)=174.(1)求a ,b 的值;(2)判断f (x )的奇偶性;(3)试判断f (x )在(-∞,0]上的单调性,并证明; (4)求f (x )的最小值.20.(14分)已知函数f (x )=ln x +2x -6.(1)证明:函数f (x )在其定义域上是增函数; (2)证明:函数f (x )有且只有一个零点;(3)求这个零点所在的一个区间,使这个区间的长度不超过14.第三章自主检测 1.C 2.B3.B 解析:指数增长最快.虽然当2<x <4时,2x <x 2,但当x ∈(4,+∞)时,2x >x 2,且增长速度越来越快.4.A 解析:由图可知进水速度为1/单位时间,出水量为2/单位时间.由图可观察,3小时水量达到6,所以没有出水.3~4点,只减少1个单位,所以1个进水口进水,1个出水口出水.4~6点可能同时2个进水口与出水口都开.5.C 解析:因为沙漠的增加速度越来越快,所以排除A ,D ,将x =1,2,3分别代入B ,C 可发现,C 中的函数较符合条件.6.C 解析:由题意,知a ≠0,且b =-2a .令g (x )=-2ax 2-ax =0,得x =0或x =-12.7.C 8.A 9.B10.C 解析:设商品涨x 元,则利润为(10+x )(400-20x )=-20(x -5)2+4500,x ∈Z ,-10≤x ≤20,∴当x =5时,获得利润最大,此时售价为90+5=95(元). 11.(-3,-1)12.a (1+b )12 解析:共12年,1年后为a (1+b ),2年后为a (1+b )2,…,12年后为a (1+b )12.13.a >12解析:设函数f (x )=2ax 2-1,由题意可知,函数f (x )在(0,1)内恰有一个零点.∴f (0)·f (1)=-1×(2a -1)<0,解得a >12.14.1 解析:画出函数y 1=2x和y 2=-x +2的图象,如图D35,两函数的交点只有一个,故函数f (x )的零点有1个.图D3515.解:令f (x )=4x 3+x -15,∵y =4x 3和y =x 在[1,2]上都为增函数, ∴f (x )=4x 3+x -15在[1,2]上为增函数. ∵f (1)=4+1-15=-10<0, f (2)=4×8+2-15=19>0,∴f (x )=4x 3+x -15在[1,2]上存在一个零点, ∴方程4x 3+x -15=0在[1,2]内有一个实数解.16.解:∵x 1和x 2是函数y =x 2+(m +1)x +m 的两个不同的零点, ∴x 1和x 2是方程x 2+(m +1)x +m =0的两个不同的根. 则⎩⎪⎨⎪⎧x 1+x 2=-m -1,x 1x 2=m .① 又2=1x 21+1x 22=x 21+x 22x 21x 22=(x 1+x 2)2-2x 1x 2(x 1x 2)2,将①代入,得(-m -1)2-2mm 2=2,解得m =1或m =-1.∵Δ=(m +1)2-4m =(m -1)2>0, ∴m ≠1,即m =-1.17.解:(1)y =-x 2+14x -24>0,即x 2-14x +24<0,解得2<x <12,所以每辆客车从第3年起开始盈利. (2)y =-x 2+14x -24=-(x -7)2+25.故当每辆汽车营运7年,可使其营运的总利润最大.18.解:(1)C 1对应的函数为f (x )=(x -3)2,C 2对应的函数为g (x )=x . (2)a =1,b =4.理由如下:令φ(x )=f (x )-g (x )=(x -3)2-x , 则x 1,x 2为函数φ(x )的零点, 由于φ(0)=9>0,φ(1)=3>0, φ(2)=1-2<0,φ(3)=-3<0, φ(4)=-1<0,φ(5)=4-5>0.则方程φ(x )=f (x )-g (x )的两个零点x 1∈(1,2),x 2∈(4,5), 因此a =1,b =4.19.解:(1)设安排生产A 种产品x 件,则生产B 种产品(50-x )件,依题意,得 ⎩⎪⎨⎪⎧9x +4(50-x )≤360,3x +10(50-x )≤290, 解得30≤x ≤32.∵x 是整数,∴x 只能取30,31,32.∴生产方案有3种,分别为A 种30件,B 种20件;A 种31件,B 种19件;A 种32件,B 种18件.(2)设生产A 种产品x 件,则y =700x +1200(50-x )=-500x +60 000. ∵y 随x 的增大而减小, ∴当x =30时,y 值最大,y max =-500×30+60 000=45 000.当安排生产A 种产品30件,B 种产品20件时,获利最大,最大利润是45 000元. 20.解:(1)当0<x ≤10时,f (x )=-0.1x 2+2.6x +43=-0.1(x -13)2+59.9.故当0<x ≤10时,f (x )递增,最大值为f (10)=-0.1×(-3)2+59.9=59. 显然,当16<x ≤30时,f (x )递减,f (x )<-3×16+107=59.因此,开讲10分钟后,学生达到最强的接受能力,并能维持6分钟. (2)f (5)=-0.1×(5-13)2+59.9=53.5, f (20)=-3×20+107=47<53.5,因此,开讲后5分钟,学生的接受能力比开讲后20分钟强一些. (3)当0<x ≤10时,令f (x )≥55,则(x -13)2≤49, ∴6≤x ≤10.当10<x ≤16时,f (x )=59>55;当16<x ≤30时,令f (x )≥55,则x ≤1713.因此,学生达到(或超过)55的接受能力的时间为1713-6=1113<13,老师来不及在学生一直达到所需接受能力的状态下讲授完这道难题.(4)∵f (5)=53.5,f (10)=59,f (15)=59, f (20)=47,f (25)=32,f (30)=17,∴M =53.5+59+59+47+32+176≈44.6<45.故平均值不能高于45.综合能力检测 1.B2.A 解析:由已知U =(0,+∞).P =⎝⎛⎭⎫0,12,所以∁U P =⎣⎡⎭⎫12,+∞.故选A. 3.D 4.C 5.D 6.B 7.D8.C 解析:由f (-4)=f (0),f (-2)=-2,可得b =4,c =2,所以f (x )=⎩⎪⎨⎪⎧ x 2+4x +2,x ≤0,2, x >0, 所以方程f (x )=x 等价于⎩⎪⎨⎪⎧ x >0,x =2或⎩⎪⎨⎪⎧x ≤0,x 2+4x +2=x . 所以x =2或x =-1或x =-2.故选C.9.C10.B 解析:由题意知,甲盈利为1000×10%-1000×(1+10%)×(1-10%)×(1-0.9)=1(元).11.-2012.3 解析:∵f (x )是偶函数,∴f (-x )=f (x ),即(m -2)·(-x )2-(m -1)x +3=(m -2)x 2+(m -1)x +3,∴m =1.∴f (x )=-x 2+3.f (x )max =3.13.-x 2+5x14.54 32 解析:y =2x -1x +1=2x +2-3x +1=2-3x +1,显然在(-1,+∞)单调递增,故当 x ∈[3,5]时,f (x )min =f (3)=54,f (x )max =f (5)=32. 15.解:(1)∵⎩⎪⎨⎪⎧ 11-x 2>0,11-x 2>2⇒-3<x <3,∴A ={x |-3<x <3}. ∵x 2-x -6>0,∴B ={x |x <-2或x >3}.∴A ∩B ={x |-3<x <-2}.(2)∁U M =A ∩B ={x |-3<x <-2}={x |x 2+bx +c <0},∴-3,-2是方程x 2+bx +c =0的两根,则⎩⎪⎨⎪⎧ -b =(-3)+(-2),c =(-3)·(-2)⇒⎩⎪⎨⎪⎧ b =5,c =6. 16.解:(1)函数f (x )的定义域为R ,f (-x )=-bx ax 2+1=-f (x ),故f (x )是奇函数. (2)由f (1)=b a +1=12,则a -2b +1=0. 又log 3(4a -b )=1,即4a -b =3.由⎩⎪⎨⎪⎧ a -2b +1=0,4a -b =3,得⎩⎪⎨⎪⎧a =1,b =1. 17.解:令f (x )=3x 2-5x +a ,则其图象是开口向上的抛物线.因为方程f (x )=0的两根分别在(-2,0)和(1,3)内, 故⎩⎪⎨⎪⎧ f (-2)>0,f (0)<0,f (1)<0,f (3)>0,即⎩⎪⎨⎪⎧ 3×(-2)2-5×(-2)+a >0,a <0,3-5+a <0,3×9-5×3+a >0,解得-12<a <0.故参数a 的取值范围是(-12,0).18.解:(1)当每辆车的月租金为3600元时,未租出的车辆数为3600-300050=12(辆). 所以这时租出的车辆数为100-12=88(辆).(2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=⎝⎛⎭⎫100-x -300050(x -150)-⎝⎛⎭⎫x -300050×50所以f (x )=-150x 2+162x -21 000 =-150(x -4050)2+307 050. 所以当x =4050时,f (x )最大,最大值为307 050,即当每辆车的月租金为4050元时,租赁公司的月收益最大,最大收益为307 050元.19.解:(1)由已知,得⎩⎨⎧ 2+2a +b =52,4+22a +b =174,解得⎩⎪⎨⎪⎧ a =-1,b =0. (2)由(1),知f (x )=2x +2-x ,任取x ∈R ,有f (-x )=2-x +2-(-x )=2-x +2x =f (x ),∴f (x )为偶函数.(3)任取x 1,x 2∈(-∞,0],且x 1<x 2,则f (x 1)-f (x 2)=(12x +12x -)-(22x +22x -)=(12x -22x )+121122x x ⎛⎫- ⎪⎝⎭=(12x -22x )121122x x ⎛⎫- ⎪⎝⎭=(12x -22x )121222122x x x x -. ∵x 1,x 2∈(-∞,0]且x 1<x 2,∴0<12x <22x ≤1.从而12x -22x <0,12x ·22x -1<0,12x ·22x >0, 故f (x 1)-f (x 2)>0.∴f (x )在(-∞,0]上单调递减.(4)∵f (x )在(-∞,0]上单调递减,且f (x )为偶函数,可以证明f (x )在[0,+∞)上单调递增(证明略).∴当x ≥0时,f (x )≥f (0);当x ≤0时,f (x )≥f (0).从而对任意的x ∈R ,都有f (x )≥f (0)=20+20=2,∴f (x )min =2.20.(1)证明:函数f (x )的定义域为(0,+∞),设0<x 1<x 2,则ln x 1<ln x 2,2x 1<2x 2.∴ln x 1+2x 1-6<ln x 2+2x 2-6.∴f (x 1)<f (x 2).∴f (x )在(0,+∞)上是增函数.(2)证明:∵f (2)=ln2-2<0,f (3)=ln3>0,∴f (2)·f (3)<0.∴f (x )在(2,3)上至少有一个零点,又由(1),知f (x )在(0,+∞)上是增函数,因此函数至多有一个根,从而函数f (x )在(0,+∞)上有且只有一个零点.(3)解:f (2)<0,f (3)>0,∴f (x )的零点x 0在(2,3)上,取x 1=52,∵f ⎝⎛⎭⎫52=ln 52-1<0, ∴f ⎝⎛⎭⎫52·f (3)<0.∴x 0∈⎝⎛⎭⎫52,3. 取x 1=114,∵f ⎝⎛⎭⎫114=ln 114-12>0, ∴f ⎝⎛⎭⎫52·⎝⎛⎭⎫114<0.∴x 0∈⎝⎛⎭⎫52,114. 而⎪⎪⎪⎪114-52=14≤14,∴⎝⎛⎭⎫52,114即为符合条件的区间.。
(人教版A版最新)高中数学必修第一册 第三章综合测试02-答案
1
1
f
(2)
f
(3)
f
(4)
f
(5)
f
2
f
3
f
4
f
5
f
(2)
f
2
f
(3)
f
3
高中数学 必修第一册 3 / 5
1
1
f
(4)
f
4
f
(5)
f
5
3
4
12
b
21.【答案】(1)解:依题意得
f f
(0) 0, 1 02
1
2
即
a
b
高中数学 必修第一册 2 / 5
(2)解:若 f x 为偶函数,则有 f (a) f (a) ,则由(1)得 a 0 ,从而 a 0 ,此时 f (x) x2 2 x 3
是偶函数. (3)解:由(2)知 f (x) x2 2 x 3 ,其图像如图所示,其单调递增区间是[1,0] 和[1, ) .
都有 f x2 f x1 >0 . 函数 f (x) 在 [1, ) 上单调递增,在 (,1) 上单调递减. f (a 1)≥f (2a) ,
x2 x1
a 11≥ 2a 1 ,1≤a≤1.
