2015年 矩阵 课外报告 参考题目及要求

合集下载

关于循环矩阵若干问题的研究的开题报告

关于循环矩阵若干问题的研究的开题报告

关于循环矩阵若干问题的研究的开题报告题目:关于循环矩阵若干问题的研究一、选题背景与意义循环矩阵是一种特殊的方阵,它的每一行都是该矩阵所有行向右移位后的结果。

因此,循环矩阵具有周期性,可用于描述周期信号、图像等。

在信息学、数学、物理等学科领域,循环矩阵的应用非常广泛。

本次研究旨在深入探究循环矩阵中的数学性质与隐含规律,为循环矩阵应用提供更加科学的理论支撑,并期望通过解决循环矩阵的若干问题,拓展循环矩阵的应用领域。

二、研究内容1.循环矩阵的定义、性质及应用通过对循环矩阵的定义及其基本性质进行分析,深入掌握循环矩阵的特点,了解循环矩阵在信号处理、图像处理等领域的应用。

2.循环矩阵的谱分解及奇异值分解对循环矩阵的特殊结构,可以使用两种不同的分解方法——谱分解和奇异值分解,通过分析不同分解方法的优劣,探究其在循环矩阵应用中的作用。

3.循环矩阵的运算通过对循环矩阵加、减、乘、逆等运算的研究,深入探究循环矩阵在数学上的特殊性质,了解其在图像处理、通讯等领域的应用。

4.循环矩阵的逆针对循环矩阵的特殊结构,研究其逆的求解方法及其应用。

5.循环矩阵的压缩表示基于循环矩阵的结构特征,探究在不影响其特性的前提下,采用压缩表示来提高循环矩阵处理效率的可行性及实现方法。

三、研究方法与计划1.相关理论知识的学习与梳理。

2.选取合适的数学工具,进行数学分析和建模。

3.编写程序对相关算法进行实现。

4.测试并分析算法的性能,探讨实验结果。

5.根据实验结果改进算法,提高研究成果的可靠性和实用性。

时间安排:1.调研期:两周。

2.撰写开题报告与开题答辩:一周。

3.理论知识学习与梳理:两周。

4.算法设计与编程:四周。

5.性能测试与分析,结果分析与修正算法:三周。

6.撰写论文,参加中期汇报会和最后答辩会:五周。

四、预期成果1.研究出循环矩阵中的数学性质与隐含规律。

2.设计出优秀的算法,解决循环矩阵的若干问题,如谱分解、奇异值分解、逆的求解等。

矩阵分析所有习题及标准答案

矩阵分析所有习题及标准答案
矩阵分析所有习题及标准答案
习题3-3(1)
#3-3(1):已知A=
3 3
0 1
8 6
,试求UUnn使U*AU=R为
上三角矩阵.
2 0 5
解:det(E-A)=(+1)3给出=-1是A的3重特征值.
显然V=,(1=1,(0,2,1,03)),T是2A=的(1一,0个,0特)T,征向3=(量0,.0作,1酉)T矩,则阵
习题3-27
#3-27(1):A*A,AA*都是半正定Hermite矩阵. (2):若ACmn,则A*A,AA*的非零特征值相同
(它们的谱可能不一样)
证:(1): (A*A)*=A*A,(AA*)*=AA*.
xCn,x*(A*A)x =(Ax)*Ax=(Ax,Ax)0.
(2): 对AA*的任意非零特征值有
AA*x=x,x0.
于是
A*A(A*x)=(A*x).
因 x0,故A*x0,从而得证AA*的任意非零特
征值也是A*A的非零特征值.
同理可证:A*A的任意非零特征值也是AA*的非 零特征值.
习题3-27(2)另一解法
证:不难验证下列矩阵等式:
A A * *A 0 0 E mE A n A A * *A A A * * A A A E mE A n A 0 * A 0 * A
子是矩V1=阵*A(V-A=21的/ 0 01特5,3 3征21/8 6 值55仍) 0 0 T1是,3 作A -1612,,阶A 对1 酉应3矩2的 阵85单 位特征向量
W1=(1,2),2=(1/5,2/5)T,则W1*A1W1= 作3阶酉矩阵W=diag(1,W1),U=VW,则
1 0
10 1
即AB相似于一个Hermite矩阵M.

2015矩阵论试题参考答案

2015矩阵论试题参考答案

1 0 0 四、(14 分) 求 A = 0 0 1 的奇异值分解. 1 0 1
λ − 2 0 −1 2 0 1 T 解 A A = 0 0 0 , | λ I − A A |= 0 0 = λ (λ − 1)(λ − 3) , 故 AT A λ 1 0 2 −1 0 λ − 2
中南大学 2015 年秋季硕士研究生 《矩阵论》期末考试试题参考答案
2 0 0 一、(18 分)已知矩阵 A 相似于 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 . 0 −1 1 0 0 0 −1 1 0 0 0 −1
(1) 求 A 的初等因子、不变因子和最小多项式; (2) 求 tr ( A3 + I ) ; (3) 判断 A 是否为收敛矩阵.
2 0 0 解 (1) 0 0 0
0 2 0 0 0 0
0 0 0 0 1 0 0 0 2 0 0 0 2 3 的初等因子为 λ − 2, (λ − 2) , (λ + 1) . 因为相似的矩 0 −1 1 0 0 0 −1 1 0 0 0 −1
阵有相同的初等因子, 故 A 的初等因子也是 λ − 2, (λ − 2) 2 , (λ + 1)3 , 从而可得 A 的不变 因子为 d1 (λ ) = 1, d 2 (λ ) = λ − 2, d3 (λ ) = (λ − 2) 2 (λ + 1)3 , 最小多项式 mA (λ ) 为 A 的最后 一个不变因子,即 mA (λ ) = (λ − 2) 2 (λ + 1)3 . (2) 因 为 A 的 特 征 值 为 2 , 2 , 2 , − 1 , − 1 , − 1 , 故 A3 + I 的 特 征 值 为

