本东区资源更新2014-1-6
新旧标准替代通知(14-1)
关于下发有限公司《新旧标准替代通知单》(2014-1)的通知
有限公司各二级公司、A类项目部、机关相关处室:
现将有限公司2014年度新旧标准替代通知单(2014-1)下发给你们,望认真清理本单位在用技术标准目录,及时传递标准作废、替代、新增等相关信息,注意控制作废标准的废止日期及新标准的执行日期,确保施工现场不使用作废标准。
各单位如发现有遗漏项,请及时通知技术中心。
注:本通知单共计36项。
五冶集团上海有限公司技术部
2014年7月15日
编 号:2014-1 分发号:
编制单位:五冶集团上海有限公司技术部
新 旧 标 准 替 代 通 知 单
编制日期:2014.7.15
审批人: 拟制人:李婷
相关
旧标准替代通知单
15。
2015_-_Jian_Geng_-_Thestabilityofboundchloridesincementpastewithsulfa[retrieved_2015-09-23]
The stability of bound chlorides in cement paste with sulfate attackJian Geng a ,b ,⁎,Dave Easterbrook b ,Long-yuan Li b ,Li-wei Mo aa Research Center of Green Building Materials and Waste Resources Reuse,Ningbo Institute of Technology,Zhejiang University,China bSchool of Marine Science and Engineering,University of Plymouth,UKa b s t r a c ta r t i c l e i n f o Article history:Received 10July 2014Accepted 25November 2014Available online 27December 2014Keywords:Sulfate attack (C)Bound chlorides (D)Stability (C)Fly ash (D)Ground granulated blast-furnace slag (D)This paper presents an experimental investigation on the stability of bound chlorides in chloride-contaminated cement pastes with and without FA/GGBS when subjected to Na 2SO 4and MgSO 4attack.It is shown that bound chlorides were released in the chloride-contaminated pastes when exposed to Na 2SO 4or MgSO 4solution.This is mainly attributed to the decomposition of Friedel's salt (FS),where Cl −bound in FS is replaced by SO 42−.How-ever there were fewer released chlorides found in the pastes exposed to MgSO 4solution than in those exposed to Na 2SO 4solution.This is partly due to the low pH in the pore solution and partly due to the blocking effect of brucite on ionic transport caused by MgSO 4.The inclusion of FA/GGBS in concrete can increase the decomposition of FS and thus the release of bound chlorides.However,it also resists the penetration of Na 2SO 4and thus reduces the attack of Na 2SO 4.©2014Elsevier Ltd.All rights reserved.1.IntroductionThe corrosion of reinforcing steel in concrete structures,due to chlo-ride ion contamination,is one of the main reasons for the deterioration of concrete structures.There are two forms of chloride ions in concrete.One is free chlorides and the other is bound chlorides.It is well-known that the corrosion of reinforcing steel is mainly induced by the free chlo-rides,so reducing free chlorides by increasing bound chlorides will be bene ficial to the durability of concrete structures.According to the bind-ing mechanism,chloride ions can be bound through chemical reactions and physical absorption.In the former,chloride ions are mainly bound in Friedel's salt (FS)(3CaO·Al 2O 3·CaCl 2·10H 2O)through hydration reactions between chloride ions,tricalcium aluminate (C 3A)and its hydration products.In the latter,chloride ions are mainly absorbed by calcium silicate hydrate (C –S –H gel).It was reported that the formation of bound chlorides could be affected by a multitude of factors such as the quantity of C 3A in cement,supplementary cementitious materials (SCM),alkalinity of pore solution,Ca/Si and Ca/Al of hydration products,chloride salt type,and service condition of concrete structures [1–5].In summary,the chloride binding capacity of concrete can be improved by using SCM or cement with high C 3A content.However,many researchers have identi fied that the stability of bound chlorides,espe-cially of FS,can be affected by pH,carbonation,and chemical erosion [6–9].Sulfate attack is another problem for the durability of concrete struc-tures.The attack of sodium sulfate (Na 2SO 4)and magnesium sulfate (MgSO 4)on concrete is a common phenomenon.The mechanisms of Na 2SO 4and MgSO 4attack on concrete are different,mainly due to the solubility of phases formed with sodium and magnesium ions [10–12].With regard to Na 2SO 4attack,the deterioration of concrete is attributed to the formation of expansion products such as gypsum (CaSO 4·2H 2O)and secondary ettringite (AFt)(3CaO·Al 2O 3·3CaSO 4·32H 2O)according to the following equations:Ca ðOH Þ2þNa 2SO 4þ2H 2O →CaSO 4·2H 2O þ2NaOHð1Þ3ðCaSO 4·2H 2O Þþ3CaO ·Al 2O 3þ26H 2O →3CaO ·Al 2O 3·3CaSO 4·32H 2Oð2Þ2ðCaSO 4·2H 2O Þþ3CaO ·Al 2O 3·CaSO 4·12H 2O þ16H 2O →3CaO ·Al 2O 3·3CaSO 4·32H 2O :ð3ÞWhereas for MgSO 4attack,the transformation of the cementitious C –S –H gel to the non-cementitious magnesium silicate hydrate mush (M –S –H),which has very little strength,is the main reason for the dete-rioration of concrete,although gypsum and secondary AFt are also formed during the attack.In addition,brucite,i.e.Mg(OH)2,will form when magnesium is present in the pore solution,which has low solubil-ity and could densify the pore system and thus affect the transport ofCement and Concrete Research 68(2015)211–222⁎Corresponding author.E-mail address:gengjian@ (J.Geng)./10.1016/j.cemconres.2014.11.0100008-8846/©2014Elsevier Ltd.All rightsreserved.Contents lists available at ScienceDirectCement and Concrete Researchj o u rn a l h o m e p a g e :h t tp ://e e s.e l s e v i e r.c o m /C EM C O N /d e f a u l t.a s pions in the cement paste.The mechanism of MgSO4attack occurs according to the following equations:CaðOHÞ2þMgSO4þ2H2O→CaSO4·2H2OþMgðOHÞ2ð4Þx CaO·y SiO2·z H2Oþx MgSO4þð3xþ0:5y−zÞH2O→xðCaSO4·2H2OÞþx MgðOHÞ2þ0:5yð2SiO2·H2OÞð5Þ4MgðOHÞ2þSiO2·nH2O→4MgO·SiO2·8:5H2Oþðn−4:5ÞH2O:ð6ÞIn fact,sulfate attack and chloride contamination are often found to coexist in concrete structures which are exposed to marine and saline environments.The effects of the sulfate and chloride on a concrete structure's durability are multifaceted.On the one hand,the existence of sulfate,especially of Na2SO4,inhibits the formation of FS and reduces the quantity of bound chlorides[13–15].On the other hand,the exis-tence of chloride ions is beneficial for the resistance of concrete to Na2SO4and MgSO4attack[15–18].However,Baghabra argued that the effect of chloride ions on MgSO4attack was slight because the trans-formation of cementitious C–S–H gel to non-cementitious M–S–H was not affected by chloride ions[19].Despite the work on the interaction of sulfate and chloride in con-crete mentioned above,there is very little work on the effect of sulfate attack on the stability of bound chlorides in concrete.Brown and Badger investigated the distributions of bound sulfates and chlorides infield concrete cores exposed to mixed NaCl,Na2SO4and MgSO4attack. They found that there was extensive AFt in the absence of a gypsum zone for some concrete cores[20].Xu et al.obtained similar results, i.e.that sulfate attack could lead to the release of bound chlorides[21]. Both studies suggested the transformation of FS to AFt due to sulfate attack,but the mechanism of FS transform to AFt and the stability of bound chlorides absorbed by C–S–H gel under sulfate attack were not discussed in depth.It is well known that the use offly ash(FA)and ground granulated blast-furnace slag(GGBS)in concrete can not only improve the chloride binding capacity of concrete,but also the resistance of concrete to sulfate attack[22,23].Hence,it would be interesting to know how they affect the stability of bound chlorides when the concrete is under sulfate attack.The purpose of this paper is to report the experimental in-vestigation on the stability of bound chlorides in cement paste under Na2SO4and MgSO4attack,and the corresponding influence of FA and GGBS on the stability of bound chlorides.The stability of bound chlorides in cement paste was examined by analyzing the change of a dimensionless index,R cl,which represents the mass ratio of bound chlo-rides to initial total chlorides in the sample after it was exposed to a5% Na2SO4solution or a5%MgSO4solution for28,56or90days.The mech-anisms of the release of bound chlorides are discussed based on the results of X-ray diffraction(XRD),Fourier transform infrared(FT-IR) and differential thermo-gravimetric analysis(DTG).2.Experiment2.1.MaterialsThe materials used in the experiments were Type42.5Ordinary Portland Cement(OPC),grade II FA and GGBS.The chemical composi-tions of OPC,FA and GGBS are listed in Table1.The potential phase com-positions of OPC,calculated from chemical analysis by Bogue,are given in Table2.All other chemical reagents used in the experiments,but not listed in the tables,are analytically pure.2.2.MethodsIn order to reduce the experimental running time but still able to achieve good and representative results,chloride binding was achieved by using0.5mol/L NaCl solution as the mixing water for the casting of samples.The mass ratio of the mixing water to the binder(cement and SCM)was0.5,which was the same for all samples.The influence of single and combined use of FA and GGBS on the stability of bound chlorides was also investigated.The replacement of cement with SCM was30%by weight,and the