二、 13.【答案】4 14.【答案】1 15.【答案】[0, 4] 16.【答案】 (1,3)
【解析】当 x<3时, f (x) x2 6x (x 3)2 9≤9 , f x 在 (,3) 上递增,
19.【答案】(1)当 0<x≤10 时, f (x) 0.1x2 2.6x 43 0.1(x 13)2 59.9 ,故 f (x) 在 0<x≤10 时最
大值为 f (10) 0.1 (10 13)2 59.9 59 .当10<x≤16 时, f (x) 59 .当16<x≤30 时, f (x
高中数学 综合检测 新人教A版必修1
综合检测时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集I ={x |-3<x <3,x ∈Z},A ={1,2},B ={-2,-1,2}, 则A ∪∁I B 等于( ) A .{1} B .{1,2} C .{2}D .{0,1,2}解析:∵x ∈Z ,∴I ={-2,-1,0,1,2} ∴∁I B ={0,1} ∴A ∪∁I B ={0,1,2}. 答案:D2.函数y =1x+log 2(x +3)的定义域是( )A .RB .(-3,+∞)C .(-∞,-3)D .(-3,0)∪(0,+∞)解析:函数定义域⎩⎪⎨⎪⎧x ≠0x +3>0∴-3<x <0或x >0.答案:D3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =e -xC .y =-x 2+1 D .y =lg |x |解析:偶函数的有C 、D 两项,当x >0时,y =lg |x |单调递增,故选C. 答案:C4.设x 0是方程ln x +x =4的解,则x 0属于区间( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:设f (x )=ln x +x -4,则有f (1)=ln 1+1-4=-3<0.f (2)=ln 2+2-4= ln 2-2<1-2=-1<0,f (3)=ln 3+3-4=ln 3-1>1-1=0. ∴x 0∈(2,3). 答案:C5.3log 34-2723-lg 0.01+ln e 3=( ) A .14B .0C .1D .6解析:原式=4-3272-lg 0.01+3=7-323-lg 10-2=9-9=0.答案:B6.若y =log 3x 的反函数是y =g (x ),则g (-1)=( ) A .3 B .-3 C.13D .-13解析:由题设可知g (x )=3x ,∴g (-1)=3-1=13.答案:C7.若实数x ,y 满足|x |-ln 1y=0,则y 关于x 的函数的图象大致是( )解析:由|x |=ln 1y,则y =⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫1e x ,x ≥0e x ,x <0.答案:B8.已知f (x )=log 12x ,g (x )=2x-1,则函数y =f (x )-g (x )的零点个数为( )A .0B .1C .2D .不确定解析:在同一坐标系中作函数f (x ),g (x )的图象(图略),从而判断两函数交点个数. 答案:B 9.函数f (x )=-1x -3的零点的个数为( )A .0B .1C .2D .3解析:函数的定义域为{x |x ≠1},当x >1时f (x )<0,当x <1时f (x )>0,所以函数没有零点,故选A. 答案:A10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售700台,则下列函数模型中能较好地反映销量y 与投放市场月数x 之间的关系的是( )A.y=100x B.y=50x2-50x+100C.y=50×2x D.y=100log2x+100解析:代入验证即可.答案:B11.若f(x)=ax3+ax+2(a≠0)在[-6,6]上满足f(-6)>1,f(6)<1,则方程f(x)=1在[-6,6]内的解的个数为( )A.1 B.2C.3 D.4解析:设g(x)=f(x)-1,则由f(-6)>1,f(6)<1得[f(-6)-1][f(6)-1]<0,即g(-6)g(6)<0.因此g(x)=f(x)-1在(-6,6)有一个零点.由于g(x)=ax3+ax+1(a≠0),易知当a>0时g(x)单调递增;当a<0时,g(x)单调递减,即函数g(x)为单调函数,故g(x)仅有一个零点.因此方程f(x)=1仅有一个根.故选A.答案:A12.某公司在甲、乙两地销售一种品牌车,利润(单价:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在两地共销售15辆车,则能获得的最大利润为( )A.45.666万元B.45.6万元C.45.56万元D.45.51万元解析:设在甲地销售x辆,在乙地则销售(15-x)辆,∴总利润S=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30(0≤x≤15)∴当x=10时,S有最大值45.6万元.答案:B二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上)13.已知f(x)是定义在R上的偶函数,且当x>0时,f(x)=2x-3,则f(-2)=________.解析:∵f(x)为定义在R上的偶函数,∴f(-x)=f(x),∴f(-2)=f(2)=22-3=1.答案:114.已知集合A={x|ax2-3x+2=0}至多有一个元素,则a的取值范围为________.解析:集合A 有为∅和A 中只有一个元素两种情况,a =0时,A ={23}满足题意,a ≠0时,则由Δ=9-8a ≤0得a ≥98.答案:a ≥98或a =015.用二分法求方程ln x =1x在[1,2]上的近似解时,取中点c =1.5,则下一个有根区间为________.解析:令f (x )=ln x -1x ,则f (1)=-1<0,f (2)=ln 2-12=ln 2-ln e 12>0,f (1.5)=f (32)=ln 32-23=ln 32-ln e 23e 23=3e 2>32,∴ln e 23>ln 32,即f (1.5)<0. ∴下一个有根区间为(1.5,2). 答案:(1.5,2)16. 给出下列四个命题:①a >0且a ≠1时函数y =log a a x与函数y =a log a x 表示同一个函数. ②奇函数的图象一定通过直角坐标系的原点.③函数y =3(x -1)2的图象可由y =3x 2的图象向右平移1个单位得到. ④若函数f (x )的定义域为[0,2],则函数f (2x )定义域为[0,4]. 其中正确命题的序号是________(填上所有正确命题的序号)解析:①两函数定义域不同,y =log a a x定义域为R ,y =a log a x 定义域(0,+∞). ②如果函数在x =0处没有定义,图象就不过原点,如y =1x.③正确.④f (x )定义域[0,2]∴f (2x )定义域0≤2x ≤2即0≤x ≤1, ∴f (2x )定义域为[0,1]. 答案:③三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知A ={x |x 2+2x -8=0},B ={x |log 2(x 2-5x +8)=1},C ={x |x 2-ax +a 2-19=0}.若A ∩C =∅,B ∩C ≠∅,求a 的值.解析:A ={2,-4},B ={2,3}, 由A ∩C =∅知2∉C ,-4∉C , 又由B ∩C ≠∅知3∈C ,∴32-3a +a 2-19=0解得a =-2或a =5, 当a =-2时,C ={3,-5},满足A ∩C =∅, 当a =5时,C ={3,2},A ∩C ={2}≠∅,(舍去), ∴a =-2.18.(本小题满分12分)已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R)(1)当函数f (x )的图象过点(-1,0),且方程f (x )=0有且只有一个根,求f (x )的表达式. (2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解析:(1)因为f (-1)=0,所以a -b +1=0 因为方程f (x )=0有且只有一个根, ∴Δ=b 2-4a =0, ∴b 2-4(b -1)=0, 即b =2,a =1, ∴f (x )=(x +1)2.(2)∵g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1 =(x -k -22)2+1-k -24∴当k -22≥2或k -22≤-2时即k ≥6或k ≤-2时,g (x )是单调函数.19.(本小题满分12分)已知f (x )是定义在(0,+∞)上的增函数, 且对任意x ,y ∈(0,+∞),都有f (xy)=f (x )-f (y ). (1)求f (1)的值;(2)若f (6)=1,解不等式f (x +3)+f ⎝ ⎛⎭⎪⎫1x ≤2.解析:(1)∵f (x )是(0,+∞)上的增函数,且对任意x ,y ∈(0,+∞),都有f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ),∴f (1)=f (11)=f (1)-f (1)=0.(2)若f (6)=1,则f (x +3)+f ⎝ ⎛⎭⎪⎫1x ≤2=1+1=f (6)+f (6),∴f (x +3)-f (6)≤f (6)-f ⎝ ⎛⎭⎪⎫1x ,即f ⎝ ⎛⎭⎪⎫x +36≤f (6x ), ∴0<x +36≤6x ,解得x ≥335.∴原不等式的解集为{x |x ≥335}. 20.(本小题满分12分)已知函数f (x )=mx +n 1+x 2是定义在(-1,1)上的奇函数,且f (12)=25. (1)求实数m ,n 的值;(2)用定义证明f (x )在(-1,1)上为增函数; (3)解关于t 的不等式f (t -1)+f (t )<0. 解析:(1)∵f (x )为奇函数,∴f (-x )=-f (x ), 即m -x +n 1+-x 2=-mx +n1+x2.∴n =0.又∵f ⎝ ⎛⎭⎪⎫12=12m 1+⎝ ⎛⎭⎪⎫122=25,∴m =1.(2)由(1)得,f (x )=x1+x2.设-1<x 1<x 2<1, 则f (x 1)-f (x 2) =x 11+x 21-x 21+x 22=x 1+x 22-x 2+x 21+x 21+x 22=x 1-x 2-x 1x 2+x 21+x 22. ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0,1+x 21>0,1+x 22>0, ∴f (x 1)-f (x 2)<0.∴f (x )在(-1,1)上为增函数.(3)∵f (x )是定义在(-1,1)上的奇函数,由f (t -1)+f (t )<0,得f (t )<-f (t -1)=f (1-t ). 又∵f (x )在(-1,1)上为增函数, ∴⎩⎪⎨⎪⎧-1<t <1,-1<1-t <1,t <1-t ,解得0<t <12.21.(本小题满分13分)某医疗研究所开发了一种新药,如果成人按规定的剂量服用,则服药后每毫升血液中的含药量y 与时间t 之间近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式;(2)据测定,每毫升血液中含药量不少于4μg 时治疗痢疾有效.假设某病人一天中第一次服药时间为上午7:00,问一天中怎样安排服药时间(共4次)效果更佳? 解析:(1)依题意,得y =⎩⎪⎨⎪⎧6t ,0≤t ≤1,-23t +203,1<t ≤10.(2)设第二次服药在第一次服药后t 1小时, 则-23t 1+203=4.解得t 1=4,因而第二次服药应在11:00.设第三次服药在第一次服药后t 2小时,则此时血液中含药量应为前两次服药后的含药量的和,即-23t 2+203-23(t 2-4)+203=4.解得t 2=9小时,故第三次服药应在16:00.设第四次服药在第一次服药后t 3小时(t 3>10),则此时第一次服进的药已吸收完,血液中含药量为第二、三次的和,即-23(t 3-4)+203-23(t 3-9)+203=4.解得t 3=13.5小时,故第四次服药应在20:30.22.(本小题满分13分)已知函数f (x )定义域为[-1,1],若对于任意的x ,y ∈[-1,1],都有f (x +y )=f (x )+f (y ),且x >0时,有f (x )>0,(1)证明: f (x )为奇函数;(2)证明:f (x )在[-1,1]上是增加的.(3)设f (1)=1,若f (x )<m -2am +2,对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数m 的取值范围.解析:(1)令x =y =0,∴f (0)=0 令y =-x ,f (x )+f (-x )=0∴f (-x )=-f (x ),∴f (x )为奇函数. (2)∵f (x )是定义在[-1,1]上的奇函数, 令-1≤x 1<x 2≤1,则f (x 2)-f (x 1)=f (x 2-x 1)>0, ∴f (x )在[-1,1]上是增加的.(3)f (x )在[-1,1]上是增加的,f (x )max =f (1)=1,使f (x )<m -2am +2对所有x ∈[-1,1]恒成立,只要m -2am +2>1,即m -2am +1>0, 令g (a )=m -2am +1=-2am +m +1, 要使g (a )>0时,a ∈[-1,1]恒成立,则⎩⎪⎨⎪⎧g -,g ,即⎩⎪⎨⎪⎧1+3m >0,1-m >0,∴-13<m <1.∴实数m 的取值范围是(-13,1).。
高中数学人教a版高一必修一_章末综合测评3_word版有答案
章末综合测评(三)函数的应用(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数f(x)在区间[a,b]上单调,且f(a)·f(b)<0,则函数f(x)的图象与x轴在区间[a,b]内()A.至多有一个交点B.必有唯一个交点C.至少有一个交点D.没有交点【解析】∵f(a)f(b)<0,∴f(a)与f(b)异号,即f(a)>0,f(b)<0;或者f(a)<0,f(b)>0,显然,在[a,b]内必有一点,使得f(x)=0.又f(x)在区间[a,b]上单调,所以这样的点只有一个,故选B.【答案】 B2.若方程f(x)-2=0在(-∞,0)内有解,则y=f(x)的图象是()【解析】A:与直线y=2交点是(0,2),不符合题意,故不正确;B:与直线y=2无交点,不符合题意,故不正确;C:与直线y=2在区间(0,+∞)上有交点,不符合题意,故不正确;D:与直线y=2在(-∞,0)上有交点,故正确.故选D.【答案】 D3.已知下列四个函数图象,其中能用“二分法”求出函数零点的是()【解析】 由二分法的定义与原理知A 选项正确. 【答案】 A4.2011年全球经济开始转暖,据统计某地区1月、2月、3月的用工人数分别为0.2万,0.4万和0.76万,则该地区这三个月的用工人数y 万人关于月数x 的函数关系近似的是( )A .y =0.2xB .y =110(x 2+2x ) C .y =2x10D .y =0.2+log 16x【解析】 当x =1时,否定B ;当x =2时,否定D ;当x =3时,否定A ,故选C. 【答案】 C5.向高为H 的水瓶以等速注水,注满为止,若水量V 与水深h 的函数的图象如图1所示,则水瓶的形状可能为( )【导学号:97030147】图1【解析】 由水量V 与水深h 的函数的图象,可知随着h 的增加,水量V 增加的越来越快,则对应的水瓶应该是上底面半径大于下底面半径的圆台型,故选A.【答案】 A6.拟定从甲地到乙地通话m 分钟的电话费由f (m )=1.06(0.50×[m ]+1)给出,其中m >0,[m ]是大于或等于m 的最小整数(例如[3.72]=3,[3.8]=4,[3.1]=4),则从甲地到乙地通话时间为5.5分钟的电话费为( )元.A .3.71B .3.97C .4.24D .4.77【解析】 由[m ]是大于或等于m 的最小整数,可得[5.5]=6,所以f (5.5)=1.06×(0.50×6+1)=1.06×4=4.24.故选C.【答案】 C 7.函数f (x )=(x -1)ln (-x )x -3的零点个数为( )A .1个B .2个C .3个D .4个【解析】 ∵函数f (x )=(x -1)ln (-x )x -3的零点个数即为f (x )=0的根的个数,∴f (x )=(x -1)ln (-x )x -3=0,即(x -1)ln(-x )=0,∴x -1=0或ln(-x )=0,∴x =1或x =-1,∵⎩⎨⎧-x >0x -3≠0,解得x <0,∵函数f (x )的定义域为{x |x <0},∴x =-1,即方程f (x )=0只有一个根,∴函数f (x )=(x -1)ln (-x )x -3的零点个数为1个.故选A.【答案】 A8.函数f (x )=3x+12x -2的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)【解析】 由已知可知,函数f (x )=3x +12x -2单调递增且连续,∵f (-2)=-269<0,f (-1)=-136<0,f (0)=-1<0,f (1)=32>0,∴f (0)·f (1)<0,由函数的零点判定定理可知,函数f (x )=3x +12x -2的一个零点所在的区间是(0,1),故选C.【答案】 C9.二次函数f (x )=ax 2+bx +c (x ∈R )的部分对应值如下表:不求a ) A .(-3,-1)和(2,4) B .(-3,-1)和(-1,1) C .(-1,1)和(1,2)D .(-∞,-3)和(4,+∞)【解析】 由于f (-3)=6>0,f (-1)=-4<0,f (2)=-4<0,f (4)=6>0,则f (-3)·f (-1)<0,f (2)·f (4)<0.故方程的两根分别在区间(-3,-1)和(2,4)内.【答案】 A10.某商店计划投入资金20万元经销甲或乙两种商品,已知经销甲商品与乙商品所获得的利润分别为P (万元)和Q (万元),且它们与投入资金x (万元)的关系是:P =x 4,Q =a2x (a >0);若不管资金如何投放,经销这两种商品或其中的一种商品所获得的纯利润总不少于5万元,则a 的最小值应为( )A. 5 B .5 C .±5D .- 5【解析】 设投放x 万元经销甲商品,则经销乙商品投放(20-x )万元,总利润y =P +Q =x 4+a 2·20-x ,令y ≥5,则x 4+a 2·20-x ≥5.∴a 20-x ≥10-x 2,即a ≥1220-x 对0≤x <20恒成立,而f (x )=1220-x 的最大值为5,且x =20时,a 20-x ≥10-x2也成立,∴a min = 5.【答案】 A11.已知函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2x ,若实数x 0是函数f (x )的零点,且0<x 1<x 0,则f (x 1)的值为( )【导学号:97030148】 A .恒为正值 B .等于0 C .恒为负值D .不大于0【解析】 ∵函数f (x )在(0,+∞)上为减函数,且f (x 0)=0,∴当x ∈(0,x 0)时,均有f (x )>0,而0<x 1<x 0,∴f (x 1)>0.【答案】 A12.已知f (x )为偶函数,当x ≥0时,f (x )=-(x -1)2+1,满足f [f (a )]=12的实数a 的个数为( )A .2B .4C .6D .8【解析】 令f (a )=x ,则f [f (a )]=12变形为f (x )=12;当x ≥0时,f (x )=-(x -1)2+1=12,解得x 1=1+22,x 2=1-22; ∵f (x )为偶函数,∴当x <0时,f (x )=12的解为x 3=-1-22,x 4=-1+22; 综上所述,f (a )=1+22,1-22,-1-22,-1+22; 当a ≥0时,f (a )=-(a -1)2+1=1+22,方程无解; f (a )=-(a -1)2+1=1-22,方程有2解; f (a )=-(a -1)2+1=-1-22,方程有1解;f (a )=-(a -1)2+1=-1+22,方程有1解.故当a ≥0时,方程f (a )=x 有4解,由偶函数的性质,易得当a <0时,方程f (a )=x 也有4解,综上所述,满足f [f (a )]=12的实数a 的个数为8,故选D.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.如果函数f (x )=x 2+mx +m +3的一个零点为0,则另一个零点是________.【解析】 函数f (x )=x 2+mx +m +3的一个零点为0,则f (0)=0,∴m +3=0,∴m =-3,则f (x )=x 2-3x ,于是另一个零点是3.