一元一次不等式(1)
《一元一次不等式》完整版PPT1
变式:若x=2是不等式2x-a-2<0的一个解,则a可取的最小正整数为( ) 变式:不等式4-3x≥2x-6的非负整数解有( ) 只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.
移项
不等式的性质1
m≥2 B.
有一次,鲁班的手不慎被一片小草叶子割破了,他发现小草叶子的边缘布满了密集的小齿,于是便产生联想,根据小草的结构发明了锯子.
73
64
7.(课本P124 T2)当x或y满足什么条件时,下列关系式成立? (1)2(x+1)大于或等于1; (2)4x与7的和不小于6; (3)y与1的差不大于2y与3的差; (4)3y与7的和的四分之一小于-2.
拓展提升 8.解关于x的一元一次不等式 x+8>4x+m(m是常数).
变式:不等式 x+8>4x+m (m是常数) 的解集是 x<3,则 m=_____.
A.±1 B. 1 C. -1 D. 0
问题思考 解一元一次方程
2(1+x)=3
解:去括号 2+2x=3
移项 2x=3-2
合并同类项 2x=1
系数化为1
x1 2
解一元一次不等式 2(1+x)<3
Hale Waihona Puke 在数轴上表示解集?典例分析
例 解下列不等式,并在数轴上表示解集. 变式:不等式 x+8>4x+m (m是常数) 的解集是 x<3,则 m=_____.
(1)x +1>2x; (2) +2>0; ③移项、合并同类项,得-x>-13;
2 3个 D.
C.
1
①去分母,得5(x+2)>3(2x-1);
A.
(课本P124 T1)解下列不等式,并在数轴上表示解集:
x
一元一次不等式
一元一次不等式(1)【知识梳理】:1.不等式 :-----------连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的--------的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的------,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的----------.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的--------------.如果,0a b c >>,那么__ac bc (或___a bc c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的-----------.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
一元一次不等式概念
一元一次不等式的基本性质
1 加减法性质
对不等式的两边同时加减一个数,不等式的 关系不改变。
2 乘除法性质
对不等式的两边同时乘除一个正数,不等式 的关系不改变;对不等式的两边同时乘除一 个负数,不等式的关系改变。
3 倒置性质
如果改变不等式两边的位置,不等式的关系 将相反。
4 传递性质
如果 a > b 且 b > c,则 a > c。
一元一次不等式的绝对值不等式
定义
绝对值不等式是一种特殊的一 元一次不等式,其中包含一个 未知数的绝对值表达式。
Байду номын сангаас解法
通过分情况讨论和绝对值的性 质,我们可以求解绝对值不等 式并得到其解集。
示例
例如,|2x + 3| < 7 是一个绝对 值不等式。
一元一次不等式在生活中的应用
1 经济学
不等式可以用来描述资源分配、生产优化和供求平衡等经济学问题。
一元一次不等式的图形表示
数轴
数轴可以帮助我们直观地表示一 元一次不等式中未知数的取值区 间。
阴影区域
阴影区域表示满足一元一次不等 式的所有解的范围。
开圈与实心圈
不等式中使用的开圈和实心圈表 示边界是否包含在解集里。
一元一次不等式的解集概念
一元一次不等式的解集是满足不等式的所有实数的集合。解集可能是一个区 间、一个点或者空集。
一元一次不等式的等效变形
1
消去常数项
通过加减法,将常数项移到不等式的右边,变成0。
2
移项
通过加减法,将未知数的系数移到不等式的右边,变成0。
3
合并同类项
将不等式中同类项的系数相加合并。
一元一次不等式的加减法
一元一次不等式(公开课优秀课件)
实际应用中的一元一次不等式
一元一次不等式在实际生活中 有着广泛的应用,如购物、投 资、工程等领域的决策问题。
解决实际应用中的一元一次不 等式需要将问题转化为数学模 型,然后运用代数法和图像法 求解。
解决实际应用中的一元一次不 等式需要注意问题的实际情况 和限制条件,以及解的可行性 和最优性。
一元一次不等式(公开课优秀课件)
目 录
• 一元一次不等式的定义与性质 • 一元一次不等式的解法 • 一元一次不等式的应用 • 一元一次不等式的扩展
01 一元一次不等式的定义与 性质
一元一次不等式的定义
总结词
一元一次不等式是数学中一种简单的不等式,它只含有一个变量,且变量的指 数为1。
详细描述
一元一次不等式的一般形式为 ax + b > c 或 ax + b < c,其中 a、b、c 是常 数,a ≠ 0。这个不等式表示一个线性函数在某个区间内大于或小于另一个值。
在人口发展过程中,如何预测未来人 口数量,可以通过一元一次不等式来 建立数学模型。
交通流量问题
在道路交通中,如何合理规划红绿灯 时间,ห้องสมุดไป่ตู้保证交通流畅,可以通过一 元一次不等式来求解。
一元一次不等式与其他数学知识的结合
一元一次不等式与函数
一元一次不等式可以看作是函数的值大于或小于某个常数的情况, 因此可以结合函数的性质进行求解。
代数法解一元一次不等式的步骤 包括:去分母、去括号、移项、
合并同类项、化系数为1等。
代数法解一元一次不等式需要注 意不等式的性质,如不等式的可 加性、可乘性、可除性和同向不
一元一次不等式组(第1课时)八年级数学
设足球场的长为x m,那么它的周长就是2(x+70)m, 面积为70x m2.
