2018年九年级数学下册期末达标检测试卷(人教版附答案)
2017-2018学年九年级数学期末试卷及答案
2017-2018学年第二学期初三年级质量检测数学(2018年2月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。
全卷共计100分。
考试时间为90分钟。
第I 卷(本卷共计36分)一、单项选择题(本部分共12小题,每小题3分,共36分)1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )A.3和8B.3和10C.3和-10D.3和-82.如图所示的工件,其俯视图是( )3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )A.28B.24C.16D.65.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )第5题 第6题 第7题A.当AC=BD 时,四边形ABCD 是矩形B.当AB=BC 时,四边形ABCD 是菱形C.当AC ⊥BD 时,四边形ABCD 是菱形D.当∠DAB=90°时,四边形ABCD 是正方形6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )A.2:3B.3:2C.4:5D.4:97.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )A.6B.8C.10D.128.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )A.2000(1+x)2=2880B.200(1-x)2=2880C.2000(1+2x)=2880D.2000x 2=28809.二次函数y=x 2-3x+2的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A.326+B.36+C.310-D.38+11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )第11题 第12题A.10B.12C.24D.1612.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;④BG=2DG ;⑤213+=BGC BEC S S △△:。
人教版2018-2019学年度九年级中考数学试卷含答案
人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。
2018至2018学年九年级质量检测数学试卷及答案
剑川县2018至2018学年上学期九年级质量检测数学试卷一、选择题(本大题共9小题,每小题3分,满分27分)1、下列计算中正确的是()A、2+3=5B、x2+x3=x5C、(-2)2 =-4D、6x3y2÷2xy2=3x22、我剑川县双河水坝工程是我县防洪效益最为显著的水利工程,它有效地控制洪水,增强抗洪能力。
据相关报道双河水库的防洪库容为22 150 0 m3,用科学记数法可记作()A、221.5×103 m3B、22.15×104 m3C、2.215×105 m3D、2215×102 m33、下图是空心圆柱体在指定方向上的视图,正确的是()4、学校开展为贫困地区捐书活动,以下是八名学生捐书的册数:2,3,2,6,5,6,2,7,则这组数据的众数和中位数分别是()A、2 和2.5B、2和4C、6和4D、6和2.55、一辆客车从剑川出发开往下关,设客车出发t小时后与下关的距离......为s千米,下列图象能大致反映s与t之间的函数关系的是()A、B、C、D、ODCB A)6、下列各组图形,可由一个图形平移得到另一个图形的是( )7、大理啤酒厂搞有奖促销活动,在一箱啤酒(共24瓶)中有4瓶的瓶盖内印有“中奖”字样,小明的爸爸买了一箱这种品牌的啤酒,但是连续打开4瓶均末中奖,小明这时在剩下的啤酒中任意拿出了一瓶,那么他拿出的这瓶中奖的概率是( )A 、201B 、51C 、61D 、 218、下列命题中,逆命题是真命题的是( )A 、对顶角相等B 、如果两个实数相等,那么它们的平方数相等C 、等腰三角形两底角相等D 、两个全等三角形的对应角相等9、已知正比例函数y kx =(0k ≠)的函数值y 随x 的增大而减小,则一次函数y kx k =+的图象大致是( )二、填空题(本大题共6小题,每小题3分,满分18分)10、一元二次方程x 2+2x =3的根是 。
2018年山东省临沂市中考数学试卷-答案
2018山东省临沂市初中学业水平考试数学答案解析第Ⅰ卷一、选择题。
1.【答案】A【解析】解:3101﹣<-<<,∴最小的是3-,故选:A . 【考点】实数大小比较2.【答案】B【解析】解:1 100万71.110=⨯,故选:B .【考点】科学计数法表示较大的数3.【答案】C【解析】解:AB CD ∥,64ABC C ∴∠=∠=︒,在BCD △中,180180644274CBD C D ∠=︒∠∠=︒︒︒=︒----,故选:C .【考点】平行线的性质.4.【答案】B【解析】解:222230434114112y y y y y y y -==+=--=--()故选:B . 【考点】解一元二次方程—配方法.5.【答案】C【解析】解:解不等式123x -<,得:1x ->,解不等式122x +≤,得:3x ≤, 则不等式组的解集为13x -<≤,所以不等式组的正整数解有1、2、3这3个,故选:C .【考点】一元一次不等式组的整数解.6.【答案】B【解析】解:EB CD ∥,ABE ACD ∴△∽△,AB BE AC CD ∴=,即 1.6 1.21.612.4CD=+, 10.5CD ∴=(米).故选:B .【考点】相似三角形的应用.7.【答案】C【解析】解:先由三视图确定该几何体是圆柱体,底面半径是22 1 cm ÷=,高是3 cm .所以该几何体的侧面积为22π136πcm ⨯⨯=().