【答案】 314.已知长为4,宽为3的矩形,当长增加x ,宽减少x2时,面积达到最大,此时x 的值为________.【解析】 由题意,S =(4+x )⎝ ⎛⎭⎪⎫3-x 2,即S =-12x 2+x +12,∴当x =1时,S 最大.【答案】 115.将进货单价为8元的商品按10元一个销售,每天可卖出100个.若每个涨价1元,则日销售量减少10个.为获得最大利润,则此商品日销售价应定为每个________元.【解析】设每个涨价x元,则实际销售价为10+x元,销售的个数为100-10x,则利润为y=(10+x)(100-10x)-8(100-10x)=-10(x-4)2+360(0≤x<10,x∈N).因此,当x=4,即售价定为每个14元时,利润最大.【答案】1416.给出下列五个命题:①函数y=f(x),x∈R的图象与直线x=a可能有两个不同的交点;②函数y=log2x2与函数y=2log2x是相等函数;③对于指数函数y=2x与幂函数y=x2,总存在x0,当x>x0时,有2x>x2成立;④对于函数y=f(x),x∈[a,b],若有f(a)·f(b)<0,则f(x)在(a,b)内有零点;⑤已知x1是方程x+lg x=5的根,x2是方程x+10x=5的根,则x1+x2=5.其中正确的序号是________.【解析】对于①,函数表示每个输入值对应唯一输出值的一种对应关系,根据定义进行判定即可判断①错;对于②,函数y=log2x2与函数y=2log2x的定义域不等,故不是相等函数,故②错;对于③,当x0取大于等于4的值都可使当x>x0时,有2x>x2成立,故③正确;对于④,只有函数y=f(x)在区间[a,b]上连续,同时f(a)·f(b)<0,则f(x)在(a,b)内有零点.故④错;对于⑤,∵x+lg x=5,∴lg x=5-x.∵x+10x=5,∴10x=5-x,∴lg (5-x)=x.如果做变量代换y=5-x,则lg y=5-y,∵x1是方程x+lg x=5的根,x2是方程x+10x=5的根,∴x1=5-x2,∴x1+x2=5.故正确.【答案】③⑤三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知函数f(x)=x-1+12x2-2,试利用基本初等函数的图象,判断f(x)有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).【解】令y1=x-1,y2=-12x2+2,在同一直角坐标系中分别画出它们的图象(如图所示),其中抛物线的顶点坐标为(0,2),与x轴的交点分别为(-2,0),(2,0),y1与y2的图象有3个交点,从而函数f (x )有3个零点.由f (x )的解析式知x ≠0,f (x )的图象在(-∞,0)和(0,+∞)上分别是连续不断的曲线,且f (-3)=136>0,f (-2)=-12<0,f ⎝ ⎛⎭⎪⎫12=18>0,f (1)=-12<0,f (2)=12>0,即f (-3)·f (-2)<0,f ⎝ ⎛⎭⎪⎫12·f (1)<0,f (1)·f (2)<0,∴3个零点分别在区间(-3,-2),⎝ ⎛⎭⎪⎫12,1,(1,2)内.18.(本小题满分12分)定义在R 上的偶函数y =f (x )在(-∞,0]上递增,函数f (x )的一个零点为-12,求满足f (log 14x )≥0的x 的取值集合.【导学号:97030149】【解】 ∵-12是函数的一个零点,∴f ⎝ ⎛⎭⎪⎫-12=0.∵y =f (x )是偶函数且在(-∞,0]上递增, ∴当log 14x ≤0,解得x ≥1,当log 14x ≥-12, 解得x ≤2,所以1≤x ≤2.由对称性可知,当log 14x >0时,12≤x <1.综上所述,x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.19.(本小题满分12分)燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)求燕子静止时的耗氧量是多少个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?【解】 (1)由题知,当燕子静止时,它的速度v =0,代入题给公式可得:0=5log 2Q10,解得Q =10.即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q =80代入题给公式得:v =5log 28010=5log 28=15(m/s). 即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.20.(本小题满分12分)如图2,直角梯形OABC 位于直线x =t 右侧的图形的面积为f (t ).图2(1)试求函数f (t )的解析式; (2)画出函数y =f (t )的图象. 【导学号:97030150】 【解】 (1)当0≤t ≤2时,f (t )=S 梯形OABC -S △ODE =(3+5)×22-12t ·t =8-12t 2, 当2<t ≤5时,f (t )=S 矩形DEBC =DE ·DC =2(5-t )=10-2t , 所以f (t )=⎩⎪⎨⎪⎧8-12t 2,(0≤t ≤2),10-2t ,(2<t ≤5).(2)函数f (t )图象如图所示.21.(本小题满分12分)某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为2.10元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y 元.已知甲、乙两用户该月用水量分别为5x,3x 吨.(1)求y 关于x 的函数;(2)如甲、乙两户该月共交水费40.8元,分别求出甲、乙两户该月的用水量和水费. 【解】 (1)当甲的用水量不超过4吨时,即5x ≤4,乙的用水量也不超过4吨,y =(5x +3x )×2.1=16.8x ;当甲的用水量超过4吨,乙的用水量不超过4吨时,即3x ≤4且5x >4, y =4×2.1+3x ×2.1+3×(5x -4)=21.3x -3.6. 当乙的用水量超过4吨时,即3x >4,y =8×2.1+3(8x -8)=24x -7.2,所以y =⎩⎪⎨⎪⎧16.8x ⎝ ⎛⎭⎪⎫0≤x ≤45,21.3x -3.6⎝ ⎛⎭⎪⎫45<x ≤43,24x -7.2⎝ ⎛⎭⎪⎫x >43.(2)由于y =f (x )在各段区间上均为单调递增函数, 当x ∈⎣⎢⎡⎦⎥⎤0,45时,y ≤f ⎝ ⎛⎭⎪⎫45<40.8; 当x ∈⎝ ⎛⎦⎥⎤45,43时,y ≤f ⎝ ⎛⎭⎪⎫43<40.8;当x ∈⎝ ⎛⎭⎪⎫43,+∞时,令24x -7.2=40.8,解得x =2,所以甲用户用水量为5x =10吨,付费S 1=4×2.1+6×3=26.40(元); 乙用户用水量为3x =6吨,付费S 2=4×2.1+2×3=14.40(元).22.(本小题满分12分)某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.若每辆车的月租金每增加50元,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为4 000元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大,最大月收益是多少? 【解】 (1)当每辆车的月租金定为4 000元时,能租出的车有:100-4 000-3 00050=80辆.(2)设当每辆车的月租金定为x (x ≥3 000)元时,租赁公司的月收益为y 元,则 y =x ⎝⎛⎭⎪⎫100-x -3 00050-150×100-x -3 00050-50×x -3 00050 =-150(x -4 050)2+4 0502+3 000×50-8 000×15050,则当月租金为4 050元时,租赁公司的月收益最大,4 0502+3 000×50-8 000×150最大月收益是50=30 7050元.。
新教材高中数学单元素养测评卷三第三章函数的概念与性质新人教A版必修第一册
单元素养测评卷(三) 函数的概念与性质一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列函数为奇函数的是( )A .y =|x|B .y =2-xC .y =x 3+xD .y =-x 2+82.[2022·山东临沂一中高一月考]函数f(x)=1x -2 -(x -3)0的定义域是( ) A .[2,+∞) B .(2,+∞) C .(2,3)∪(3,+∞) D .[3,+∞)3.下列各组函数表示相同函数的是( )A .f(x)=x 2 和g(x)=(x )2B .f(x)=1和g(x)=x 0C .f(x)=|x|和g(x)=⎩⎪⎨⎪⎧x ,x ≥0-x ,x<0 D .f(x)=x +1和g(x)=x 2-1x -14.向高为H 的水瓶内注水,一直到注满为止,如果注水量V 与水深h 的函数图象如图所示,那么水瓶的形状大致是( )5.下图是函数y =f(x)的图象,f(6)的值为( )A .3B .4C .5D .66.使幂函数y =x α为偶函数,且在(0,+∞)上是减函数的α值为( )A .-1B .-23C .-12D .27.某电影票单价30元,相关优惠政策如下:①团购10张票,享受9折优惠;②团购30张票,享受8折优惠;③购票总额每满500元减80元.每张电影票只能享受一种优惠政策,现需要购买48张电影票,合理设计购票方案,费用最少为( )A .1 180元B .1 230元C .1 250元D .1 152元8.[2022·河北张家口高一期末]设奇函数f(x)在(0,+∞)上单调递增,且f(2)=0,则不等式f (x )-f (-x )x<0的解集是( )A .{x|0<x<2}B .{x|x<-2或x>2}C .{x|x>2}D .{x|-2<x<0或0<x<2}二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.[2022·广东湛江高一期末]下列函数中,在(0,+∞)上的值域是(0,+∞)的是( )A .y =x 12B .y =x 2-2x +1C .y =3xD .y =x 310.下列函数中,满足f(2x)=2f(x)的是( )A .f(x)=|2x|B .f(x)=xC .f(x)=xD .f(x)=1x11.设函数f(x)、g(x)的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论正确的是( )A .f (x )·g (x )是奇函数B .|f (x )|·g (x )是偶函数C .f (x )·|g (x )|是偶函数D .|f (x )·g (x )|是奇函数12.给定函数f (x )=x +1,g (x )=(x +1)2,x ∈R ,用M (x )表示f (x ),g (x )中较大者,记为M (x )=max{f (x ),g (x )},则下列错误的说法是( )A .M (2)=3B .∀x ≥1,M (x )≥2C .M (x )有最大值D .M (x )最小值为0三、填空题(本题共4小题,每小题5分,共20分.)13.[2022·广东茂名高一期末]我国著名的数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微;数形结合百般好,隔裂分家万事休,在数学学习和研究中,常用函数的图象来研究函数的性质.请写出一个在(0,+∞)上单调递增且图象关于y 轴对称的函数:________.14.[2022·湖南岳阳高一期末]若函数f (x )=⎩⎪⎨⎪⎧x 3,x ≥0x +2,x <0,则f (f (-1))=________.15.[2022·清华附中高一期末]已知x ∈[-3,-1],则函数y =x +4x+2的最大值为________,最小值为________.16.若函数f (x )是定义在R 上的偶函数,在(-∞,0)上是增函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)[2022·湖南新化高一期末]已知函数f (x )=x +3+1x +2. (1)求f (x )的定义域和f (-3)的值; (2)当a >0时,求f (a ),f (a -1)的值.18.(本小题满分12分)已知函数f (x )=|x +1|-|2x -3|.(1)把函数y =f (x )的解析式写成分段函数的形式; (2)在坐标系中画出y =f (x )的图象.19.(本小题满分12分)[2022·山东枣庄高一期末]已知函数f (x )=mx +11+x2是R 上的偶函数.(1)求实数m 的值,判断函数f (x )在[0,+∞)上的单调性(不必证明); (2)求函数f (x )在[-3,2]上的最大值和最小值.20.(本小题满分12分)[2022·河北秦皇岛高一期末]已知函数f (x )=x -1x.(1)判断f (x )在区间(0,+∞)上的单调性,并用定义证明; (2)判断f (x )的奇偶性,并求f (x )在区间[-2,-1]上的值域.21.(本小题满分12分)已知奇函数f (x )的定义域为(-∞,0)∪(0,+∞),当x >0时,f (x )=1-x x.(1)若a >0,求f (-a );(2)当x <0时,求f (x )的解析式;(3)若f (m )=12,求m 的值.22.(本小题满分12分)某企业开发生产了一种大型电子产品,生产这种产品的年固定成本为2 500万元,每生产x 百件,需另投入成本c (x )(单位:万元),当年产量不足30百件时,c (x )=10x 2+100x ;当年产量不小于30百件时,c (x )=501x +10 000x-4 500;若每件电子产品的售价为5万元,通过市场分析,该企业生产的电子产品能全部销售完.(1)求年利润y (万元)关于年产量x (百件)的函数关系式;(2)年产量为多少百件时,该企业在这一电子产品的生产中获利最大?单元素养测评卷(三)1.答案:C解析:由y =|x |,可得f (-x )=|-x |=|x |=f (x ),x ∈R ,即f (x )=|x |为偶函数; 由y =2-x ,可得f (-x )=2+x ≠f (x ),且f (-x )≠-f (x ),x ∈R ,所以f (x )=2-x 既不是奇函数也不是偶函数;由y =x 3+x ,可得f (-x )=(-x )3+(-x )=-(x 3+x )=-f (x ),x ∈R ,所以f (x )=x 3+x 是奇函数;由y =-x 2+8,可得f (-x )=-(-x )2+8=-x 2+8=f (x ),x ∈R ,所以f (x )=-x 2+8是偶函数.2.答案:C 解析:由⎩⎪⎨⎪⎧x -2>0x -3≠0,解得x >2且x ≠3.∴函数f (x )=1x -2-(x -3)0的定义域为(2,3)∪(3,+∞).3.答案:C解析:对A :因为f (x )=x 2=|x |定义域为R ,g (x )=(x )2定义域为[0,+∞),所以f (x )与g (x )不是相同函数;对B :因为f (x )=1定义域为R ,g (x )=x 0定义域为(-∞,0)∪(0,+∞),所以f (x )与g (x )不是相同函数;对C :因为f (x )=|x |=⎩⎪⎨⎪⎧x ,x ≥0-x ,x <0,g (x )=⎩⎪⎨⎪⎧x ,x ≥0-x ,x <0,所以f (x )与g (x )定义域和对应关系相同,所以f (x )与g (x )是相同函数;对D :因为f (x )=x +1定义域为R ,g (x )=x 2-1x -1定义域为(-∞,1)∪(1,+∞),所以f (x )与g (x )不是相同函数.4.答案:B解析:当容器是圆柱时,容积V =πr 2h ,r 不变,V 是h 的正比例函数,其图象是过原点的直线,∴选项D 不满足条件;由函数图象可以看出,随着高度h 的增加V 也增加,但随h 变大,每单位高度的增加,体积V 的增加量变小,图象上升趋势变缓,∴容器平行于底面的截面半径由下到上逐渐变小, ∴A 、C 不满足条件,而B 满足条件. 5.答案:A解析:由图象可知x ∈[3,9]时,y =f (x )为一次函数,且过点(3,6),(9,0),设x ∈[3,9]时,f (x )=kx +b ,则⎩⎪⎨⎪⎧6=3k +b 0=9k +b ,解得⎩⎪⎨⎪⎧k =-1b =9,则f (x )=-x +9,因此f (6)=-6+9=3. 6.答案:B解析:A 选项,y =1x是奇函数,不符合题意.B 选项,y =13x 2为偶函数,且在(0,+∞)上是减函数,符合题意.C 选项,y =1x是非奇非偶函数,不符合题意.D 选项,y =x 2,在(0,+∞)上递增,不符合题意. 7.答案:A解析:由第③种方案可知,500÷30≈16.7,17×30=510,510-80=430, 430÷510≈0.84,则第③种方案约为84折,所以先以第②种方案购票30张: 30×30×0.8=720(元),再以第③种方案购买余下的18张:18×30-80=460(元), 所以共需要720+460=1 180(元). 8.答案:D解析:∵f (x )为奇函数,∴f (-x )=-f (x );又f (x )在(0,+∞)上单调递增,f (2)=0,∴f (x )在(-∞,0)上单调递增,f (-2)=0;f (x )-f (-x )x =2f (x )x <0,即f (x )x<0;当x >0时,f (x )<0,∴0<x <2;当x <0时,f (x )>0, ∴-2<x <0, ∴f (x )-f (-x )x<0的解集为{x |-2<x <0或0<x <2}.9.答案:ACD解析:A.y =x 12在(0,+∞)上是增函数,所以函数的值域为(0,+∞),所以该选项正确;B .y =x 2-2x +1在(0,+∞)上的值域是[0,+∞),所以该选项错误;C .y =3x在(0,+∞)上是减函数,所以函数的值域为(0,+∞),所以该选项正确;D .y =x 3在(0,+∞)上是增函数,所以函数的值域为(0,+∞),所以该选项正确. 10.答案:AB解析:f (x )=|2x |,f (2x )=4|x |,2f (x )=4|x |,∴A 正确;f (x )=x ,满足f (2x )=2x =2f (x ),∴B 正确;f (x )=x ,f (2x )=2x ,2f (x )=2x ,不满足f (2x )=2f (x ),∴C 不正确; f (x )=1x ,f (2x )=12x ,2f (x )=2x,∴D 不正确.11.答案:AB解析:∵f (x )是奇函数,g (x )是偶函数,∴f (-x )=-f (x ),g (-x )=g (x ),f (-x )·g (-x )=-f (x )·g (x ),故f (x )·g (x )是奇函数,A 正确;|f (-x )|·g (-x )=|f (x )|·g (x ),故|f (x )|·g (x )为偶函数,B 正确;f (-x )·|g (-x )|=-f (x )·|g (x )|,故f (x )·|g (x )|是奇函数,C 错误;|f (-x )·g (-x )|=|f (x )·g (x )|,故|f (x )·g (x )|为偶函数,D 错误.12.答案:ABC解析:由f (x )-g (x )>0,即x +1-(x +1)2>0,可得-1<x <0, 由f (x )-g (x )≤0,即x +1-(x +1)2≤0,可得x ≤-1或x ≥0,所以M (x )=⎩⎪⎨⎪⎧x +1,-1<x <0(x +1)2,x ≤-1或x ≥0, 当x =2时,M (2)=(2+1)2=9,A 选项错误; 当x ≥1时,M (x )min =M (1)=(1+1)2=4,B 选项错误; 当x ≥0时,M (x )为单调递增函数,无最大值,C 选项错误;因为M (x )在(-∞,-1]上单调递减,在(-1,+∞)上单调递增,所以M (x )min =M (-1)=0,D 选项正确.13.答案:y =x 2(答案不唯一)解析:∵函数在(0,+∞)上单调递增且图象关于y 轴对称,∴函数可为y =x 2. 14.答案:1解析:f (-1)=(-1)+2=1,则f (f (-1))=f (1)=1. 15.答案:-2 -3解析:因函数y =x +4x+2在(-∞,-2)上单调递增,在(-2,0)上单调递减,当x ∈[-3,-1]时,函数y =x +4x+2在[-3,-2]上单调递增,在[-2,-1]上单调递减,即有当x =-2时,y max =-2,而当x =-3时,y =-73,当x =-1时,y =-3,则y min =-3,所以函数y =x +4x+2的最大值为-2,最小值为-3.16.答案:{x |x >2或x <-2}解析:因为函数f (x )是定义在R 上的偶函数,在(-∞,0)上是增函数, 所以f (x )在[0,+∞)单调递减,又f (2)=0,所以f (-2)=f (2)=0, 所以当x >2时f (x )<0,当0<x <2时f (x )>0, 当x <-2时f (x )<0,当-2<x <0时f (x )>0,综上可得当x >2或x <-2时f (x )<0,即不等式的解集为{x |x >2或x <-2}.17.