根据已知条件,我们知道x的取值范围要使
2(x+70)>350 和70x<7630
这两个不等式同时成立.
为此,我们用大括号把上述两个不等式联立起来,得
2
(
x
70
)
350,
70x
7630.
探究新知
总结:
4(
x
+5)
>100
的解集,在数轴上表示
正确的是( D )
A.
B.
C.
D.
课堂检测
基础巩固题
1.不等式组
x 1 0,
x
2
的解集是
(C
)
A.x≤2
B.x>1
C.1<x≤2
D.无解
课堂检测
基础巩固题
2.下列说法正确的是 ( C )
x 3,
A. x 5 的解集是5<x<3
C.
x x
22,的解集是x=2
xx 1 (2)x 2
x 2 1
(3)1 x
1
×
2a 7 1 (4)3a 3 0
√ √
探究新知
知识点 2 一元一次不等式组的解法
思考:通常我们运用数轴表示不等式的解集,那么我们能用
它直接表示不等式组的解集吗? 试一试:用数轴表示出不等式组
x≤3 x > -3
②
未知数x同时满足① ②两个条件,把① ②两个不等式 合在一起,就组成一个一元一次不等式组.
探究新知
一个长方形足球场的宽为70m,如果它的周长大于350m, 面积小于7630m2,求这个足球场的长的取值范围,并判断这个 足球场是否可以进行国际足球比赛.(注:用于国际比赛的足球场 的长在100至110m之间,宽在64至75m之间).
一元一次不等式
一元一次不等式一元一次不等式是初中数学中的一个重要概念。
它是一种用来描述数之间大小关系的数学式子,由一个未知数和一个或多个常数构成。
本文将从基本概念、求解方法和应用场景三个方面介绍一元一次不等式的相关知识。
1. 基本概念一元一次不等式是指由一个未知数和一个或多个常数构成的不等式。
一元一次不等式的一般形式为Ax + B > 0(或< 0),其中A和B为实数,且A ≠ 0。
在求解一元一次不等式时,需要注意以下几个基本规则:- 若A > 0,则不等式两端同时乘以正数(或正数的等价形式)不改变不等式的方向。
- 若A < 0,则不等式两端同时乘以负数(或负数的等价形式)会改变不等式的方向。
- 不等式两端同时加(或减)同一个数值,不等式的方向不变。
2. 求解方法对于一元一次不等式的求解,我们可以采用图像法、试值法或代数法等不同方法。
2.1 图像法图像法是一种直观的方法,通过绘制函数图像来确定不等式的解。
对于一元一次不等式Ax + B > 0(或< 0),我们可以绘制出函数y = Ax + B 的图像,并根据图像在数轴上的位置来确定不等式的解集。
2.2 试值法试值法是一种简单有效的方法,在不等式两边选择一些特定的数值进行代入,然后判断不等式的成立情况。
通过不断尝试,最终找到满足不等式的解集。
2.3 代数法代数法是一种更为精确的方法,它基于等价变形和性质运算对不等式进行求解。
通过将一元一次不等式进行等价变形,将未知数的系数化为1,从而得到不等式的解集。
3. 应用场景一元一次不等式在实际问题中有着广泛的应用。
以下是两个常见的应用场景:3.1 财务管理在财务管理中,一元一次不等式可以用来描述投资、贷款或收入等方面的问题。
例如,假设一个人每月的收入为x元,他将其中的40%用于生活费,那么可以通过不等式0.4x > 1000 来计算他每月的最低收入。
3.2 生产与销售在生产与销售中,一元一次不等式可以用来描述成本、销售量和利润等关系。
一元一次方程不等式解法
一元一次方程不等式解法一元一次方程不等式是数学中比较基础的知识,对于初学者来说,理解并掌握它是非常重要的。
本文将为大家介绍一元一次方程不等式的概念、解法以及常见的问题和注意事项。
一、什么是一元一次方程不等式?一元一次方程不等式是指一个只有一个未知数x的不等式,其形式一般为ax + b > 0或ax + b < 0,其中a和b为已知数且a ≠ 0。
二、一元一次方程不等式的解法1. 移项法将不等式中的常数项b移到一边,未知数项ax移到另一边,然后将方程两边同除以系数a。
例如,对于ax + b > 0,我们可将b移到另一边,得到ax > -b,再将两边同除以a,即可得到x > -b/a的解。
2. 加减法一元一次方程不等式的加减法是指将不等式两边同时加上或减去同一量,从而改变不等式符号后比较大小。
例如,对于ax + b < 0,我们可将b移到另一边,得到ax < -b,再将两边同时减去b/a,即可得到x < -b/a的解。