proportions of FA to GGBS in the combined samples were either1:1or7:3.The detailed mix proportions of the samples tested are listed in Table3.A total of106samples were tested.All samples were of a size of 40mm×40mm×160mm.There were three groups of samples.The first group(2×5×7samples)were cured at a standard curing condi-tion(20±2°C and95%RH)for periods of1,3,7,14,28,56and90days for the investigation of the effect of curing time and SCM on the evolu-tion of bound chlorides in the cement paste.The second group(2×5×3 samples)were examined for the effect of Na2SO4attack on the stability of bound chlorides.In this group,all samples,after the56days standard curing,were dried at a room temperature(20±2°C and60%RH)for 1day.Then,for each sample itsfive surfaces were sealed by paraffin wax and one40mm×40mm surface was left untouched.After then, all samples were immersed in a covered plastic container(575mm ×400mm×275mm)of5%Na2SO4solution for28,56and90days at the standard curing condition(20±2°C and95%RH).The third group(2×1×3samples)were for the samples only with OPC,which were cured as the same as those done in the second group.The only dif-ference is that they were immersed in a similar covered container of5% MgSO4solution for28,56and90days at the standard curing condition (20±2°C and95%RH)for the examination of the effect of MgSO4at-tack on the stability of bound chlorides.The volume of the sulfate solu-tions used in the immersion tests was25L and the storage solutions were not renewed during the immersed tests.In the second and third groups,when the attack time reached28,56, and90days,the samples were dried at room temperature for1day,and then were sliced into four pieces parallel to the exposed surface (starting from the exposed surface)and each piece is one cm thick. Afterwards,each piece was broken into small blocks,which were then immersed in anhydrous ethanol for7days to terminate hydration. These small blocks were ground intofine powder by passing through a sieve of0.15mm mesh aperture size,which was then stored in a des-iccator with silica gel and soda lime at11%RH to minimize carbonation before it was used in the tests for chloride content titration and other material characterization analyses.The initial total chloride content(C t)of the sample cured at the stan-dard curing condition can be calculated based on the mixing water of Table1Chemical composition of main materials(data presented by mass%).SiO2CaO MgO Fe2O3Al2O3SO3Ignition loss OPC19.6760.43 4.56 4.20 5.70 2.30 2.54FA43.10 6.300.247.2638.200.70 2.04GGBS23.5052.80 6.500.7011.80 1.650.78Table2Potential phase composition of OPC(data presented by mass%).Potential phase composition OPCC3S51.58C2S17.77C3A8.01C4AF12.773.91212J.Geng et al./Cement and Concrete Research68(2015)211–2220.5mol/L NaCl solution,which is 8.863mg ·g −1.The free chloride content (C f )was measured using the traditional leaching method according to the standard of Test Code for Hydraulic Concrete (SL352-2006)and the total chloride content (C t )was measured using the acid-soluble method (SL352-2006).In order to analyze the stability of bound chlorides in concrete,the dimensionless index (R cl )was exam-ined,which is de fined as follows,R cl ¼C t −C f %ð7Þwhere 8.863mg.g −1is the initial total chloride content in the sample.X-ray diffraction (XRD)/reference intensity ratio (RIR)analysis and DTG can be used to approximately determine the quantity of FS,AFt and calcium hydroxide (CH)in the samples.XRD/RIR can determine the relative mass relations among different minerals in a sample,which is calculated according to the following equations [24,25]:W i ¼I i =RIR iX i ¼1I i=RIR i ðÞð8ÞW 1þW 2þW 3þ⋯þW l ¼1ð9Þwhere W i is the relative mass of mineral i ,RIR i is the reference intensityratio of mineral i ,which can be collected from the PDF card of the Inter-national Centre for Diffraction Data (ICDD),I i is the integral intensity of the highest peak of mineral i ,which is calculated using X'Pert HighScore Plus ™software,and N is the number of minerals in the sample.XRD/RIR is usually used to determine the quantity of substances in metals because of simple compositions [25].For cement based materials,it is rather complicated to accurately determine the kinds of hydration products,which increases the dif ficulty of the quantitative analysis.However,if the quantity of one of the minerals can be determinedusing other methods,the calculation process of XRD/RIR becomes pared with the FS and AFt,the quantity of CH can be accurately determined using DTG.Therefore,the quantities of the FS and AFt can be calculated by solving the following algebraic equations,m FS :m AFt ¼T 1ð10Þm FSFS þm AFt þm CH ¼T 2ð11Þm AFtm FS þm AFt þm CH ¼T 3ð12Þm CHm FS þm AFt þm CH¼T 4ð13Þwhere m FS ,m AFt and m CH are masses of FS,AFt and CH,respectively,T 1,T 2,T 3and T 4are the mass ratios,which can be calculated from Eqs.(8)and (9).Note that,m CH can be determined by DTG and thus m FS and m AFt can be determined by Eq.(10)plus any one taken from Eqs.(11)–(13).XRD was carried out using the D8Advance instrument of Bruker AXS with a Cu K αradiation generated with 40kV and 30mA.The diffraction spectra were collected in the range of 5–60°(2θ)scale,with a step sizeTable 3Mix proportions (data presented by mass %).Samples OPC FA GGBS w/b a NoteCN 100000.5Exposed to 5%Na 2SO 4solutionCF 703000.5CG 700300.5CF1G17015150.5CF7G3702190.5CM1000.5Exposed to 5%MgSO 4solutionaw/b represents the mass ratio of mixing water (i.e.0.5mol/L NaCl solution)to binder (cement +SCM).Fig.1.Variation of R cl with standard curing time in samples of differentmixes.Fig.2.Values of R cl in the surface layer of the sample at various different sulfate attack times (CM was exposed to MgSO 4,while all the others were exposed to Na 2SO 4).Fig.3.Values of R cl in different layers of the sample after 90days sulfate attack (1st layer is next to the surface and 4th layer is away from the surface.CM was exposed to MgSO 4,while all the others were exposed to Na 2SO 4).213J.Geng et al./Cement and Concrete Research 68(2015)211–222of 0.02°/s.FT-IR was performed for the samples on a Nicolet Nexus 470spectrometer using the KBr pellet technique in the range of 400–4000cm −1.DTG was carried out in a Netzsch TG-209F1thermal an-alyzer,using a heating rate of 20°C/min at the range of 25–1000°C,in N 2atmosphere.3.Stability of bound chlorides 3.1.Standard curing conditionThe variation of R cl during the standard curing time is shown in Fig.1.It can be seen from the figure that R cl in the samples with SCM is higher than that in the sample only with OPC when they have the same curing time,which is more obvious after the curing time exceeds 14days.Up to 28days,the combined use of FA and GGBS results in higher values of R cl in CF1G1and CF7G3than in the samples with only either FA (CF)or GGBS (CG).However,after the 28days standard curing,the R cl value of the samples has an order of CF ≈CF7G3N CF1G1N CG,which increases with the increased proportion of FA to GGBS.The latereffect of FA on chloride binding is mainly due to its slow pozzolanic re-action.The results shown in Fig.1indicate that the inclusion of SCM in concrete can increase the chloride binding capacity and the effect of FA on chloride binding is more signi ficant than that of GGBS.Furthermore,they also show that the R cl values of all samples increase very obviously before 28days but after that there is less change,suggesting that the equilibrium between free and bound chlorides has been reached.3.2.Sulfate attack conditionFig.2shows the expected decrease in R cl of the surface layer of all samples with the sulfate attack,but the rate of the decrease is higher than that was reported [21].The R cl value in the surface layer of sample CN exposed to Na 2SO 4solution,for example,decreases from 59.8%to 4.3%after only 28days.After that,R cl continuously decreases with the attack time but with a slow reduction rate,from 4.3%at 28days to 1.9%at 90days.The results for locations other than the surface layer at 90days are shown in Fig.3.It can be seen from the figure that,although the 4th layer of sample CN is far away from theexposedFig.4.XRD patterns of samples CN(CM),CF and CG at standard curing condition for (A)28and (B)56days (E:ettringite (AFt),F:Friedel's salt (FS),CH:calcium hydroxide,M:mono-sulfoaluminate,V:Vaterite,CSH:C –S –H gel,C:calcite).214J.Geng et al./Cement and Concrete Research 68(2015)211–222surface,there is still a notable decrease in the R cl value from59.8%at the beginning of the Na2SO4attack to16.6%after90days of attack.This demonstrates that the stability of bound chlorides in concrete is very susceptible to Na2SO4attack.Note that the data plotted in Fig.2show that there is also a decrease in the R cl values of the samples with