解析:(1)由⎩⎪⎨⎪⎧x +3≥0x +2≠0,则定义域为[-3,-2)∪(-2,+∞),且f (-3)=-3+3+1-3+2=-1. (2)由a >0,结合(1)知f (a ),f (a -1)有意义.所以f (a )=a +3+1a +2,f (a -1)=a -1+3+1a -1+2=a +2+1a +1. 18.解析:(1)当x >32时,f (x )=|x +1|-|2x -3|=x +1-2x +3=4-x ;当-1≤x ≤32时,f (x )=|x +1|-|2x -3|=x +1+2x -3=3x -2;当x <-1时,f (x )=|x +1|-|2x -3|=-x -1+2x -3=x -4.故f (x )=⎩⎪⎨⎪⎧4-x ,x >323x -2,-1≤x ≤32x -4,x <-1. (2)函数图象如图所示:19.解析:(1)若函数f (x )=mx +11+x2是R 上的偶函数,则f (-x )=f (x ). 即m (-x )+11+(-x )2=mx +11+x2,解得m =0.所以f (x )=11+x2.函数f (x )在[0,+∞)上单调递减.(2)由(1)知函数f (x )在[0,+∞)上单调递减, 又函数f (x )是R 上的偶函数, 所以函数f (x )在(-∞,0]上为增函数,所以函数f (x )在[-3,0]上为增函数,在[0,2]上为减函数. 又f (-3)=110,f (0)=1,f (2)=15,所以f (x )min =f (-3)=110,f (x )max =f (0)=1.20.解析:(1)f (x )在区间(0,+∞)上单调递增,证明如下: ∀x 1,x 2∈(0,+∞),且x 1<x 2,有f (x 1)-f (x 2)=(x 1-1x 1)-(x 2-1x 2)=(x 1-x 2)+(1x 2-1x 1)=(x 1-x 2)+x 1-x 2x 1x 2=x 1-x 2x 1x 2(x 1x 2+1).因为x 1,x 2∈(0,+∞),且x 1<x 2,所以x 1x 2>0,x 1-x 2<0. 于是x 1-x 2x 1x 2(x 1x 2+1)<0,即f (x 1)<f (x 2). 故f (x )在区间(0,+∞)上单调递增. (2)f (x )的定义域为(-∞,0)∪(0,+∞).因为f (-x )=-x +1x=-f (x ),所以f (x )为奇函数.由(1)得f (x )在区间(0,+∞)上单调递增, 结合奇偶性可得f (x )在区间(-∞,0)上单调递增. 又因为f (-2)=-32,f (-1)=0,所以f (x )在区间[-2,-1]上的值域为[-32,0].21.解析:(1)因为f (x )是奇函数,∴f (-a )=-f (a ); 又a >0,且当x >0时,f (x )=1-x x ,∴f (a )=1-aa,所以f (-a )=-f (a )=a -1a. (2)当x <0时,-x >0,∴f (-x )=1-(-x )-x =-1+xx ,又因为f (x )是奇函数,∴f (x )=-f (-x ), 所以,当x <0时,f (x )=1+xx;(3)由(2)可得f (x )=⎩⎪⎨⎪⎧1-xx ,x >01+x x ,x <0,当m >0时,f (m )=1-mm,由1-m m =12,得m =23,11 当m <0,f (m )=1+m m, 由1+m m =12,得m =-2, 所以,m 的值为23或-2. 22.解析:(1)当0<x <30时,y =500x -10x 2-100x -2 500=-10x 2+400x -2 500;当x ≥30时,y =500x -501x -10 000x +4 500-2 500=2 000-(x +10 000x); ∴y =⎩⎪⎨⎪⎧-10x 2+400x -2 500,0<x <302 000-(x +10 000x ),x ≥30. (2)当0<x <30时,y =-10(x -20)2+1 500,∴当x =20时,y max =1 500;当x ≥30时,y =2 000-(x +10 000x )≤2 000-2 x ·10 000x=2 000-200=1 800, 当且仅当x =10 000x,即x =100时,y max =1 800>1 500. ∴年产量为100百件时,该企业获得利润最大,最大利润为1 800万元.。
人教A版数学必修一第3章综合素能检测.docx
第三章综合素能检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013~2014学年度河北孟村回民中学月考试题)若函数f (x )在[a ,b ]上连续,且同时满足f (a )·f (b )<0,f (a )·f (a +b2)>0.则( )A .f (x )在[a ,a +b2]上有零点B .f (x )在[a +b2,b ]上有零点C .f (x )在[a ,a +b2]上无零点D .f (x )在[a +b2,b ]上无零点[答案] B[解析] 由已知,易得f (b )·f (a +b 2)<0,因此f (x )在[a +b2,b ]上一定有零点,但在其他区间上可能有零点,也可能没有零点.2.函数y =1+1x 的零点是( )A .(-1,0)B .x =-1C .x =1D .x =0[答案] B3.下列函数中,增长速度最快的是( ) A .y =20x B .y =x 20 C .y =log 20x D .y =20x [答案] D4.已知函数f (x )=2x -b 的零点为x 0,且x 0∈(-1,1),那么b 的取值范围是( ) A .(-2,2) B .(-1,1) C .(-12,12)D .(-1,0)[答案] A[解析] f (x )=2x -b =0,得x 0=b2,所以b2∈(-1,1),所以b ∈(-2,2).5.函数f (x )=ax +b 的零点是-1(a ≠0),则函数g (x )=ax 2+bx 的零点是( ) A .-1 B .0 C .-1和0 D .1和0 [答案] C[解析] 由条件知f (-1)=0,∴b =a ,∴g (x )=ax 2+bx =ax (x +1)的零点为0和-1. 6.二次函数f (x )=ax 2+bx +c (x ∈R )的部分对应值如下表:x -3 -2 -1 0 1 2 3 4 y6m-4-6-6-4n6由此可以判断方程ax 2+bx +c =0的两个根所在的区间是( ) A .(-3,-1)和(2,4) B .(-3,-1)和(-1,1) C .(-1,1)和(1,2) D .(-∞,-3)和(4,+∞)[答案] A[解析] ∵f (-3)=6>0,f (-1)=-4<0, ∴f (-3)·f (-1)<0.∵f (2)=-4<0,f (4)=6>0,∴f (2)·f (4)<0.∴方程ax 2+bx +c =0的两根所在的区间分别是(-3,-1)和(2,4). 7.用二分法求方程f (x )=0在区间(1,2)内的唯一实数解x 0时,经计算得f (1)=3,f (2)=-5,f (32)=9,则下列结论正确的是( )A .x 0∈(1,32)B .x 0=-32C .x 0∈(32,2)D .x 0=1[答案] C[解析] 由于f (2)·f (32)<0,则x 0∈(32,2).8.在一次数学试验中,应用图形计算器采集到如下一组数据:x-2.0-1.01.002.003.00y 0.24 0.51 1 2.02 3.98 8.02则x ,y 的函数关系与下列哪类函数最接近?(其中a ,b 为待定系数)( ) A .y =a +bx B .y =a +b x C .y =ax 2+b D .y =a +bx[答案] B[解析] 代入数据检验,注意函数值.9.设a ,b ,k 是实数,二次函数f (x )=x 2+ax +b 满足:f (k -1)与f (k )异号,f (k +1)与f (k )异号.在以下关于f (x )的零点的说法中,正确的是( )A .该二次函数的零点都小于kB .该二次函数的零点都大于kC .该二次函数的两个零点之间差一定大于2D .该二次函数的零点均在区间(k -1,k +1)内 [答案] D[解析] 由题意得f (k -1)·f (k )<0,f (k )·f (k +1)<0,由零点的存在性定理可知,在区间(k -1,k ),(k ,k +1)内各有一个零点,零点可能是区间内的任何一个值,故D 正确.10.(2013~2014山东梁山一中期中试题)若函数f (x )=x 3-x -1在区间[1,1.5]内的一个零点附近函数值用二分法逐次计算列表如下x 1 1.5 1.25 1.375 1.3125 f (x )-10.875-0.29690.2246-0.05151那么方程x 3-x -1=0的一个近似根(精确度为0,1)为( ) A .1.2 B .1.3125 C .1.4375 D .1.25[答案] B[解析] 由于f (1.375)>0,f (1.3125)<0,且 1.375-1.3125<0.1,故选B.11.(2013~2014河北广平县高一期中试题)“龟兔赛跑”讲过了这样一个故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到了终点,用S 1、S 2分别表示乌龟和兔子所行的路线,t 为时间,则图中与故事情节相吻合的是( )[答案] D12.已知函数f (x )的图象如图,则它的一个可能的解析式为( )A .y =2xB .y =4-4x +1C .y =log 3(x +1)D .y =x 13(x ≥0)[答案] B[解析] 由于过(1,2)点,排除C 、D ;由图象与直线y =4无限接近,但到达不了,即y <4知排除A ,∴选B.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.如函数f (x )=x 2+mx +m +3的一个零点为0,则另一个零点是________. [答案] 3[解析] 代入x =0得m =-3.∴f (x )=x 2-3x ,则x 2-3x =0得x 1=0,x 2=3 因此另一个零点为3.14.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3,则下一个有根区间是________.[答案] (2,3)[解析] 设f (x )=x 3-3x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3).15.已知函数y =f (x )是R 上的奇函数,其零点为x 1,x 2,…,x 2013,则x 1+x 2+…+x 2013=________.[答案] 0[解析] 由于奇函数图象关于原点对称,因此零点是对称,所以x 1+x 2+…+x 2013=0. 16.已知y =x (x -1)(x +1)的图象如图所示.令f (x )=x (x -1)(x +1)+0.01,则下列关于f (x )=0的解叙述正确的是________.①有三个实根; ②x >1时恰有一实根; ③当0<x <1时恰有一实根; ④当-1<x <0时恰有一实根;⑤当x <-1时恰有一实根(有且仅有一实根). [答案] ①⑤[解析] f (x )的图象是将函数y =x (x -1)(x +1)的图象向上平移0.01个单位得到.故f (x )的图象与x 轴有三个交点,它们分别在区间(-∞,-1),(0,12)和(12,1)内,故只有①⑤正确.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求函数f (x )=2x +lg(x +1)-2的零点个数. [解析] 解法一:∵f (0)=1+0-2=-1<0,f (2)=4+lg3-2=2+lg3>0, ∴函数f (x )在区间(0,2)上必定存在零点.又f (x )=2x +lg(x +1)-2在区间(-1,+∞)上为增函数,故函数f (x )有且只有一个零点. 解法二:在同一坐标系内作出函数h (x )=2-2x 和g (x )=lg(x +1)的图象,如图所示,由图象知y =lg(x +1)和y =2-2x 有且只有一个交点,即f (x )=2x +lg(x +1)-2有且只有一个零点.18.(本小题满分12分)北京市的一家报刊摊点,从报社买进《北京日报》的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?[解析] 设每天从报社买进x 份报纸,每月获得的总利润为y 元,则依题意有 y =0.10(20x +10×250)-0.15×10(x -250) =0.5x +625,x ∈[250,400].该函数在[250,400]上单调递增,所以x =400时,y max =825(元).答:摊主每天从报社买进400份时,每月所获得的利润最大,最大利润为825元. 19.(本小题满分12分)某公司今年1月份推出新产品A ,其成本价为492元/件,经试销调查,销售量与销售价的关系如下表:销售价x (元/件) 650 662 720 800 销售量y (件)350333281200由此可知,销售量y (件)与销售价x (元/件)可近似看作一次函数y =kx +b 的关系(通常取表中相距较远的两组数据所得的一次函数较为精确).试问:销售价定为多少时,1月份利润最大?并求最大利润和此时的销售量.[解析] 由表可知⎩⎪⎨⎪⎧ 350=650k +b ,200=800k +b ⇒⎩⎪⎨⎪⎧k =-1,b =1000,故y =-x +1000. 设1月份利润为W ,则W =(x -492)(-x +1000)=-x 2+1492x -492000=-(x -746)2+64516,∴当x =746,W max =64516,此时销售量为1000-746=254件,即当销售价定为746元/件时,1月份利润最大,最大利润为64516元,此时销售量为254件.20.(本小题满分12分)用二分法求f (x )=x 3+x 2-2x -2在x 的正半轴上的一个零点(误差不超过0.1).[解析] 显然f (2)=23+22-2×2-2=6>0. 当x >2时f (x )>0,又f (0)=-2<0,f (1)=-2<0, 故f (x )在(1,2)区间内有零点.区间 中点值 中点函数值 [1,2] 1.5 0.625 [1,1.5] 1.25 -0.984 [1.25,1.5] 1.375 -0.260 [1.375,1.5] 1.438 0.165 [1.375,1.438]因为|1.375-1.438|=0.063<0.1,故f (x )=x 3+x 2-2x -2的零点为x =1.4.21.(本小题满分12分)某城市有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,但不超过40小时.设在甲家租一张球台开展活动x 小时的收费为f (x )元(15≤x ≤40),在乙家租一张球台开展活动x 小时的收费为g (x )元(15≤x ≤40).(1)求f (x )和g (x );(2)问:小张选择哪家比较合算?为什么? [解析] (1)f (x )=5x (15≤x ≤40);g (x )=⎩⎪⎨⎪⎧90,15≤x ≤30,2x +30,30<x ≤40.(2)由f (x )=g (x ),得⎩⎪⎨⎪⎧ 15≤x ≤30,5x =90或⎩⎪⎨⎪⎧30<x ≤40,5x =2x +30,即x =18或x =10(舍).当15≤x <18时,f (x )-g (x )=5x -90<0, 即f (x )<g (x ),应选甲家;当x =18时,f (x )=g (x ),即可以选甲家也可以选乙家. 当18<x ≤30时,f (x )-g (x )=5x -90>0, 即f (x )>g (x ),应选乙家. 当30<x ≤40时,f (x )-g (x )=5x -(2x +30)=3x -30>0, 即f (x )>g (x ),应选乙家.综上所述:当15≤x <18时,选甲家; 当x =18时,可以选甲家也可以选乙家; 当18<x ≤40时,选乙家.22.(本小题满分12分)一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比.(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?[分析] (1)根据10年的砍伐面积为原来的一半,列方程求解. (2)根据到今年为止,森林剩余面积为原来的22,列方程求解. (3)求出第n 年后森林剩余面积,根据森林面积至少要保留原面积的14列不等式求解.[解析] (1)设每年砍伐面积的百分比为x (0<x <1),则a (1-x )10=12a ,即(1-x )10=12.解得x =1-(12)110 .(2)设经过m 年剩余面积为原来的22,则a (1-x )m=22a ,即(12)m10 =(12)12 ,m 10=12,解得m =5. 故到今年为止,已砍伐了5年. (3)设从今年开始,以后砍伐了n 年, 则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, (12)n 10 ≥(12)32 ,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.[点评] 通过本题,重点强调高次方程、指数不等式的解法.对于高次方程应让学生明确,主要是开方运算;对于指数不等式,强调化为同底,应用指数函数的单调性求解,本题中化为同底是一大难点.。
高中数学第3章综合素能检测新人教A版必修1
本试卷分第Ⅰ卷 ( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分。满分 150 分。考试时间 120 分钟。
第Ⅰ卷 ( 选择题 共 60 分 )
一、选择题 ( 本大题共 12 个小题,每小题 5 分,共 60 分, 在每小题给出的四个选项中,
只有一项是符号题目要求的。 ) 1.给出下列四个命题: ①函数 f ( x) = 3x- 6 的零点是 2;②函数 f ( x) =x2+ 4x+ 4 的零
(1) 若通话时间为 2 小时,按方案 A、 B 各付话费多少元? (2) 方案 B 从 500 分钟以后,每分钟收费多少元? (3) 通话时间在什么范围内,方案 B 才会比方案 A 优惠.
[ 解析 ] 由图知 M(60,98) , N(500,230) , C(500,168) , MN∥ CD.
3
3
3
(2) 因为 f B( n+ 1) -f B( n)( n>500) = ( n+ 1) + 18- n- 18= = 0.3( 元 ) .
10
10
10
∴方案 B 从 500 分钟以后,每分钟收费 0.3 元.
(3) 由图知,当 0≤ x≤60 时, f A( x)< f B( x) ,
当 x>500 时, f A( x)> f B( x) ,
8.一个机器人每一秒钟前进或后退一步,程序设计师让机器人先前进
3 步再后退 2 步
的规律移动, 如果将机器人放在数轴的原点, 面向正的方向以一步的距离为一个单位长度. 令
P( n) 表示第 n 秒时机器人所在位置的坐标,且记 P(0) = 0,则下列结论中错误的是 ( )
A. P(3) = 3
B. P(5) = 1
人教A版数学必修一第3章综合素能检测.docx