矩阵分析报告课后习题解答(整理版)

矩阵分析报告课后习题解答(整理版)

第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。

1.10.证明同1.9。

1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。

若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH -==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。

【创新方案】(人教通用版)2015高考数学 五年高考真题分类汇编 第十三章 矩阵与变换 理

【创新方案】(人教通用版)2015高考数学 五年高考真题分类汇编 第十三章 矩阵与变换 理

五年高考真题分类汇编:矩阵与变换1.(2013•江苏高考)已知矩阵A =⎣⎢⎡⎦⎥⎤-1 00 2,B =⎣⎢⎡⎦⎥⎤1 206,求矩阵A -1B . 解:设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b c d , 则⎣⎢⎡⎦⎥⎤-1 00 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1, 即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 00 1,故a =-1,b =0,c =0,d =12, 从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12, 所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -20 3. 2.(2013•福建高考理)已知直线l :ax +y =1在矩阵A =⎝ ⎛⎭⎪⎫1 201对应的变换作用下变为直线l ′:x +by =1.①求实数a ,b 的值; ②若点P (x 0,y 0)在直线l 上,且A ⎝ ⎛⎭⎪⎫x 0y 0=⎝ ⎛⎭⎪⎫x 0y 0,求点P 的坐标. 解:(1)本小题主要考查矩阵、矩阵与变换等基础知识,考查运算求解能力,考查化归与转化思想.①设直线l :ax +y =1上任意点M (x ,y )在矩A 对应的变换作用下的像是M ′(x ′,y ′).由⎝ ⎛⎭⎪⎫x 'y ′=⎝ ⎛⎭⎪⎫1 20 1⎝ ⎛⎭⎪⎫x y =⎝ ⎛⎭⎪⎫x +2y y ,得⎩⎪⎨⎪⎧x ′=x +2y ,y ′=y . 又点M ′(x ′,y ′)在l ′上,所以x ′+by ′=1,即x +(b +2)y =1, 依题意得⎩⎪⎨⎪⎧ a =1,b +2=1,解得⎩⎪⎨⎪⎧ a =1,b =-1. ②由A ⎝ ⎛⎭⎪⎫x 0y 0=⎝ ⎛⎭⎪⎫x 0y 0,得⎩⎪⎨⎪⎧x 0=x 0+2y 0,y 0=y 0,解得y 0=0. 又点P (x 0,y 0)在直线l 上,所以x 0=1. 故点P 的坐标为(1,0). 3.(2012•江苏高考) 已知矩阵A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 3412 -12,求矩阵A 的特征值. 解:因为A -1A =E ,所以A =(A -1)-1.因为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 3412 -12,所以A =(A -1)-1=⎣⎢⎡⎦⎥⎤2 32 1,于是矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -3-2 λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4.4.(2012•福建高考理)设曲线2x 2+2xy +y 2=1在矩阵A =⎝ ⎛⎭⎪⎫a 0b 1(a >0)对应的变换作用下得到的曲线为x 2+y 2=1. (1)求实数a ,b 的值;(2)求A 2的逆矩阵.解:(1)设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的象是P ′(x ′,y ′).由⎝⎛⎭⎫x ′y ′=⎝⎛⎭⎫a 0b 1⎝⎛⎭⎫x y =⎝⎛⎭⎫ax bx +y ,得⎩⎪⎨⎪⎧ x ′=ax ,y ′=bx +y . 又点P ′(x ′,y ′)在曲线x 2+y 2=1上,所以x ′2+y ′2=1,即a 2x 2+(bx +y )2=1,整理得(a 2+b 2)x 2+2bxy +y 2=1.依题意得⎩⎪⎨⎪⎧ a 2+b 2=2,2b =2,解得⎩⎪⎨⎪⎧ a =1,b =1,或⎩⎪⎨⎪⎧ a =-1,b =1. 因为a >0,所以⎩⎪⎨⎪⎧ a =1,b =1.(2)由(1)知,A =⎝⎛⎭⎫1 01 1, A 2=⎝⎛⎭⎫1 01 1⎝⎛⎭⎫1 01 1=⎝⎛⎭⎫1 02 1,所以|A 2|=1,(A 2)-1=⎝⎛⎭⎫1 0-2 1.5.(2011•福建高考理)设矩阵M =⎝ ⎛⎭⎪⎫a 00 b (其中a >0,b >0). (Ⅰ)若a =2,b =3,求矩阵M 的逆矩阵M -1;(Ⅱ)若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C ′:x 24+y 2=1,求a ,b 的值.解:(Ⅰ)设矩阵M 的逆矩阵M -1=⎝ ⎛⎭⎪⎫x 1 y 1x 2 y 2, 则MM -1=⎝ ⎛⎭⎪⎫1 00 1. 又M ⎝ ⎛⎭⎪⎫2 00 3,所以⎝ ⎛⎭⎪⎫2 00 3⎝ ⎛⎭⎪⎫x 1 y 1x 2 y 2=⎝ ⎛⎭⎪⎫1 00 1, 所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13,故所求的逆矩阵M -1=⎝ ⎛⎭⎪⎪⎫12 00 13. (Ⅱ)设曲线C 上任意一点P (x ,y ),它在矩阵M 所对应的线性变换作用下得到点P ′(x ′,y ′),则⎝ ⎛⎭⎪⎫a 00 b ⎝ ⎛⎭⎪⎫x y =⎝ ⎛⎭⎪⎫x ′y ′,即⎩⎪⎨⎪⎧ ax =x ′,by =y ′,又点P ′(x ′,y ′)在曲线C ′上,所以x ′24+y ′2=1,则a 2x 24+b 2y 2=1为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故⎩⎪⎨⎪⎧ a 2=4,b 2=1.又a >0,b >0,所以⎩⎪⎨⎪⎧ a =2,b =1.6.(2011•江苏高考)已知矩阵A =⎣⎢⎡⎦⎥⎤1 12 1,向量β=⎣⎢⎡⎦⎥⎤12.求向量α,使得A 2α=β.解:A 2=⎣⎢⎡⎦⎥⎤1 12 1⎣⎢⎡⎦⎥⎤1 12 1=⎣⎢⎡⎦⎥⎤3 24 3.设α=⎣⎢⎡⎦⎥⎤x y .由A 2α=β,得⎣⎢⎡⎦⎥⎤3 24 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤12,从而⎩⎪⎨⎪⎧3x +2y =1,4x +3y =2. 解得x =-1,y =2,所以α=⎣⎢⎡⎦⎥⎤-1 2.。

