勾股定理及常见题型分类

合集下载

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类一.知识归纳1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++,所以222a b c += 方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;c b a H G F E D C B A b a c b a c c a b c a b abc c b a E D C B A②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:丢番图发现的:式子n m n m mn n m >+-(,2,2222的正整数)毕达哥拉斯发现的:122,22,1222++++n n n n n (1>n 的整数)柏拉图发现的:1,1,222+-n n n (1>n 的整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长 21E DCBA例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m 。

3.1勾股定理(七大题型)(解析版)

3.1勾股定理(七大题型)(解析版)

(苏科版)八年级上册数学《第3章 勾股定理》3.1 勾股定理●勾股定理: 直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.◆1、勾股定理的应用条件:勾股定理只适用于直角三角形;◆2、勾股定理揭示的是直角三角形三边的关系,已知直角三角形中的任意两边可以求出第三边.◆3、勾股定理的几种变形式:勾股定理将“数”与“形”联系起来,体现了直角三角形三边之间的等量关系.如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,则a 2 + b 2 = c 2、 a 2 = c 2 - b 2、b 2 = c 2 - a 2;22b a c +=、22b c a -=、22a c b -=.【拓展】◎1、锐角三角形的三边关系是:在锐角三角形中,若三边长分别为a ,b ,c ,其中c 为最大边,则a 2+b 2>c 2.◎2、钝角三角形的三边关系是:在钝角三角形中,若三边长分别为a ,b ,c ,其中c 为最大边,则a 2+b 2<c 2.●通过拼图证明勾股定理的思路:(1)图形经过割补拼接后,只要没有重叠、没有空隙,面积就不会改变.(2)根据同一种图形的面积的不同表示方法列出等式.(3)利用等式性质变化验证结论成立,即拼出图形→写出图形面积的表达式→找出等量关系→恒等变形→推导命题结论.●下面列举几种证明方法:◆1、“赵爽弦图”证明:在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即c2=12ab×4+(b﹣a)2,化简得:a2+b2=c2.◆2、我国数学家邹元治的证明方法证明:在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即(a+b)2=c2+12ab×4,化简得:a2+b2=c2.◆3、美国第二十任总统伽菲尔德的“总统证法”证明:在图3中,梯形的面积等于三个直角三角形的面积的和.即12(a+b)(a+b)=12ab×2+12c2,化简得:a2+b2=c2.【例题1】在直角三角形中,两条直角边的长分别为9和12,则斜边的长为 .【分析】根据勾股定理直接求出斜边的长即可.【解答】解:∵在直角三角形中,两条直角边的长分别为9和12,=15.故答案为:15.【点评】本题主要考查了勾股定理,解题的关键是熟练掌握勾股定理,如果直角三角形的两条直角边长为a、b,斜边长为c,那么a2+b2=c2.【变式1-1】已知△ABC中,∠C=90°,AB=c,BC=a,AC=b.(1)如果a=7,b=24,求c;(2)如果a=12,c=13,求b.【分析】(1)利用勾股定理计算c=(2)利用勾股定理计算b=【解答】解:(1)在Rt△ABC中,∠C=90°,由勾股定理得:c===25;(2)在Rt△ABC中,由勾股定理得:b===5.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.注意勾股定理应用的前提条件是在直角三角形中.【变式1-2】(2022秋•东方期末)如图,在△ABC 中,AB =AC =10,BC =12,AD 平分∠BAC ,则AD 等于( )A .6B .7C .8D .9【分析】根据等腰三角形的三线合一得到AD ⊥BC ,BD =DC =12BC =6,根据勾股定理计算,得到答案.【解答】解:∵AB =AC ,AD 平分∠BAC ,∴AD ⊥BC ,BD =DC =12BC =6,在Rt △ABD 中,AD 8,故选:C .【点评】本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.【变式1-3】(2022秋•新泰市期末)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,则点C 到直线AB 的距离是( )A .185B .3C .125D .2【分析】作CD⊥AB于点D,根据勾股定理可以求得AB的长,然后根据面积法,可以求得CD的长.【解答】解:作CD⊥AB于点D,如右图所示,∵∠C=90°,AC=3,BC=4,∴AB=5,∵AC⋅BC2=AB⋅CD2,∴3×42=5CD2,解得CD=2.4,故选:C.【点评】本题考查勾股定理、三角形的面积,解答本题的关键是明确题意,画出相应的图形,利用勾股定理和面积法解答.【变式1-4】(2021春•连州市期中)如图所示,AB⊥BC,DC⊥BC,E是BC上一点,∠BAE=∠DEC=60°,AB=3,CE=4,则AD等于( )A.10B.12C.24D.48【分析】本题主要考查勾股定理运用,解答时要灵活运用直角三角形的性质.【解答】解:∵AB⊥BC,DC⊥BC,∠BAE=∠DEC=60°∴∠AEB=∠CDE=30°∵30°所对的直角边是斜边的一半∴AE=6,DE=8又∵∠AED =90°根据勾股定理∴AD =10.故选:A .【点评】解决此类题目的关键是熟练掌握运用直角三角形两个锐角互余,30°所对的直角边是斜边的一半,勾股定理的性质.【变式1-5】如图,在△ABC 中,∠ACB =90°,AC =3,BC =4,分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,连接CD ,则CD 的长为 .【分析】根据勾股定理可以求得AB 的长,然后根据线段垂直平分线的判定方法可以得到MN 为线段AB 的垂直平分线,再根据直角三角形斜边上的中线等于斜边的一半,即可得到CD 的长.【解答】解:∵∠ACB =90°,AC =3,BC =4,∴AB ==5,连接NA ,NB ,MA ,MB ,如图所示,∵分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,∴NA =NB ,MA =MB ,∴直线MN 垂直平分AB ,∵直线MN 交AB 于点D ,∴点D 为AB 的中点,∴CD 为Rt △ACB 斜边上的中线,∴CD =12AB =52,故答案为:52.【点评】本题考查勾股定理、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-6】(2022春•河北区期末)如图,在△ABC中,CD⊥AB于点D,AC=20,CD=12,BD=9.求AB与BC的长.【分析】根据勾股定理求出BC即可;根据勾股定理求出AD,求出AB即可.【解答】解:∵CD⊥AB,AC=20,CD=12,BD=9,∴∠ADC=∠BDC=90°,在Rt△CDB中,由勾股定理得:BC=15,在Rt△ADC中,由勾股定理得:AD=16,∴AB=AD+DB=16+9=25.答:AB的长为25,BC的长为15.【点评】本题考查了勾股定理的应用,关键是对定理的掌握和运用.【变式1-7】如图,在△ABC中,AC=8,BC=6,CE是AB边上的中线,CD是AB边上的高,且AE=5.(1)求CD的长;(2)求DE的长.【分析】(1)先证明三角形ABC是直角三角形,再根据等面积法即可求解;(2)根据勾股定理求出BD的长即可求解.【解答】解:(1)∵CE是AB边上的中线,∴AE=BE=5,∴AB=10,又∵AC=8,BC=6,∴AC2+BC2=82+62=100=AB2,∴△ABC是直角三角形,又∵CD是△ABC的高,∴S△ABC=12AC⋅BC=12AB⋅CD,∴CD=AC⋅BCAB=4.8;(2)在Rt△BDC中,由勾股定理得,BD=3.6,∴DE=BE﹣BD=5﹣3.6=1.4.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.