高中数学学习材料马鸣风萧萧*整理制作第三章综合素能检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013~2014学年度河北孟村回民中学月考试题)若函数f (x )在[a ,b ]上连续,且同时满足f (a )·f (b )<0,f (a )·f (a +b2)>0.则( )A .f (x )在[a ,a +b2]上有零点B .f (x )在[a +b2,b ]上有零点C .f (x )在[a ,a +b2]上无零点D .f (x )在[a +b2,b ]上无零点[答案] B[解析] 由已知,易得f (b )·f (a +b 2)<0,因此f (x )在[a +b2,b ]上一定有零点,但在其他区间上可能有零点,也可能没有零点.2.函数y =1+1x 的零点是( )A .(-1,0)B .x =-1C .x =1D .x =0[答案] B3.下列函数中,增长速度最快的是( ) A .y =20x B .y =x 20 C .y =log 20x D .y =20x [答案] D4.已知函数f (x )=2x -b 的零点为x 0,且x 0∈(-1,1),那么b 的取值范围是( )A .(-2,2)B .(-1,1)C .(-12,12)D .(-1,0)[答案] A[解析] f (x )=2x -b =0,得x 0=b2,所以b2∈(-1,1),所以b ∈(-2,2).5.函数f (x )=ax +b 的零点是-1(a ≠0),则函数g (x )=ax 2+bx 的零点是( ) A .-1 B .0 C .-1和0 D .1和0[答案] C[解析] 由条件知f (-1)=0,∴b =a ,∴g (x )=ax 2+bx =ax (x +1)的零点为0和-1. 6.二次函数f (x )=ax 2+bx +c (x ∈R )的部分对应值如下表:x -3 -2 -1 0 1 2 3 4 y6m-4-6-6-4n6由此可以判断方程ax 2+bx +c =0的两个根所在的区间是( ) A .(-3,-1)和(2,4) B .(-3,-1)和(-1,1) C .(-1,1)和(1,2) D .(-∞,-3)和(4,+∞)[答案] A[解析] ∵f (-3)=6>0,f (-1)=-4<0, ∴f (-3)·f (-1)<0.∵f (2)=-4<0,f (4)=6>0,∴f (2)·f (4)<0.∴方程ax 2+bx +c =0的两根所在的区间分别是(-3,-1)和(2,4). 7.用二分法求方程f (x )=0在区间(1,2)内的唯一实数解x 0时,经计算得f (1)=3,f (2)=-5,f (32)=9,则下列结论正确的是( )A .x 0∈(1,32)B .x 0=-32C .x 0∈(32,2)D .x 0=1[答案] C[解析] 由于f (2)·f (32)<0,则x 0∈(32,2).8.在一次数学试验中,应用图形计算器采集到如下一组数据:x -2.0 -1.0 0 1.00 2.00 3.00 y0.240.5112.023.988.02则x ,y 的函数关系与下列哪类函数最接近?(其中a ,b 为待定系数)( ) A .y =a +bx B .y =a +b x C .y =ax 2+b D .y =a +bx[答案] B[解析] 代入数据检验,注意函数值.9.设a ,b ,k 是实数,二次函数f (x )=x 2+ax +b 满足:f (k -1)与f (k )异号,f (k +1)与f (k )异号.在以下关于f (x )的零点的说法中,正确的是( )A .该二次函数的零点都小于kB .该二次函数的零点都大于kC .该二次函数的两个零点之间差一定大于2D .该二次函数的零点均在区间(k -1,k +1)内 [答案] D[解析] 由题意得f (k -1)·f (k )<0,f (k )·f (k +1)<0,由零点的存在性定理可知,在区间(k -1,k ),(k ,k +1)内各有一个零点,零点可能是区间内的任何一个值,故D 正确.10.(2013~2014山东梁山一中期中试题)若函数f (x )=x 3-x -1在区间[1,1.5]内的一个零点附近函数值用二分法逐次计算列表如下x 1 1.5 1.25 1.375 1.3125 f (x )-10.875-0.29690.2246-0.05151那么方程x 3-x -1=0的一个近似根(精确度为0,1)为( ) A .1.2 B .1.3125 C .1.4375 D .1.25[答案] B[解析] 由于f (1.375)>0,f (1.3125)<0,且 1.375-1.3125<0.1,故选B.11.(2013~2014河北广平县高一期中试题)“龟兔赛跑”讲过了这样一个故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到了终点,用S 1、S 2分别表示乌龟和兔子所行的路线,t 为时间,则图中与故事情节相吻合的是( )[答案] D12.已知函数f (x )的图象如图,则它的一个可能的解析式为( )A .y =2xB .y =4-4x +1C .y =log 3(x +1)D .y =x 13(x ≥0)[答案] B[解析] 由于过(1,2)点,排除C 、D ;由图象与直线y =4无限接近,但到达不了,即y <4知排除A ,∴选B.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.如函数f (x )=x 2+mx +m +3的一个零点为0,则另一个零点是________. [答案] 3[解析] 代入x =0得m =-3.∴f (x )=x 2-3x ,则x 2-3x =0得x 1=0,x 2=3 因此另一个零点为3.14.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3,则下一个有根区间是________.[答案] (2,3)[解析] 设f (x )=x 3-3x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3).15.已知函数y =f (x )是R 上的奇函数,其零点为x 1,x 2,…,x 2013,则x 1+x 2+…+x 2013=________.[答案] 0[解析] 由于奇函数图象关于原点对称,因此零点是对称,所以x 1+x 2+…+x 2013=0. 16.已知y =x (x -1)(x +1)的图象如图所示.令f (x )=x (x -1)(x +1)+0.01,则下列关于f (x )=0的解叙述正确的是________.①有三个实根; ②x >1时恰有一实根; ③当0<x <1时恰有一实根; ④当-1<x <0时恰有一实根;⑤当x <-1时恰有一实根(有且仅有一实根). [答案] ①⑤[解析] f (x )的图象是将函数y =x (x -1)(x +1)的图象向上平移0.01个单位得到.故f (x )的图象与x 轴有三个交点,它们分别在区间(-∞,-1),(0,12)和(12,1)内,故只有①⑤正确.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求函数f (x )=2x +lg(x +1)-2的零点个数. [解析] 解法一:∵f (0)=1+0-2=-1<0,f (2)=4+lg3-2=2+lg3>0, ∴函数f (x )在区间(0,2)上必定存在零点.又f (x )=2x +lg(x +1)-2在区间(-1,+∞)上为增函数,故函数f (x )有且只有一个零点. 解法二:在同一坐标系内作出函数h (x )=2-2x 和g (x )=lg(x +1)的图象,如图所示,由图象知y =lg(x +1)和y =2-2x 有且只有一个交点,即f (x )=2x +lg(x +1)-2有且只有一个零点.18.(本小题满分12分)北京市的一家报刊摊点,从报社买进《北京日报》的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?[解析] 设每天从报社买进x 份报纸,每月获得的总利润为y 元,则依题意有 y =0.10(20x +10×250)-0.15×10(x -250) =0.5x +625,x ∈[250,400].该函数在[250,400]上单调递增,所以x =400时,y max =825(元).答:摊主每天从报社买进400份时,每月所获得的利润最大,最大利润为825元. 19.(本小题满分12分)某公司今年1月份推出新产品A ,其成本价为492元/件,经试销调查,销售量与销售价的关系如下表:销售价x (元/件) 650 662 720 800 销售量y (件)350333281200由此可知,销售量y (件)与销售价x (元/件)可近似看作一次函数y =kx +b 的关系(通常取表中相距较远的两组数据所得的一次函数较为精确).试问:销售价定为多少时,1月份利润最大?并求最大利润和此时的销售量.[解析] 由表可知⎩⎪⎨⎪⎧ 350=650k +b ,200=800k +b ⇒⎩⎪⎨⎪⎧k =-1,b =1000,故y =-x +1000. 设1月份利润为W ,则W =(x -492)(-x +1000)=-x 2+1492x -492000=-(x -746)2+64516,∴当x =746,W max =64516,此时销售量为1000-746=254件,即当销售价定为746元/件时,1月份利润最大,最大利润为64516元,此时销售量为254件.20.(本小题满分12分)用二分法求f (x )=x 3+x 2-2x -2在x 的正半轴上的一个零点(误差不超过0.1).[解析] 显然f (2)=23+22-2×2-2=6>0. 当x >2时f (x )>0,又f (0)=-2<0,f (1)=-2<0, 故f (x )在(1,2)区间内有零点.区间 中点值 中点函数值 [1,2] 1.5 0.625 [1,1.5] 1.25 -0.984 [1.25,1.5] 1.375 -0.260 [1.375,1.5] 1.438 0.165 [1.375,1.438]因为|1.375-1.438|=0.063<0.1,故f (x )=x 3+x 2-2x -2的零点为x =1.4.21.(本小题满分12分)某城市有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,但不超过40小时.设在甲家租一张球台开展活动x 小时的收费为f (x )元(15≤x ≤40),在乙家租一张球台开展活动x 小时的收费为g (x )元(15≤x ≤40).(1)求f (x )和g (x );(2)问:小张选择哪家比较合算?为什么? [解析] (1)f (x )=5x (15≤x ≤40);g (x )=⎩⎪⎨⎪⎧90,15≤x ≤30,2x +30,30<x ≤40.(2)由f (x )=g (x ),得⎩⎪⎨⎪⎧ 15≤x ≤30,5x =90或⎩⎪⎨⎪⎧30<x ≤40,5x =2x +30,即x =18或x =10(舍).当15≤x <18时,f (x )-g (x )=5x -90<0, 即f (x )<g (x ),应选甲家;当x =18时,f (x )=g (x ),即可以选甲家也可以选乙家. 当18<x ≤30时,f (x )-g (x )=5x -90>0, 即f (x )>g (x ),应选乙家. 当30<x ≤40时,f (x )-g (x )=5x -(2x +30)=3x -30>0, 即f (x )>g (x ),应选乙家.综上所述:当15≤x <18时,选甲家; 当x =18时,可以选甲家也可以选乙家; 当18<x ≤40时,选乙家.22.(本小题满分12分)一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比.(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?[分析] (1)根据10年的砍伐面积为原来的一半,列方程求解. (2)根据到今年为止,森林剩余面积为原来的22,列方程求解. (3)求出第n 年后森林剩余面积,根据森林面积至少要保留原面积的14列不等式求解.[解析] (1)设每年砍伐面积的百分比为x (0<x <1),则a (1-x )10=12a ,即(1-x )10=12.解得x =1-(12)110 .(2)设经过m 年剩余面积为原来的22,则a (1-x )m=22a ,即(12)m10 =(12)12 ,m 10=12,解得m =5. 故到今年为止,已砍伐了5年. (3)设从今年开始,以后砍伐了n 年, 则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, (12)n 10 ≥(12)32 ,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.[点评] 通过本题,重点强调高次方程、指数不等式的解法.对于高次方程应让学生明确,主要是开方运算;对于指数不等式,强调化为同底,应用指数函数的单调性求解,本题中化为同底是一大难点.。
高中数学 本册综合素能检测 新人教A版必修1
本册综合素能检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是( ) A.A⊆B B.A∩B={2}C.A∪B={1,2,3,4,5} D.A∩(∁U B)={1}[答案] D[解析] A显然错误;A∩B={2,3},B错;A∪B={1,2,3,4},C错,故选D.2.已知集合A={x|y=1-x2,x∈Z},B={y|y=x2+1,x∈A},则A∩B为( ) A.∅B.{1}C.[0,+∞) D.{(0,1)}[答案] B[解析] 由1-x2≥0得,-1≤x≤1,∵x∈Z,∴A={-1,0,1}.当x∈A时,y=x2+1∈{2,1},即B={1,2},∴A∩B={1}.3.已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是( )[答案] A[解析] ∵f(x)=0时,x=a或x=b.又∵a>b,∴b<-1,0<a<1.根据图象变换,不难得出答案为A.4.下列函数中,在R上单调递减的是( )A .y =|x |B .y =log 2xC .y =x 2D .y =(12)x[答案] D[解析] 由四种函数的图象可知D 正确.5.函数f (x )=2x+3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)[答案] B[解析] ∵f (x )=2x+3x ,∴f (-1)=-52<0,f (0)=1>0,故选B.6.高为H 、满缸水量为V 的鱼缸的轴截面如图所示,其底部碰了一个小洞,满缸水从洞中流出,若鱼缸水深为h 时水的体积为v ,则函数v =f (h )的大致图象是( )[答案] B[解析] 水流速度恒定,开始鱼缸中水的高度下降快,逐渐越来越慢,到达中间,然后高度下降又越来越快,故排除A 、C 、D ,选B.7.实数a =0.22,b =log20.2,c =(2)0.2的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a[答案] C[解析] 根据指数函数和对数函数的性质b =log 20.2<0<a =0.22<1<c =(2)0.2.8.设f (x )=3x+3x -8,用二分法求方程3x+3x -8=0在x ∈[1,3]上的近似解的过程中取区间中点x 0=2,那么下一个有根区间为( )A .[1,2]B .[2,3]C .[1,2]或[2,3]都可以D .不能确定[答案] A[解析] 由于f (1)<0,f (2)>0,f (3)>0,所以下一个有根区间为[1,2]. 9.已知函数f (x )=log 12x ,则方程(12)|x |=|f (x )|的实根个数是( )A .1B .2C .3D .2006[答案] B[解析] 在同一平面直角坐标系中作出函数y =(12)|x |及y =|log 12x |的图象如图,易得B.10.若偶函数f (x )在(-∞,-1]上是增函数,则下列关系式中,成立的是)( ) A .f (-32)<f (-1)<f (2)B .f (-1)<f (-32)<f (2)C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)[答案] D[解析] ∵f (x )为偶函数,∴f (2)=f (-2).又∵-2<-32<-1,且f (x )在(-∞,-1)上是增函数,∴f (2)<f (-32)<f (-1).11.若函数f (x )=lg(10x+1)+ax 是偶函数,g (x )=4x-b2x 是奇函数,则a +b 的值是( )A .12B .1C .-12D .-1[答案] A[解析] ∵f (x )是偶函数,∴f (-x )=f (x ),即lg(10-x+1)-ax =lg(10x+1)-(a +1)x =lg(10x+1)+ax ,∴a =-(a +1),a =-12.又g (x )是奇函数,∴g (-x )=-g (x ),即2-x -b 2-x =-2x+b 2x ,∴b =1.∴a +b =12.12.已知函数f (x )=|2x-1|,当a <b <c 时,f (a )>f (c )>f (b ),那么正确的结论是( )A .2a >2bB .2a >2cC .2-a<2cD .2a+2c<2[答案] D[解析] 函数y =|2x-1|如图,当a <b <c 时f (a )>f (c )>f (b ),a ,b ,c 不可能同时大于0或小于0,∴a <0,c >0,∴0<2a<1,2c>1.又f (a )=|2a-1|=1-2a,f (c )=|2c-1|=2c-1, ∴1-2a>2c-1,即2a+2c<2. 故应选D.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.函数y =log 3x 的定义域为______________.(用区间表示) [答案] [1,+∞)[解析] log 3x ≥0,即x ≥1定义域为[1,+∞).14.设P 、Q 是两个非空集合,定义集合间的一种运算“⊙”:P ⊙Q ={x |x ∈P ∪Q ,且x ∉P ∩Q },如果P ={y |y =4-x 2},Q ={y |y =4x ,x >0},则P ⊙Q =________.[答案] [0,1]∪(2,+∞)[解析] P =[0,2],Q =(1,+∞), ∴P ⊙Q =[0,1]∪(2,+∞).15.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a 等于________.[答案] 2[解析] ∵0<1,∴f (0)=20+1=2.∵2>1,∴f (2)=4+2a , ∴f [f (0)]=f (2)=4+2a =4a , ∴a =2.16.已知函数f (x )=lg(2x-b )(b 为常数),若x ∈[1,+∞)时,f (x )≥0恒成立,则b 的取值范围是________.[答案] (-∞,1][解析] ∵要使f (x )=lg(2x-b )在x ∈[1,+∞)上,恒有f (x )≥0,∴有2x-b ≥1在x ∈[1,+∞)上恒成立,即2x ≥b +1恒成立.又∵指数函数g (x )=2x在定义域上是增函数.∴只要2≥b +1成立即可,解得b ≤1. 三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)计算:(1)计算2723 -2log 23×log 218+log 23×log 34;(2)已知0<x <1,且x +x -1=3,求x 12 -x -12 .[解析] (1)2723-2log 23×log 218+log 23×log 34=9-3×(-3)+2=20.(2)(x 12 -x -12 )2=x 1+x -1-2=1,∵0<x <1⇒x 12 -x -12 <0⇒x 12 -x -12 =-1. 18.(本小题满分12分)已知集合A ={x |x ≤a +3},B ={x |x <-1或x >5}. (1)若a =-2,求A ∩∁R B ; (2)若A ⊆B ,求a 的取值范围.[解析] (1)当a =-2时,集合A ={x |x ≤1},∁R B ={x |-1≤x ≤5}; ∴A ∩∁R B ={x |-1≤x ≤1}.(2)∵A ={x |x ≤a +3},B ={x |x <-1或x >5},A ⊆B ,∴a +3<-1, ∴a <-4.19.(本小题满分12分)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)在区间[-1,1]上,y =f (x )的图象恒在y =2x +m 的图象上方,试确定实数m 的取值范围.[解析] (1)设f (x )=ax 2+bx +c (a ≠0),则f (x +1)-f (x )=[a (x +1)2+b (x +1)+c ]-(ax 2+bx +c )=2ax +a +b . 又∵f (x +1)-f (x )=2x ,∴⎩⎪⎨⎪⎧2a =2,a +b =0.解得⎩⎪⎨⎪⎧a =1,b =-1.又∵f (0)=c =1,∴f (x )=x 2-x +1. (2)由题意,得x 2-x +1>2x +m , 即m <x 2-3x +1对x ∈[-1,1]恒成立. 易得m ≤(x 2-3x +1)min =-1,即m ≤-1.20.(本小题满分12分)(2013~2014学年山东省潍坊市四县一区高一上学期11月份月考数学试题)函数f (x )=x +b1+x2是定义在(-1,1)上的奇函数.(1)求函数f (x )的解析式;(2)用单调性定义证明函数f (x )在(0,1)上是增函数.[解析] (1)∵函数f (x )是定义在(-1,1)上的奇函数,f (-x )=-f (x ), 故-x +b 1+x 2=-x +b1+x2,所以b =0, 所以f (x )=x1+x2.(2)设0<x 1<x 2<1,x 2-x 1>0, 则f (x 2)-f (x 1)=x 21+x 22-x 11+x 21=x 2-x 1+x 2x 21-x 1x 221+x 121+x 22=x 2-x 11-x 1x 21+x 121+x 22, ∵0<x 1<x 2<1,∴Δx =x 2-x 1>0,1-x 1x 2>0, ∴而1+x 21>0,1+x 22>0,∴Δy =f (x 2)-f (x 1)>0, ∴f (x )在(0,1)上是增函数.21.(本小题满分12分)已知定义在R 上的函数f (x )满足:①对任意的x ,y ∈R ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )>0.(1)求证:f (1)=0;(2)求证:对任意的x ∈R ,都有f (1x)=-f (x );(3)判断f (x )在(-∞,0)上的单调性. [解析] (1)证明:令x =y =1,则有f (1)=f (1)+f (1)⇒f (1)=0.(2)证明:对任意x >0,用1x 代替y ,有f (x )+f (1x )=f (x ·1x)=f (1)=0,∴f (1x)=-f (x ).(3)f (x )在(-∞,0)上是减函数. 取x 1<x 2<0,则x 1x 2>1, ∴f (x 1x 2)>0,∵f (x 1)-f (x 2)=f (x 1)+f (1x 2)=f (x 1x 2)>0,∴f (x 1)>f (x 2),∴f (x )在(-∞,0)上为减函数.22.(本小题满分12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费.且有如下三条规定:①若每月用水量不超过最低限量,即m 立方米时,只付基本费9元和每户每月定额损耗费a 元;②若每月用水量超过m 立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n 元的超额费;③每户每月的定额损耗费a 不超过5元.(1)求每户每月水费y (元)与月用水量x (立方米)的函数关系式; (2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:月份 用水量(立方米)水费(元) 一 4 17 二 5 23 三2.511并求m ,n ,a 的值. [解析] (1)依题意,得y =⎩⎪⎨⎪⎧9+a , 0<x ≤m , ①9+n x -m +a ,x >m , ②其中0<a ≤5.(2)∵0<a ≤5,∴9<9+a ≤14.由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米.将⎩⎪⎨⎪⎧x =4,y =17和⎩⎪⎨⎪⎧x =5,y =23分别代入②,得⎩⎪⎨⎪⎧17=9+n 4-m +a ,23=9+n 5-m +a .两式相减,得n =6.把n =6代入17=9+n (4-m )+a ,得a =6m -16. 又三月份用水量为2.5立方米,水费为11元<14元,∴将⎩⎪⎨⎪⎧x =2.5,y =11代入①,得11=9+a ,解得a =2,将a =2代入a =6m -16,得m =3.∴该家庭今年一、二月份的用水量超过了最低限量,三月份的用水量没有超过最低限量,且m =3,n =6,a =2.。