三、一元一次方程不等式的常见问题和注意事项1. 一元一次方程不等式的解可能是整数、有理数或无理数。
2. 当a为正数时,不等式ax + b > 0的解集为x > -b/a,不等式ax + b < 0的解集为x < -b/a。
3. 当a为负数时,不等式ax + b > 0的解集为x < -b/a,不等式ax + b < 0的解集为x > -b/a。
4. 在解一元一次方程不等式时,最好画出数轴,从而更直观地判断解的区间。
5. 如果在方程中遇到分母为0的情况,就必须将其排除在方程的解的范围之外。
综上所述,理解一元一次方程不等式的概念和解法,以及注意事项,有助于我们更好地学习数学,提高解题能力。
希望本文能为大家提供一些参考和帮助。
一元一次方程与一元一次不等式
第一章:一元一次不等式和一元一次不等式组知识要点:1. 不等式:一般地用不等号连接的式子叫做不等式。
2. 不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
3. 解不等式:把不等式变为x>a 或x<a 的形式。
4. 一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,不等式的左右两边都是整式的不等式,叫做一元一次不等式。
5. 解一元一次不等式的步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为16. 一元一次不等式组的解集:几个一元一次不等式的解集的公共部分。
法则:“同大取大,同小取小,大小小大取中间,大大小小是无解。
”【典型例题】例1. 用不等式表示下列数量关系。
(1)a 的一半与-3的和小于或等于1。
()的与的差的相反数不小于。
2a 3525-()的相反数的不大于的倍加。
317516x x点评:用不等号表示的时候要准确理解“大”、“小”、“多”、“少”、“不大于”、“不小于”、“不多于”、“不少于”、“至少”、“至多”等词语的含义。
下面我们判断一下,以下的不等式是不是一元一次不等式.请大家讨论.2.一元一次不等式的解法.[例1]解不等式3-x <2x +6,并把它的解集表示在数轴上.[分析]要化成“x >a ”或“x <a ”的形式,首先要把不等式两边的x 或常数项转移到同一侧,变成“ax >b ”或“ax <b ”的形式,再根据不等式的基本性质求得.解一元一次方程的步骤吗?.有去分母;去括号;移项;合并同类项;系数化成1.[例2]解不等式22-x ≥37x -,并把它的解集在数轴上表示出来.请大家判断以下解法是否正确.若不正确,请改正.解不等式:312 -+-x≥5解:去分母,得-2x+1≥-15移项、合并同类项,得-2x≥-16两边同时除以-2,得x≥8.有两处错误.第一,在去分母时,两边同时乘以-3,根据不等式的基本性质3,不等号的方向要改变,第二,在最后一步,两边同时除以-2时,不等号的方向也应改变.[3.解一元一次不等式与解一元一次方程的区别与联系.联系:两种解法的步骤相似.区别:(1)不等式两边都乘以(或除以)同一个负数时,不等号的方向改变;而方程两边乘以(或除以)同一个负数时,等号不变.(2)一元一次不等式有无限多个解,而一元一次方程只有一个解.例2. 有理数x、y在数轴上的对应点如图所示,试用“>”或“<”号填空:x 0 y(1)x______y (2)x+y_____0 (3)xy____0(4)x-y______0例3. 设“A、B、C、D”表示四种不同质量的物体,在天平秤上的情况如图所示,请你用“<”号将这四种物体的质量m A、m B、m C、m D从小到大排列:_____________________________。
一元一次不等式知识点
一元一次不等式知识点1. 一元一次不等式的定义一元一次不等式是指包含一个未知数,且未知数的最高次数为一的不等式。
其一般形式为 ax + b > c 或 ax + b < c,其中 a, b, c 是实数,a ≠ 0。
2. 基本性质一元一次不等式具有以下基本性质:- 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
- 不等式两边乘(或除以)同一个正数,不等号的方向不变。
- 不等式两边乘(或除以)同一个负数,不等号的方向改变。
- 0 特殊性:0 不小于任何负数,不大于任何正数。
3. 解一元一次不等式的步骤- 移项:将含有未知数的项移到不等号的一边,常数项移到另一边。