故选:C .【考点】由三视图判断几何体,几何体的表面积8.【答案】D【解析】解:如图所示:,一共有9种可能,符合题意的有1种, 故小华和小强都抽到物理学科的概率是:19. 故选:D .【考点】列表法与树状图法.9.【答案】C【解析】解:该公司员工月收入的众数为3 300元,在25名员工中有13人这此数据之上,所以众数能够反映该公司全体员工月收入水平;因为公司共有员工11136111125+++++++=人,所以该公司员工月收入的中位数为3 400元;由于在25名员工中在此数据及以上的有13人,所以中位数也能够反映该公司全体员工月收入水平;故选:C .【考点】统计量的选择.10.【答案】A【解析】解:设今年1—5月份每辆车的销售价格为x 万元,则去年的销售价格为1x +()万元/辆, 根据题意,得:()5000120%50001x x-=+, 故选:A . 【考点】由实际问题抽象出分式方程.11.【答案】B【解析】解:BE CE ⊥,AD CE ⊥,90E ADC ∴∠=∠=︒,90EBC BCE ∴∠+∠=︒.90BCE ACD ∠+∠=︒,EBC DCA ∴∠=∠.在CEB △和ADC △中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩CEB ADC AAS ∴△≌△(), 1BE DC ∴==,3CE AD ==.312DE EC CD ∴=-=-=故选:B .【考点】全等三角形的判定与性质.12.【答案】D 【解析】解:正比例函11y k x =与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为1. B ∴点的横坐标为:1-,故当12y y <时,x 的取值范围是:1x -<或01x <<. 故选:D .【考点】反比例函数与一次函数的交点问题.13.【答案】A【解析】解:因为一般四边形的中点四边形是平行四边形,当对角线BD AC =时,中点四边形是菱形,当对角线AC BD ⊥时,中点四边形是矩形,当对角线AC BD =,且AC BD ⊥时,中点四边形是正方形,故④选项正确,故选:A .【考点】中点四边形,行四边形的性质,菱形的判定与性质,矩形的判定与性质,正方形的性质14.【答案】D【解析】解:设原数为a ,则新数为21100a ,设新数与原数的差为y 则2211100100y a a a a =-=-+ 易得,当0a =时,0y =,则A 错误 10100-< ∴当150122100b a a =-=-=⎛⎫⨯- ⎪⎝⎭时,y 有最大值,B 错误,A 正确.当21y =时,2121100a a -+= 解得130a =,270a =,则C 错误.故选:D .【考点】规律型:数字的变化类.第Ⅱ卷二、填空题15.1【解析】解1=1.【考点】实数的性质.16.【答案】1【解析】解:()()()111m n mn m n --=-++,m n mn +=,()()()1111m n mn m n ∴--=-++=,故答案为1.【考点】整式的混合运算—化简求值.17.【答案】【解析】解:四边形ABCD 是平行四边形,6BC AD ∴==,OB D =,OA OC =,AC BC ⊥,8AC ∴==,4OC ∴=,OB ∴2BD OB ∴==故答案为:【考点】平行四边形的性质.18. 【解析】解:设圆的圆心为点O ,能够将ABC 完全覆盖的最小圆是ABC 的外接圆, 在ABC △中,60A ∠=︒,5BC cm =,120BOC ∴∠=︒,作OD BC ⊥于点D ,则90ODB ∠=︒,60BOD ∠=︒,52BD ∴=,30OBD ∠=︒, 52sin 60OB ∴=︒,得OB =2OB ∴即ABC △,. 【考点】三角形的外接圆与外心.19.【答案】411【解析】解:设0.36x =,则36.36100x =,10036x x ∴-=, 解得:411x =. 故答案为:411【考点】一元一次方程的应用.20.【答案】解:原式()()221242x x x x x x x ⎡⎤+-=-⋅⎢⎥---⎢⎥⎣⎦()()()()222142x x x x x x x x +---=⋅-- ()2442x x x x x -=⋅-- ()212x =-.【考点】分式的混合运算.21.【答案】解:(1)补充表格如下:(2)补全频数分布直方图如下:(3)由频数分布直方图知,1722x ≤<时天数最多,有10天.【考点】频率分布直方图.22.【答案】解:工人师傅搬运此钢架能通过一个直径为2.1 m 的圆形门,理由是:过B 作BD AC ⊥于D ,AB BD >,BC BD >,AC AB >,∴求出DB 长和2.1 m 比较即可,设 m BD x =,30A ∠=︒,45C ∠=︒,m DC BD x ∴==, m AD BD x ==,)21 m AC =,21x ∴=),2x ∴=, 即 2 m 2.1 m BD =<,∴工人师傅搬运此钢架能通过一个直径为2.1 m 的圆形门.【考点】垂径定理的应用.23.【答案】(1)证明:连接OD ,作OF AC ⊥于F ,如图,ABC 为等腰三角形,O 是底边BC 的中点,AO BC ∴⊥,AO 平分BAC ∠, AB 与O 相切于点D ,OD AB ∴⊥,而OF AC ⊥,OF OD ∴=,AC ∴是O 的切线;(2)解:在Rt BOD 中,设O 的半径为r ,则OD OE r ==,2221r r ∴+=+(),解得1r =,1OD ∴=,2OB =,30B ∴∠=︒,60BOD ∠=︒,30AOD ∴∠=︒,在Rt AOD △中,AD ==, ∴阴影部分的面积2AOD DOF S S =扇形﹣2160π-1212360⋅=⨯⨯π6-. 【考点】四边形与三角形的综合应用.24.【答案】解:(1)设PQ 解析式为y kx b =+把已知点010P (,),115,42⎛⎫ ⎪⎝⎭代入得1512410k b b ⎧=+⎪⎨⎪=⎩ 解得:1010k b =-⎧⎨=⎩,1010y x =-+ 当0y =时,1x =∴点Q 的坐标为()1,0点Q 的意义是:甲、乙两人分别从A ,B 两地同时出发后,经过1个小时两人相遇.