【例题2】勾股定理的验证方法很多,用面积(拼图)证明是最常见的一种方法.如图所示,一个直立的长方体在桌面上慢慢地倒下,启发人们想到勾股定理的证明方法,设AB=c,BC=a,AC=b,证明中用到的面积相等关系是( )A.S△ABC+S△ABD=S△AFG+S△AEFB.S梯形BCEF=S△ABC+S△ABF+S△AEFC.S△BDH=S△FGHD.S梯形BCEF=S△ABC+S△ABF+S△AEF+S△FGH【分析】通过用两种方法计算梯形BCEF的面积即可证明勾股定理.【解答】解:∵矩形ACBD旋转得出矩形AGFE,∴△ABC≌△FAE,∴AB=AF,∠BAC=∠AFE,∵∠AFE+∠EAF=90°,∴∠BAC+∠EAF=90°,∴△ABF是等腰直角三角形,由题意知:S梯形BCEF =12(a+b)•(a+b)=12(a+b)2=12a2+ab+12b2,S△ABC+S△ABF+S△AEF=12ab+12ab+12c2=ab+12c2,∴12a2+ab+12b2=ab+12c2,∴a2+b2=c2,故选:B.【点评】本题主要考查了勾股定理的证明,等腰直角三角形的判定,表示出图形面积的不同表达形式,建立等量关系是解题的关键.【变式2-1】(2022春•三门峡期末)我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明.古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用.下面四幅图中,不能证明勾股定理的是( )A .B .C .D .【分析】由正方形面积公式、三角形面积公式以及梯形面积公式分别对各个选项进行判断即可.【解答】解:A 、大正方形的面积为:c 2,也可看作是4个直角三角形和一个小正方形组成,则其面积为:12ab ×4+(b ﹣a )2=a 2+b 2,∴a 2+b 2=c 2,故A 选项能证明勾股定理;B 、大正方形的面积为:(a +b )2,也可看作是2个矩形和2个小正方形组成,则其面积为:a 2+b 2+2ab ,∴(a +b )2=a 2+b 2+2ab ,∴B 选项不能证明勾股定理.C 、大正方形的面积为:(a +b )2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:12ab ×4+c 2=2ab +c 2,∴(a +b )2=2ab +c 2,∴a 2+b 2=c 2,故C 选项能证明勾股定理;D、梯形的面积为:12(a+b)(a+b)=12(a2+b2)+ab,也可看作是2个直角三角形和一个等腰直角三角形组成,则其面积为:12ab×2+12c2=ab+12c2,∴12(a2+b2)+ab=ab+12c2,∴a2+b2=c2,故D选项能证明勾股定理;故选:B.【点评】本题考查了勾股定理的证明、正方形面积公式、三角形面积公式以及梯形面积公式,熟练掌握内弦图、外弦图是解题的关键.【变式2-2】“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为( )A.9B.6C.4D.3【分析】分析题意,首先根据已知条件易得,中间小正方形的边长为:a﹣b;接下来根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,从图形中可得,大正方形的面积是4个直角三角形的面积与中间小正方形的面积之和,∴4×12ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3.故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式.【变式2-3】(2022春•高安市期中)勾股定理被誉为“几何明珠”,如图是我国古代著名的“赵爽弦图”,它由4个全等的直角三角形拼成,已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(a>b),则下列说法:①a2+b2=25,②a﹣b=1,③ab=12,④a+b=7.正确的是( )A.①②B.①②③C.①②④D.①②③④【分析】根据勾股定理和大正方形面积为25,可以判断①;根据小正方形面积为1,可以判断②;根据大正方形面积为25,小正方形面积为1,可以得到四个直角三角形的面积,从而可以得到ab的值,即可判断③;根据完全平方公式可以判断④.【解答】解:由图可得,a2+b2=c2=25,故①正确;∵小正方形面积为1,∴小正方形的边长为1,∴a﹣b=1,故②正确;∵大正方形面积为25,小正方形面积为1,∴12ab=(25﹣1)÷4,解得ab=12,故③正确;∵a2+b2=25,ab=12,∴(a+b)2=a2+2ab+b2=49,∴a+b=7,故④正确;故选:D.【点评】本题考查勾股定理的证明、正方形的性质、直角三角形的面积,利用数形结合的思想解答是解答本题的关键.【变式2-4】如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC =6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是( )A .36B .76C .66D .12【分析】由题意∠ACB 为直角,利用勾股定理求得外围中一条边,又由AC 延伸一倍,从而求得风车的一个轮子,进一步求得四个.【解答】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x ,则x 2=122+52=169,所以x =13,所以这个风车的外围周长是:(13+6)×4=76.故选:B .【点评】此题考查了勾股定理的证明,本题是勾股定理在实际情况中的应用,并注意隐含的已知条件来解答此类题.【变式2-5】用不同的方式表示同一图形的面积可以解决线段长度之间关系的有关问题,这种方法称为等面积法,这是一种重要的数学方法,请你用等面积法来探究下列三个问题:(1)如图1是著名的“赵爽弦图”,由四个全等的直角三角形拼成,请用它验证勾股定理c 2=a 2+b 2.(2)如图2,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的高,AC =4,BC =3,求CD 的长度;(3)如图1,若大正方形的面积是13,小正方形的面积是1,求(a +b )2的值(a <b ).【分析】(1)根据大正方形的面积的两种表示方法求解即可;(2)根据直角三角形的面积公式求解即可;(3)根据小正方形的为1得出2ab =12,再结合c 2=13即可求解.【解答】解:(1)如图1,大正方形的面积=c 2=4×12ab +(b ―a )2,整理得,c2=a2+b2;(2)在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵S△ABC=12AC⋅BC=12AB⋅CD,∴CD=AC⋅BCAB=125;(3)∵大正方形的面积是13,小正方形的面积是1,∴c2=13,(b﹣a)2=1,∴a2+b2﹣2ab=1,∴2ab=12,∴(a+b)2=a2+b2+2ab=13+12=25,即(a+b)2的值为25.【点评】本题考查了勾股定理的证明,正确表示出大正方形的面积的两种表示方法是解题的关键.【变式2-6】(2022春•巢湖市校级期中)学习勾股定理之后,同学们发现证明勾股定理有很多方法.某同学提出了一种证明勾股定理的方法:如图1点B是正方形ACDE边CD上一点,连接AB,得到直角三角形ACB,三边分别为a,b,c,将△ACB裁剪拼接至△AEF位置,如图2所示,该同学用图1、图2的面积不变证明了勾股定理.请你写出该方法证明勾股定理的过程.【分析】连接BF,由图1可得正方形ACDE的面积为b2,由图2可得四边形ABDF的面积为三角形ABF 与三角形BDF面积之和,再利用正方形ACDE的面积与四边形ABDF的面积相等即可证明.【解答】证明:如图,连接BF,∵AC =b ,∴正方形ACDE 的面积为b 2,∵CD =DE =AC =b ,BC =a ,EF =BC =a ,∴BD =CD ﹣BC =b ﹣a ,DF =DE +EF =a +b ,∵∠CAE =90°,∴∠BAC +∠BAE =90°,∵∠BAC =∠EAF ,∴∠EAF +∠BAE =90°,∴△BAE 为等腰直角三角形,∴四边形ABDF 的面积为:12c 2+12(b ﹣a )(a +b )=12c 2+12(b 2﹣a 2),∵正方形ACDE 的面积与四边形ABDF 的面积相等,∴b 2=12c 2+12(b 2﹣a 2),∴b 2=12c 2+12b 2―12a 2,∴12a 2+12b 2=12c 2,∴a 2+b 2=c 2.【点评】本题考查勾股定理的证明,解题的关键是熟练掌握勾股定理的证明方法,一般利用拼图的方法,再利用面积相等证明.【例题3】如图,当正方形B的面积为64,正方形C的面积为100时,正方形A的面积为( )A.36B.25C.16D.6【分析】直接根据勾股定理进行解答即可.