研究生《矩阵分析》试题答案及评分标准

研究生《矩阵分析》试题答案及评分标准
解:(1)由 (T1,T2 ,T3 ) (1,2 ,3 )A, 可得 1 2 1 1 0 1 1
A (1 , 2 , 3 )1 (T1 ,T 2 ,T 3 ) 0 1 1 1 1 2 1 1 1 1 0 1
0 1 10 1 1 0 1 1 1 2 1 1 1 2 1 3 2. 1 3 11 0 1 2 4 4
2 1, 1, 3, 7T ,求W1 W2 与W1 W2 的维数,并求W1 W 2 。(10 分)
解: W1 W2 L1, 2 L1 2 L1, 2 , 1, 2
1 1 2 1
1 -1 2 1
A1,2,1,2 12
设 W1 W2, x11 x22 x33 x44,化为齐次线性方程组
1 1 2 1
(1,2 ,1,2 )X 41

0
,即
2 1
1 1
1 0
1 3
X

0

0 1 1 7
x1 k, x2 4k, x3 3k, x4 k, k1 4k2 k5,2,3,4T ,即 解得 W1 W2 k5,2,3,4T .
注:计算W1 W2 维数 4 分,计算W1 W2 的维数 2 分,求集合W1 W 2 4 分。
3. 设 R3 中 , 线 性 变 换 T 为 : Ti i , i 1, 2, 3, 其 中 1 (1, 0, 1)T , 2 (2,1,1)T , 3 (1,1,1)T 与
2

1

1 0
1 1
12
注:矩阵 B, C, 各 3 分, A BC 计算 2 分。
1 0 0 -1

矩阵试题及答案

矩阵试题及答案

矩阵试题及答案一、选择题(每题4分,共20分)1. 矩阵的秩是指:A. 矩阵中非零元素的个数B. 矩阵中最大的线性无关行(列)向量组的个数C. 矩阵的行数D. 矩阵的列数答案:B2. 若矩阵A与矩阵B相等,则下列说法正确的是:A. A和B的行列式相等B. A和B的迹相等C. A和B的行列式和迹都相等D. A和B的行列式和迹都不相等答案:C3. 矩阵的转置是指:A. 将矩阵的行变成列B. 将矩阵的列变成行C. 将矩阵的行和列互换D. 将矩阵的元素取相反数答案:C4. 对于任意矩阵A,下列说法正确的是:A. A的行列式等于A的转置的行列式B. A的行列式等于A的逆矩阵的行列式C. A的行列式等于A的逆矩阵的转置的行列式D. 以上说法都不正确答案:A5. 若矩阵A是可逆矩阵,则下列说法正确的是:A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式可以是任意非零值答案:A二、填空题(每题5分,共20分)1. 若矩阵A的行列式为-2,则矩阵A的逆矩阵的行列式为____。

答案:1/22. 设矩阵A为2x2矩阵,且A的行列式为3,则矩阵A的转置的行列式为____。

答案:33. 若矩阵A的秩为2,则矩阵A的行向量组的____。

答案:线性无关4. 设矩阵A为3x3矩阵,且A的行列式为0,则矩阵A是____。

答案:奇异矩阵三、解答题(每题10分,共30分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],求矩阵A的行列式。

答案:\(\begin{vmatrix}1 & 2\\3 & 4\end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2\)2. 设矩阵B=\[\begin{bmatrix}2 & 0\\0 & 2\end{bmatrix}\],求矩阵B的逆矩阵。

矩阵分析资料报告课后习题解答(整理版)

矩阵分析资料报告课后习题解答(整理版)

第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)R对m C满足加(AR是m C的非空子集,即验证)(A法和数乘的封闭性。

1.10.证明同1.9。

1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。

若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH-==,且C C B B ≠≠11,,由1111C B C B A H HH -=+=,得C AA CB A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。