(2)设甲的速度为 km/h a ,乙的速度为 km/h b 由已知第53小时时,甲到B 地,则乙走1小时路程,甲走52133-=小时 1023a b b a +=⎧⎪∴⎨=⎪⎩,64a b =⎧∴⎨=⎩ ∴甲、乙的速度分别为6 km/h 、4 km/h【考点】二次函数.25.【答案】解:(1)由旋转可得,AE AB =,90AEF ABC DAB ∠=∠=∠=︒,EF BC AD ==,AEB ABE ∴∠=∠,又90ABE GDE AEB DEG ∠+∠=︒=∠+∠,EDG DEG ∴∠=∠,DG EG ∴=,FG AG ∴=,又DGF EGA ∠=∠,AEG Rt FDG SAS ∴△≌△(),DF AE ∴=,又AE AB CD ==,CD DF ∴=;(2)如图,当GB GC =时,点G 在BC 的垂直平分线上, 分两种情况讨论:①当点G 在AD 右侧时,取BC 的中点H ,连接GH 交AD 于M ,GC GB =,GH BC ∴⊥,∴四边形ABHM 是矩形,1122AM BH AD AG ∴===, GM ∴垂直平分AD ,GD GA DA ∴==,ADG ∴△是等边三角形,60DAG ∴∠=︒,∴旋转角60α=︒;②当点G 在AD 左侧时,同理可得ADG 是等边三角形,60DAG ∴∠=︒,∴旋转角36060300α=︒-︒=︒.【考点】旋转的性质;全等三角形的判定与性质;矩形的性质.26.【答案】解:(1)()1,0B ,1OB ∴=, 22OC OB ==,()2,0C ∴-,Rt ABC △中,tan 2ABC ∠=,2AC BC ∴=,23AC ∴=, 6AC ∴=,()26A ∴-,,把()26A ∴-,和()1,0B 代入2y x bx c =-++ 得:42610b c b c --+=⎧⎨-++=⎩, 解得:34b c =-⎧⎨=⎩∴抛物线的解析式为:234y x x =+-﹣; (2)①()26A -,,()1,0B ,易得AB 的解析式为:22y x =-+,设()2,34P x x x -+-,则(),22E x x +-, 12PE DE =,()()2342222x x x x ∴-+-+=+---, 1x =(舍)或1-,()1,6P ∴-;②M 在直线PD 上,且()1,6P -,设()1,M y -,()()()222212616AM y y ∴=++-=+--,()2222114BM y y =++=+,()22212645AB =++=, 分三种情况:i )当90AMB ∠=︒时,有222AM BM AB +=, ()2216445y y ∴+-++=,解得:3y =(1,3M ∴-或(1,3-; ii )当90ABM ∠=︒时,有222AB BM AM +=, ()2245416y y ∴++=+-,1y =-, ()1,1M ∴--,iii )当90BAM ∠=︒时,有222AM AB BM +=,2216454y y ∴+-+=+(),132y =, 131,2M ⎛⎫∴ ⎪⎝⎭-;综上所述,点M 的坐标为:(3M ∴-1,或(1,3--或()1,1--或131,2⎛⎫ ⎪⎝⎭-. 【考点】二次函数综合题.。
2018年人教版九年级数学下册期末达标检测试题含答案
期末达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列立体图形中,主视图是三角形的是( )2.在Rt △ABC 中,∠C =90°,BC =3,AB =5,则sin A 的值为( ) A .35 B .45 C .34D .以上都不对 3.如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-3,2).若反比例函数y =kx(x >0)的图象经过点A ,则k 的值为( ) A .-6 B .-3 C .3 D .6(第3题)(第4题)(第5题)4.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F.已知AB =1,BC =3,DE =2,则EF 的长为( )A .4B .5C .6D .85.如图,在▱ABCD 中,若E 为DC 的中点,AC 与BE 交于点F ,则△EFC 与△BFA 的面积比为( )A .2 B .C .D .6.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( )A .6 cmB .12 cmC .18 cmD .24 cm(第6题)(第7题)(第9题)7.如图,反比例函数y 1=k 1x 和正比例函数y 2=k 2x 的图象交于A(-1,-3),B(1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A .-1<x<0B .-1<x<1C .x<-1或0<x<1D .-1<x<0或x>18.如果点A(-1,y 1),B(2,y 2),C(3,y 3)都在反比例函数y =3x 的图象上,那么( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 2<y 1<y 3D .y 3<y 2<y 19.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2 km .从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 延长线上,连接ED 交AB 于点F ,AF =x(0.2≤x ≤0.8),EC =y.则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )(第10题)二、填空题(每题3分,共30分)11.写出一个反比例函数y =kx (k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.