- 合并同类项:将含有未知数的项系数化为1,同时将常数项相加减。
- 求解:根据系数化为1后的不等式,直接求出解集。
4. 特殊注意事项- 当系数化为1时,如果系数的分母为负数,需要改变不等号的方向。
- 解一元一次不等式时,需要注意不等式两边的运算顺序和运算规则。
5. 常见题型及解法- 直接求解:直接根据一元一次不等式的解法步骤求解。
- 应用题:将实际问题转化为一元一次不等式,然后求解。
- 系统求解:多个一元一次不等式组成的不等式组,需要找到满足所有不等式的解集。
6. 不等式组的解集- 同大取大:两个不等式都是大于号,取较大的那个数。
- 同小取小:两个不等式都是小于号,取较小的那个数。
- 大大小小中间找:一个不等式是大于号,另一个是小于号,取中间的数。
- 无解:一个不等式要求大于某个数,另一个要求小于同一个数,这种情况下无解。
7. 练习题- 解不等式 2x - 3 > 5,并表示在数轴上。
- 一个数的两倍减去5不小于10,求这个数的取值范围。
- 有两个房间,第一个房间的温度比第二个房间的温度高至少5度,如果第二个房间的温度是18度,求第一个房间的温度范围。
8. 总结一元一次不等式是初中数学的重要知识点,掌握其性质和解法对于解决实际问题和进一步学习数学都具有重要意义。
一元一次不等式
一元一次不等式一元一次不等式是数学中的基本概念之一,它在解决实际问题中具有广泛的应用。
本文将详细介绍一元一次不等式的定义、性质以及解法,并通过实例进行说明。
1. 一元一次不等式的定义一元一次不等式是指一个变量的一次方程与不等式的组合,形如ax + b > 0(或 < 0),其中a和b为已知实数,且a ≠ 0。
这种不等式通常用于表示某些量的范围或条件。
2. 一元一次不等式的基本性质(1)性质1:两个一元一次不等式可以进行加减运算,得到的结果仍然是一个一元一次不等式。
(2)性质2:一元一次不等式两边同时乘(或除)一个正数,不等式的方向不变;两边同时乘(或除)一个负数,不等式的方向发生改变。
(3)性质3:对于一元不等式ax + b > 0,如果a > 0,则该不等式的解集是x > -b / a;如果a < 0,则该不等式的解集是x < -b / a。
3. 解一元一次不等式的步骤(1)将不等式转化为等式:将不等式中的大于号(或小于号)改为等号。
(2)求解等式:解一元一次方程ax + b = 0,得到方程的解为x = -b / a。
(3)确定解的范围:根据一元一次不等式的性质,确定解的范围。
(4)表示解集:将解的范围写成不等式的形式,并表示为解集。
4. 实例演示假设有一元一次不等式2x - 3 > 5,我们按照上述步骤来解决这个不等式。
(1)转化为等式:2x - 3 = 5。
(2)求解等式:2x = 8,x = 4。
(3)确定解的范围:由于系数2 > 0,所以解的范围为x > 4。
(4)表示解集:解集可以表示为(4, +∞)。
通过以上步骤,我们成功解决了一元一次不等式2x - 3 > 5,得出解集为(4, +∞)。
总结:一元一次不等式在数学中具有广泛的应用,特别是在实际问题的建模和解决过程中。
对于一元一次不等式的解法,我们需要明确其定义和基本性质,然后按照一定的步骤进行求解,最终得到表示解集的形式。
《一元一次不等式与不等式组》知识讲解(1)
3
初一实验班——荣伟伟
一元一次不等式的解法
要点一、一元一次不等式的概念 只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,
2 x 50 是一个一元一次不等式. 3
要点诠释: (1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);
②只含有一个未知数; ③未知数的最高次数为 1. (2) 一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是 1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<”或“>”连接,不等号有方向;一 元一次方程表示相等关系,由等号“=”连接,等号没有方向.
移项、合并同类项得: − 3 x 6 4
系数化 1,得 x −8 故原不等式的解集是 x −8
例 3.m 为何值时,关于 x 的方程: x − 6m −1 = x − 5m −1 的解大于 1?