SCM after Na2SO4attack for28days, but the R cl values are still higher than that of the sample CN only with OPC.This suggests that the use of SCM can alleviate the effect of Na2SO4attack on the stability of bound chlorides.This is partly because the effect of SCM on the diffusion of ions,since the ionic diffusion coef-ficient in cement paste with SCM is normally lower than that in OPC paste,and partly because the cement paste with SCM has more bound chlorides[26].Additionally,in contrast with the results obtained under the standard curing condition,the R cl values of the samples with SCM increase with the decreased proportion of FA to GGBS,and also the R cl value of the surface layer of sample CF is the lowest of all samples containing SCM,following the Na2SO4attack.This suggests that Na2SO4attack can also alter the effect of SCM on the stability of bound chlorides.This appears to be consistent with what is reported in literature[21].The stability of bound chlorides in concrete under MgSO4attack is also shown in Figs.2and3.When the MgSO4attack time extends from0to28days,the R cl value of the surface layer of sample CM decreases from59.8%to26.3%,which is slower than that of sample CN exposed to Na2SO4solution.When the attack time reaches90days, the R cl value of sample CM's surface layer decreases to7.5%,which is still almost four times as high as that of sample CN.This indicates that the stability of bound chlorides is less susceptible to MgSO4attack when compared with Na2SO4attack.Again,thisfinding is consistent with what is reported in other experiments[21,27].The different reductions of R cl in samples CM and CN reflect the different effects of MgSO4and Na2SO4on bound chlorides.During the immersion process free chloride ions will diffuse out and sulfate ions will diffuse into the specimen.The former may decrease the bound chlo-ride level in the sample owing to the equilibrium between the free and bound chlorides.The latter can transform FS into AFt,which not only can reduce the bound chlorides but also can change the pore system and thus affect the diffusion rate of ions.In addition,when magnesium is present,brucite will be formed,which can also change the pore sys-tem and thus affect the transport of ions and the R cl value.The slower reduction of R cl found in sample CM shown in Figs.2and3indicates that the magnesium ions must have some influence on the sulfate attack to the bound chlorides.This influence could be physical and/or chemi-cal.The former is mainly due to the forming of brucite in the surface layer,which reduces the inward diffusion of sulfate ions and the out-ward diffusion of chloride ions.Indeed,the measured free chloride con-centration after the90days immersion was found to be higher in sample CM than in sample CN and have the ratios of about1:0.72for the surface layer and1:0.81for the4th layer.An accurate analysis for the diffusion effect on the bound chlorides requires having more data on thinner layers and knowing the binding isotherms.Nevertheless, the above results did indicate that the diffusion of chloride ions was affected by magnesium ions.The chemical effect of magnesium ions on bound chlorides will be discussed in the next section.Note that the ionic diffusion coefficient in concrete with SCM is nor-mally smaller than that in concrete only with OPC.Thus,the inclusion of SCM in cement paste can provide additional resistance to the ingress of sulfate ions,which in turn can affect the stability of bound chlorides. More discussion on this will be provided in the next section.4.Material characterization analyses4.1.X-ray diffractionThe XRD patterns of samples CN,CF and CG cured at the standard curing condition for28and56days are shown in Fig.4.From the XRD patterns one can identify the FS with a very obvious diffraction peak at around11°2θ.Fig.5shows the relative masses of AFt,FS and CH in samples CN,CF and CG after they were cured in the standard condition for56days.It can be seen from thefigure that the use of FA and GGBS is beneficial to forming more FS.This result can be attributed to two rea-sons.First,the forming process of FS in concrete has been associated with the quantity of aluminate in cementious materials.The higher the quantity of aluminate,the more FS is formed.According to the chemical composition shown in Table1,there is a larger quantity of alu-minate in GGBS and FA than in OPC,which can be released due to the latent hydraulic property of GGBS and the pozzolanic property of FA, which is beneficial to the formation of FS.Secondly,the formation of FS would be hindered because SO42−can react with aluminate prior to Cl−to form mono-sulfoaluminate(AFm)and AFt[13–15].In addition, C–A–H and C–S–H gel,formed due to the hydration reactions induced by FA and GGBS,are also beneficial to chloride binding.As shown in Fig.5,although the quantity of aluminate in FA is higher than that in GGBS,the quantity of FS in sample CF is still lower than that in sample CG after standard curing for56days.It was believed that only reactive alumina Al2O3r−in SCM could react with Cl−to form FS[5].The quantity of CaO in FA used in this study is6.3%,which is low calciumfly ash according to Chinese specification GB/T15696-2005,and where Mullite is the main form of Al2O3,so it is adverse to the formation of FS.Nevertheless,a notable decrease in the intensity of diffraction peak (IDP)of CH can be found in the XRD patterns of sample CF over the curing time from28to56days,which is induced due to the pozzolanic reaction between CH and FA.As a result,more C–S–H gel and C–A–H are formed,which could increase the bound chlorides in sample CF.It should be noticed that the IDP change at around30°(2θ)shown in Fig.4correlates with both C–S–H gel and calcite(CaCO3),because of the overlap of the two strongest diffraction peaks at29.25°(2θ)and 29.40°2θ,respectively[8,28].The XRD patterns of sample CN under Na2SO4attack are shown in Fig.6.It can be observed from Fig.6A that the IDP of FS in the surface layer of sample CN becomes very weak after Na2SO4attack for28 days,which indicates that FS has been decomposed due to the Na2SO4 attack.A quantitative analysis of FS,AFt and CH of sample CN after the Na2SO4attack for28and90days is shown in Fig.7.It can be seen from thefigure that the relative mass of FS in the sample decreases very quickly from2.04to0.45after the28days attack.This suggests that the stability of FS is very susceptible to Na2SO4attack,which may also explain why the decrease of R cl is quick as is shown in Fig.2.How-ever,when the attack time is extended from28to90days,the change in the quantity of FS is slight,which indicates that a large quantity of FShasFig.5.Analysis of ettringite(AFt),Friedel's salt(FS)and calcium hydroxide(CH)in sam-ples CN/CM,CF and CG after they had56days standard curing(wt.%represents the mass percentage of AFt/FS/CH in sample).215J.Geng et al./Cement and Concrete Research68(2015)211–222been decomposed following 28days of the Na 2SO 4attack.Moreover,it can be seen from Fig.7that the quantity of FS gradually decreases from the inside to the surface,which correlates with the change of the R cl value shown in Fig.3.In addition,one can see from Fig.6B that AFt with a diffraction peak at around 9°(2θ)can be detected in every layer of sample CN after the Na 2SO 4attack for 90days.The data shown in Fig.7for AFt indicate that the quantity of AFt in the fourth layer of sam-ple CN is higher than its initial value,which con firms that the attack of Na 2SO 4has reached the fourth layer of the sample.Fig.7also shows the expected opposite changes of FS and AFt with time.The XRD patterns of samples CF and CG after the Na 2SO 4attack for 90days are shown in Fig.8.Similar to the sample CN,the diffraction peaks of FS in the samples with SCM,especially in sample CF,become very weak.Similar to the analysis of the sample CN,Fig.9shows the relative mass of FS,AFt and CH of samples CF and CG after the Na 2SO 4attack for 90days.It seems that the quantities of FS in samples CF and CG are as high as that in sample CN after the Na 2SO 4attack.However,considering the higher quantity of FS in samples CF and CG before the Na 2SO 4attack as shown in Fig.5,the decrease of the quantity of FS in them is quicker than that in sample CN.Therefore,it can be concluded that the stability of FS in the samples with FA or GGBS is susceptible to Na 2SO 4attack when compared to the sample CN.The XRD patterns of samples CN and CM attacked by Na 2SO 4and MgSO 4for 90days are shown in Fig.10.An interesting finding is that there is still an obvious diffraction peak of FS in the sample CM,which is different from the sample CN attacked by Na 2SO 4.The analysis results shown in Fig.11demonstrate that there is more FS in sample CM than in sample CN.Therefore,it can be concluded that the Na 2SO 4attack has more effect on the decomposition of FS in hardened cement paste than the MgSO 4attack.In addition,the IDP of AFt in sample CM is lower than that in sample CN due to the different erosion mechanisms.However,there is still an obvious increase in AFt for sample CM from 0to 90days as demonstrated in Figs.5and 11,which indicates that MgSO 4attack can also lead to the formation of secondary AFt.NoteFig.6.XRD patterns of samples CN with Na 2SO 4attack.