矩阵分析所有习题及标准答案

矩阵分析所有习题及标准答案
于是 B=(1/2)(A+A*),C=(1/2)(A-A*). 证毕
注:令T=-iC,则T*=iC*=i(-C)=T,即THnn.由此推 出:A可唯一地写为A=B+iT,其中B,THnn.
习题3*1试证:向量长度的齐次性
#3*1:试证 k k , k C, Cn
证:令=(a1,…,an)T ,则 k=(源自1,…,an)T.1
1 1
(1 , 1 , 1 , 1)T ; 2222
2
2 2
(1 , 1 , 1 , 1)T ; 22 2 2
3
3 3
( 1 , 1 , 1 , 1)T 22 22
1,2,3就是所要求的标正基.
习题3*5(i)用归纳法证明 1+3+5+…+(2n-1)2=n2
证:对k用归纳法证明.k=1时结论显然成立. 若n-1时结论成立
U=(A+E)(A-E)-1Unn.
习n.题试3证-2:6A设*AA的为特正征规值矩为阵|特1征|2值,…为,|1,n…|2,.
证:因为A是正规矩阵,所以存在UUnn 使得 A=Udiag(1,…,n)U*,
其中1,…, n是A的特征值.于是, A*A=Udiag(|1|2,…,|n|2)U*.
因对角矩阵diag(|1|2,…,|n|2)酉相似于A*A, 故A*A的特征值为 |1|2,…,|n|2
习题3-27
#3-27(1):A*A,AA*都是半正定Hermite矩阵. (2):若ACmn,则A*A,AA*的非零特征值相同
(它们的谱可能不一样)
证:(1): (A*A)*=A*A,(AA*)*=AA*.
xCn,x*(A*A)x =(Ax)*Ax=(Ax,Ax)0.

2014-2015学年第一学期 矩阵分析 试卷(A)

2014-2015学年第一学期 矩阵分析 试卷(A)

北京交通大学2014-2015学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 班级 学号 姓名一. (8分)4[]R x 表示由次数小于4的多项式组成的线性空间。

求4[]R x 的子空间230123012123{()|(), 0,0,}==+++++=++=V f x f x k k x k x k x k k k k k k 的基和维数。

二. (28分,其中(1),(2)题各8分,(3)题12分)3[]R x 表示由次数小于3的多项式组成的线性空间。

设3[]R x 的两组基23222123211,,1:;1,1,1:x x x x x II x x x I ++=+=+=++=+==βββααα。

(1)求由基I 到基II 的过度矩阵;(2)求3[]R x 中在基I 和基II 下坐标相同多项式全体;(3)3[]R x 中的线性映射I 满足23222132)(,21)(,1)(x x T x x T x T ++=++=+=ααα,分别求T 的核空间和值域的基和维数。

三. (10分)设1010--⎛⎫ ⎪= ⎪ ⎪⎝⎭i i A i i i ,(1,1,)=x i , 。

计算12, , ∞xA A A 。

四.(10分)求矩阵1111111111111111-⎛⎫ ⎪--- ⎪= ⎪-- ⎪ ⎪--⎝⎭A 的满秩分解。

五. (10分)求矩阵2003100⎛⎫ = ⎪⎝⎭A 的正交三角分解A UR =,其中U 是酉矩阵,R 是正线上三角矩阵。

六. (16分,1、2小题各5分, 3小题6分)证明题:1. 证明对于任意复矩阵A ,22222==H H A A A A 。

2.设A 方阵,证明Tr()||=A A e e 。

3.设σ是n 维线性空间V 的线性变换。

证明σ将标准正交基变为标准正交基的充分必要条件是σ在标准正交基下的矩阵表示是酉矩阵。

七. (18分) 设111010001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭。

矩阵的运算与性质练习题及解析

矩阵的运算与性质练习题及解析

矩阵的运算与性质练习题及解析一、基础概念在矩阵的运算与性质练习题及解析中,首先需要了解矩阵的基本概念。

矩阵是由 m 行 n 列的数构成的一个长方形的数表。

表示为:A = [a_ij]其中,a_ij 表示第 i 行第 j 列的元素。

例如:A = [1 2 3][4 5 6]这是一个 2 行 3 列的矩阵,其中 a_11 = 1, a_12 = 2, a_13 = 3, a_21 = 4, a_22 = 5, a_23 = 6。

二、矩阵的运算1. 矩阵的加法矩阵的加法规则是对应位置的元素相加。

例如:A = [1 2]B = [3 4] A + B = [4 6][5 6] [7 8] [12 14]即 A + B = [a_11 + b_11 a_12 + b_12][a_21 + b_21 a_22 + b_22]2. 矩阵的数乘矩阵的数乘是指将矩阵的每个元素分别乘以一个数。

例如:A = [1 2] 2A = [2 4][3 4] [6 8]即 2A = [2a_11 2a_12][2a_21 2a_22]3. 矩阵的乘法矩阵的乘法是指两个矩阵按一定规则相乘得到一个新的矩阵。

规则是矩阵的行乘以另一个矩阵的列,并将结果相加。

例如:A = [1 2]B = [3 4] AB = [1*3+2*7 1*4+2*8] = [17 22][5 6] [7 8] [5*3+6*7 5*4+6*8] [47 58]即 AB = [a_11b_11+a_12b_21 a_11b_12+a_12b_22][a_21b_11+a_22b_21 a_22b_12+a_22b_22]三、矩阵的性质1. 矩阵的转置矩阵的转置是指将矩阵的行与列互换得到的新矩阵。