63
2
【答案与解析】
解: x-12m+2=6x-15m+3
5x=3m-1
x = 3m −1 5
要点二、一元一次不等式的解法 1.解不等式:求不等式解的过程叫做解不等式. 2.一元一次不等式的解法:
与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为: x a (或 x a )的形式,解一元一次不等式的一般步骤为:
(1)去分母; (2)去括号; (3)移项;
(4)化为 ax b (或 ax b )的形式(其中 a 0 );
例
4.若关于
x、y
的二元一次方程组
3x + y x + 3y
=1+ =3
一元一次不等式
一元一次不等式一元一次不等式是数学中常见的基本类型之一,也是初中代数学的重点内容。
它是由一个未知数的一次项和一个常数项组成的不等式,属于一元一次方程的变体。
通过解一元一次不等式,我们可以找到满足不等式条件的未知数的取值范围。
本文将介绍一元一次不等式的定义、性质以及解题方法。
一、定义和性质一元一次不等式的一般形式为ax + b > 0(或<、≤、≥)、ax + b < 0(或>、≤、≥)、ax + b = 0(或≠),其中a和b为实数,x为未知数。
不等号的方向表示了不等式条件的性质(大于、小于、大于等于、小于等于),等号表示等于或者不等于。
一元一次不等式的性质如下:1. 两个一元一次不等式如果它们的不等号方向相同,则可以进行相加、相减操作。
这意味着我们可以将两个不等式合并成一个更复杂的不等式。
2. 若不等式的两个方程相等,则不等式仍成立。
例如,若ax + b =cx + d,则对于任意实数x,ax + b > cx + d成立的话,ax + b ≥ cx + d也成立。
3. 对不等式的两边同时乘(或除以)正数时,不等号方向保持不变;对不等式的两边同时乘(或除以)负数时,不等号方向需要反转。
4. 可以将一元一次不等式转化为一元一次方程进行求解。
当不等式的解集为实数集时,解集用区间表示。
5. 解不等式时需要根据不等号的方向来确定解的范围。
大于(或小于)的不等式,解的范围为开区间;大于等于(或小于等于)的不等式,解的范围为闭区间。
二、解题方法解一元一次不等式的关键在于确定不等式的解集范围。
下面介绍几种常用的解题方法。
1. 逻辑法逻辑法是解一元一次不等式的基本方法,通过借助数轴的正负性和数的大小关系来判断不等式解的范围。
具体步骤如下:1)根据不等式关系(大于、小于、大于等于、小于等于)将不等式化简为ax + b > 0(或<、≤、≥)的形式;2)根据a的正负性和常数项b的符号,选择合适的数轴区间进行讨论;3)根据a的正负性,确定数轴上方程ax + b = 0的根点,并标记在数轴上;4)根据符号确定不等式的解集范围,并用数轴表示出来。
一元一次不等式
一元一次不等式一元一次不等式的概念只含有一个未知数,且含未知数的式子都是整式,未知数的次数是1,系数不为0.这样的不等式,叫做一元一次不等式。
要点诠释:(1)一元一次不等式的概念可以从以下几方面理解:①左右两边都是整式(单项式或多项式);②只含有一个未知数;③未知数的最高次数为1.(2)一元一次不等式和一元一次方程可以对比理解。
相同点:二者都是只含有一个未知数,未知数的最高次数都是1,左右两边都是整式;不同点:一元一次不等式表示不等关系(用“>”、“<”、“≥”、“≤”连接),一元一次方程表示相等关系(用“=”连接)。
一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式。
2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.注意事项:(1)在解一元一次不等式时,每个步调其实不肯定都要用到,可按照具体问题灵活运用(2)解不等式应注意:①去分母时,每一项都要乘统一个数,尤其不要漏乘常数②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。
3.不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有没有限多个解,它对当前正确确定一元一次不等式组的解集有很大匡助。
留意事项:在用数轴表示不等式的解集时,要确定边界和偏向:(1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)偏向:大向右,小向左1、检验一个数值是不是已知不等式的解,只要把这个数代入不等式,然后判断不等式是否成立,若成立,就是不等式的解;若不成立,则就不是不等式的解。
2、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为或的形式,其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为这五个步骤根据具体题目,适当选用,合理安排顺序。
第二章一元一次不等式(1)
2 1
0
1
练习:
32k 5 1.若代数式 的值不大于代数式 5k 1的值, 2 则k的取值范围是
2.⑴已知关于 x的方程3x 3 2a 4 x 3a 6的解 是负数,则 a的取值范围是
xm 2 x ⑵若关于 x的方程 x 的解是非负数, 2 2 则m的取值范围是
y
6.如图,直线 y kx b与x轴交于(3,0),
关于x的不等式kx b 0的 解集是
o
3
x
7.直线l1 : y k1 x b与直线l2 : y k2 x
l2
在同一平面坐标系中的 图像 如图所示,则关于 x的不等式 k 2 x k1 x b的解集为
l1
y
2
1 o
3.直线y 2 x 3 m与y轴的交点在 x轴的上方, 则m的取值范围是
4.函数y (2m 1) x的图像上两点 A( x1 , y1 ), B( x2 , y2 ) 当x1 x2时,y1 y2 , 则m的取值范围是 5.已知y1 2 y2 时,y1 5;
(1)求a的值 1 (2)求不等式组0 kx b x 1 2 (3)若函数y kx b的图像与x轴的交点是B, 1 函数y x 1的图象与y轴交点是C,求四边 2 形ABOC的面积.