(A)1st layer at different days and (B)different layers at 90days (E:ettringite (AFt),F:Friedel's salt (FS),CH:calcium hydroxide,M:mono-sulfoaluminate,V:Vaterite,CSH:C –S –H gel,C:calcite).216J.Geng et al./Cement and Concrete Research 68(2015)211–222that,when magnesium is included in the exposure solution,brucite is formed at the expense of calcium hydroxide,which can affect not only the leaching of chloride from the specimen but also the inward trans-port of sulfate from the exposed solution and thus provide the in fluence on the decomposition of FS and the formation of AFt.However,our XRD result did not reveal a signi ficant amount of brucite and/or gypsum in the surface layer.This is probably due to the specimen layer used in the tests being too thick.Both Skaropoulou and Sotiriadis reported their test results in which brucite was detected in XRD patterns,but the IDP of it was very weak when compared to other phases [11,17].However,in other similar experiments brucite was not detected in XRD patterns [27,29,30].This is probably attributed to the consumption of brucite due to the formation of M –S –H as shown in Eqs.(4)–(6)[19].4.2.Fourier transform infrared (FT-IR)Fig.12shows the FT-IR spectra of sample CN after the Na 2SO 4attack for 28and 90days,respectively.The band at around 3640cm −1is due to the stretching vibration of \OH in Ca(OH)2[30],which is very weak in all samples due to Na 2SO 4attack.The presence of carbonate bands at around 1430and 870cm −1indicates that the samples have already absorbed CO 2molecules from the air before they were immersed into sulfate solution [31].The band at around 1110cm −1comes from asym-metric stretching vibration of S –O in SO 42−,which is identi fied as the fingerprint peak of AFt [32,33].As is shown in Fig.12,owing to more secondary AFt being formed,this band becomes stronger from the in-side to the surface over the attack time.The changes in the bands at around 3440and 1650cm −1are due to the stretching vibration of \OH in structural water of hydration products and the bending vibra-tion of \OH in the interlayer water of hydration products [30].The two bands are also related to the formation of secondary AFt,which be-come strong with the increased quantity of secondary AFt.In addition,the band at around 970cm −1comes from asymmetric stretching vibra-tion of Si –O in C –S –H gel [31,34].It can be observed from Fig.12that there is no obvious change in this band over the attack time,which sug-gests that the stability of C –S –H gel is independent of Na 2SO 4attack.With regard to FS,because chloride ions are not absorbed in the range 400–4000cm −1,the bands at around 730,530and 460cm −1,which are due to Al –O vibrations of [Al(OH)6]3−,can be identi fied as the fin-gerprint peaks of FS [35,36].Owing to the decomposition of FS under Na 2SO 4attack,the strength of these bands appears very weak.Fig.13shows the FT-IR spectra of samples CF and CG after the Na 2SO 4attack.There is no obvious band at around 3640cm −1in thespectra due to the consumption of CH induced by hydration reactions of FA and GGBS and sulfate attack.It can be observed from Fig.13that there is an increase in the strength of the band of C –S –H gel at 976cm −1in sample CF over the attack time from 56to 90days.Guerre-ro et al.attributed this to the further activating action on FA due to the increase in alkalinity induced by Na 2SO 4attack [15].Moreover,this re-sult also indicates that the stability of C –S –H gel is independent of Na 2SO 4attack.The difference of the bands at 714,535and 458cm −1be-tween samples CF and CG is slight.Fig.14shows the FT-IR spectra of samples CN and CM after Na 2SO 4and MgSO 4attack for 90days,respectively.It is observed from Fig.14that the strength of the band at around 710cm −1in sample CM is much stronger than that in sample CN.Also there is more FS in sample CM than in sample CN,which agrees with the results shown in Figs.10and 11.Moreover,it can be seen clearly from Fig.14that the strength of the band at around 970cm −1in sample CM is lower than that in sample CN.This is likely attributed to the decomposition of C –S –H gel induced by MgSO 4attack.As a result of that,the bound chlorides absorbed by C –S –H gel are released.A weak band at around 1110cm −1in sample CM due to the attack of MgSO 4can induce the formation of secondary AFt.4.3.Derivative thermo-gravimetric analysis (DTG)The DTG curves of sample CN attacked by Na 2SO 4are shown in Fig.15.There are some notable endothermic peaks in the DTG curves.The peak near 100°C is mainly attributed to the dehydration of C –S –H gel and AFt,which are dif ficult to distinguish because of the overlap of dehydration temperature from 85to 130°C [23].The peak near 160°C is attributed to AFm [23].Besides these,the peaks near 340,450and 710°C are attributed to the dehydration of FS,CH and the decomposi-tion of calcite.The absence of the peak for FS in the DTG curve after the Na 2SO 4attack for 28days shown in Fig.15further demonstrates that the stability of FS is susceptible to Na 2SO 4attack.The change in the peak of AFm,which plays an important role in the formation of sec-ondary AFt during the Na 2SO 4attack,is also consistent with the change of FS.Fig.16shows the DTG curves of samples CF and CG after the Na 2SO 4attack for pared to sample CG,sample CF has a weak strength of the peak for FS,which is consistent with the analysis result shown in Fig.9and the R cl data shown in Fig.2.Fig.17shows similar DTG results of samples CN and CM after Na 2SO 4and MgSO 4attack for 90days.It is noticed from the figure that the strength of the peak for C –S –H gel and AFt in sample CM is far lower than that in sample CN.Ac-cording to the FT-IR results shown in Fig.14,this result further indicates that MgSO 4attack will lead to the decomposition of C –S –H gel,resulting in the release of bound chlorides.5.Discussion5.1.Stability of Friedel's saltSuryavanshi and Swamy reported that a drop in alkalinity of pore so-lution due to carbonation could induce the decomposition of FS [8].Con-versely,Na 2SO 4attack can increase the alkalinity of the pore solution,which has a negative effect on chloride binding [23,27,37].The question now is how Na 2SO 4attack affects the stability of FS.The exchange be-tween Cl −and SO 42−is the main mechanism in the formation of FS,which can be explained by the following reaction [27]:3CaO ·Al 2O 3·CaSO 4·12H 2O ðAFm Þþ2Cl −→3CaO ·Al 2O 3·CaCl 2·10H 2O ðFS ÞþSO 2−4þ2H 2O :ð14ÞEssentially,FS belongs to a phase of the AFm family,which has a complex chemical and structural constitution.A general formula for AFm phase is [Ca 2(Al,Fe)(OH)6]+X·m H 2O,where the bracketsindicateFig.7.Analysis of ettringite (AFt),Friedel's salt (FS)and calcium hydroxide (CH)in sample CN after Na 2SO 4attack for 0,28and 90days (wt.%represents the mass percentage of AFt/FS/CH in sample).217J.Geng et al./Cement and Concrete Research 68(2015)211–222。
工程建设现行标准规范目录(2014更新版)
2010年版工程建设现行标准规范目录清单标准号标准规范名称专业分类实施日期替代标准备注一、 工程建设国家标准标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注二、工程建设标准化协会标准标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注三、工程建设行业标准1、轻工业行业标准标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注2、建筑工程行业标准标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注3、城镇建设行业标准标准号标准规范名称专业分类实施日期替代标准备注标准号标准规范名称专业分类实施日期替代标准备注。
2014版九年级Unit1-6句型背诵表
2014版九年级Unit 1-6 句型1.—How can I improve my pronunciation?我怎样才能改善我的发音?2.—One way is listening to tapes.一种方法是听磁带.3.Have you ever studied with a group ?你曾经参加过学习小组吗?Yes , I have . I’ve learned a lot that way .是的,参加过。
通过这种方式我学了许多。
4.What about reading aloud to practice pronunciation ?大声朗读来练习发音怎么样?5.Why don’t you join an English language club ?你为什么不参加一个英语俱乐部呢?6.She didn’t know that Tom had left for Shanghai.她不知道汤姆已经去了上海。
7.Our teacher told us that light travels faster than sound.老师告诉我们光的传播速度比声音的快。
8.She asked me if I knew whose pen it was.她问我是否知道这是谁的钢笔。
9.Excuse me ,do you know where I can buy some medicine? Sure, There’s a supermarket down the street. 打扰一下,你知道我可以在哪买药吗?当然,街上有一家药店。
10.Could you please tell me how to get to the post office? Sure, I’m not sure how to get there. 你能告诉我怎么去邮局吗?当然,我不知道如何去那11.The kite is made of paper.风筝是用纸做的。
2014年新人教版pep六年级上册英语 unit1 教案设计 1-6课时
3. 教师利用Be a tour guide的插图,组织学生根据地图指路。出发地和目的地可以任选。
1.今天学习了哪些短语?