【解答】解:由图可知,△DEF是直角三角形,∴DE2+DF2=EF2,∵正方形B的面积=DF2,正方形C的面积=EF2,正方形A的面积=DF2,正方形B的面积为64,正方形C的面积为100,∴正方形A的面积=100﹣64=36.故选:A.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.【变式3-1】(2022秋•渠县期末)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、C、D的面积依次为4、6、18,则正方形B的面积为( )A.8B.9C.10D.12【分析】根据勾股定理、正方形的面积公式计算即可.【解答】解:由勾股定理,得正方形E的面积=正方形C的面积+正方形D的面积,正方形E的面积=正方形A的面积+正方形B的面积,则正方形B的面积=18﹣6﹣4=8,故选:A.【点评】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.【变式3-2】(2022秋•南京期末)如图,在等腰Rt△ACB中,∠ACB=90°,AC=BC,且AB=AB、AC、BC为直径画半圆,其中所得两个月形图案AFCD和BGCE(图中阴影部分)的面积之和等于( )A.8B.4C.2D.【分析】由等腰三角形的性质及勾股定理可求解AC=CB=2,进而可求得S△ACB=2,再利用阴影部分的面积=以AC为直径的圆的面积+△ACB的面积﹣以AB为直径的半圆的面积计算可求解.【解答】解:在等腰Rt △ACB 中,∠ACB =90°,AC =BC ,AB =∴AC 2+BC 2=AB 2=8,∴AC =CB =2,∴S △ACB =12AC •BC =2,∴S 阴影=π(AC 2)2+S △ACB ―12π(AB 2)2=π+2﹣π=2,故选:C .【点评】本题主要考查等腰直角三角形,勾股定理,理清阴影部分的面积=以AC 为直径的圆的面积+△ACB 的面积﹣以AB 为直径的半圆的面积是解题的关键.【变式3-3】如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中S A =4,S B =2,S c =2,S D =1,则S =( )A .25B .20C .9D .5【分析】根据正方形的性质和勾股定理的几何意义解答即可.【解答】解:如图,根据勾股定理的几何意义,可知:S=S F+S G=S A+S B+S C+S D=4+2+2+1=9;即S=9;故选:C.【点评】本题考查了正方形的性质、勾股定理的几何意义,关键是掌握两直角边的平方和等于斜边的平方.【变式3-4】如图,Rt△ABC中,分别以这个三角形的三边为边长作正方形,面积分别记为S1、S2、S2.如果S2+S1﹣S3=18,则阴影部分的面积为 .【分析】由勾股定理得出S2﹣S3=S1,再根据S2+S1﹣S3=18即可得出S1的值,即为图中阴影部分的面积.【解答】解:由勾股定理得,BC2﹣AC2=AB2,即S2﹣S3=S1,∵S2+S1﹣S3=18,∴S 1=9,由图形可知,阴影部分的面积=12S 1,∴阴影部分的面积=92,故答案为:92.【点评】本题考查了勾股定理,由勾股定理得出S 2﹣S 3=S 1,是解题的关键.【变式3-5】(2022秋•绿园区校级期末)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为16cm ,则正方形A ,B ,C ,D 的面积之和为 cm 2.【分析】如图根据勾股定理有S 正方形2+S 正方形3=S 正方形1,S 正方形C +S 正方形D =S 正方形3,S 正方形A +S 正方形B =S 正方形2,等量代换即可求四个小正方形的面积之和.【解答】解:如右图所示,根据勾股定理可知,S 正方形2+S 正方形3=S 正方形1,S 正方形C +S 正方形D =S 正方形3,S 正方形A +S 正方形B =S 正方形2,∴S 正方形C +S 正方形D +S 正方形A +S 正方形B =S 正方形2+S 正方形3=S 正方形1=162=256(cm 2).故答案为:256.【点评】本题考查了勾股定理的几何意义,关键是掌握两直角边的平方和等于斜边的平方.【变式3-6】如图,直角三角形ACB,直角顶点C在直线l上,分别过点A、B作直线l的垂线,垂足分别为点D和点E.(1)求证:∠DAC=∠BCE;(2)如果AC=BC.①求证:CD=BE;②若设△ADC的三边分别为a、b、c,试用此图证明勾股定理.【分析】(1)根据直角三角形的定义和垂直的定义,可以证明结论成立;(2)①根据AAS可以证明结论成立;②根据S梯形ADEB=S△ADC+S△ACB+S△CEB,代入字母计算即可证明结论成立.【解答】证明:(1)∵∠ACB=90°,AD⊥DE于点D,∴∠DAC+∠ACD=90°,∠ADC+∠BCE=90°,∴∠DAC=∠BCE;(2)①∵AD⊥DE于点D,BE⊥DE于点E,∴∠ADC=∠CEB=90°,由(1)知:∠DAC=∠BCE,在△ADC和△CEB中,∠ADC=∠CEB∠DAC=∠ECB,AC=CB∴△ADC≌△CEB(AAS),∴CD=BE;②由图可知:S 梯形ADEB =S △ADC +S △ACB +S △CEB ,∴(a b )(a b )2=ab 2+c 22+ab 2,化简,得:a 2+b 2=c 2.【点评】本题考查勾股定理的证明,解答本题的关键是明确题意,利用数形结合的思想解答.【例题4】(2022秋•门头沟区期末)已知:如图,在△ABC 中,AB =AC =5,BC =8.求BC 边上的高的长.【分析】过点A 作AD ⊥BC 于点D ,根据等腰三角形的性质求出BD =12BC =4,根据勾股定理求出AD 的长即可.【解答】解:如图,过点A 作AD ⊥BC 于点D ,∵AB =AC =5,BC =8,AD ⊥BC ,∴BD =CD =12BC =4,∴AD==3,即BC 边上的高的长为3.【点评】此题考查了等腰三角形的性质、勾股定理等知识,熟练掌握等腰三角形的性质、勾股定理是解题的关键.【变式4-1】如图,在△ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E两点,若BE=5,CE=3,则AC的长为 .【分析】先根据线段垂直平分线的性质可得BE=AE=5,然后在Rt△ACE中,利用勾股定理进行计算,即可解答.【解答】解:连接AE,∵DE垂直平分AB,∴BE=AE=5,∵∠C=90°,CE=3,∴AC==4,故答案为:4.【点评】本题考查了勾股定理,线段垂直平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【变式4-2】(2021春•齐齐哈尔月考)已知:△ABC中,AC=2,∠C=30°,∠B=45°,求AB和BC的长.【分析】作AD⊥BC,得∠ADC=∠ADB=90°,根据勾股定理和直角三角形30°所对的直角边是斜边的一半计算即可.【解答】解:作AD⊥BC,∴∠ADC=∠ADB=90°,∵∠C=30°,∴AD=12AC=1,在Rt△ACD,根据勾股定理得,CD=∵∠B=45°,∴∠DAB=∠B=45°,∴BD=AD=1,则BC=1∴AB=【点评】本题考查了解直角三角形,熟练掌握勾股定理和直角三角形中30°所对的直角边是斜边的一半,这两个定理的应用是解题关键.【变式4-3】(2022春•阳新县期末)△ABC中,AB=13,AC=15,高AD=12,则BC的长为( )A.14B.4C.14或4D.以上都不对【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC的长为DC﹣BD=9﹣5=4.故选:C.【点评】本题考查了勾股定理,把三角形边的问题转化到直角三角形中用勾股定理解答.【变式4-4】如图,Rt△ABC中,AC⊥CB,AC=15,AB=25,点D为斜边上动点.连接CD,在点D的运动过程中,当△ACD 为等腰三角形时,AD 的长为 .【分析】分三种情况讨论,利用等腰三角形的性质,分别求解即可解决问题.【解答】解:①当AD =AC 时,△ACD 为等腰三角形,∵AC =15,∴AD =AC =15.②当CD =AD 时,△ACD 为等腰三角形,∵CD =AD ,∴∠DCA =∠CAD ,∵∠CAB +∠B =90°,∠DCA +∠BCD =90°,∴∠B =∠BCD ,∴BD =CD ,∴CD =BD =DA =12.5;③当CD =AC 时,△ACD 为等腰三角形,如图,作CH ⊥BA 于点H ,则12×AB ×CH =12×AC ×BC ,∵AC =15,BC =20,AB =25,∴CH =12,在Rt △ACH 中,AH =9,∵CD =AC ,CH ⊥BA ,∴DH =HA =9,∴AD =18,综上所述:AD 的值为15或12.5或18.故答案为:15或12.5或18.【点评】本题考查解直角三角形的应用,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.【例题5】如图,阴影部分表示以Rt △ABC 的各边为直径的三个半圆所组成的两个新月形,面积分别记作S 1和S 2.