x
8.如图,函数 y 2 x和y ax 4的图像 y A 相交于A(m,3)则不等式2 x ax 4
的解集是
o
x
9.直线y kx b中,k b 5, kb 6, 则直线经过第 象限
10.已知一次函数 y kx b的图像经过点 (1,5),且与 1 8 函数 y x 1的图像相交于 A( , a) 2 3
数学一元一次不等式
数学一元一次不等式一元一次不等式是初中数学学习中不可避免的一部分,它与一元一次方程一样重要,是学习不等式的基础。
了解一元一次不等式的解法和应用,可以帮助我们在实际问题中更好地分析和解决各种实际问题。
一、一元一次不等式的定义和表示方法一元一次不等式是指只有一个未知数,且未知数的最高次数是1的不等式。
例如:2x+3>5-3x+7≤1x-4<6常用的不等式符号有“<”(小于)、“>”(大于)、“≤”(小于等于)、“≥”(大于等于)、“≠”(不等于)等。
二、一元一次不等式的解法1、加减法原则对于一元一次不等式,加减法原则与一元一次方程相同,即方程两边同时加上或减去同一个数,等式仍然成立,且不等式符号不变。
2、乘除法原则对于一元一次不等式,在乘除法运算中,不等式两端同乘或除以同一个正数,不等式符号不变;若乘或除以负数,则不等式符号需变化。
3、移项法移项法是一种较为常用的不等式求解方法。
移项法的思想是将不等式中含有未知数的项移到一边,将常数项移到另一边。
例如:2x+3>5移项可得:2x>2再除以2,x>1因此,不等式的解集为{x|x>1}。
三、一元一次不等式的应用1、绝对值不等式绝对值不等式是一种特殊的一元一次不等式,它的解法比一般的一元一次不等式更加复杂。
例如:|2x-5|<7有以下两种情况:⑴ 2x-5>0,即x>5/2,此时有2x-5<7,即2x<12,解得x<6,综合起来得:5/2<x<6;⑵ 2x-5<0,即x<5/2,此时有-(2x-5)<7,即2x-5>-7,解得x>-1,综合起来得:x<-1 或 5/2<x。
2、代数式求值通过建立一元一次不等式模型,可以用不等式求解方法求出代数式的取值范围。
例如:(2x-3)/(x+1)>3先将分母移项,得:2x-3>3(x+1)移项并化简,得:x>1因此,当x>1时,原式大于3。
一元一次不等式及其解法—去括号练习
解:x≤-3,数轴表示略.
(4)2(2x-3)<5(x-1). 解:x>-1,数轴表示略.
拓展提升
9. 不等式17-3x>2的正整数解有( A. 2个 B. 3 个 C. 4 个
C)
D. 5 个
10. 关于x的不等式2x-a≤-1的解集如图所示,则a 的取值是( D )
A. 0
B. -3
C. -2
解:(1)x≤-1.(2)x<-
. 数轴表示略.
3. 解不等式5(x-2)+8<6(x-1)+7,并把解集在 数轴上表示出来. 解:x>-3,数轴表示略.
巩固训练
4. 不等式x+1>2x-4的解集是( A )
A. x<5
的是( A )
B. x>5
C. x<1
D. x>1
5. 一元一次不等式x-1≥0的解集在数轴上表示正确
பைடு நூலகம்
x≤2 . 6. 不等式2(x+4)≤12的解集是________
7. 当x___________时,代数式3x+4的值为正数.
8. 解下列不等式并把其解集在数轴上表示出来.
(1)2(x-1)-3<1; 解:x<3,数轴表示略. (2)10-3(x+6)≤1; 解:x≥-3,数轴表示略. (3)3x-7≥4(x-1);
D. -1
11. 解不等式:3 [x-2(x-7)]≤4x.
12. 已知关于x的方程3x+(3-2a)=4x+3(a+2)的解 是负数,求a的取值范围. 解:解关于x的方程3x+(3-2a)=4x+3(a+2),得
x=-5a-3.
因为x是负数,所以-5a-3<0. 解这个不等式,得a>所以a的取值范围是a>. .
一元一次不等式组(一)
试一试:你能写出两个一元一次不等式组 成,巩固已 吗? 讨论:如何求一元一次不等式组的解集? (1) 解一元一次不等式组的步骤是什么? (2) 什么是不等式组的解集?怎样寻找和 表示出它的解集? 师:请同学们把(1)(2)两个不等式分别 、 解出 生:由(1)得 x≤1000,由(2)得 x≥500 师:这里的 x 要同时满足上面两个不等式的 解集,可以把这两个不等式的解集表示在(同 学生讨论, 一条)数轴上,求出它们解集的公共部分。请 教师总结 同学们自己动手,在纸上画出这两个不等式的 解集,观察其公共部分是哪一段? 学知识
的解集分别是什么? 生:①x>b,②x<a,③ a<x<b,④无解。 教师【出示】
不等式组(a <b 数轴表示 解 集
)
x > a x > b x < a x < b x > a x < b
a b x>b
记忆口 诀
把具体数字
同大取 大
换成字母仍 需借助数轴
a
b
同小取 小 x<a
-8-
运用能力
木 架 . 问 第 三 根 木 条 的 长 度 应 在 什 么 范 围 培养了学生 内? 对知识的应 用能力 4.泡咖啡时,当每杯咖啡用水约为 130ML 时, 所使用的糖 xg、咖啡粉 yg 与泡出来的咖啡甜 度 c 有如下的关系: =c 某咖啡馆经过问卷调查后发现,当咖啡的甜 度是 1 时,客人最喜欢喝,不过只要咖啡甜度 在 0.5~1.5 时,客人都能接受。如果一杯咖 啡用了 12g 咖啡粉,那么在客人能接受的范围 内,这杯咖啡应该用多少糖? 课堂小结 (1)这节课你学到了什么? 2 分钟 布置作业 1 分钟 教学反思 1、教学“不等式组的解集”时,用数形结合的方法,通 过借助数轴找出公共部分解出解集,这是最容易理解的方 法,也是最适用的方法。 (2)你还有哪些不懂的问题? 补充习题 7.6(1) 学生口答