人教A版高中数学选修一第三章综合素质检测.docx
高中数学学习材料鼎尚图文*整理制作第三章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a 、b ∈R ,i 为虚数单位,且(a +i)i =b +i ,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1[答案] C[解析] 由(a +i)i =b +i ,得a i -1=b +i ,所以a =1,b =-1. 2.(2012·课标全国文,2)复数z =-3+i2+i 的共轭复数是( )A .2+iB .2-iC .-1+iD .-1-i[答案] D[解析] 本题考查了复数的除法运算以及共轭复数的概念. z =-3+i 2+i =(-3+i )(2-i )(2+i )(2-i )=-5+5i 5=-1+i ,故z 的共轭复数为-1-i.3.(2012~2013学年度山东沂水县高二期中测试)若a 、b ∈R ,i是虚数单位,且(1+a i)i =1-b i ,则在复平面内,复数a +b i 所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] C[解析] ∵(2+a i)i =1-b i , ∴-a +2i =1-b i ,∴⎩⎪⎨⎪⎧ -a =1-b =2,∴⎩⎪⎨⎪⎧a =-1b =-2, ∴复数a +b i =-1-2i 所对应的点在第三象限. 4.设复数z =2+i (1+i )2,则复数z 的虚部是( ) A.12 B .-1 C .-i D .1[答案] B[解析] z =2+i 2i =-2i +12=12-i ,∴复数z 的虚部是-1. 5.复数i 2+i 3+i 41-i =( )A .-12-12iB .-12+12i C.12-12i D.12+12i [答案] C[解析] ∵i 2+i 3+i 4=-1+(-i)+1=-i , ∴原式=-i 1-i =-i (1+i )(1-i )(1+i )=1-i 2=12-12i.6.已知复数z 满足2-iz =1+2i ,则z =( ) A .4+3i B .4-3i C .-i D .i[答案] D[解析] 由2-i z =1+2i ,得z =2-i 1+2i =(2-i )(1-2i )5=2-4i -i -25=-i ,∴z =i.7.复数⎝⎛⎭⎪⎫1-i 1+i 10的值是( ) A .-1 B .1 C .-32 D .32[答案] A[解析] 本题主要考查复数的基本运算,1-i1+i =-i ,(-i)10=-1,故选A.8.复数z =2-i2+i (i 为虚数单位)在复平面内对应的点所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] D[解析] ∵z =2-i 2+i =(2-i )25=4-4i -15=35-45i. ∴z 在复平面内对应的点为 (35,-45),故选D.9.若复数z =a +3i1-2i(a ∈R ),且z 是纯虚数,则|a +2i|等于( )A. 5 B .210 C .2 5 D .40[答案] B[解析] z =a +3i 1-2i =(a +3i )(1+2i )5=a +2a i +3i -65=a -6+(2a +3)i5, 当z 为纯虚数时,⎩⎪⎨⎪⎧a -6=02a +3≠0,得a =6,∴a +2i =6+2i , ∴|a +2i|=210.10.若z =cos θ+isin θ(i 为虚数单位),则使z 2=-1的θ值可能是( )A.π6 B.π4 C.π3 D.π2[答案] D[解析] ∵z 2=cos2θ+isin2θ=-1,∴⎩⎪⎨⎪⎧cos2θ=-1sin2θ=0,∴2θ=2k π+π (k ∈Z ), ∴θ=k π+π2.令k =0知,D 正确.11.若x 是纯虚数,y 是实数,且2x -1+i =y -(3-y )i ,则x +y 等于( )A .1+52iB .-1+52iC .1-52i D .-1-52i[答案] D[解析] 设x =i t (t ∈R 且t ≠0), 于是2t i -1+i =y -(3-y )i , ∴-1+(2t +1)i =y -(3-y )i ,∴⎩⎪⎨⎪⎧y =-12t +1=-(3-y ),∴⎩⎨⎧t =-52y =-1.∴x +y =-1-52i.12.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪1 -1z z i =4+2i 的复数z 为( )A .3-iB .1+3iC .3+iD .1-3i[答案] A[解析] 由定义知⎪⎪⎪⎪⎪⎪1 -1z z i =z i +z ,得z i +z =4+2i ,即z =4+2i1+i =3-i.二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上)13.若复数z =1-2i(i 为虚数单位),则z ·z +z =________. [答案] 6-2i[解析] 本题考查了复数的基本运算. ∵z =1-2i ,∴z -=1+2i , ∴z ·z -+z =(1-2i)(1+2i)+1-2i=5+1-2i =6-2i.14.已知a 、b ∈R ,且a -1+2a i =4+b i ,则b =________. [答案] 10[解析] 由已知得⎩⎪⎨⎪⎧ a -1=42a =b ,得⎩⎪⎨⎪⎧a =5b =10.15.若z 1=a +2i ,z 2=3-4i ,且z 1z 2为纯虚数,则实数a 的值为________.[答案] 83[解析] z 1z 2=a +2i 3-4i =(a +2i )(3+4i )(3-4i )(3+4i )=3a +4a i +6i -825=3a -825+4a +625i , ∵z1z 2为纯虚数,∴⎩⎨⎧3a -825=04a +625≠0,∴a =83.16.已知复数z =a +b i(a 、b ∈R )且a 1-i +b 1-2i =53+i ,则复数z在复平面对应的点位于第________象限.[答案] 四[解析] ∵a 、b ∈R 且a 1-i +b 1-2i =53+i ,即a (1+i )2+b (1+2i )5=3-i 2, ∴5a +5a i +2b +4b i =15-5i ,∴⎩⎪⎨⎪⎧ 5a +2b =155a +4b =-5,解得⎩⎪⎨⎪⎧a =7b =-10.∴复数z =a +b i =7-10i 在复平面内对应的点位于第四象限. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)m 为何实数时,复数z =(2+i)m 2-3(i +1)m -2(1-i)是:(1)实数;(2)虚数;(3)纯虚数? [解析] z =(2+i)m 2-3(i +1)m -2(1-i) =2m 2+m 2i -3m i -3m -2+2i =(2m 2-3m -2)+(m 2-3m +2)i. (1)由m 2-3m +2=0得m =1或m =2, 即m =1或2时,z 为实数.(2)由m 2-3m +2≠0得m ≠1且m ≠2, 即m ≠1且m ≠2时,z 为虚数.(3)由⎩⎪⎨⎪⎧2m 2-3m -2=0m 2-3m +2≠0,得m =-12, 即m =-12时,z 为纯虚数.18.(本题满分12分)已知复数z 满足z z -i(3z )=1+3i ,求z . [解析] 将方程两边化成a +b i 的形式,根据复数相等的充要条件来解.设z =x +y i(x 、y ∈R ),则z ·z -=x 2+y 2, 3z =3x +3y i 3z =3x -3y i∴x 2+y 2-3y -3x i =1+3i ,由复数相等得⎩⎪⎨⎪⎧x 2+y 2-3y =1-3x =3,解得⎩⎪⎨⎪⎧ x =-1y =0,或⎩⎪⎨⎪⎧x =-1y =3.∴z =-1或z =-1+3i.19.(本题满分12分)已知复数x 2+x -2+(x 2-3x +2)i(x ∈R )是复数4-20i 的共轭复数,求实数x 的值.[解析] 因为复数4-20i 的共轭复数为4+20i ,由题意得 x 2+x -2+(x 2-3x +2)i =4+20i , 根据复数相等的充要条件,得⎩⎪⎨⎪⎧x 2+x -2=4, ①x 2-3x +2=20. ② 方程①的解为x =-3或x =2. 方程②的解为x =-3或x =6. 所以实数x 的值为-3.20.(本题满分12分)设a 、b 为共轭复数,且(a +b )2-3ab i =4-6i ,求a 和b .[解析] ∵a 、b 为共轭复数,∴设a =x +y i(x 、y ∈R ) 则b =x -y i ,由(a +b )2-3ab i =4-6i ,得 (2x )2-3(x 2+y 2)i =4-6i ,即⎩⎪⎨⎪⎧4x 2=4-3(x 2+y 2)=-6, ∴⎩⎪⎨⎪⎧ x 2=1y 2=1, ∴⎩⎪⎨⎪⎧x =±1y =±1. ∴a =1+i ,b =1-i ;a =-1+i ,b =-1-i ;a =1-i ,b =1+i ;a =-1-i ,b =-1+i. 21.(本题满分12分)已知z =1+i , (1)求w =z 2+3z -4;(2)如果z 2+az +bz 2-z +1=1-i ,求实数a 、b 的值.[解析] (1)w =(1+i)2+3(1-i)-4 =2i +3-3i -4=-1-i. (2)z 2+az +b z 2-z +1=(1+i )2+a +a i +b (1+i )2-1-i +1 =(a +b )+(a +2)i i =(a +2)-(a +b )i , ∴(a +2)-(a +b )i =1-i , ∴a =-1,b =2.22.(本题满分14分)设z =log 2(1+m )+ilog 12(3-m )(m ∈R ). (1)若z 在复平面内对应的点在第三象限,求m 的取值范围; (2)若z 在复平面内对应的点在直线x -y -1=0上,求m 的值. [解析] (1)由已知,得⎩⎨⎧log 2(1+m )<0, ①log 12(3-m )<0, ②解①得-1<m <0. 解②得m <2.故不等式组的解集为{x |-1<m <0}, 因此m 的取值范围是{x |-1<m <0}.(2)由已知得,点(log 2(1+m ),log 12(3-m ))在直线x -y -1=0上,即log 2(1+m )-log 12(3-m )-1=0,整理得log 2(1+m )(3-m )=1. 从而(1+m )(3-m )=2, 即m 2-2m -1=0,解得m =1±2,且当m =1±2时都能使1+m >0,且3-m >0. 故m =1±2.1.若复数a +3i1-2i (a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-2B .4C .-6D .6[答案] D[解析] a +3i 1-2i =(a +3i )(1+2i )(1-2i )(1+2i )=a -6+(3+2a )i 5=a -65+3+2a 5i. 由纯虚数的定义,得a -65=0,且3+2a5≠0, 解得a =6,故选D.2.若z 1=(x -2)+y i 与z 2=3x +i(x 、y ∈R )互为共轭复数,则z 1对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 [答案] C[解析] 由已知得⎩⎪⎨⎪⎧ x -2=3x y =-1,∴⎩⎪⎨⎪⎧x =-1y =-1. ∴z 1=-3-i ,故选C.3.复数(3i -1)i 的共轭复数是( )A .3-iB .3+iC .-3-iD .-3+i [答案] D[解析] ∵z =(3i -1)i =-3-i ,∴z -=-3+i ,故选D.4.设复数z =1+2i ,则z 2-2z 等于( )A .-3B .3C .-3iD .3i [答案] A[解析] z 2-2z =(1+2i)2-2(1+2i)=1+22i -2-2-22i =-3.5.当z =1-i 2时,z 100+z 50+1的值等于( ) A .1B .-1C .iD .-i[答案] D[解析] z 2=12(1-2i -1)=-i ,z 50=(-i)25=-i ,z 100=(-i)2=-1,故原式=-i.6.复数z =m -2i 1+2i(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] A [解析] z =m -2i 1+2i =(m -2i )(1-2i )(1+2i )(1-2i )=15[m -4]-2(m +1)i ,其实部为m -4,虚部为-2(m +1)由⎩⎪⎨⎪⎧ m -4>0-2(m +1)>0,得⎩⎨⎧m >4m <-1,此时无解.故复数在复平面上对应的点不可能位于第一象限.7.规定运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若⎪⎪⎪⎪⎪⎪ z i -i 2=1-2i ,设i 为虚数单位,则复数z =________.[答案] 1-i[解析] 由已知可得⎪⎪⎪⎪⎪⎪ z i -i 2=2z +i 2=2z -1=1-2i ,∴z =1-i.。
人教版A版高中数学必修第一册 第三章综合测试01试题试卷含答案 答案在前
第三章综合测试答案解析一、 1.【答案】D【解析】当y 取一个正值时,有两个x 与它对应,故D 错. 2.【答案】A【解析】21=2f x x - ),21=222f ⨯∴+-),即3=0f (). 3.【答案】D【解析】f x ()在122⎡⎤--⎢⎥⎣⎦,上为减函数,min111==2=11222f x f ∴---⨯--(()()). 4.【答案】B【解析】所以当3=2a -最大值为92.故选B .5.【答案】D【解析】=1y x +是非奇非偶函数,3=y x -是奇函数和减函数,1=y x在整个定义域上不是增函数,故选D .6.【答案】C【解析】33===f x a x b x ax bx f x --+--+- ()()()()(),x ∈R ,f x ∴()为奇函数,3=3=3f f ∴---()().7.【答案】C【解析】0=10=1f -(),((0))=(1)=11=2f f f +. 8.【答案】B【解析】f x ()为偶函数,=0m ∴,2=3f x x ∴-+(),其图象开口向下,对称轴为y 轴,f x ∴()在25(,)上是减函数. 9.【答案】D【解析】设0x ∈-∞(,),则0x -∈+∞(,),=28F x f x g x ∴--+-+()()()≤且存在00x ∈+∞(,)使0=8F x ().又f x (),g x ()都是奇函数,[]=6f x g x f x g x ∴-+--+()()()()≤,即6f x g x +-()()≥, =24F x f x g x ∴++-()()()≥,且存在00x ∈-∞,(),使0=4F x -().F x ∴()在0-∞(,)上有最小值4-. 10.【答案】B【解析】因为偶函数的定义域关于原点对称,所以22=0a a -+-,解得=2a .又偶函数不含奇次项,所以2=0a b -,即=1b ,所以2=21f x x +().于是22=1=35a b f f +()().11.【答案】C【解析】当=0c 时,=f x x x bx +(),此时=f x f x --()(),故f x ()为奇函数,故①正确.当=0b ,0c >时,=f x x x c +(),若0x ≥,则2=f x x c +(),此时=0f x ()无解,若0x <,则2=f x x c -+(),此时=0f x ()有一解=x ,故②正确.作出=y f x ()的图象,如图.结合图象知③正确,④不正确.12.【答案】A【解析】当x 为整数时,=1f x (),当12x ∈(,)时,112f x ∈()(,);当23x ∈(,)时,213f x ∈()(,),…, 当1x k k ∈+(,)时,11k f x k ∈+()(,),且112k k +≥,所以函数[]=1x f x x x ()(≥)的值域为112⎤⎥⎦(.故选A . 二、13.【答案】1|3x x ⎧⎫⎨⎬⎩⎭>【解析】设=a f x x (),则==2af ,=3a ∴.3=f x x ∴(),在R 上为增函数.3210321321f x f x f x -+⇔--⇔--()>()>()>,解得13x >,∴原不等式的解集为1|3x x ⎧⎫⎨⎬⎩⎭>.14.【答案】2a ≤【解析】若2a ∈-∞(,),则2=2f (),不合题意,[]2a ∴∈+∞,,2a ∴≤. 15.【答案】95162⎡-⎢⎣,)【解析】方程23=2x x k -可以看作是k 关于x 的二次函数23=2k x x -,配方得239=416k x --(),其图象的对称轴方程为3=4x ,则函数k 在区间314⎤-⎥⎦(,上是单调递减的,在区间314⎡-⎢⎣,)上是单调递增的(如图).由函数的单调性得函数k 在区间11-(,)上的值域为314f f ⎡-⎢⎣(),()). 233339==442416f -⨯- ()(),2351=11=22f ---⨯-()()(),∴实数k 在的取值范围是95162⎡-⎢⎣,). 16.【答案】1a -≤【解析】因为=y f x ()是定义在R 上的奇函数, 所以当=0x 时,=0f x ().当0x >时,0x -<,所以2=97a f x x x---+().因为=y f x ()是定义在R 上的奇函数, 所以当0x >时,2=97a f x x x+-().因为1f x a +()≥对一切0x ≥成立, 所以当=0x 时,01a +≥成立, 所以1a -≤.当0x >时,2971a x a x +-+≥成立,只需要297a x x+-的最小值大于或等于1a +,因为2977=67a x a x +--≥,所以671a a -+≥,解得85a ≥或87a -≤.综上,1a -≤. 三、17.【答案】证明:设12a x x b <<<. g x ()在a b (,)上是增函数, 12g x g x ∴()<(),且12a g x g x b <()<()<,(5分) 又f x ()在a b (,)上是增函数, 12(())(())f g x f g x ∴<,(())f g x ∴在a b (,)上也是增函数.(10分) 18.【答案】(1)当10x -≤≤时,设解析式为=0y kx b k +(≠),代入10-(,),01(,)的坐标, 得=0=1k b b -+⎧⎨⎩,,解得=1=.1k b ⎧⎨⎩,=1y x ∴+.(2分)当0x >时,设解析式为2=21y a x --(),图象过点40(,),20=421a ∴--(),解得1=4a . 21=214f x x ∴--()().