2.今天需要掌握哪些句型?
1.学生看图学习短语。
2.在游戏中反复操练所学的新词组。
2.通过where canIgo的情景设计,反复操练新单词。
(1)I want to post the letter. Where can I go? (post office)
(2)Oh, I feel bad, I need to see a doctor. Where can I go? (hospital)
2.能够通读文段,获取主旨大意,通过相关细节猜测词义。
过程与方法
小组合作学习, 情景教学法
教学重点
能够正确使用上述句型描述城市设施及其位置
教学难点
能够听、说、读、写句型:Where is the…?It’s near the…How can we get there/ get to the…?Turn left / right at the…
夷陵区小学六年级英语学科课时教学计划
授课时间:9月 日总第1课时
课 题
Unit1 How canIget there
教学内容
Let’s learn
教学领域
New words
第1课时
执教教师
教学目标
情感态度价值 观
能够在迷路时主动寻求帮助。
知识与技能
1.能够听、说、读、写单词和词组:science museum, post office, bookstore, cinema, hospital, crossing, turn left, turn right, go straight,并能在上下文中理解意义。
2014年1-7月份全国房地产开发和销售情况
2014年1-7月份全国房地产开发和销售情况来源:国家统计局发布时间:2014-08-13 13:30一、房地产开发投资完成情况2014年1-7月份,全国房地产开发投资50381亿元,同比名义增长13. 7%,增速比1-6月份回落0.4个百分点。
其中,住宅投资34365亿元,增长13. 3%,增速回落0.4个百分点,占房地产开发投资的比重为68.2%。
1-7月份,东部地区房地产开发投资28833亿元,同比增长14.1%,增速比1-6月份回落0.5个百分点;中部地区投资10380亿元,增长11.6%,增速回落0.3个百分点;西部地区投资11168亿元,增长14.7%,增速回落0.1个百分点。
1-7月份,房地产开发企业房屋施工面积632685万平方米,同比增长11. 3%,增速与1-6月份持平。
其中,住宅施工面积451577万平方米,增长8. 2%。
房屋新开工面积98232万平方米,下降12.8%,降幅收窄3.6个百分点。
其中,住宅新开工面积69069万平方米,下降16.4%。
房屋竣工面积43524万平方米,增长4.5%,增速回落3.6个百分点。
其中,住宅竣工面积33270万平方米,增长2.7%。
1-7月份,房地产开发企业土地购置面积17824万平方米,同比下降4. 8%,降幅比1-6月份收窄1个百分点;土地成交价款4828亿元,增长9.8%,增速提高0.8个百分点。
二、商品房销售和待售情况1-7月份,商品房销售面积56480万平方米,同比下降7.6%,降幅比1-6月份扩大1.6个百分点。
其中,住宅销售面积下降9.4%,办公楼销售面积下降4.9%,商业营业用房销售面积增长7.4%。
商品房销售额36315亿元,下降8. 2%,降幅比1-6月份扩大1.5个百分点。
其中,住宅销售额下降10.5%,办公楼销售额下降14.0%,商业营业用房销售额增长8.6%。
1-7月份,东部地区商品房销售面积26436万平方米,同比下降14.8%,降幅比1-6月份扩大1.5个百分点;销售额21022亿元,下降15.2%,降幅扩大1. 2个百分点。
2014年人力资源半年度报表(格式模板)
2013年
2014年
1月
2月
3月
4月
5月
6月
7月
8月
9月
10月
11月
12月
流失率
2014年 1月
5.7%
2014年 2月
4.8%
2014年 3月
4.1%
2014年 4月
4.9%
2014年 5月
4.2%
2014年 6月
4.0%
2014年1-6 月累计
2013年 累计
2012年 累计
➢ 离职率变化原因: 说明:本表统计生产人员主动辞职情况;当月流失率 = 当月辞职人数/(月末在岗人数+当月辞职人数)
人均产值 (万元/人)
生产人员 人均产值
=工业产值/平均用 工人数
说明: 工业产值为累加值;平均用工人数为1-6月各月用工人数的算术平均值。
Copyright © 2006 Wuling Motors Co., Ltd.
Байду номын сангаас
~9~
Copyright © 2007 Liuzhou Wuling Automobile Industry Co., Ltd.
3、1-6月HR主要工作
员工培训
1、
1-6
月
员工发展
主
要
• 2月完成2013年年度绩效评价,所有员工绩效分布均符合比例要求;
工
• 5月完成2013年特聘专家聘任工作,截止目前特聘专家共80人;
作
• 6月完成2013年高级职称评审工作,申报人员评审推荐率60%
回
顾
其它(如有则填报,如无则删除)
Copyright © 2006 Wuling Motors Co., Ltd.
1+6文件相关
创新社会治理加强基层建设——解析市委一号课题中共上海市委举行“创新社会治理、加强基层建设”电视电话会议,全面落实今年上海市委一号课题成果。
什么是1号课题呢?1号课题调研了些什么?它究竟会对上海这座城市带来什么变化?让我们一起来了解。
2014年2月26日,上海部署启动今年市委头号调研课题“创新社会治理、加强基层建设”。
此后,调研组遍及全市的足迹,把社会各界的目光引入位于社会架构最底座的“基层”,也把社会治理推到“全民议题”的高度,让不同阶层、不同背景的公众参与讨论,如何创新社会治理,增强社会发展活力。
基层责任大、任务重、事情多,但与此相对应的是,在人权、事权、财权、物权等方面还很不够,服务与管理能力有待提高,这是现实的突出问题。
市委希望通过这次全面深入的调研,摸清全市基层建设方面存在什么困难,碰到哪些问题,在认真梳理清楚的基础上,提出有针对性的解决办法。
调研重点落在街道和镇以及居和村两个层面,旨在使工作重心进一步下移,通过将经常性的管理、执法资源下沉,统筹管理的权力下沉,与之相对应的人财物支配管理权下沉,让基层更加有职有权有物有人。
调研形成的“1+6”文件,主要解决①街镇体制机制②基层队伍力量建设③管理、执法等治理资源配置④基层组织基本经费托底保障等四大突出问题。
1份意见《关于进一步创新社会治理加强基层建设的意见》6个文件①深化本市街道体制改革②完善居民区治理体系③完善村级治理体系④组织引导社会力量参与社区治理⑤深化拓展网格化管理提升城市综合管理效能⑥社区工作者管理等6个实施意见、管理办法。
明年,全市统一停止街道招商引资,这是硬任务,没有例外。
个别的局部的利益,必须服从全市工作的大局。
街道招商引资,虽然有其历史发展的缘由,但在当前新形势下,如果再不看清其利弊得失,我们的工作就会产生失误。
从全局工作看,街道招商引资已是弊大于利,与上海城市未来产业结构的方向不相符合,街道干部也难以集中精力履行好群众要求的管理服务职能。
LTE基站业务流量管控(2014)
18:30-22:30为高峰期 该站仅1:30-6:00为闲时 其余为忙时时段 闲时
高峰期
傍晚16:00-18:00 为高峰期 该客户6:30-22:00 为忙时时段
高峰期
下班(3G)+上班(集客) 削峰填谷作用!