若S 1+S 2=7,AB =6,则△ABC 的周长是( )A .12.5B .13C .14D .15【分析】根据勾股定理得到AC 2+BC 2=AB 2,根据扇形面积公式、完全平方公式计算即可.【解答】解:由勾股定理得,AC 2+BC 2=AB 2,∵S 1+S 2=7,∴12×π×(AC 2)2+12×π×(BC 2)2+12×AC ×BC ―12×π×(AB 2)2=7,∴AC ×BC =14,∴(AC +BC )2=AC 2+BC 2+2AC •BC =62+2×14=64,∴AC +BC =8(负值舍去),∴△ABC 的周长=AB +AC +BC =8+6=14,故选:C .【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.【变式5-1】如图,三角形ABC中,∠C=90°,∠BAC的平分线交BC于D,DE⊥AB于E,已知CD=3,BD=5,求三角形ABC的周长.【分析】根据角平分线的性质得到DE=CD=3,根据勾股定理求出BE的长,再根据勾股定理列出方程,解方程得到答案.【解答】解:∵AD是∠BAC的平分线,∠C=90°,DE⊥AB,∴DE=CD=3,AC=AE,∵DE⊥AB,DE=3,BD=5,根据勾股定理得,BE=4,∴AC2+82=(AE+4)2,解得AE=6,则AC=6,∴三角形ABC的周长=AC+AB+BC=24.【点评】本题考查的是角平分线的性质和勾股定理的应用,掌握角的平分线上的点到角的两边的距离相等是解题的关键.【变式5-2】如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于E,若AB=10cm,AC=6cm,则△BED周长为( )A.10cm B.12cm C.14cm D.16cm【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AC=AE,可求出BE,再利用勾股定理列式求出BC,最后根据三角形的周长列式计算即可得解.【解答】解:∵AD是∠CAB的平分线,∠C=90°,DE⊥AB于E,∴CD=DE,在Rt△ACD和Rt△AED中,AD=ADDC=DE,∴Rt△ACD≌Rt△AED(HL),∴AC=AE=6,∴BE=AB﹣AE=10﹣6=4,由勾股定理得,BC==8,∴△BDE的周长=BE+BD+CD=BE+BD+CD=BE+BC=4+8=12(cm).故选:B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,勾股定理,熟记性质并求出三角形全等是解题的关键.【变式5-3】在四边形ABCD中,∠ABC=∠ADC=90°,连接AC,点E为AC的中点,连接BE,DE.若DE=132,BC=12,则△ABE的周长为 .【分析】根据直角三角形斜边上的中线等于斜边的一边得到AC=2BE=2DE=2AE=13,再利用勾股定理求出AB=5即可得到答案.【解答】解:∵∠ABC=∠ADC=90°,点E为AC的中点,∴AC=2BE=2DE=2AE=13,∵BC=12,∴AB=5,∴△ABE的周长为AE+BE+AB=5+2×132=18,故答案为:18.【点评】本题主要考查了直角三角形斜边上的中线的性质,勾股定理,熟知直角三角形斜边上的中线等于斜边的一半是解题的关键.【例题6】(2022春•范县期中)如图,正方形ABCD中,AE⊥BE,且AE=3,AB=5,则阴影部分的面积是( )A.13B.15C.18D.19【分析】利用正方形的面积减去三角形的面积即可求出阴影部分的面积.【解答】解:∵AE⊥BE,且AE=3,AB=5,∴BE=4,∴S△ABE=12AE⋅BE=12×3×4=6,∵四边形ABCD是正方形,AB=5,∴S正=5×5=25,∴S阴影=S正﹣S△ABE=25﹣6=19.故选:D.【点评】本题主要考查正方形的性质与勾股定理,解题的关键是用割补法求阴影部分的面积.【变式6-1】如图,在△ABC中,AC=BC=17,AB=16,求△ABC的面积.【分析】过C作CD⊥AB于D,根据等腰三角形的性质和勾股定理,以及三角形的面积公式即可得到结论.【解答】解:过C作CD⊥AB于D,∵AC=BC=17,AB=16,∴AD=BD=12AB=8,∵AD2+CD2=AC2,∴CD=15,∴S△ABC =12AB•CD=12×16×15=120.【点评】本题考查了勾股定理,三角形的面积的计算,等腰三角形的性质,熟练掌握勾股定理是解题的关键.【变式6-2】(2022春•桐城市期末)如图2,在△ABC 中,AC =8,AB =4,∠BAC =120°,求△ABC 的面积.【分析】过点C 作CD ⊥AB ,交BA 的延长线于点D ,由勾股定理求出CD 的长,利用三角形面积公式可求出答案.【解答】解:过点C 作CD ⊥AB ,交BA 的延长线于点D ,∵∠BAC =120°,∴∠DAC =60°,∴∠ACD =30°,∵AC =8,∴AD =12AC =4,∴CD =∴S △ABC =12AB •CD =12×=【点评】此题主要考查了勾股定理,三角形面积公式,求得出AB ,CD 的长是解题的关键.【变式6-3】如图在四边形ABCD 中,∠ABC =120°,AB ⊥AD ,BC ⊥CD ,AB =4,CD =5,求该四边形的面积.【分析】延长DA 和CB 交于O ,求出∠O =30°,根据含30度角的直角三角形性质求出OB 和OD ,根据勾股定理求出OA 和OC ,根据三角形面积公式求出即可.【解答】解:延长DA 和CB 交于O ,∵AB ⊥AD ,BC ⊥CD ,∴∠DAB =∠C =∠OAB =90°,∵∠D =60°,∴∠O =30°,∵AB =4,DC =5,∴OB =2AB =8,OD =2DC =10,由勾股定理得:OA ==OC =∴四边形ABCD 的面积是:S △OCD ﹣S △OAB =12×OC ×CD ―12×OA ×AB =12×5―12×【点评】本题考查了含30度角的直角三角形性质,勾股定理,三角形的面积的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.【变式6-4】如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =4,BD =10,BC =8,求四边形ABCD 的面积.【分析】过点D 作DE ⊥BA 的延长线于点E ,利用勾股定理和角平分线的性质可得出DE =DC =6,再利用三角形的面积公式结合S 四边形ABCD =S △ABD +S △BCD 可求出四边形ABCD 的面积.【解答】解:过点D 作DE ⊥BA 的延长线于点E ,如图所示.∵∠BCD=90°,BD=10,BC=8,∴BD=6,∵BD平分∠ABC,∴DE=DC=6,∴S四边形ABCD =S△ABD+S△BCD,=12AB•DE+12BC•CD,=12×4×6+12×8×6,=36.【点评】本题考查了角平分线的性质以及三角形的面积,利用角平分线的性质,找出DE=8是解题的关键.【例题7】如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.【分析】(1)根据勾股定理AB2+BC2=AC2,得出AB2+BC2=2AB2,进而得出AB=BC;(2)首先证明CDEF是矩形,再根据△BAE≌△CBF,得出AE=BF,进而证明结论.【解答】证明:(1)连接AC.∵∠ABC=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2,∴BC2=AB2,∵AB>0,BC>0,∴AB=BC.(2)过C作CF⊥BE于F.∵BE⊥AD,CF⊥BE,CD⊥AD,∴∠FED=∠CFE=∠D=90°,∴四边形CDEF是矩形.∴CD=EF.∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴在△BAE与△CBF中∴∠AEB=∠BFC ∠BAE=∠CBF AB=BC,∴△BAE≌△CBF.(AAS)∴AE=BF.∴BE=BF+EF=AE+CD.【点评】此题主要考查了勾股定理的应用以及三角形的全等证明,根据已知得出四边形CDEF是矩形以及△BAE≌△CBF是解决问题的关键.【变式7-1】已知AD是△ABC的中线,∠C=90°,DE⊥AB于点E,试说明AC2=AE2﹣BE2.【分析】根据直角三角形的性质和勾股定理可得AE2﹣BE2=(AD2﹣DE2)﹣(BD2﹣DE2)=AD2﹣BD2=AD2﹣CD2=AC2,从而证明结论.【解答】证明:∵AD是△ABC的中线,∴BD=CD.∵∠C=90°,DE⊥AB于E,∴AE2﹣BE2=(AD2﹣DE2)﹣(BD2﹣DE2)=AD2﹣BD2=AD2﹣CD2=AC2.故AC2=AE2﹣BE2.【点评】考查了直角三角形的性质和勾股定理,注意线段相互间的转化.【变式7-2】已知,如图,△ABC中,AB>AC,AD为BC边上的高,M是AD边上任意一点.求证:AB2﹣AC2=MB2﹣MC2.。