(4分)2110=12104.x x f x x x +-⎧⎪∴⎨--⎪⎩,≤≤,()(),>(6分) (2)当10x -≤≤时,[]01y ∈,. 当0x >时,[1y ∈-+∞,). f x ∴()的值域为[][[011=1-+∞-+∞ ,,),).(12分) 19.【答案】(1) 函数21=x f x ax b++()是奇函数,且1=2f (), 22211==111==2x x f x ax b ax b f a b ⎧++--⎪⎪-+-∴⎨+⎪⎪+⎩()(),(2分)解得=1=0a b ⎧⎨⎩,,21=x f x x+∴().(5分) (2)=0xF x x f x ()(>)(), 222==11x x F x x x x∴++(),0x >,2222222111===111111x x x F x F x x x x x ∴+++++++()(),11114035=122018=2017=2320181112S F F F F F F ∴++++++++⨯+()()()……()()().(12分) 20.【答案】因为f x ()满足4=f x f x --()(), 所以8=4=f x f x f x ---()()(), 则25=1f f --()(),80=0f f ()(),11=3f f ()().(3分) 因为f x ()在R 上是奇函数,所以0=0f (),25=1=1f f f ---()()(), 则80=0=0f f ()(),由4=f x f x --()(),得11=3=3=14=1f f f f f ----()()()()(),又因为f x ()在区间[]02,上是增函数, 所以10=0f f ()>(),所以10f -()<, 所以258011f f f -()<()<().(12分) 21.【答案】(1)设投资x 万元,A 产品的利润为f x ()万元,B 产品的利润为g x ()万元,依题意可设1=f x k x (),=g x k ()由题图①得1=0.2f (),即11=0.2=5k .(3分)由题图②得4=1.6g (),即2.6k ,解得24=5k .故1=05f x x x ()(≥),0g x x ()≥).(6分) (2)设B 产品投入x 万元,则A 产品投入10x -()万元,设企业利润为y 万元.由(1)得1=10=20105y f x g x x x -+-+()()(≤≤).(8分)21114=2=2555y x -+--+ (),0,∴,即=4x 时,max 14==2.85y .因此当A 产品投入6万元,B 产品投入4万元时,该公司获得最大利润,为2.8万元.(12分)22.【答案】(1)241234===2822x x y f x x x x --++-++()111.设=2u x +1,[]0,1x ∈,13u ≤≤, 则4=8y u u+-,[]1,3u ∈.(3分) 由已知性质得,当12u ≤≤,即102x ≤≤时,f x ()单调递减,所以f x ()的单调递减区间为10,2⎡⎤⎢⎥⎣⎦; 当23u ≤≤,即112x ≤≤时,f x ()单调递增,所以f x ()的单调递增区间为1,12⎡⎤⎢⎥⎣⎦. 由0=3f -(),1=42f -(),111=3f -(),得f x ()的值域为[]4,3--.(7分) (2)=2g x x a --()为减函数,故当[]0,1x ∈时,[]12,2g x a a ∈---().(9分) 由题意得f x ()的值域是g x ()的值域的子集, 所以124,23,a a ---⎧⎨--⎩≤≥解得3=2a .(12分)第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知变量x ,y 满足=y x ,则下列说法错误的是( ) A .x ,y 之间有依赖关系 B .x ,y 之间有函数关系 C .y 是x 的函数D .x 是y 的函数2.若函数21=2f x x +-)则3f ()等于( ) A .0B .1C .2D .33.函数1=2f x x x -()在区间122⎡⎤--⎢⎥⎣⎦,上的最小值为( ) A .1B .72C .72-D .1-4.函数63y a -≤≤)的最大值为( )A .9B .92C .3 D5.下列函数中,既是奇函数又是增函数的为( ) A .=1y x +B .3=y x -C .1=y xD .=y x x6.已知函数3=0f x ax bx a +()(≠)满足3=3f -(),则3f ()等于( )A .2B .2-C .3-D .37.设10=1=010x x f x x x x +⎧⎪-⎨⎪-⎩,>,(),,,<,则0f f (())等于( )A .1B .0C .2D .1-8.已知函数2=123f x m x mx -++()()为偶函数,则f x ()在区间25(,)上是( ) A .增函数B .减函数C .有增有减D .增减性不确定9.若f x ()和g x ()都是奇函数,且=2F x f x g x ++()()()在0+∞(,)上有最大值8,则F x ()在0-∞(,)上有( ) A .最小值8- B .最小值2- C .最小值6-D .最小值4-10.若函数2=21f x ax a b x a +-+-()()是定义在0022a a --(,)(,) 上的偶函数,则225a b f +()等于( ) A .1B .3C .52D .7211.设函数=f x x x bx c ++(),给出下列四个命题: ①当=0c 时,=y f x ()是奇函数;②当=0b ,0c >时,方程=0f x ()只有一个实根; ③=y f x ()的图象关于点0c (,)对称; ④方程=0f x ()至多有两个实根. 其中正确的命题是( ) A .①④B .①③C .①②③D .①②④12.定义:[]x 表示不超过x 的最大整数.如:[]1.3=2--.则函数[]=1x f x x x()(≥)的值域为( )A .1,12⎤⎥⎦(B .2,13⎤⎥⎦(C .3,14⎤⎥⎦(D .4,15⎤⎥⎦( 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知幂函数f x ()的图象过点),则不等式3210f x -+()>的解集是________. 14.设2=.x x a f x x x a ∈-∞⎧⎨∈+∞⎩,(,),(),(,)若2=4f (),则实数a 的取值范围为________. 15.若方程23=2x x k -在11-(,)上有实根,则实数k 的取值范围为________. 16.设a 为实常数,=()y f x 是定义在R 上的奇函数,当0x <时,2()=97af x x x++.若()1f x a +≥对一切0x ≥成立,则实数a 的取值范围为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知f x (),g x ()在a b (,)上是增函数,且a g x b <()<,求证:(())f g x 在a b (,)上也是增函数.18.(本小题满分12分)如图,定义在[1-+∞,)上的函数f x ()的图象由一条线段及抛物线的一部分组成.(1)求f x ()的解析式;(2)写出f x ()的值域.19.(本小题满分12分)已知函数21=x f x ax b++()是奇函数,且1=2f (). (1)求f x ()的表达式;(2)设=0x Fx x f x ()(>)(),记111=122018232018S F F F F F F +++++++()()()(()(……),求S 的值.20.(本小题满分12分)已知定义在R 上的奇函数f x ()满足4=f x f x --()(),且在区间[]02,上是增函数,试比较80f (),11f (),25f -()的大小.21.(本小题满分12分)某公司计划投资A 、B 两种金融产品,根据市场调查与预测,A 产品的利润与投资量成正比例,其关系如图①,B 产品的利润与投资量的算术平方根成正比例,其关系如图②(利润与投资量的单位:万元).① ②(1)分别将A 、B 两产品的利润表示为投资量的函数关系式.(2)该公司已有10万元资金,并全部投入A 、B 两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?22.(本小题满分12分)已知函数=ty x x+有如下性质:如果常数0t >,那么该函数在(上是减函数,在+∞)上是增函数. (1)已知24123=2x x f x x --+()1,[]01x ∈,,利用上述性质,求函数f x ()的单调区间和值域;(2)对于(1)中的函数f x ()和函数=2g x x a --(),若对任意[]101x ∈,,总存在[]201x ∈,,使得21=gx f x ()()成立,求实数a 的值.。
人教A版数学必修一第三章综合素能检测.doc
第三章综合素能检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.给出下列四个命题:①函数f(x)=3x-6的零点是2;②函数f(x)=x2+4x+4的零点是-2;③函数f(x)=log3(x-1)的零点是1;④函数f(x)=2x-1的零点是0.其中正确的个数为()A.1B.2C.3D.42.若函数y=f(x)在区间[0,4]上的图象是连续不断的曲线,且方程f(x)=0在(0,4)内仅有一个实数根,则f(0)·f(4)的值() A.大于0B.小于0C.等于0 D.无法判断3.函数f(x)=ax+b的零点是-1(a≠0),则函数g(x)=ax2+bx 的零点是()A.-1 B.0C.-1和0 D.1和04.方程lg x+x-2=0一定有解的区间是()A.(0,1) B.(1,2)C.(2,3) D.(3,4)5.某商场对顾客实行购物优惠活动,规定一次购物付款总额,①如果不超过200元,则不予优惠.②如果超过200元,但不超过500元,则按标准价给予9折优惠.③如果超过500元,则其500元按第②条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他只去一次购买上述同样的商品,则应付款是( )A .413.7元B .513.6元C .546.6元D .548.7元6.设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1]log 81x ,x ∈(1,+∞),则方程f (x )=14的解为( )A.74B .3C .3或74D .无解7.(08·山东文)已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a 、b 满足的关系是( )A .0<a -1<b <1B .0<b <a -1<1C .0<b -1<a <1D .0<a -1<b -1<18.一个机器人每一秒钟前进或后退一步,程序设计师让机器人先前进3步再后退2步的规律移动,如果将机器人放在数轴的原点,面向正的方向以一步的距离为一个单位长度.令P (n )表示第n s 时机器人所在位置的坐标,且记P (0)=0,则下列结论中错误的是( )A .P (3)=3B .P (5)=1C .P (2 003)>P (2 005)D .P (2 007)>P (2 008)9.已知函数f (x )的图象如图,则它的一个可能的解析式为( )A .y =2xB .y =4-4x +1C .y =log 3(x +1)D .y =x 13 (x ≥0) 10.已知二次函数f (x )=ax 2+bx +c (x ∈R )的部分对应值如表.x -3 -2 -1 0 1 2 3 4 5 …y -24 -10 0 6 8 6 0 -10 -24 …则使ax 2+bx +c >0成立的x 的取值范围是( )A .(-10,-1)∪(1+∞)B .(-∞,-1)∪(3+∞)C .(-1,3)D .(0,+∞)11.方程4x -3×2x +2=0的根的个数是( )A .0B .1C .2D .312.若方程m x -x -m =0(m >0,且m ≠1)有两个不同实数根,则m 的取值范围是( )A .m >1B .0<m <1C .m >0D .m >2第二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知y =x (x -1)(x +1)的图象如图所示.令f (x )=x (x -1)(x +1)+0.01,则下列关于f (x )=0的解叙述正确的是________.①有三个实根;②x >1时恰有一实根;③当0<x <1时恰有一实根;④当-1<x <0时恰有一实根;⑤当x <-1时恰有一实根(有且仅有一实根).14.某工程由A 、B 、C 、D 四道工序完成,完成它们需用的时间依次2、5、x 、4天,四道工序的先后顺序及相互关系是:A 、B 可以同时开工;A 完成后,C 可以开工;B 、C 完成后,D 可以开工,若完成该工程总时间数为9天,则完成工序C 需要的天数x 最大为________.15.已知抛物线y =ax 2与直线y =kx +1交于两点,其中一点坐标为(1,4),则另一个点的坐标为______.16.已知函数f (x )=⎩⎪⎨⎪⎧3x (x ≤0)log 9x (x >0),则方程f (x )=13的解为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)方程x 2-1x =0在(-∞,0)内是否存在实数解?并说明理由.18.(本题满分12分)北京市的一家报刊摊点,从报社买进《北京日报》的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?19.(本题满分12分)若关于x的方程x2-2ax+2+a=0有两个不相等的实根,求分别满足下列条件的a的取值范围.(1)方程两根都大于1;(2)方程一根大于1,另一根小于1.20.(本题满分12分)某化工厂生产的一种溶液,按市场要求,杂质含量不能超过0.1%.若初时含杂质2%,每过滤一次可使杂质含量减少13,问至少应过滤几次才能使产品达到市场要求?(已知:lg2=0.301 0,lg3=0.477 1)21.(本小题满分12分)某地区2000年底沙漠面积为95万公顷,为了解该地区沙漠面积的变化情况,进行了连续5年的观测,并将每年年底的观测结果记录如下表,根据此表所给的信息进行预测:(1)如果不采取任何措施,那么到2015年底,该地区的沙漠面积将大约变为多少万公顷?(2)如果从2005年底后采取植树造林措施,每年改造0.6万公顷的沙漠,那么到哪一年年底该地区沙漠面积将减少到90万公顷?22.(本小题满分12分)某电器公司生产A型电脑.2007年这种电脑每台平均生产成本为5 000元,并以纯利润20%确定出厂价,从2008年开始,公司通过更新设备和加强管理,使生产成本逐年降低,到2011年,尽管A型电脑出厂价仅是2007年出厂价的80%,但却实现了50%纯利润的高效益.(1)求2011年每台A型电脑的生产成本;(2)以2007年生产成本为基数,求2007~2011年生产成本平均每年降低的百分率(精确到1%,注:5≈2.236,6≈2.449).观测时间2001年底2002年底2003年底2004年底2005年底比原有面积增加数(万公顷)0.200 0 0.400 0 0.600 1 0.799 9 1.000 1详解答案1[答案] C[解析]当log 3(x -1)=0时,x -1=1,∴x =2,故③错,其余都对.2[答案] D[解析] 如图(1)和(2)都满足题设条件.3[答案] C[解析] 由条件知f (-1)=0,∴b =a ,∴g (x )=ax 2+bx =ax (x +1)的零点为0和-1.4[答案] B[解析] ∵f (1)=-1<0,f (2)=lg2>0∴f (x )在(1,2)内必有零点.5[答案] C[解析] 两次购物标价款:168+4230.9=168+470=638(元),实际应付款:500×0.9+138×0.7=546.6(元).6[答案] B[解析] 当x ≤1时 2-x =14∴x =74(舍)当x >1时log 81x =14∴x =3,故选B.7[答案] A[解析] 令g (x )=2x +b -1,则函数g (x )为增函数,又由图象可知,函数f (x )为增函数,∴a >1,又当x =0时,-1<f (0)<0,∴-1<log a b <0,∴a -1<b <1,故选A.8[答案] D[解析] 机器人程序为前进3步、后退2步,则P (3)=3,P (5)=1均正确,即5步等于前进了一个单位长度,∴P (2 003)=P (2 000)+P (3)=403,P (2 005)=P (2 000)+P (5)=401,∴P (2 003)>P (2 005)正确.又P (2 007)=P (2 005)+P (2)=403,P (2 008)=P (2 005)+P (3)=404,∴P (2 007)>P (2 008)错误.9[答案] B[解析] 由于过(1,2)点,排除C 、D ;由图象与直线y =4无限接近,但到达不了,即y <4知排除A ,∴选B.10[答案] C[解析] 由表可知f (x )的两个零点为-1和3,当-1<x <3时f (x )取正值∴使ax 2+bx +c >0成立的x 的取值范围是(-1,3).11[答案] C[解析] 由4x -3×2x +2=0,得(2x )2-3×2x +2=0,解得2x =2,或2x =1,∴x =0,或x =1.12[答案] A[解析] 方程m x -x -m =0有两个不同实数根,等价于函数y =m x 与y =x +m 的图象有两个不同的交点.显然当m >1时,如图(1)有两个不同交点当0<m <1时,如图(2)有且仅有一个交点.故选A.13[答案] ①⑤[解析] f (x )的图象是将函数y =x (x -1)(x +1)的图象向上平移0.01个单位得到.故f (x )的图象与x 轴有三个交点,它们分别在区间(-∞,-1),(0,12)和(12,1)内,故只有①⑤正确.14[答案] 3[解析] 如图,A (2天)→C (x )天B (5天)D (4天)设工程所用总天数为f (x ),则由题意得:当x ≤3时,f (x )=5+4=9,当x >3时,f (x )=2+x +4=6+x ,∴f (x )=⎩⎪⎨⎪⎧9 x ≤36+x x >3, ∵工程所用总天数f (x )=9,∴x ≤3,∴x 最大值为3.15[答案] (-14,14)[解析] 由条件知⎩⎪⎨⎪⎧ a ×12=4k +1=4∴⎩⎪⎨⎪⎧a =4k =3 由⎩⎪⎨⎪⎧ y =4x 2y =3x +1得,⎩⎪⎨⎪⎧ x =-14y =14或⎩⎪⎨⎪⎧x =1y =4. 16[答案] -1或39.[解析] 由条件知⎩⎨⎧ 3x =13x ≤0或⎩⎨⎧ log 9x =13x >0∴x =-1或x =3917[解析] 不存在,因为当x <0时,-1x >0∴x 2-1x >0恒成立,故不存在x ∈(-∞,0),使x 2-1x =0.18[解析] 设每天从报社买进x 份报纸,每月获得的总利润为y元,则依题意有y =0.10(20x +10×250)-0.15×10(x -250)=0.5x +625,x ∈[250,400].该函数在[250,400]上单调递增,所以x =400时,y max =825(元). 答:摊主每天从报社买进400份时,每月所获得的利润最大,最大利润为825元.19[解析] 设f (x )=x 2-2ax +2+a(1)∵两根都大于1,∴⎩⎪⎨⎪⎧ Δ=4a 2-4(2+a )>0a >1f (1)=3-a >0,解得2<a <3.(2)∵方程一根大于1,一根小于1,∴f (1)<0 ∴a >3.20[解析] 设过滤n 次,则2100·⎝ ⎛⎭⎪⎫23n ≤11 000即⎝ ⎛⎭⎪⎫23n ≤120,∴n ≥lg 120lg 23=1+lg2lg3-lg2≈7.4 又∵n ∈N ,∴n ≥8,即至少要过滤8次才能达到市场要求.21[解析] (1)由表观察知,沙漠面积增加数y 与第x 年年底之间的图象近似地为一次函数y =kx +b 的图象.将x =1,y =0.2与x =2,y =0.4代入y =kx +b ,求得k =0.2,b =0,所以y =0.2x (x ∈N ).因为原有沙漠面积为95万公顷,则到2015年底沙漠面积大约为95+0.2×15=98(万公顷).(2)设从2011年算起,第x 年年底该地区沙漠面积能减少到90万公顷.由题意,得95+0.2x -0.6(x -5)=90,解得x =20(年).故到2020年底,该地区沙漠面积减少到90万公顷.22[解析] (1)设2011年每台电脑的生产成本为x 元,依据题意,有x (1+50%)=5000×(1+20%)×80%,解得x =3 200(元).(2)设2007~2011年间每年平均生产成本降低的百分率为y ,则依据题意,得5000(1-y )4=3 200,解得y 1=1-255,y 2=1+255(舍去).所以y =1-255≈0.11=11%.所以,2011年每台电脑的生产成本为3200元,2007年到2011年生产成本平均每年降低11%.。