忙时
A基站站流量模型是典型的商业区流量模型,白 天和夜晚均有较高流量,建议重点保障18:3022:30的高峰时段。该站从1:30-6:00为闲时, 其余时段均为忙时时段。
带宽繁 忙度
72.92% 9.38% 0.00% 0.00% 0.00%
P1-东区404-8列7架A面-PTN-2-[0-118]-1:1
10.00Gbp s
P1-西区202-15列14架A面-PTN-1-[0- 10.00Gbp 1-18]-1:1 s P1-西区202-15列14架B面-PTN-2-[0- 10.00Gbp 1-18]-1:1 s P1-东区404-8列7架B面-PTN-1-[0-157]-1:1 10.00Gbp s
1.
2. 分 析 的 对 象
链路
环系统 基站 集团家宽 ETH端口
传输环路
汇聚环 骨干环 3G
业务
集客
2G
859
12
流量管理工具的应用-体系架构(1) 以中兴PTN的DNA工具为例进行介绍
资产/物流/其 它系统 文件导入 (客户信息/资源属性) ZXDNA系统 配置管理 HTTP(S) 报表 FTP 查看报表(HTTPS) 系统管员
链路带宽利用率均值TOP5
全网链路
东区5-PXGA[0-1-3]-ETH:1_东区1-PXGA[0-1-5]-ETH:3 东区2-PXGA[0-1-3]-ETH:3_东区6-PXGA[0-1-5]-ETH:1 东区1-PXGA[0-1-3]-ETH:1_西区1-PXGA[0-1-3]-ETH:1 东区2-PXGA[0-1-5]-ETH:1_西区2-PXGA[0-1-5]-ETH:1 东区1-PXGA[0-1-3]-ETH:3_东区2-PXGA[0-1-5]-ETH:3
一年级上数学教案-6和7的认识-人教新课标2014秋(2份)
一年级上数学教案6和7的认识人教新课标2014秋(2份)教案:6和7的认识一、教学内容今天我们要学习的是人教新课标一年级上册的数学内容,具体是第6和7的认识。
我们将通过教材的第6页和第7页来进行学习。
这两页的内容主要包括了数字6和数字7的写法、读法以及它们的组成和拆分。
二、教学目标通过本节课的学习,我希望孩子们能够掌握数字6和数字7的写法和读法,理解它们的组成和拆分,并且能够熟练地进行6和7的数的认识和运用。
三、教学难点与重点重点是让孩子们掌握数字6和数字7的写法、读法以及它们的组成和拆分。
难点是让孩子们能够理解数字6和数字7的组成和拆分,并能够灵活地进行运用。
四、教具与学具准备为了帮助孩子们更好地学习,我已经准备了一些教具和学具。
教具有数字卡片和黑板,学具有练习本和彩色笔。
五、教学过程1. 实践情景引入:我会通过一个简单的游戏来引入今天的学习内容。
我会拿出数字卡片,让孩子们看看并说出数字6和数字7。
2. 例题讲解:然后我会用黑板和粉笔来讲解数字6和数字7的写法、读法以及它们的组成和拆分。
我会用具体的例子来解释,让孩子们更好地理解。
4. 小组讨论:然后我会让孩子们分成小组,互相讨论和交流他们对数字6和数字7的理解和运用。
六、板书设计我会用黑板和粉笔来板书数字6和数字7的写法、读法以及它们的组成和拆分。
我会用清晰的字体和简洁的图示来展示,让孩子们更容易理解和记忆。
七、作业设计作业题目:请孩子们用彩色笔在练习本上写下数字6和数字7,并画出它们的组成和拆分。
答案:数字6可以拆分为1和5,数字7可以拆分为1和6。
八、课后反思及拓展延伸课后反思:在课后,我会反思今天的学习情况,看看孩子们的学习效果如何。
如果发现有孩子还没有完全掌握,我会个别进行辅导和指导。
拓展延伸:对于已经掌握数字6和数字7的孩子,我可以引导他们进行进一步的拓展学习,例如学习数字8和数字9的认识。
这样可以提高孩子们的数学水平,并激发他们对数学的兴趣。
衡阳市人民政府关于公布衡阳市城区基准地价更新成果的通知
衡阳市人民政府关于公布衡阳市城区基准地价更新成
果的通知
文章属性
•【制定机关】衡阳市人民政府
•【公布日期】2014.01.09
•【字号】衡政发[2014]4号
•【施行日期】2014.01.09
•【效力等级】地方规范性文件
•【时效性】现行有效
•【主题分类】土地资源
正文
衡阳市人民政府关于公布衡阳市城区基准地价更新成果的通
知
(衡政发〔2014〕4号)
各县市区人民政府,市直机关各单位,驻衡国省属单位:
衡阳市城区基准地价更新成果已经省国土资源厅验收,市人民政府批准,现予以公布实施:
一、严格出让土地价格审批制度。
宗地出让底价的确定,需经具有土地评估资质的评估机构评估,再由衡阳市土地储备与经营管理委员会在地价评估基础上,依据基准地价集体讨论确定。
经营性土地、房地产开发用地出让价格不得低于120万元/亩。
二、加强土地市场管理。
土地出让、转让统一由衡阳市土地矿产交易中心办理,土地出让一律采取招标、拍卖、挂牌的方式。
三、各土地评估机构在土地评估业务中,必须以新的基准地价为依据。
四、本基准地价自公布之日起实施。
衡阳市人民政府
2014年1月9日附件:
衡阳市城区基准地价表
表1 衡阳市城区级别基准地价表
备注:基准日期为2013年9月1日。
表2 衡阳市城区商业用地区片地价表
表3 衡阳市城区住宅用地区片地价表
表4 衡阳市城区工业用地区片地价表
表5 衡阳市城区商业路线价表。
2014版高中物理 1-6电势差与电场强度的关系课件 新人教版选修3-1
U 对公式U=Ed和E= d 的进一步理解
【问题导思】 1.电场中A、B两点的电势差UAB跟距离d成正比吗? 2.在匀强电场中,沿哪个方向电势降低得最快?
1.关系式表明了电场强度与电势差的关系 U (1)大小关系:由E= d 可知,电场强度在数值上等于沿电场 方向每单位距离上降低的电势. (2)方向关系:电场中电场强度的方向就是电势降低最快的 方向. (3)物理意义:电场强度是电势差对空间位置的变化率,反 映了电势随空间变化的快慢.
图1-6-6
(1)该电荷在A点所受的静电力; (2)该电荷在A点所具有的电势能和A点的电势; (3)若该电荷由A点运动到B点,静电力做多少功,是正功还 是负功?
【d 或UAB=Ed可确定匀强电场的场强
【规范解答】
(1)平行金属板间为匀强电场,且方向竖直
图教1-6-2
【解析】
正电荷逆着电场线方向移动,电场力做负功,电
势能增加,直至为零,且平行板间电势均匀降落,则电势能均匀 变化.故选项C正确.
【答案】 C
3.如图教1-6-3所示,半径为r的绝缘细圆环的环面固定 在水平面上,场强为E的匀强电场与环面平行.一电荷量为+ q、质量为m的小球穿在环上,可沿环做无摩擦的圆周运动,若 小球经A点时,速度vA的方向恰与电场垂直,且圆环与小球间沿 水平方向无力的作用,试计算:
【提示】
设AB长为l,将AB在电场方向投影,则d=lcos
θ,UAB=Elcos θ.
电场强度E的另一种表述
1.基本知识 (1)匀强电场中,电场强度的大小等于两点间的 电势差 与两 点间沿电场强度方向距离的比值. U (2)公式:E= d . (3)意义:电场强度在数值上等于沿 电场方向 每单位距离上 降低的电势.
花降楼1-君も知らない邪恋の果てに
伊神旺一郎:如果讨厌……那会有多好啊。从小时候起你就真是个一塌糊涂的家伙,但是我却
讨厌不起来。一想到其他的男人要抚摸你,光是用想的,我就怒不可遏。不管是那些男人还是
你,我都恨不得杀了你们。
長妻蕗苳:……!
伊神旺一郎:我……喜欢你。
長妻蕗苳:旺一郎……
伊神旺一郎:当心脚下。
的男人侵犯……
長妻蕗苳:我知道啊,但是……但是这样逃走后要如何生活下去啊。
伊神旺一郎:……!