八年级勾股定理知识点必考题型

八年级勾股定理知识点必考题型

勾股定理:直角三角形两直角边的平方和等于斜边的平方。

(2)结论:① 有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。

② 有一个角是45°的直角三角形是等腰直角三角形。

③ 直角三角形斜边的中线等于斜边的一半。

例题:例1:已知直角三角形的两边,利用勾股定理求第三边。

(1) 在 Rt △ ABC 中,/ C=90°① 若 a=5, b=12,贝U c= ________ ;② 若 a : b=3 : 4, c=10 贝U Rt A ABC 的面积是= _______ 。

(2)如果直角三角形的两直角边长分别为n 2-1 , 2n勾股定理知识点及主要题型 【知识点归纳】1、已知直角三角形的两边,求第三边勾股定理 2、求直角三角形周长、面积等问题3、验证勾股定理成立 勾股定理 勾股定理的逆定理勾股定理的应用 1、 勾股数的应用2、 判断三角形的形状3、 求最大、最小角的问题 I 1面积问题 2、 求长度问题 3、最短距离问题」4、航海问题 5、 网格问题 6、 图形问题 考点一:勾股定理(1 )对于任意的直角三角形,如果它的两条直角边分别为 a 、b ,斜边为c ,那么一定有a 2b 2(n>1),那么它的斜边长是(2 2 2C. c b = aD.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7 或 25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。

(1) 直角三角形两直角边长分别为 __________ 5和12,则它斜边上的高为。

(2) 已知 Rt △ ABC 中,/ C=90 °,若 a+b=14cm , c=10cm ,贝U Rt △ ABC 的面积是( )A 、24 cm 2B 、36 cm 2c 、48 cm 2D 、60 cm 2(3)已知x 、y 为正数,且|X 2-4I + (y 2-3) 2=0,如果以x 、y 的长为直角边作一个直角三 角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A 、 5B 、 25C 、 7D 、 15考点二:勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长 a,b,c 有关系,a 2 • b 2二c 2,那么这个三角 形是直角三角形。

勾股定理(知识点+题型分类练习)

勾股定理(知识点+题型分类练习)

ABCabc弦股勾勾股定理(知识点)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方。

常用关系式由三角形面积公式可得:AB·CD=AC·BC2. 勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

3. 勾股数:①满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等③用含字母的代数式表示n组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

(4)如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)用勾股定理逆定理判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)5.直角三角形的性质(1)直角三角形的两个锐角互余。

可表示如下:∠C=90°⇒∠A+∠B=90°B(2)在直角三角形中,30°角所对的直角边等于斜边的一半。

勾股定理知识点+类型+题型有答案版

勾股定理知识点+类型+题型有答案版

勾股定理知识点知识点一:勾股定理如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。

(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。

(3)勾股定理的一些变式:c2=a2+b2, a2=c2-b2, b2=c2-a2, c2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。

图(1)中,所以。

方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。

图(2)中,所以。

方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。

,所以。

知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。

知识点四:勾股数满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。

熟悉下列勾股数,对解题有很大帮助:①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.②如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。

勾股定理考查类型类型一:勾股定理的直接用法在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

完整版)勾股定理知识点与常见题型总结

完整版)勾股定理知识点与常见题型总结

完整版)勾股定理知识点与常见题型总结勾股定理复勾股定理是指直角三角形两直角边的平方和等于斜边的平方,表示为a^2 + b^2 = c^2,其中a、b为直角三角形的两直角边,c为斜边。

勾股定理的证明常用拼图的方法。

通过割补拼接图形后,根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

常见的证明方法有以下三种:1.通过正方形的面积证明,即4ab + (b-a)^2 = c^2,化简可证。

2.四个直角三角形的面积与小正方形面积的和等于大正方形的面积,即4ab + c^2 = 2ab + c^2,化简得证。

3.通过梯形的面积证明,即(a+b)×(a+b)/2 = 2ab + c^2,化简得证。

勾股定理适用于直角三角形,因此在应用勾股定理时,必须明确所考察的对象是直角三角形。

勾股定理可用于解决直角三角形中的边长计算或直角三角形中线段之间的关系的证明问题。

在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算。

同时,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解。

勾股定理的逆定理是:如果三角形三边长a、b、c满足a^2 + b^2 = c^2,那么这个三角形是直角三角形,其中c为斜边。

a^2+b^2=c^2$是勾股定理的基本公式。

如果三角形ABC 不是直角三角形,我们可以类比勾股定理,猜想$a+b$与$c$的关系,并对其进行证明。

勾股定理的实际应用有很多。

例如,在图中,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B 到地面的距离为7m。

现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m。

同时梯子的顶端B下降至B′。

那么BB′的长度是小于1m的(选项A)。

又如,在图中,一根24cm的筷子置于底面直径为15cm,高8cm的圆柱形水杯中。

设筷子露在杯子外面的长度为h cm,则h的取值范围是7cm ≤ h ≤ 16cm(选项D)。

勾股定理题型

勾股定理题型

"勾股定理"常考题型归纳"勾股定理"是初中数学中重要的几何定理之一,也是中考和高考中经常出现的题型之一。

以下是一些常见的"勾股定理"考题类型归纳:1.求直角三角形的斜边长或某一直角边长:给出一个直角三角形的两个边长,让你求第三个边长。

例如:已知一个直角三角形的两条直角边分别为3cm和4cm,求斜边长是多少?2.判断一个三角形是否为直角三角形:通过已知的三角形边长或角度来判断这个三角形是否为直角三角形。