(人教版A版最新)高中数学必修第一册 第三章综合测试03-答案
第三章综合测试答案解析一、1.【答案】C【解析】()10f <,()20f >,()1.50f >,∴在区间()11.5,内函数()=338x f x x +-存在一个零点,因此在第二次应计算的函数值所对应的x 值为1 1.5=1.252+,故选C . 2.【答案】B【解析】 函数()22=log f x x x +在0x >时是连续单调递增函数,且()21=1log 1=10f +>, 21113=log =02424f ⎛⎫+- ⎪⎝⎭,()1102f f ⎛⎫∴⋅ ⎪⎝⎭<.∴函数()22=log f x x x +的零点所的在区间是112⎛⎫ ⎪⎝⎭. 3.【答案】C 【解析】由所给数据可知y 随x 的增大而增大,且增长速度越来越快,而A ,D 中的函数增长速度越来越慢,B 中的函数增长速度保持不变,故选C .4.【答案】C【解析】设()()=2x f x e x -+,则由题设知()1=0.280f -<,()2=3.390f >,故方程2=0x e x --的一个根在区间()12,内.故选C . 5.【答案】A【解析】由题意,132元打9折,售价为()1320.9=118.8⨯元.因为这个价格相对进货价,获利10%,也就是说它是进货价的110%,所以进货价为()110118.8=108÷%元,故选A .6.【答案】B【解析】由题中函数图像知,水面高度y 上升的速度先是由慢到快,后来速度保持不变,结合容器形状知选B .7.【答案】C【解析】α ,β是函数()f x 的两个零点,()()==0f f αβ∴.又()()==20f a f b - <,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间.故选C .【解析】当0x ≤时,令223=0x x +-,得=3x -;当0x >时,令2ln =0x -+,得2=e x .所以函数有2个零点.故选C .9.【答案】A【解析】()()23=15log f x x x --+- 在()1+∞,上单调递减,且()3=0f ,()10f x ∴>,()20f x <,故选A .10.【答案】C 【解析】设=AB a ,则22221111==2222y a x x a --+,其图像为抛物线的一段,开口向下,顶点在y 轴上方.故选C .11.【答案】B【解析】由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为()()1001 1.2x x t-+%万元.由题意,得()()01001001 1.2100x x x x t t ∈⎧⎪⎨-+⎪⎩N <<,≥,,%解得5003x <≤,x ∈N ,所以x 的最大值为16.故选B . 12.【答案】B【解析】由函数()2=e x x f x --,可知方程()21=0f x -,即()1=2f x ,即21e =2x x --,整理可得2=ln 2x x ---,即2ln 2=0x x -+或2ln 2=0x x --.在方程2ln 2=0x x -+中,1=14ln 20∆-<,方程无实数解; 在方程2ln 2=0x x --中,2=14ln 20∆+>,方程有2个不等的实数解.综上可得,方程()21=0f x -的实数根的个数为2.故选B .二、13.【答案】()13,【解析】由()()150f f ⋅<,()()110f f x ⋅<及()()150f x f ⋅>可知()1f 与()1f x 异号,()1f x 与()5f 同号,则()011x x ∈,即()013x ∈,.14.【答案】()25,【解析】由题意得()f x 在()0+∞,上单调递增,且()()120f f ⋅<,即()()250m m --<,解得25m <<.15.【答案】6【解析】由210=x a -得2=10x a ±,由题设知12=10x a -,22=10x a +.因为21=2x x ,所以()211222=2=2x x x ,所以()210=10a a -+,解得=15a 或=6a .因为100a ->,所以=15a 不合题意,舍去,所以=6a .【解析】设乘客每次乘坐出租车需付费用为()f x 元,则由题意得()(]()(]()()8103=93 2.153895 2.158 2.858.x f x x x x x ⎧+∈⎪+-∈⎨⎪++-∈+∞⎩⨯⨯⨯,,,,,,,,令()=22.6f x ,显然()()95 2.158 2.85=22.68x x ⨯⨯++->,解得=9x .三、17.【答案】(1)由题意得()50.16010= 1.62log 910.x x y x x ⎧⎪⎨+-⎪⎩,<≤,,> (2)由(]010x ∈,,0.16 1.6x ≤,而=5.6y 可知,10x >. ()51.62log 9=5.6x ∴+-,解得=34x .∴老张的销售利润是34万元.18.【答案】(1)当10x -≥,即1x ≥时,()()=211=1f x x x x --+-;当10x -<,即1x <时,()()=211=33f x x x x --+-.()f x 的图像如图所示.(2)①函数()f x 的单调递增区间为[)1+∞,;函数()f x 的单调递减区间为(]1-∞,. ②函数()f x 的值域为[)0+∞,.③方程()=2f x 在区间[]02,上解的个数为1. 19.【答案】(1)()31=1=31e e x x g x ⎛⎫++ ⎪⎝⎭,因为0x ≥,e 1x ≥,所以101e x ⎛⎫ ⎪⎝⎭<≤,1033e x⎛⎫ ⎪⎝⎭<≤,即()14g x <≤,故()g x 的值域是(]14,.(2)由()()=0f x g x -,得3e 2=0e x x --. 当0x ≤时,方程无解;当0x >时,3e 2=0ex x --,整理得()2e 2e 3=0x x --, 即()()e 1e 3=0x x +-.因为e 0x >,所以e =3x ,即=ln3x .故满足方程()()=0f x g x -的x 的值为ln3. 20.【答案】(1)()08A ,,()46B ,, ∴线段AB 的方程是()1=8042y x x -+≤≤. 将()46B ,,()2010C ,的坐标代入y b +,得b b ⎧⎪⎨+⎪⎩,,解得=4=6.a b -⎧⎨⎩,故()6420y x +≤≤.()2010C ,,()248D ,,∴线段CD 的方程是()1=2020242y x x -+≤≤. 综上,y 与x之间的函数解析式为18042=642012020242.x x y x x x ⎧-+⎪+⎪-+⎪⎩,≤≤,,≤≤,,≤≤ (2)由()08A ,,()46B ,知在AB 段排放污水的pH 值不超标; 在BC6=9+,解得=13x ,故[)1320x ∈,时排放污水的pH 值超标,时长是()2013=7-小时;在CD 段,令120=92x -+,解得=22x ,故[]2022x ∈,时排放污水的pH 值超标,时长是()2220=2-小时. 因此该化工企业在一天内排放pH 值超标污水9小时.21.【答案】(1)当=4m -时,()=0f x ,即()2=281=0f x x x --.可以求出()1=9f -,()1=7f -,则()()110f f -⋅<.又()f x 为R 上的连续函数,()=0f x ∴在()11-,上必有根存在.取中点0,计算得()0=10f -<,()()100f f -⋅<,∴根()010x ∈-,,取其中点12-,计算得17=022f ⎛⎫- ⎪⎝⎭>, ∴根0102x ⎛⎫∈- ⎪⎝⎭,,取其中点14-,计算得19=048f ⎛⎫- ⎪⎝⎭, ∴根0104x ⎛⎫∈- ⎪⎝⎭,,取其中点18-,计算得11=0832f ⎛⎫- ⎪⎝⎭>, ∴根0108x ⎛⎫∈- ⎪⎝⎭,,区间长度11=0.285,符合要求. 故符合要求的根0x 存在的区间为108⎛⎫- ⎪⎝⎭,. (2)()2=283f x x x m -++为开口向上的抛物线,对称轴为8==222x ⨯--, ∴在区间[]11-,上,函数()f x 单调递减.又()f x 在区间[]11-,上存在零点,只可能()()1010f f ⎧-⎪⎨⎪⎩≥,≤,即 28302830m m +++⎧⎨-++⎩≥,≤,解得133m -≤≤. 故所求实数m 的取值范围是133m -≤≤.22.【答案】(1)当=1a 时,()()2=log 422x x f x ++.由()=3f x ,得3422=2x x ++,所以426=0x x +-,因此()()2322=0x x +-,解得=1x .所以方程()=3f x 的解集为{}1.(2)方程()2log 421=x x a a x +⋅++有两个不同的实数根,即421=2x x x a a +⋅++有两个不同的实数根.设=2x t ,则()211=0t a t a +-++在()0+∞,上有两个不同的解.令()()2=11g t t a t a +-++,由已知可得 ()()()200102=1410g a a a ⎧⎪-⎪-⎨⎪⎪∆--+⎩>,>,>,解得13a --<< 故实数a的取值范围为(13--,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章综合素质检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.给出下列四个命题:①函数f(x)=3x-6的零点是2;②函数f(x)=x2+4x+4的零点是-2;③函数f(x)=log3(x-1)的零点是1,④函数f(x)=2x-1的零点是0,其中正确的个数为( )A.1 B.2 C.3 D.4[答案] C[解析]当log3(x-1)=0时,x-1=1,∴x=2,故③错,其余都对.2.若函数y=f(x)在区间[0,4]上的图象是连续不断的曲线,且方程f(x)=0在(0,4)内仅有一个实数根,则f(0)·f(4)的值( )A.大于0 B.小于0C.等于0 D.无法判断[答案] D[解析] 如图(1)和(2)都满足题设条件.3.函数f(x)=ax+b的零点是-1(a≠0),则函数g(x)=ax2+bx的零点是( )A.-1 B.0C.-1和0 D.1和0[答案] C[解析] 由条件知f(-1)=0,∴b=a,∴g(x)=ax2+bx=ax(x+1)的零点为0和-1.4.方程lg x+x-2=0一定有解的区间是( )A.(0,1) B.(1,2)C.(2,3) D.(3,4)[答案] B[解析] ∵f(1)=-1<0,f(2)=lg2>0∴f(x)在(1,2)内必有零点.5.某商场对顾客实行购物优惠活动,规定一次购物付款总额, ①如果不超过200元,则不予优惠.②如果超过200元,但不超过500元,则按标准价给予9折优惠.③如果超过500元,则其500元按第②条给予优惠,超过500元的部分给予7折优惠. 某人两次去购物,分别付款168元和423元,假设他只去一次购买上述同样的商品,则应付款是( )A .413.7元B .513.6元C .546.6元D .548.7元[答案] C[解析] 两次购物标价款:168+4230.9=168+470=638(元),实际应付款:500×0.9+138×0.7=546.6(元).7.(08·山东文)已知函数f (x )=log a (2x+b -1)(a >0,a ≠1)的图象如图所示,则a 、b 满足的关系是( )A .0<a -1<b <1B .0<b <a -1<1C .0<b -1<a <1D .0<a -1<b -1<1 [答案] A[解析] 令g (x )=2x+b -1,则函数g (x )为增函数,又由图象可知,函数f (x )为增函数, ∴a >1,又当x =0时,-1<f (0)<0,∴-1<log a b <0,∴a -1<b <1,故选A.8.一个机器人每一秒钟前进或后退一步,程序设计师让机器人先前进3步再后退2步的规律移动,如果将机器人放在数轴的原点,面向正的方向以一步的距离为一个单位长度.令P (n )表示第n 秒时机器人所在位置的坐标,且记P (0)=0,则下列结论中错误的是( )A .P (3)=3B .P (5)=1C .P (2003)>P (2005)D .P (2007)>P (2008) [答案] D[解析] 机器人程序为前进3步、后退2步,则P (3)=3,P (5)=1均正确,即5步等于前进了一个单位长度,∴p (2003)=P (2000)+P (3)=403, P (2005)=P (2000)+P (5)=401, ∴P (2003)>P (2005)正确.又P (2007)=P (2005)+P (2)=403, P (2008)=P (2005)+P (3)=404, ∴P (2007)>P (2008)错误.9.已知函数f (x )的图象如图,则它的一个可能的解析式为( )A .y =2xB .y =4-4x +1C .y =log 3(x +1)D .y =x 13(x ≥0)[答案] B[解析] 由于过(1,2)点,排除C 、D ;由图象与直线y =4无限接近,但到达不了,即y <4知排除A ,∴选B.10.已知二次函数f (x )=ax 2+bx +c (x ∈R )的部分对应值如表.A .(-10,-1)∪(1+∞)B .(-∞,-1)∪(3+∞)C .(-1,3)D .(0,+∞) [答案] C[解析] 由表可知f (x )的两个零点为-1和3,当-1<x <3时f (x )取正值∴使ax 2+bx +c >0成立的x 的取值范围是(-1,3).11.方程4x-3×2x+2=0的根的个数是( ) A .0 B .1 C .2 D .3 [答案] C[解析] 由4x-3×2x+2=0,得(2x )2-3×2x+2=0,解得2x=2,或2x=1,∴x =0,或x =1.12.若方程m x-x-m=0(m>0,且m≠1)有两个不同实数根,则m的取值范围是( ) A.m>1 B.0<m<1C.m>0 D.m>2[答案] A[解析] 方程m x-x-m=0有两个不同实数根,等价于函数y=m x与y=x+m的图象有两个不同的交点.显然当m>1时,如图(1)有两个不同交点当O<m<1时,如图(2)有且仅有一个交点.故选A.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知y =x (x -1)(x +1)的图象如图所示.令f (x )=x (x -1)(x +1)+0.01,则下列关于f (x )=0的解叙述正确的是________.①有三个实根; ②x >1时恰有一实根; ③当0<x <1时恰有一实根; ④当-1<x <0时恰有一实根;⑤当x <-1时恰有一实根(有且仅有一实根). [答案] ①⑤[解析] f (x )的图象是将函数y =x (x -1)(x +1)的图象向上平移0.01个单位得到.故f (x )的图象与x 轴有三个交点,它们分别在区间(-∞,-1),(0,12)和(12,1)内,故只有①⑤正确.14.某工程由A 、B 、C 、D 四道工序完成,完成它们需用的时间依次2、5、x 、4天,四道工序的先后顺序及相互关系是:A 、B 可以同时开工;A 完成后,C 可以开工;B 、C 完成后,D 可以开工,若完成该工程总时间数为9天,则完成工序C 需要的天数x 最大为________.[答案] 3 [解析] 如图,设工程所用总天数为f (x ),则由题意得: 当x ≤3时,f (x )=5+4=9, 当x >3时,f (x )=2+x +4=6+x ,∴f (x )=⎩⎪⎨⎪⎧9 x ≤36+x x >3,∵工程所用总天数f (x )=9, ∴x ≤3,∴x 最大值为3.15.已知抛物线y =ax 2与直线y =kx +1交于两点,其中一点坐标为(1,4),则另一个点的坐标为______.[答案] (-14,14)[解析] 由条件知⎩⎪⎨⎪⎧a ×12=4k +1=4∴⎩⎪⎨⎪⎧a =4k =3由⎩⎪⎨⎪⎧y =4x2y =3x +1得,⎩⎪⎨⎪⎧y =-14y =14或⎩⎪⎨⎪⎧x =1y =4.16.已知函数f (x )=⎩⎪⎨⎪⎧3x(x ≤0)log 9x (x >0),则方程f (x )=13的解为________.[答案] -1或39. [解析] 由条件知⎩⎪⎨⎪⎧3x =13x ≤0或⎩⎪⎨⎪⎧log 9x =13x >0∴x =-1或x =39三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)方程x 2-1x=0在(-∞,0)内是否存在实数解?并说明理由.[解析] 不存在,因为当x <0时,-1x>0∴x 2-1x >0恒成立,故不存在x ∈(-∞,0),使x 2-1x=0.18.(本题满分12分)北京市的一家报刊摊点,从报社买进《北京日报》的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?[解析] 设每天从报社买进x 份报纸,每月获得的总利润为y 元,则依题意有y =0.10(20x +10×250)-0.15×10(x -250)=0.5x +625,x ∈[250,400].该函数在[250,400]上单调递增,所以x =400时,y max =825(元).答:摊主每天从报社买进400份时,每月所获得的利润最大,最大利润为825元.19.(本题满分12分)电信局为了配合客户不同需要,设有A 、B 两种优惠方案,这两种方案应付电话费(元)与通话时间(分钟)之间的关系,如下图所示(实线部分).(注:图中MN ∥CD .)试问:(1)若通话时间为2小时,按方案A 、B 各付话费多少元? (2)方案B 从500分钟以后,每分钟收费多少元? (3)通话时间在什么范围内,方案B 才会比方案A 优惠.[解析] 由图知M (60,98),N (500,230),C (500,168),MN ∥CD .设这两种方案的应付话费与通话时间的函数关系分别为f A (x )、f B (x ),则 f A (x )=⎩⎪⎨⎪⎧98 0≤x ≤60,310x +80 x >60.f B (x )=⎩⎪⎨⎪⎧168 0≤x ≤500,310x +18 x >500.(1)通话2小时两种方案的话费分别为116元、168元.(2)因为f B (n +1)-f B (n )(n >500)=310(n +1)+18-310n -18=310=0.3(元).∴方案B 从500分钟以后,每分钟收费0.3元. (3)由图知,当0≤x ≤60时,f A (x )<f B (x ), 当x >500时,f A (x )>f B (x ),∴当60<x ≤500时,由f A (x )>f B (x ),得x >8803,即当通话时间在(8803,+∞)内时,方案B 较A 优惠.20.(本题满分12分)若关于x 的方程x 2-2ax +2+a =0有两个不相等的实根,求分别满足下列条件的a 的取值范围.(1)方程两根都大于1;(2)方程一根大于1,另一根小于1. [解析] 设f (x )=x 2-2ax +2+a (1)∵两根都大于1,∴⎩⎪⎨⎪⎧Δ=4a 2-4(2+a )>0a >1f (1)=3-a >0,解得2<a <3.(2)∵方程一根大于1,一根小于1, ∴f (1)<0 ∴a >3.21.(本题满分12分)某化工厂生产的一种溶液,按市场要求,杂质含量不能超过0.1%.若初时含杂质2%,每过滤一次可使杂质含量减少13,问至少应过滤几次才能使产品达到市场要求?(已知:lg2=0.3010,lg3=0.4771)[解析] 设过滤n 次,则2100·⎝ ⎛⎭⎪⎫23n ≤11 000即⎝ ⎛⎭⎪⎫23n ≤120,∴n ≥lg120lg 23=1+lg2lg3-lg2≈7.4 又∵n ∈N ,∴n ≥8,即至少要过滤8次才能达到市场要求.22.(本题满分14分)若二次函数y =-x 2+mx -1的图象与两端点为A (0,3)、B (3,0)的线段AB 有两个不同的交点,求m 的取值范围.[分析] 先求出线段AB 的方程,之后将图象交点问题转化为方程组解的问题,再将方程组解的问题转化为二次函数在区间上有零点的问题,最后通过不等式组求得m 的取值范围.[解析] 线段AB 的方程为x +y =3, 由题意得方程组⎩⎪⎨⎪⎧x +y =3(0≤x ≤3) ①y =-x 2+mx -1 ②在[0,3]上有两组实数解.将①代入②得x 2-(m +1)x +4=0(0≤x ≤3),此方程有两个不同的实数根. 令f (x )=x 2-(m +1)x +4.则二次函数f (x )在x ∈[0,3]上有两个实根,故有:⎩⎪⎨⎪⎧Δ=(m +1)2-16>0,0<m +12<3,f (0)=4>0,f (3)=9-3(m +1)+4≥0,解得3<m ≤103.故m 的取值范围是(3,103].[点评] 本题可能会出现下面的错解,令f (x )=-x 2+mx -1. ∵f (0)=-1<0,f (x )的图象开口向下,线段AB x +y =3(0≤x ≤3) 如图,要使f (x )的图象与线段AB 有两个不同交点应满足.⎩⎪⎨⎪⎧f (3)≤0f (m 2)>3-m 20<m 2<3,∴⎩⎪⎨⎪⎧m ≤103m <-17-1或m >17-10<m <6,∴无解.错因是顶点在线段AB 的上方与抛物线与线段AB 有两个交点不等价.。