長妻蕗苳:我没有受过穷,想想还不如被卖掉更好。
伊神旺一郎:蕗苳……
長妻蕗苳:没什么大不了的嘛。Sex谁都会做,过不多久说不定还会有有钱人给我赎身。你要
是不甘心,读出大学发个财给我看看,拐我逃跑还早一百年呢。
伊神旺一郎:护身符?
長妻蕗苳:说是文曲星。我再拿着这个也没用了啦。那个……是别人送的。
長妻蕗苳:[说别人送的是撒谎,是我特意为了要去东京上大学的旺一郎而买的。]
長妻蕗苳:那个护身符……他有带着吗。
[敲门]
長妻蕗苳:嗯?旺一郎!
伊神旺一郎:嘘——!
長妻蕗苳:为什么?
伊神旺一郎:和我……一起逃走吧。不要卖身,逃到某个遥远的地方,一起生活吧。我一定会
到十六岁的我,到开包还有两年的时间。]
花梨:喂喂,萤。
長妻蕗苳:嗯?
花梨:看,看得到那边破产的花酒店吧,会出现哦,过去在店里悬梁自尽的妙龄女郎的幽灵。
長妻蕗苳:咦——
花梨:嘿……
綺蝶:好啦,要说到什么时候。
花梨:綺蝶,早上好。
綺蝶:早上好。
長妻蕗苳:[这个人是綺蝶,在这里最赚钱的是接新客人。綺蝶是两个月就能接到不止一个新
北京市2014东城区小学划片
一、北京景山学校北校区:东直门内大街1 号楼、东扬威1、3、5、7、9 号楼、东羊管胡同1、5、8 号楼、民安街10 号院:12、16 号楼、北中街1、18、20、22 号楼、北小街2、24、 26 号楼、8 号院:1、2、3、4 号楼、16 号院:1、2、3、4、5、6 号楼、北官厅2 号院1、2、3、4 号楼、北官厅甲2 号院1、2、3 号院、安定门东大街甲、丙2 号楼。
二、革新里小学:1、革新里社区居委会:西革新里1---27 号;革新里34---35 号;革新里1---55 号;4—30 号;革新里甲1 号楼;革新里2---7 号楼;东革新里3---17 号;东革新里40 号平房,东革新里40 号院内1---6 号楼;永外大街31—99 号(单号)。
2、西革新里居委会:108、110、112 号院;简易楼1-2,2-114 平房;马家堡54,56 平房;永建里3-13 号平房;西革新里60 号南楼北楼;西革新里104 号院。
3、革新西里居委会:望陶园小区1-5 号楼;悠胜美地小区1-7 号楼;西革新里120 号院内1-6;西革新里124 号楼;122 号楼1-3 单元;管村14 号。
4、管村居委会:1-38 号;管村12 号院,管村26 号院;管村甲10 号院;管村10 号楼;革新南路2 号院;东革新里甲36 号院;东革新里36 号楼;东革新里36、38、40 号,建予园小区。
5、永建里居委会:3-13 号平房;马家堡路13、44、46、48、50 号,西革新里104 号院;中海紫御(西滨河路8 号院)5、6、8、9 号楼。
6、永铁苑居委会:永铁苑小区1、2、4、7、8 号楼。
7、松林里居委会:三元街11、19 号楼;平房11、15、21、23 号;中海紫御1-3 号楼;三元西巷6 号。
8、彭庄居委会:车站路1-12 号;三、板厂小学:1、板厂南里社区:板厂南里1-12 号楼,甲6 楼;板厂南里6 号(平房);板厂红楼1-12 单元,板厂新里1 号楼2、绿景苑社区:绿景苑1、2、3-7 楼,绿景新苑东区6-11 号;3、夕照寺社区:夕照寺西里1-11 楼;13-16 楼;夕照寺西里平房1-15 号;夕照寺中街25 楼、27 楼;南水关5、7、9 楼4、光明社区:光明1-4、22、34-42 号楼5、华城社区:华城小区1-4、6 号楼6、怡龙别墅四、北京市崇文小学:1、东城区花市枣苑正式常驻户口,申请进入崇文小学的适龄学生。
2014年HSK-6 (试卷号H61221)
89-92.北宋初年,民间流通的货币有两种,一种是官银,另一种是陕西制造的铁钱。
宋仁宗当政的时候,国家财政极为紧张,两种钱币同时流通,国家难以控制市场。
于是,便有大臣上书仁宗,请求罢掉陕西铁钱,由国家统一铸币。
仁宗接到奏折,交大臣们议论。
大多数人觉得罢掉铁钱会造成市场混乱,所以没有实行。
但消息传了出去,一时间,京都汴梁开始盛传:“朝廷要罢掉陕西铁钱了,要赶快脱手,晚了就一文不值了。
”几乎一夜之间,京城到处传说着铁钱要作废的消息。
那时,陕西铁钱在全国十分通行。
大家听说自己辛辛苦苦挣来的血汗钱快要作废了,都纷纷拿铁钱到店铺抢购货物。
而店铺老板比他们得到消息还早,纷纷挂出“不收陕西铁钱”的牌子。
这下大家更急了,一些脾气火暴的人竟跑到店铺强行买货。
一时间,市场大乱。
得知消息的宋仁宗大为恼火,一边追查是谁传出的消息,一边责令宰相文彦博迅速处理此事,平定市场,安定民心。
出人意料的是,文彦博并没有像人们想的那样用行政手段强制商家收购陕西铁钱,而是将家中的布匹珍玩送到京城几家大的商户代卖,并且只用陕西铁钱进行交易。
消息传出来,所有的人都傻了眼。
大家看到当朝宰相将这么大笔家产代卖,而且只收陕西铁钱,心中立刻有了底:原来铁钱不会作废,家里的铁钱不会变成一堆破铁。
谣言很快不攻自破,陕西铁钱又畅通无阻地流通起来。
后来,仁宗问文彦博是怎样想到如此妙计的,他回答:“谣言如风,恐慌如水,风借水势,水助风行。
谣言四起,就像奔腾咆哮着的洪流扑面而来。
这时候,采用行政干涉,这就好比用巨石堵住洪水,只能暂时缓解,却不能在根本上起到作用。
洪水是无法堵截的,只有靠疏通的办法才能从根本上解决问题。
”89.人们为什么去店铺抢购?A 物资紧张B 货币要贬值C 听说铁钱要作废D 担心会爆发战争90.关于陕西铁钱,下列哪项正确?A 携带方便B 属于官银的一种C一度被请求废除 D 只能用来购买布匹珍玩91.文彦博是怎样解决问题的?A严惩造谣者B给店铺提供补偿C自己继续使用铁钱D限制官银的发行量92.最适合做上文标题的是:A 货币战争B 文彦博智辟谣言C当局者迷,旁观者清 D 水能载舟,亦能覆舟理由:1、中国历史故事,留学生不熟悉2、涉及钱币,有一些经济类专有名词,比如“交易、收购”,有难度3、2014年题目4、683字。
上海市人力资源和社会保障局关于调整本市最低工资标准的通知(2014)-沪人社综发[2014]6号
上海市人力资源和社会保障局关于调整本市最低工资标准的通知(2014)
正文:
---------------------------------------------------------------------------------------------------------------------------------------------------- 上海市人力资源和社会保障局关于调整本市最低工资标准的通知
(沪人社综发〔2014〕6号)
各委、办、局,各控股(集团)公司、企业(集团)公司,各区、县人力资源和社会保障局,各有关用人单位:
经市政府同意,从2014年4月1日起,本市调整最低工资标准。
现就有关问题通知如下:
一、月最低工资标准从1620元调整为1820元。
下列项目不作为月最低工资的组成部分:
(一)延长法定工作时间的工资。
(二)中班、夜班、高温、低温、有毒有害等特殊工作环境、条件下的津贴。
(三)个人依法缴纳的社会保险费和住房公积金。
(四)伙食补贴(饭贴)、上下班交通费补贴、住房补贴。
二、小时最低工资标准从14元调整为17元。
小时最低工资不包括个人和单位依法缴纳的社会保险费。
三、月最低工资标准适用于全日制就业劳动者,小时最低工资标准适用于非全日制就业劳动者。
上海市人力资源和社会保障局
2014年3月28日
——结束——。
鸭川市江见东真门字畑ヶ合370番2の一部、370番4の 一部
印旛土木事務所長印土第16号の56H23.9.8八街市八街字北側ほ251番19の一部、251番22の一部、251番23の一部、252番3の一部、252番4の一部、251番19地先赤道の一部、251番22地先赤道の一部印旛土木事務所長印土第16号の57H23.9.12白井市根字大山口1920番36、1920番37、1920番38、1920番39、1920番40、1920番41、1920番42、1920番43、1927番18、1927番19印旛土木事務所長印土第16号の58H23.9.15八街市榎戸字堤向709番2の一部印旛土木事務所長印土第16号の59H23.9.29印西市草深字原2512番8、2512番11印旛土木事務所長印土第16号の60H23.9.30印西市大森字下宿2264番1成田土木事務所長成土第974号の1H23.9.13富里市七栄字古込482番311安房土木事務所長安土第64号の2H23.9.28鴨川市江見東真門字畑ヶ合370番2の一部、370番4の一部、374番1、374番3、375番1、375番7、375番8、375番9、379番6、379番7の一部、379番8、379番9君津土木事務所長君土第1210号-1H23.9.1袖ケ浦市坂戸市場字市ノ坪94番1君津土木事務所長君土第1330号-1H23.9.8君津市常代字馬場先400番1君津土木事務所長君土第1378号-1H23.9.13袖ケ浦市神納字寒沢4182番2、4182番3、4182番15、4182番16、4182番17、4182番31の一部君津土木事務所長君土第1475号-1H23.9.21袖ケ浦市蔵波字伊丹山2930番1の一部、2930番5、2930番6、2929番34の一部都市計画法(昭和43年法律第100号)第36条第3項の規定により工事完了公告したものの概要(平成23年9月分)公告日完了公告番号工事を完了した開発区域に含まれる地域の名称公告者氏名。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TD六期 TD六期 TD六期