一元一次不等式及解法
3.3 一元一次不等式(一)1.在不等式中,移项旳根据是_________.2.下列不等式:①-6<0; ②1x >6; ③2y -3<3x +2; ④2x +1≥6(x -3); ⑤x 2-3x -4<0; ⑥11132x x -+<-.其中是一元一次不等式旳有_________(填序号).3.填空:(1)不等式2x>4旳解是_______;(2)不等式3x ≤-2x 旳解是_______;(3)不等式1-3x ≥2旳解是________;(4)不等式-45x<-4旳解是_______.4.根据数轴(如图),写出相应旳有关x 旳不等式旳解:解:__________; 解:__________.5.下列说法不对旳旳是( )A.不等式x≤2旳解有无数个B.不等式x≤2旳整数解有无数个C.不等式x≤2旳正整数解有x=1,x=2 D.不等式x≤2旳最小整数解是x=26.下列变形对旳旳是()A.-5x>10,变形为x>-2B.3x<4,变形为x<34C.4-2x≥x+2,变形为-2x+4≥2+4 D.-x<6,变形为x>-67.解下列不等式,并把解表达在数轴上:x≤3;(2)5x-3>7x+2.(1)-348.给出下列解不等式旳过程,你觉得与否对旳?若不对旳请改正:解不等式:2x+1>6x+3.解:2x-6x>3+1①___________-4x>4 ②___________x>-1③___________9.(1)如果整数x满足-2≤x<3,则x=________.(2)不等式7x>36旳自然数解有_________个.10.(1)如果a>3,那么不等式(a-3)x<a-3旳解是_______;(2)如果a<3,那么不等式(a-3)x<a-3旳解是________. 11.已知0<a<1,则下列成立旳是( )A.1a <a<a2B.a2<1a<a C.a<1a<a2D.a2<a<1a12.求满足不等式3x-6<4x-2旳最小整数解.13.已知方程kx+1=2x-1旳解是正数,求k旳取值范畴.14.已知不等式5x-2<6x+1旳最小整数解是方程2x-ax=3旳旳值.解,求代数式4a-14a15.某种商品进价150元,标价200元,但销量较小,为了促销,商场决定打折销售,若为了保证利润不低于20%,那么至多打几折?3.3一元一次不等式(二)1.(1)当x_______时,代数式2x-4旳值是负数;(2)当x______时,代数式-3x-2旳值是正数.2.一种不等式旳解为x≥-3,则这个不等式旳负整数解为() A.x=-1,-2 B.x=-1,-2,-3C.x=0,-1,-2 D.x =0,-1,-2,-33.一种不等式旳解为x<213,则有关这个不等式旳下列说法对旳旳是( )A .有最大整数解x =2B .有最小整数解x =2 C.有两个整数解x =1,x=2 D .有有限个整数解4.指出错误,并加以改正:(1)解不等式:2x -1>3(1-2x ).先阅读下面旳解答过程:解:2x -1>3-6x ①2x -6x>3-1 ②-4x >2 ③x <-12 ④上述第______步(写序号)开始错误,请你写出对旳过程.(2)解不等式:523124x x --≤-. 先阅读下面旳解答过程:解:2(x -5)≤1-2-3x ①2x -10≤-1-3x ②2x +3x ≤-1+10 ③5x≤9 ④x ≤95⑤上述第______步(写序号)开始错误,请你写出对旳过程.5.已知有关x 旳方程3x =2-4a旳解是负数,求a 旳取值范畴.6.解不等式,并把它们旳解表达在数轴上:(1)(x +2)(x -2)≤(x-2); (2)11;23x x ->- 41(3)243x x -+-≥-7.当x 为什么值时,代数式43132x x +-与旳差不小于1?8.求不等式325124x x ++≤-旳最大整数解.9.当x _______时,•代数式122x-旳值不不不小于3x +•4•旳值,•符合条件旳x •旳最大整数是______.10.三个持续自然数旳和不不小于11,这样旳自然数组共有( ) A .1组 B .2组 C .3组 D .4组11.如果不等式ax +4<0旳解在数轴上表达如图所示,则a 旳值是( )A .a>0B .a<0C .=212.已知a <2,解不等式:ax >2x +5.13.已知(x -2)2+│2x -3y -m │=0中,y 为正数,求m 旳取值范畴.14.已知有关x ,y 旳方程组3,13x y x y a-=-⎧⎨+=-⎩旳解满足3x +y ≥2,求a旳取值范畴.15.已知正数a,b,有下列结论:(1)若ab=1,则a+b≥2,即a+b旳最小值为2;(2)若ab=1,则a+b≥4,即a+b旳最小值为4;(3)若ab=9,则a+b≥6,即a+b旳最小值为6;(4)若ab=16,则a+b≥8,即a+b旳最小值为8.根据以上所提供旳规律猜想:若ab=100,求a+b旳最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.2一元一次不等式(1)
年级七年级课型新授授课人刘莉
教学目标知识
技能
1.了解一元一次不等式的概念;
2.掌握一元一次不等式的解法;
3.会在数轴上表示不等式的解集,会求不等式的整数解。
过程
方法
类比解一元一次方程的过程探究一元一次不等式的解法,领会化归思想。
情感
态度
激发学生学习兴趣,让学生体验探究的快乐。
教学重点一元一次不等式的解法.