例如:已知一个三角形的三个内角分别为30°、60°和90°,问这个三角形是否为直角三角形?3.判断一个三角形是否为等腰直角三角形:通过已知的三角形边长或角度来判断这个三角形是否为等腰直角三角形。

例如:已知一个三角形的两个直角边长相等,问这个三角形是否为等腰直角三角形?4.求直角三角形内某个角的正弦、余弦、正切值:已知直角三角形的两个直角边,求其中一个角的正弦、余弦、正切值。

例如:已知一个直角三角形的两条直角边分别为3cm和4cm,求其中一个角的正弦值。

5.求一个非直角三角形的某个角的大小:已知一个三角形的三个角度或三个边长,求其中一个角的大小。

例如:已知一个三角形的三个内角分别为30°、60°和90°,求这个三角形中30°角的大小。

6.求某个角为直角的三角形的某一边长:已知一个三角形中一个角为直角,另一个角度或边长,求第三个角度或边长。

例如:已知一个三角形中一个角为直角,另一个角为30°,其中一条直角边长为3cm,求斜边长是多少?这些是"勾股定理"经常出现的一些考题类型,学好这些考题类型可以更好地掌握"勾股定理"。

八下数学勾股定理知识点及常考题型

八下数学勾股定理知识点及常考题型

八下数学勾股定理知识点及常考题型1、勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

即:a²+b²=c²要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一。

其主要应用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边;(3)利用勾股定理可以证明线段平方关系的问题。

2、勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a²+b²=c²,那么这个三角形是直角三角形。

要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。

运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c²=a²+b²,则△ABC 是以△C为直角的直角三角形(若c²>a²+b²,则△ABC是以△C为钝角的钝角三角形;若c²<a²+b²,则△ABC为锐角三角形)。

3、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

4、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

5、勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

常考题1、用对称法求平面中最短问题如图,在正方形ABCD中,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短,求EP+BP的最短长度.解:如图,连接BD交AC于O,连接ED与AC交于点P,连接已知BD△AC,且BO=OD,△BP=PD,则BP+EP=ED,此时最短.△AE=3,AD=1+3=4,由勾股定理得ED2=AE2+AD2=32+42=25=52△ED=BP+EP=5.2、用平移法求平面中最短问题如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm,30 cm,10 cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬几厘米?将台阶面展开,连接AB,如图,线段AB即为壁虎所爬的最短路线.△BC=30×3+10×3=120(cm),AC=50 cm,在Rt△ABC中,根据勾股定理,得AB2=AC2+BC2=16 900,△AB=130 cm.所以壁虎至少爬行130 cm.3、利用勾股定理证明线段之间的平方关系如图,△C=90°,AM=CM,MP△AB于点P.求证:BP2=BC2+AP2.证明:如图,连接BM.△PM△AB,△△BMP和△AMP均为直角三角形.△BP2+PM2=BM2,AP2+PM2=AM2.同理可得BC2+CM2=BM2.△BP2+PM2=BC2+CM2.又△CM=AM,△CM2=AM2=AP2+PM2.△BP2+PM2=BC2+AP2+PM2.△BP2=BC2+AP2.。

《勾股定理》主要题型

《勾股定理》主要题型

《勾股定理》主要题型题型一:直接考查勾股定理,已知两边求第三边例::如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?解:∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3 ∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4例、一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?类型二:勾股定理的构造应用例、如图,已知:,,于P.求证:.解:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.题型三:在数轴上表示无理数例、在数轴上作出表示10的点.解:根据在数轴上表示无理数的方法,需先把10视为直角三角形斜边的长,再确定出两直角边的长度后即可在数轴上作出.解:以10为斜边的直角三角形的两直角边可以是3和1,所以需在数轴上找出两段分别长为3和1的线段,如图所示,然后即可确定斜边长,再用圆规在数轴上作出长为10的线段即可.题型四:利用勾股定理测量长度例、如图(8),水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.解:如图2,根据勾股定理,AC2+CD2=AD2,设水深AC= x米,那么AD=AB=AC+CB=x+0.5x2+1.52=( x+0.5)2解之得x=2.故水深为2米.题型五:利用勾股定理求线段的长1、如图4,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解:根据题意得Rt△ADE≌Rt△AEF ∴∠AFE=90°, AF=10cm, EF=DE设CE=xcm,则DE=EF=CD-CE=8-x在Rt△ABF中由勾股定理得: AB2+BF2=AF2,即82+BF2=102,∴BF=6cm∴CF=BC-BF=10-6=4(cm)在Rt△ECF中由勾股定理可得: EF2=CE2+CF2,即(8-x) 2=x2+42∴64-16x+x2=2+16 ∴x=3(cm),即CE=3 cm例、如图,已知AB=13,BC=14,AC=15,AD⊥BC于D,求AD.解:∵BC=14,且BC=BD+DC,设BD=x,则DC=14﹣x,则在直角△ABD中,AB2=AD2+BD2,即132=AD2+x2,在直角△ACD中,AC2=AD2+CD2,即152=AD2+(14﹣x)2,整理计算得x=5,∴AD==12,类型六:数学思想方法(一)转化的思想方法例、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。

勾股定理的应用(3种题型)

勾股定理的应用(3种题型)

第03讲勾股定理的应用(3种题型)【知识梳理】一.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.二.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.【考点剖析】题型一.勾股定理的实际应用例1.如图,一棵树从3m处折断了,树顶端离树底端距离4m,那么这棵树原来的高度是() A.8m B.5m C.9m D.7m【变式】如图在实践活动课上,小华打算测量学校旗杆的高度,她发现旗杆顶端的绳子垂到地面后还多出1m,当她把绳子斜拉直,且使绳子的底端刚好接触地面时,测得绳子底端距离旗杆底部5m,由此可计算出学校旗杆的高度是()A.8m B.10m C.12m D.15m例2.如图,一个直径为20cm的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.【变式】小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.题型二.平面展开-最短路径问题例3.如图,长方体的底面边长是1cm和3cm,高是6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么用细线最短需要()A.12cm B.10cm C.13cm D.11cm例4.一个上底和下底都是等边三角形的盒子,等边三角形的高为70cm,盒子的高为240cm,M为AB的中点,在M处有一只飞蛾要飞到E处,它的最短行程多少?【变式】如图①,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点的食物,需要爬行的最短路程是多少?(π取3)题型三:勾股定理中的折叠问题例5.如图,矩形纸片ABCD中,4AB=,3AD=,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1B.43C.32D.2【变式】如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知3CE cm=,8AB cm=,求图中阴影部分的面积.【过关检测】一.选择题1.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺2.如图,已知圆柱底面的周长为12cm,圆柱高为8cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.10cm B.20cm C.cm D.100cm3.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为()A.0.8米B.2米C.2.2米D.2.7米4.如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()A.10B.50C.120D.1305.如图,圆柱的高为8cm,底面半径为2cm,在圆柱下底面的A点处有一只蚂蚁,它想吃到上底面B处的食物,已知四边形ADBC的边AD、BC恰好是上、下底面的直径,问:蚂蚁吃到食物爬行的最短距离是cm.(π取3)6.《九章算术》中的“引葭赴岸”问题:今有池方一丈,葭(一种芦苇类植物)生其中央,出水一尺.引葭赴岸,适与岸齐,水深几何?其大意是:有一个边长为10尺的正方形池塘,一棵芦苇生长在它的正中央,高出水面1尺.如果把该芦苇拉向岸边,那么芦苇的顶部恰好碰到岸边(如图所示),则水深________尺.7.《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,未折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺,问折断处离地面的距离为.8.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB =10,BC=4,求AC的长.9.如图,一架25米长的梯子AB斜靠在一竖直的墙AO上,梯子底端B离墙AO有7米.(1)求梯子靠墙的顶端A距地面有多少米?(2)小燕说“如果梯子的顶端A沿墙下滑了4米,那么梯子的底端B在水平方向就滑动了4米.”她的说法正确吗?若不正确,请说明理由.10.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?11.我国古代的数学名著《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:尺)原处还有多高的竹子?(1丈1012.如图,一个梯子AB,顶端A靠在墙AC上,这是梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米,底端将水平滑动了8米,求滑动前梯子底端与墙的距离CB是多少?13.(2022春•蜀山区期中)在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.14.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC =7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.15.如图,A,B两村在河L的同侧,A,B到河L的距离分别为1.5km和2km,AB=1.3km,现要在河边建一供水厂,同时向A,B 1.8万元,问水厂与A村的水平距离为多远时,能使铺设费用最省,并求出总费用约多少万元.。