例如:A = [1 2 3] A^T = [1 4][4 5 6] [2 5][3 6]2. 矩阵的逆一个矩阵存在逆矩阵的条件是该矩阵为方阵且行列式不为零。

逆矩阵满足以下性质:A * A^(-1) = I,其中 I 是单位矩阵。

3-作业-思考题

3-作业-思考题

第一节 矩阵的初等变换1. 将下列矩阵依次化为行阶梯形、行最简形、标准形:(1);242323122211⎪⎪⎪⎭⎫ ⎝⎛------ (2).413102211⎪⎪⎪⎭⎫ ⎝⎛- 2. 写出四阶方阵的所有可能的标准形.3. 证明: A 和B 等价⇔ A 和B 的标准形相同.4. 通过在矩阵上实现高斯消元法,解线性方程组.(1)⎪⎩⎪⎨⎧=+++=+++=++7 72343 212 43214321421x x x x x x x x x x x ; (2)⎪⎩⎪⎨⎧=+++=+++=+++02 55022202 432143214321x x x x x x x x x x x x 【思考题1】在矩阵上实现高斯消元法解线性方程组时,一般只能对矩阵做初等行变换,不允许作初等列变换,试举例说明.【思考题2】设F 是n 阶方阵A 的标准形,证明:若F 可逆,则F是n 阶单位矩阵.第二节 初等矩阵1. 在下列矩阵中找出初等矩阵,并写出相应的逆矩阵.;111⎪⎪⎪⎭⎫ ⎝⎛;100030001⎪⎪⎪⎭⎫ ⎝⎛ ;130010001⎪⎪⎪⎭⎫⎝⎛ ;100000001⎪⎪⎪⎭⎫⎝⎛ ;121⎪⎪⎪⎭⎫ ⎝⎛;001010102⎪⎪⎪⎭⎫ ⎝⎛ .1111⎪⎪⎪⎪⎪⎭⎫⎝⎛2. 设A 为 3 阶可逆矩阵,已知 A 21c c +21r r ↔E . 试将A 表示成初等矩阵的乘积.3. 证明:对矩阵 A m ⨯n 和单位矩阵E m 作同样的初等行变换,当A 变成B 时,E 就会变成一个可逆阵 P ,并且 PA =B .4. 用初等变换法证明下列矩阵可逆,并求出逆矩阵:(1);122012001⎪⎪⎪⎭⎫ ⎝⎛ (2).020121022⎪⎪⎪⎭⎫⎝⎛- 5. 用初等变换法解矩阵方程:(1);111201100210021 ,⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛==B A B AX ,其中(2).1121,6323 ,2⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=+=B A B X XA 其中 【思考题】 设A 和B 都是2⨯3 矩阵,且A21c c ↔3c c +B . 求可逆矩阵Q ,使得AQ =B..第三节 矩阵的秩1. 讨论参数a ,b 的取值,求矩阵⎪⎪⎪⎭⎫⎝⎛=4121311411b b a A 的秩2. 设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=9642042164213221A , ⎪⎪⎪⎪⎪⎭⎫⎝⎛=33121211B (1) 求A , B 以及(A , B )的秩; (2)写出A 的一个最高阶非零子式.3. 设A 为n 阶方阵,且A 2=A ,证明:R (A )+R (A -E )=n4. 设A 是m ⨯n 矩阵,B 是n ⨯s 矩阵,且B 是行满秩矩阵,证明:R (AB )=R (A ).【思考题】(1)证明:若AB =AC ,且A 是列满秩矩阵,则B =C ; (2)证明:若BA =CA ,且A 是行满秩矩阵,则B =C ;第四节 线性方程组的解1. 设非齐次线性方程组⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+23151132121321x x x λλ(1) 当λ取何值时,方程组有唯一解?无解?有无穷多解? (2) 有无穷多解时,求出通解. 2. 设两个齐次线性方程组(I) ,00221142321⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛x x x (II)()01 ,2 ,1321=⎪⎪⎪⎭⎫⎝⎛x x x问:(I)和(II)是否有非零公共解,若有,求出公共解.3. 设A 是n 阶方阵,α是n ⨯1的列矩阵,k 是数,且⎪⎪⎭⎫⎝⎛=k ααAA TR R )(,证明:线性方程组Ax =α 有解. 4. 解矩阵方程 AX =B ,其中,1116351213021⎪⎪⎪⎭⎫ ⎝⎛=A ⎪⎪⎪⎭⎫⎝⎛=230111B【思考题】已知A 是列满秩矩阵,且AB =C .证明:齐次线性方程组Bx =0 和Cx =0同解.。