189.255.160.99 189.255.160.100 189.255.160.101 189.255.160.97 189.255.160.103
3165 3166 3167 3200 3201 3156 3157 3202 3203 3204 3235 3236 3237
割接后 割接后 割接后 割接后 割接后 南秀沿-6300-1
189.255.160.66 189.255.160.116 189.255.160.7 189.255.160.115 189.255.160.114 189.255.160.117 189.255.160.118 189.255.160.4 189.255.160.24 189.255.160.25 189.255.160.26 189.255.160.27 189.255.160.28 189.255.160.98 189.255.160.6 189.255.160.25 189.255.160.26 189.255.160.27 189.255.160.28 189.255.160.98 189.255.160.6 189.255.160.75 189.255.160.119
3001 3002 3003 3004 3005 3006 3018 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
南周园
189.255.160.88
3018
南周园 新周南 新周南 周浦北 周浦北 天润发 天润发 尚德 尚德 南康城 南康城 南秀沿
3949 3948 3947 3946 3945 3944 3943 3901 3902
10GE汇 聚环 在浦东 9008和 金桥 9008的 进程1中
6
康桥-6300-1
周宽-6300-1 康桥-6300-1
周宽-6300-1
康桥-6300-1
189.255.160.3 189.255.160.9 189.255.160.9 189.255.160.10 189.255.160.10 189.255.160.11 189.255.160.11 189.255.160.12 189.255.160.12 189.255.160.13 189.255.160.13 189.255.160.22 189.255.160.22 189.255.160.14 189.255.160.14 189.255.160.5 189.255.160.3 189.255.160.15 189.255.160.15 189.255.160.16 189.255.160.16 189.255.160.17 189.255.160.17 189.255.160.18 189.255.160.18 189.255.160.5 189.255.160.15 189.255.160.19 189.255.160.16 189.255.160.20 189.255.160.3 189.255.160.21
189.255.160.46 189.255.160.7
天润发 吴桥 生命 神火 神火 石门 石门 南秀沿 生命 南怡园 南怡园 南康新 南康新 上海总部湾 上海总部湾 南四高 南四高 康桥假日酒店 康桥假日酒店 南秀沿 美特斯邦威(微改光) 艾志(微改光) 艾志(微改光) 南秀沿 瓦屑 工友 工友 南塔格 南塔格 南建桥 南建桥 锦绣华都 锦绣华都 南御青 南御青 康桥 南海尼 南蒋蒋 南浦三 南科大
189.255.160.30 189.255.160.32 189.255.160.6 189.255.160.34 189.255.160.35 189.255.160.7 189.255.160.6 189.255.160.117 189.255.160.118 189.255.160.36 189.255.160.37 189.255.160.38 189.255.160.7 189.255.160.77 189.255.160.50
189.255.160.105 189.255.160.12 189.255.160.106 189.255.160.107 189.255.160.67 189.255.160.68 189.255.160.69 189.255.160.108 南秀沿-6300-1 189.255.160.7 189.255.160.109 189.255.160.108 189.255.160.110 189.255.160.77 189.255.160.50 189.255.160.112 189.255.160.5 189.255.160.87 189.255.160.64 189.255.160.32 189.255.160.65
生命-6300-1 割接后(最新) 割接后(最新) 割接后(最新) 割接后(最新) 南秀沿-6300-1 生命-6300-1 割接后(最新) 割接后(最新) 割接后(最新) 割接后(最新) 割接后(最新) 割接后(最新) 割接后(最新) 割接后(最新) 割接后(最新) 割接后(最新) 南秀沿-6300-1
3029 3031 3032 3033 3034 3030 3135 3035 3036 3037 3153 3154
189.255.160.113 189.255.160.39 189.255.160.45 189.255.160.53 189.255.160.50
3227 3228 3229 3230 3231 3232
189.255.160.14 189.255.160.41 189.255.160.40
3039 3116
01环
接入环/ 链 接入层 域号预 留为3136
34
南浦三 绿地香颂 康桥 南营房 南营房 南川周 南川周 南康佳 南康佳 南康管 南康管 生命 瓦屑 南石门 康桥 南川周 周宽 南斯米 南斯米 南三枪 周宽 南瑞安 天润发 南康岛 南秀沿 南通海 生命 农投 农投 南申江 神火 南人南 南康文 宾高 康桥 东闽 康桥 浦南阜 南科大 中国科技大学研究院 瓦屑 工农 新周南 周瑞 周瑞 南横桥 南塔格 康申 科泰 瓦屑 南秀浦 电信园区(南电信) 沪华 南秀浦 生命 南延峰 浦达 南电脑 南瑞景 花墙 南川周 南丽景
189.255.160.10 189.255.160.43 189.255.160.44 189.255.160.47 189.255.160.48 189.255.160.49 瓦屑-6300-1 微改光站点 189.255.160.8 189.255.160.60 189.255.160.47 189.255.160.5 189.255.160.63 189.255.160.62 189.255.160.5 189.255.160.87 189.255.160.65 189.255.160.66 189.255.160.6 189.255.160.67 189.255.160.68 189.255.160.69 189.255.160.90 6300 189.255.160.93
新周南1-6300-1 TD五期站点
189.255.160.94 189.255.160.8 189.255.160.95 189.255.160.4 189.255.160.71 189.255.160.91
3148 3149 3145 3173 3300 3155 3164 3160 3161 3163 3162 3164
IP化改造站点 IP化改造站点 瓦屑-6300-1
189.255.160.76 189.255.160.111 189.255.160.8 189.255.160.92 189.255.160.16 189.255.160.83 189.255.160.84 189.255.160.
TD五期站点
TD六期 TD六期
189.255.160.96 189.255.160.102
链 接入层 域号预 留为3136
34
新周南 南汇万达街道站 南塔格 高西村 瓦屑 南旗杆 生命 瓦南 康桥 康花 生命 农投 农投 南申红 南申红 南申江 南申江 浦达 浦达 南延峰 南延峰 南电脑 南电脑 南康城 南康城 南秀沿 康桥 亨都 贵工 文物保护基地 八一 达成锦园 生命 农投 农投 南申江 南申江 南人南 南人南 横沔 横沔 南秀沿 神火 中侨 南秀沿 横沔 横沔 沔青 瓦屑 美特斯邦威(微改光) 美特斯邦威(微改光) 艾志(微改光) 神火 DHL物流中心 周宽 南瑞安 南瑞安 关岳 关岳 吴桥 吴桥 南康岛
新周南-6300-1 新周南-6300-1
189.255.160.4 189.255.160.4 189.255.160.29 189.255.160.30 189.255.160.31
3017 3025 3026 3027 3028 3119 3025 3026 3027 3221 3119
割接前 南秀沿-6300-1
3205 3206 3208 3209 3210 3211 3212 3213 3214 3243 3215 3216 3217 3220 3221 3222 3223 3224