勾股定理知识点与题型总结大全

勾股定理知识点与题型总结大全

CA BD 勾股定理全章类题总结类型一:等面积法求高【例题】如图,△ABC 中,∠ACB=900,AC=7,BC=24,C D ⊥AB 于D. (1)求AB 的长; (2)求CD 的长.类型二:面积问题【例题】如下左图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。

【练习1】如上右图,每个小方格都是边长为1的正方形, (1)求图中格点四边形ABCD 的面积和周长。

(2)求∠ADC 的度数。

【练习2】如图,四边形ABCD 是正方形,AE ⊥BE ,且AE =3,BE =4,阴影部分的面积是______。

【练习3】如图字母B 所代表的正方形的面积是( )A. 12 B 。

13 C 。

144 D 。

194类型三:距离最短问题【例题】 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?ABCD7cmBD EB16925A BCDL【练习1】如图,一圆柱体的底面周长为20cm ,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程.【练习2】如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家。

他要完成这件事情所走的最短路程是多少?类型四:判断三角形的形状【例题】如果ΔABC 的三边分别为a 、b 、c ,且满足a 2+b 2+c 2+50=6a+8b+10c ,判断ΔABC 的形状.【练习1】已知△ABC 的三边分别为m 2-n 2,2mn ,m 2+n 2(m,n 为正整数,且m >n),判断△ABC 是否为直角三角形。

勾股定理及常见题型分类

勾股定理及常见题型分类

勾股定理及常见题型分类一、知识要点:1.勾股定理是指直角三角形斜边的平方等于两直角边平方和。

2.勾股定理的证明方法包括几何证明和代数证明,其中几何证明使用勾股树。

3.勾股定理的逆定理是指若一个三角形的三边满足勾股定理,则该三角形是直角三角形。

4.勾股定理常见题型包括勾股定理的应用、勾股定理的证明和勾股定理的逆定理。

二、典型题题型一:“勾股树”及其拓展类型求面积1.如图所示,正方形A、B、C、D构成了一棵勾股树,求最大正方形E的面积。

2.如图所示,直线l上有三个正方形a、b、c,已知a、c 的边长分别为6和8,求b的面积。

3.如图所示,以Rt△ABC的三边为直径分别向外作三个半圆,探索三个半圆的面积之间的关系。

4.如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是S1+S2=S3.5.如图所示,依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是4、5、6、7.题型二:勾股定理与图形问题1.如图所示,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,依此类推,第n个等腰直角三角形的斜边长是n+1.2.如图所示,求该四边形的面积。

3.如图所示,已知在△ABC中,∠A=45°,AC=2,AB=3+1,则边BC的长为3.4.如图所示,某公司的大门为长方形ABCD,上部为以AD为直径的半圆,已知AB=2.3m,BC=2m,卡车高2.5m,宽1.6m,判断卡车是否能通过公司的大门,并说明理由。

5.如图所示,已知AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求这块地的面积。

题型三:已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm、2cm,则斜边长为√5cm。

2.已知直角三角形的两边长为3cm、2cm,则另一条边长的平方是5cm²。

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类勾股定理是指直角三角形两直角边的平方和等于斜边的平方,可以表示为a²+b²=c²。

证明勾股定理的方法有很多种,其中常见的是拼图法。

拼图法的思路是通过割补拼接图形,使得面积不变,然后根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

常用的拼图法有4S、四个直角三角形的面积与小正方形面积的和等于大正方形的面积以及梯形面积等方法。

勾股定理只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

因此,在应用勾股定理时,必须明确所考察的对象是直角三角形。

勾股定理可以应用于求解直角三角形的任意两边长,求解另一边的长度,或者求解已知一边长,推导出另外两边之间的数量关系。

此外,勾股定理还可以用于解决一些实际问题。

勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形,其中c为斜边。

逆定理是判定一个三角形是否是直角三角形的一种重要方法。

在运用逆定理时,可以用两小边的平方和a²+b²与较长边的平方c²作比较,若它们相等,则以a,b,c为三边的三角形是直角三角形;若a²+b²c²,则以a,b,c为三边的三角形是锐角三角形。

2.定理中的$a,b,c$及$a^2+b^2=c^2$只是一种表现形式,不可认为是唯一的。

例如,若三角形三边长$a,b,c$满足$a^2+c^2=b^2$,那么以$a,b,c$为三边的三角形是直角三角形,但$b$为斜边。

3.勾股定理的逆定理在用问题描述时,不能说成:“当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。

”6.勾股数是能够构成直角三角形的三边长的三个正整数,即$a^2+b^2=c^2$中,$a,b,c$为正整数时,称$a,b,c$为一组勾股数。

记住常见的勾股数可以提高解题速度,例如$3,4,5$;$6,8,10$;$5,12,13$;$7,24,25$等。

勾股定理题型总结

勾股定理题型总结

勾股定理知识技能和题型归纳(一)——知识技能一、本章知识内容归纳1、勾股定理——揭示的是平面几何图形本身所蕴含的代数关系。

(1)重视勾股定理的叙述形式:①直角三角形直角边上的两个正方形的面积之和等于斜边上的正方形的面积. ②直角三角形斜边长度的平方,等于两个直角边长度平方之和.从这两种形式来看,有“形的勾股定理”和“数的勾股定理”之分。

(2)定理的作用:①已知直角三角形的两边,求第三边。

②证明三角形中的某些线段的平方关系。

③作长为n 的线段。

(利用勾股定理探究长度为,3,2……的无理数线段的几何作图方法,并在数轴上将这些点表示出来,进一步反映了数与形的互相表示,加深对无理数概念的认识。

) 2、勾股定理的逆定理(1)勾股定理的逆定理的证明方法,通过构造一个三角形与直角三角形全等,达到证明某个角为直角的目的。

(2)逆定理的作用:判定一个三角形是否为直角三角形。

(3)勾股定理的逆定理是把数转化为形,是利用代数计算来证明几何问题。

要注意叙述及书写格式。

运用勾股定理的逆定理的步骤如下:①首先确定最大的边(如c )②验证22b a +与2c 是否具有相等关系:若222c b a =+,则△ABC 是以∠C 为90°的直角三角形。

若222c b a ≠+,则△ABC 不是直角三角形。

补充知识:当222c b a >+时,则是锐角三角形;当222c b a <+时,则是钝角三角形。

(4)通过总结归纳,记住一些常用的勾股数。

如:3,4,5;5,12,13;6,8,10;8,15,17;9,40,41;……以及这些数组的倍数组成的数组。

勾股数组的一般规律: ① 丢番图发现的:式子n m n m mn n m >+-(,2,2222的正整数) ② 毕达哥拉斯发现的:122,22,1222++++n n n n n (1>n 的整数) ③柏拉图发现的:1,1,222+-n n n (1>n 的整数)3、勾股定理与勾股定理逆定理的关系(1)注意分清应用条件:勾股定理是由直角得到三条边的关系,勾股定理逆定理则是由边的关系来判断一个角是否为直角。