线性考试题库及答案解析

线性考试题库及答案解析

线性考试题库及答案解析1. 线性代数中,矩阵的秩是指什么?答案:矩阵的秩是指矩阵中线性无关的行(或列)的最大数目。

2. 请解释线性方程组的解集。

答案:线性方程组的解集是指所有满足方程组的未知数的集合。

3. 什么是特征值和特征向量?答案:对于一个方阵A,如果存在一个非零向量v和标量λ,使得Av = λv,则称λ为矩阵A的特征值,v为对应的特征向量。

4. 矩阵的可逆性是什么?答案:如果一个方阵存在逆矩阵,则称该矩阵是可逆的。

5. 请解释什么是正交矩阵。

答案:正交矩阵是指一个矩阵的转置矩阵与其自身的乘积等于单位矩阵的矩阵。

6. 如何判断一个矩阵是否为正定矩阵?答案:一个实对称矩阵是正定的,如果它的所有特征值都是正的。

7. 线性空间的基是什么?答案:线性空间的基是构成该空间的一组线性无关的向量,且这组向量可以线性表出空间中的任意向量。

8. 请解释什么是线性变换。

答案:线性变换是指在两个线性空间之间,保持向量加法和数乘运算不变的映射。

9. 什么是线性方程组的齐次解?答案:线性方程组的齐次解是指方程组中所有方程的系数都为零时的解。

10. 请解释什么是矩阵的迹。

答案:矩阵的迹是指矩阵对角线元素之和。

11. 什么是向量的范数?答案:向量的范数是指衡量向量大小的非负实数。

12. 请解释什么是投影矩阵。

答案:投影矩阵是指将一个向量投影到另一个向量上得到的向量。

13. 什么是线性方程组的非齐次解?答案:线性方程组的非齐次解是指方程组中至少有一个方程的系数不为零时的解。

14. 什么是矩阵的行列式?答案:矩阵的行列式是一个标量值,它提供了矩阵是否可逆的信息。

15. 请解释什么是矩阵的伴随矩阵。

答案:矩阵的伴随矩阵是由原矩阵的代数余子式组成的矩阵的转置。

矩阵分析报告课后习题解答(整理版)

矩阵分析报告课后习题解答(整理版)

第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)R对m C满足加(AR是m C的非空子集,即验证)(A法和数乘的封闭性。

1.10.证明同1.9。

1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。

若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH -==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。

2010年 矩阵 课外报告 参考题目

2010年 矩阵 课外报告 参考题目

2010年《矩阵论》课外报告参考题目要求:1.任选至少一个题目,用中文写就报告,字数500字以上,能说明问题即可。

报告阐述要求尽量浅显明了,让具有《矩阵论》初步知识的读者也能看懂。

2.报告主要包含以下部分:报告题目、报告人信息、报告摘要、欲解决的题目内容、基本术语解释、基本理论阐述、报告正文、报告结论。

3.报告评分细则由助教协助任课教师共同拟定,报告成绩所占平时成绩的比例由任课老师决定。

4.报告题目也可以由学生自拟,但是要求不能太专业化了,要让绝大多数非专业的人士能看懂该报告。

否则,该报告不给成绩。

5.杜绝抄袭(含网上或非网上),情节严重者不给平时成绩。

1.人口迁移问题假设有两个地区——如南方和北方,之间发生人口迁移。

每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示:问题:如果这个移民过程持续下去,北方的人会不会全部都到南方?如果会请说明理由;如果不会,那么北方的最终人口分布会怎样?2. 最小二乘问题一颗导弹从敌国发射,通过雷达我们观测到了它的飞行轨迹,具体有如下数据:我国军情处分析得出该导弹沿抛物线轨道飞行。

问题:预测该导弹在什么水平距离着地。

3.排污问题考虑体积均为V加仑的三个装满脏水的桶,刚开始在编号为i的桶里面含有污染物ci 磅。

为了排除污染物,所有的水龙头同时打开,使得新鲜水以r加仑/秒的速度流进3号桶顶部,同时在它的底部的龙头也以r加仑/秒的速度流进2号桶顶部,而2号桶的底部的龙头同时也以r加仑/秒的速度流进1号桶顶部,最后1号桶的底部以r加仑/秒的速度把水排向其他地方。

t 时,每个箱子中含的污染物有多少磅?4.航班问题一家航空公司经营A、B、C、D和H五个城市的航线业务,其中H为中心城市。

各个城市间的路线见图1。

图 1假设你想从A城市飞往B城市,因此要完成这次路线,至少需要两个相连的航班,即A→H 和H→B。

如果没有中转站的话,就不得不要至少三个相连的航班。

《矩阵分析报告》(第3版)史荣昌,魏丰.第一章课后习题问题详解

《矩阵分析报告》(第3版)史荣昌,魏丰.第一章课后习题问题详解

第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即 123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦故12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP 计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ. 方法一 设1212{,}{,}span span ∈ξααββ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T-. 方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组 13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T-,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span ααα的基底就是12,,,nααα的极大线性无关组.维数等于秩12{,,,}n ααα.1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββ就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基, 解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==,则11,,,,,k l ααββ的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξA AA①用1k -A从左侧成①式两端,由()0k=ξA可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξA AA②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===,于是21,(),(),,()k -ξξξξA AA线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξAAA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]0000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξA A A AA A A A AAA AA 所以A 在21,(),(),,()n -ξξξξA AA 下矩阵表示为n 阶矩阵000100001000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξA AA是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==设11,,,,,,r r s ξξξξξ是的极大无关组,则可以证明11,,,,,,r r s ααααα是的极大无关组.1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.理工大学.)1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证. 1-18证:对k 用数学归纳法证。