教学难点领会化归思想,克服解不等式中易犯错误。
.
教学方法类比、探究、讨论教学手段多媒体
教学过程设计
问题与情境师生活动
复习引入1.复习一元一次方程的定义:
只含有一个未知数,并且未知数的次数是1的方程。
2.回忆不等式的基本性质。
复习一元一次方程的
定义和解法,为学生类
比探究一元一次不等
式的定义奠定基础。
不等式性质是解不等
式的依据。
类比探究1. 归纳一元一次不等式的定义:
观察下面的不等式:
x-7>26,3x<2x+1,
3
2
x>50,-4x>3。
它们有哪些共同特
征?
像上面那样,只含有个未知数,并且未知数的次数是
学生类比归纳一元一
次不等式的定义。
的不等式,叫做一元一次不等式。
2、一元一次方程和一元一次不等式的联系与区别?
例1:解不等式:
(1)x -7<8 (2)3x<2x-3 解: 解:
x-7+7 <8+7 3x-2x <2x-3-2x x <8+7 3x-2x <-3 x <15 x <-3
这两小题中不等式的变形与方程的什么变形相类似? (这里的变形与方程中的移项相类似:)
解(1) (2)
这两小题中不等式的变形与方程的什么变形相类似?有
什么不同?
1、解一元一次不等式的依据
通过今天的探讨学习,你获得了哪些新知识?大胆说出来,
和大家交流一下!
2.思考解一元一次不等式与解一元一次方程的异同。
归纳解一元一次不等式的解法思想和一般步聚:
(1)与解方程一样,解一元一次不等式,要根据不等式的性质,将不等式逐步化为x>a 或x<a 的形式.
(2)解一元一次不等式和解一元一次方程类似,有 去分母—去括号—移项—合并同类项—系数化为1.
区别在哪里:
在去分母和系数化为1的两步中,要特别注意不等式的两边都乘以(或除以)一个负数时,不等号的方向必须改变.
利用不等式性质直接求出解集,初步感受解不等式的目标是将不等式化为
a
x a x 〈〉或
类比一元一次方程的解法学生独立探究一元一次不等式的解法。
引导学生归纳一元一次不等式的解法步骤,
对比一元一次不等式
与一元一次方程的解
法,培养归纳能力,体会化归思想和类比思想。
211 3 (2)262x x >--<例:解不等式:()1
2322
x ⨯>-⨯6
x >-)
2
1
(6)21(2-⨯〉-⨯-x 3x >-
巩固应用例3 x为何值时式子的值不
小于2
一、利用不等式的解集求字母的值:
关于x的不等式3x-2a≤-2的解集如图所示,求a的值.
二、求一元一次不等式的特殊解:
求不等式3(1-x) ≤2(x+9)的负整数解.
求不等式2 (x-1) <x+1的正整数解.
三、解含字母系数的一元一次不等式:
解关于的不等式
分类讨论:
熟练解一元一次不等
式组,注意系数化1
时,不等式两边同除以
(乘以)负数时,不等
号的方向是否改变了。
会求不等式的整数解
综合运用方程、方程
组、不等式解题,提高
综合运用知识能力。
.
,5
4
5
3
1
2
.1
表示出来
并把它的解集在数轴上
解不等式
例-
≥
-
x
x
.
1
4
5
2
6
1
.
2
表示出来
并把它的解集在数轴上
解不等式
例≥
-
-
+y
y
1
3
2
-
x
+25+1
m x x m
<
x
(1)20
m+>
(2)20
m+=
(3)20
m+<
-1 0 1
四、方程组与不等式的综合:
五、不等式解集包含数值的讨论:
六、方程组与不等式:
综合运用方程、方程组、不等式解题,提高综合运用知识能力.
小
结
1.解一元一次不等式的步骤。
2.类比和化归思想。
对比一元一次不等式与一元一次方程的定义和解法。
作
业
课本第126页1、2、3。
教 学 反 思
31
0,31x y k x y x y k +=+⎧+<⎨+=-⎩已知方程组的解满足求k 的取值范围。
+若不等式-3(x 2)<m+2的解集由正数组成,求m 的取值范围。
8
m ≤-222x m x
m --=若关于x 的方程x-的解是非负数,求的取值范围。