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类勾股定理作为数学中的一条基本定理,是数学中的重要知识点。

它描述了直角三角形三条边之间的关系,充分利用了勾股定理可以解决很多与直角三角形相关的问题。

下面将对勾股定理的知识点进行归纳,并对常见的勾股定理题型进行分类。

一、知识点归纳:1.勾股定理的表述:直角三角形斜边的平方等于两直角边平方和。

2.勾股定理的符号表示:对于直角三角形ABC,设斜边为c,两直角边分别为a和b,可以表示为:$a^2+b^2=c^2$。

3.勾股定理的逆定理:如果一个三角形的三边满足$a^2+b^2=c^2$,其中a、b、c为三角形的边长,那么这个三角形一定是直角三角形。

4.勾股定理的证明方法:勾股定理有多种不同的证明方法,比如平方构造法和几何法。

5.勾股定理的推广应用:勾股定理不仅适用于直角三角形,还可以推广应用到其他类型的几何形状中。

二、题型归类:根据勾股定理的应用不同场景,常见的题型可以归类为以下几种:1.求边长问题:(1)已知两边求第三边:已知直角三角形两直角边的长度,求斜边的长度。

(2)已知一边求另一边:已知直角三角形一边和斜边的长度,求另一边的长度。

(3)已知斜边和一边求另一边:已知直角三角形一边和斜边的长度,求未知边的长度。

2.求角度问题:(1)已知两边求夹角:已知直角三角形两直角边的长度,求两直角边之间的夹角。

(2)已知斜边和一边求夹角:已知直角三角形一边和斜边的长度,求斜边与该边之间的夹角。

3.判断问题:(1)判断是否为直角三角形:已知三角形的三边长度,判断是否为直角三角形。

4.应用问题:(1)三角形的面积问题:已知直角三角形的两个直角边的长度,求其面积。

(2)其他几何问题:如斜边长为x的直角三角形,边的长度与斜边比为1:4,求边的长度。

以上是一些常见的勾股定理题型,通过不同的题目训练可以更好地掌握勾股定理的应用和解题思路。

在解题的过程中,需要根据问题的具体要求,合理运用勾股定理的知识,灵活运用数学方法,进行推导和计算,以得到准确的结果。

勾股定理思维导图+题型总结

勾股定理思维导图+题型总结

(一)勾股定理1:勾股定理如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股",斜边称为“弦”。

要点诠释:2、勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在中,,则,,)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题3:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:,,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为大正方形面积为所以方法三:,,化简得证4:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即中,,,为正整数时,称,,为一组勾股数②记住常见勾股数可以提高解题速度,如;;;;;等③用含字母的代数式表示组勾股数:(为正整数);(为正整数)(,为正整数)5、注意:(1)勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

(2)勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。

(3)勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。

(4)推理格式:∵△ABC为直角三角形∴ AC2+BC2=AB2. (或a2+b2=c2)(二)勾股定理的逆定理如果三角形的三边长分别为:a、b、c,且满足a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2〈a2+b2,则△ABC为锐角三角形)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理及常见题型分类
一、知识要点: 1、勾股定理
2、勾股定理证明方法及勾股树
3、勾股定理逆定理
4、勾股定理常见题型回顾 二、典型题
题型一:“勾股树”及其拓展类型求面积
1. 右图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( )
A.13
B.26
C.47
D.94
2.如图,直线l 上有三个正方形a,b,c,若a,c 的边长分别为6和8,求b 的面积。

3. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.
4、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )
A. S 1- S 2= S 3
B. S 1+ S 2= S 3
C. S 2+S 3< S 1
D. S 2- S 3=S 1
S 3
S 2
S 1
甲 乙
图1
5、在直线上依次摆放着七个正方形(如图4所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是

=_____________。

题型二:勾股定理与图形问题
1、已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 .
2.如图,求该四边形的面积
3.如图2,已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 .
4.某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由 .
5.如图是一块地,已知AD=8m ,CD=6m ,∠D=90°,AB=26m ,BC=24m ,求这块地的面积。

题型三:在直角三角形中,已知两边求第三边
A
B C
D E F
G
43
12
13
B
C D
A
1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . 2.已知直角三角形的两边长为3、2,则另一条边长的平方是 3、已知直角三角形两直角边长分别为5和12,斜边上的高是 . 4、在Rt △ABC 中,∠C=90°
①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;
④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。

5、如果直角三角形的两直角边长分别为1n 2
-,2n (n>1),那么它的斜边长是( ) A 、2n
B 、n+1
C 、n 2
-1
D 、1n 2
+
6、已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242c m
B 、36 2c m
C 、482c m
D 、602c m
7、已知x 、y 为正数,且│x 2
-4│+(y 2
-3)2
=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )
A 、5
B 、25
C 、7
D 、15
题型四:应用勾股定理在等腰三角形中求底边上的高
1、如图1所示,等腰中,,是底边上的高,若,求 ①AD
的长;②ΔABC 的面积.
题型五:勾股数的应用、利用勾股定理逆定理判断三角形的形状、最大、最小角的问题 1、下列各组数据中的三个数,可作为三边长构成直角三角形的是( )
A. 4,5,6
B. 2,3,4
C. 11,12,13
D. 8,15,17 2、若线段a ,b ,c 组成直角三角形,则它们的比为( ) A 、2∶3∶4 B 、3∶4∶6 C 、5∶12∶13 D 、4∶6∶7
3、下面的三角形中:
①△ABC 中,∠C=∠A -∠B ;
②△ABC 中,∠A :∠B :∠C=1:2:3; ③△ABC 中,a :b :c=3:4:5;
④△ABC 中,三边长分别为8,15,17. 其中是直角三角形的个数有( ).
A .1个
B .2个
C .3个
D .4个
4、已知a ,b ,c 为△ABC 三边,且满足(a 2
-b 2
)(a 2
+b 2
-c 2
)=0,则它的形状为( ) A.直角三角形
B.等腰三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
题型六:应用勾股定理解决楼梯上铺地毯问题
1、某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求铺设红
色地毯,则在AB 段楼梯所铺地毯的长度应为 .
题型七、利用列方程求线段的长(方程思想)
1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他算出来吗?
2、如图,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸
(单位:mm )计算两圆孔中心A 和B 的距离为 .
60
120
140
B
60
A
C A B
C
6、如图:有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.
题型八:折叠问题
1、如图所示,已知△ABC 中,∠C=90°,AB 的垂直平分线交BC •于M ,交AB 于N ,若AC=4,MB=2MC ,求AB 的长.
3、折叠矩形ABCD 的一边AD,点D 落在BC 边上的点F 处,已知AB=8CM,BC=10CM ,求CF 和EC 。

4、如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积
D
C
B
A
F E
8米 2米
8米
第6题图
B C
E
D
5、如图,矩形纸片ABCD的长AD=9㎝,宽AB=3㎝,将其折叠,使点
D与点B重合,那么折叠后DE的长是多少?
6、如图,在长方形ABCD中,将∆ABC沿AC对折至∆AEC位置,CE与AD交
于点F。

(1)试说明:AF=FC;(2)如果AB=3,BC=4,求AF的长
二、平面展开-最短路径问题
1.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是________________
2.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至
C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)
3.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC
上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是_________________
4.如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D 出发沿着圆柱的表面爬行到点C的最短路程大约是_____________
5.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是______________。

相关文档
最新文档