矩阵理论试题参考答案

矩阵理论试题参考答案

矩阵理论2007年考试参考答案一、判断题(40分)(对者打∨,错者打⨯)1、设,n nA B C⨯∈的奇异值分别为120n σσσ≥≥≥>,'''120n σσσ≥≥≥>,如果'(1,2,,)i i i n σσ>=,则22||||||||A B ++>. ( ⨯ )2、设n nA C ⨯∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( ∨ )3、设nn CA ⨯∈可逆,nn C B ⨯∈,若对算子范数有1||||||||1A B -⋅<,则B A +可逆.( ∨ )4、设323121000a a A a a a a -⎛⎫⎪=- ⎪ ⎪-⎝⎭为一非零实矩阵,则2221123()a a a A --++为A 的一个广义逆矩阵 ( ∨ )5、设A 为m n ⨯矩阵,P 为m 阶酉矩阵, 则P A 与A 有相同的奇异值. ( ∨ )6、设n nA C⨯∈,且A 的所有列和都相等,则()r A A ∞=. ( ⨯ )7、如果12(,,,)T n n x x x x C =∈,则1||||min i i nx x ≤≤=是向量范数. ( ⨯ )8、0010140110620118A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦至少有2个实特征值. ( ∨ ) 9、设,n nA C⨯∈则矩阵范数m A∞与向量的1-范数相容. ( ∨ )10、设n nA C⨯∈是不可逆矩阵,则对任一自相容矩阵范数有1I A -≥, 其中I 为单位矩阵. ( ∨ )二、计算与证明(60分)1. (10分)设矩阵n nA C ⨯∈可逆, 矩阵范数||||⋅是nC 上的向量范数||||v ⋅诱导出的算子范数,令()L x Ax =, 证明:||||11||||1max ||()||||||||||min ||()||v v vx vy L x A A L y =-==⋅.证明: 根据算子范数的定义, 有||||1max ||()||||||x L x A ==,11100||||1||||10||||||||111||||max max ||||||||||||min ||||min ||()||min ||||y A x x y y y y A x y A Ay x Ay Ay L y y --=-≠≠==≠=====,结论成立.2.(10分) 已知矩阵110130110,112114A b ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,(1) 求矩阵A 的最大秩分解; (2) 求A +;(3) 用广义逆矩阵方法判断方程组Ax b =是否有解?(4) 求方程组Ax b =的最小范数解或最佳逼近解?(要求指出所求的是哪种解)解: (1)10110101011011A BD ⎛⎫⎛⎫⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭,(2)12111()1213T TB B B B +--⎛⎫== ⎪-⎝⎭, 121121()13521T T D D DD +--⎛⎫⎪ ⎪== ⎪- ⎪ ⎪-⎝⎭,541033157215541A D B +++-⎛⎫ ⎪ ⎪==⎪- ⎪ ⎪-⎝⎭, (3) 314AA b b +⎛⎫⎪== ⎪ ⎪⎝⎭, 方程组Ax b =有解;(5) 最小范数解:()01101Tx A b +==.3. (10分) 设矩阵n nA C ⨯∈为单纯矩阵, 证明: A 的特征值都是实数的充分必要条件是存在正定矩阵n nH C⨯∈, 使得HA 为Hermite 矩阵.证明: (充分性) (0)Ax x x λ=≠, ,(0,)HHHHx HAx x Hx R x Hx x HAx R λ=∈>∈,R λ∈.(必要性) A 为单纯矩阵, 所以11, (,,),n i A P DP D diag R λλλ-==∈,令H H P P =, 则1H HHA P PP DP P DP -==为Hermite 矩阵. 4. (10分) 设矩阵n nA C⨯∈为行严格对角占优矩阵, 用Gerschgorin 圆盘定理证明:(1) 矩阵A 为可逆矩阵;(2) 如果矩阵A 的所有主对角元均为负数, 证明A 的所有特征值都有负实部. 证明:(1)A 行严格对角占优||||i ij ii j iR a a ≠⇒=<∑1({:||||})ni i i ii ii i S S z C z a a λ=⇒∈=∈-<100ni ii S S =⇒∉⇒∉(2)0,||||ii ii ii a a a λ<-<⇒A 的特征值都有负实部5. (10分) (1) 设矩阵()m nA Cm n ⨯∈<, 且H m AA I =, 其中m I 为单位矩阵, 证明H A A 酉相似于对角矩阵, 并求此对角矩阵.证明: 由于矩阵H A A 和H m AA I =的非零特征值相同, 所以矩阵HA A 的特征值为1(m个)和 0(n m -个), 同时由于矩阵H A A 为Hermite 矩阵, 所以矩阵HA A 酉相似于对角矩阵000m n nI D ⨯⎛⎫=⎪⎝⎭ (2) 设矩阵m nnA C ⨯∈, 证明: 2||||1AA +=.证明: 令2B AA B B +=⇒=. 设B 的特征值为λ, 则2λλ=, 即0,1λ=.设,00n x C x Ax ∈≠⇒≠, 所以有()1()B Ax AA Ax Ax +==⋅, 即1是矩阵B 的特征值, 故()1r B =, 1/22||||[()]()1H B r B B r B ⇒===.6. (10分) (1) 设矩阵()ij n n A a ⨯=, 则,||||max ||a ij i jA n a =⋅是矩阵范数.(2) 设,,,n x y p q C ∈为非零列向量, 矩阵H H A xp yq ,x y,p q =+⊥⊥其中,求2||m A .解:(1) 0A ≠⇒ij a ⇒不全为零,||||max ||0;a ij i jA n a =⋅>,,||||max ||||max ||||||||a ij ij a i ji jkA n ka k n a k A =⋅=⋅=;,,,||||max ||max ||max ||||||||||a ij ij ij ij a a i ji ji jA B n a b n a n b A B +=⋅+≤⋅+⋅=+(2)H H A xp yq ,x y,p q =+⊥⊥⇒其中2222()()||||||||H H H H H H H HA A xp yq xp yq x pp y qq=++=+⇒22222222||||||||||||||||x p x q +p,q 为矩阵HA A 对应于2222||||||||,x p 2222||||||||x q 的特征向量.又因为()()2H rank A A rank A =≤⇒()()2H rank A A rank A ==⇒2222||||||||,x p 2222||||||||x q 为H A A 全部非零特征值所以22222222221||||()||||||||||||||||nHm i i A AA x p x q λ===+⇒∑2||||m A =。

矩阵分析试题A参考答案及评分标准样本

矩阵分析试题A参考答案及评分标准样本

重庆邮电大学 级研究生(矩阵分析)考卷( A 卷)参考答案及评分细则一 、 已知 1(1,2,1,0)T α=, 2(1,1,1,1)T α=-, 1(2,1,0,1)T β=-, 2(1,1,3,7)T β=-求12{,}span αα与12{,}span ββ的和与交的基和维数。

( 10分) 解: 因为12{,}span αα+12{,}span ββ=1212{,,,}span ααββ (2分)由于秩1212{,,,}ααββ=3, 且121,,ααβ是向量组1212,,,ααββ的一个极大相信无关组, 因此和空间的维数是3, 基为121,,ααβ。

(2分) 设{}1212{,},span span ξααββ∈于是由交空间定义可知11221122k k l l ξααββ=+=+ 此即121211212111011030117k k l l -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪+--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭解之得1122122,4,3(k l k l l l l =-==-为任意数) (2分) 于是11222[5,2,3,4]T k k l ξαα=+=-, 1122l l ξββ=+(很显然)因此交空间的维数为1, 基为T [-5,2,3,4] (2分)二、 证明: Jordan 块 10()0100a J a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似于矩阵 0000a a a εε⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦, 这里0ε≠为任意实数。

( 10分) 证明: 由于容易求出两个λ-矩阵的不变因子均为31,1,()a λ-, 从而这两个λ-矩阵相似,于是矩阵10()0100a J a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与0000a a a εε⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦相似.三、 求矩阵101120403A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭的(1)Jordan 标准型; ( 2) 变换矩阵P ; ( 3) 计算100A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年《矩阵论》课外报告参考题目
要求:
1.任选至少一个题目,用中文A4纸张写就报告,能说明问题即可。

报告阐述要求尽量浅显明了,让具有《矩阵论》初步知识的读者也能看懂。

2.报告主要包含以下部分:封面(统一用规定的封面)、报告题目、报告人信息、报告摘要、欲解决的题目内容、基本术语解释、基本理论阐述、报告正文、报告结论。

3.报告题目也可以由学生自拟,但是要求不能太专业化了,要让绝大多数非专业的人士能看懂该报告。

否则,该报告不给成绩。

4.杜绝抄袭(含网上或非网上),情节严重者不给平时成绩。

5.交报告的时间:2015-11-23 7:30
地点:研究生院608
1.人口迁移问题
假设有两个地区——如南方和北方,之间发生人口迁移。

每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示:
问题:如果这个移民过程持续下去,北方的人会不会全部都到南方?如果会请说
明理由;如果不会,那么北方的最终人口分布会怎样?
2. 最小二乘问题
一颗导弹从敌国发射,通过雷达我们观测到了它的飞行轨迹,具体有如下数据:
问题:预测该导弹在什么水平距离着地。

3. 排污问题
考虑体积均为V 加仑的三个装满脏水的桶,刚开始在编号为i 的桶里面含有污染物i c 磅。

为了排除污染物,所有的水龙头同时打开,使得新鲜水以r 加仑/秒的速度流进3号桶顶部,同时在它的底部的龙头也以r 加仑/秒的速度流进2号桶顶部,而2号桶的底部的龙头同时也以r 加仑/秒的速度流进1号桶顶部,最后1号桶的底部以r 加仑/秒的速度把水排向其他地方。

问题:当水龙头开后,在任何有限时间0t 时,
每个箱子中含的污染物有多少磅?
4. 航班问题
一家航空公司经营A 、B 、C 、D 和H 五个城市的航线业务,其中H 为中心城市。

各个城市间的路线见图1。

图 1
假设你想从A城市飞往B城市,因此要完成这次路线,至少需要两个相连的航班,即A→H和H→B。

如果没有中转站的话,就不得不要至少三个相连的航班。

那么问题如下:
(1)从A到B,有多少条路线刚好是三个相连的航班;
(2)从A到B,有多少条路线要求不多于四个相连的航班。

5. 豌豆概率问题
如图2所示,一颗豌豆被放置在四个壳里中的其中一个的里面,一个敏捷的操纵者通过一系列迅速的移动将它们重新排列。

每一次的移动,含有豌豆的壳要么向左或向右移,并且按照如下规则进行:
图 2
当含有豌豆的壳在位置#1时,就只能移动到位置#2,如果含有豌豆的壳在位置#4时,就只能移动到位置#3。

当含有豌豆的壳在位置#2或#3时,就有可能向左或右移动。

问题1:假定我们知道含有豌豆的壳的初始位置,那么经过k次移动后,含有豌豆的壳在这四个位置的概率各是多少?
问题2:经过无数次(k→∞)移动后,含有豌豆的壳出现在每个位置的概率又是多少?
6. 企业投入生产分析
7. 基因距离表示。

相关文档
最新文档