在下列函数①y =2x +1;②y =x 2+2x ;③y =3x ;④y =-3x 中,与众不同的一个是________(填序号),你的理由是____________________________________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m .15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为,斜坡AC 的坡面长度为8m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.(第15题)(第16题)(第17题)(第18题)16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E.若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,在平面直角坐标系中,一次函数y =ax +b(a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m),B(n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.19.如图,反比例函数y =6x 在第一象限的图象上有两点A ,B ,它们的横坐标分别是2,6,则△AOB 的面积是________.(第19题)(第20题)20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG +DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分)21.计算:(5-π)0-6tan 30°+⎝⎛⎭⎫12-2+|1-3|.22.如图,在平面直角坐标系中,一次函数y =ax +b(a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限内的A 、B 两点,与y 轴交于C 点,过点A 作AH ⊥y 轴,垂足为H ,OH =3,tan ∠AOH =43,点B 的坐标为(m ,-2).(1)求△AHO 的周长;(2)求该反比例函数和一次函数的解析式.23.如图,点A,B,C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB的坡度i1=1∶2,钢缆BC的坡度i2=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)(第23题)24.如图①,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.(1)求证:AC平分∠DAB;(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;(3)如图②,连接OD交AC于点G,若CGGA=34,求sin E的值.(第24题)25.如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3 3.(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)(第25题)26.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为,求边AB的长.(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.(第26题)答案一、1.A 2.A 3.D 4.C 5.C 6.C 7.C 8.B 9.B 10.C 二、11.y =3x (答案不唯一)12.75°13.③;只有③的自变量取值范围不是全体实数 点拨:这是开放题,答案灵活,能给出合适的理由即可.14.24 15.4 2 m 16.6或7或8 17.18.y =-x +3 19.820.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x.在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x)2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A恰落在线段BF 上的点H 处,∴∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y.在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y)2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AGDF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB·AG =12×6×3=9,S △FGH =12GH·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=1-6×33+4+3-1=4- 3. 22.解:(1)由OH =3,AH ⊥y 轴,tan ∠AOH =43,得AH =4.∴A 点坐标为(-4,3).由勾股定理,得AO =OH 2+AH 2=5, ∴△AHO 的周长为AO +AH +OH =5+4+3=12. (2)将A 点坐标代入y =kx (k ≠0),得k =-4×3=-12,∴反比例函数的解析式为y =-12x. 当y =-2时,-2=-12x,解得x =6,∴B 点坐标为(6,-2).将A 、B 两点坐标代入y =ax +b ,得⎩⎪⎨⎪⎧-4a +b =3,6a +b =-2,解得⎩⎪⎨⎪⎧a =-12,b =1.∴一次函数的解析式为y =-12x +1.23.解:过点A 作AE ⊥CC′于点E ,交BB′于点F ,过B 点作BD ⊥CC′于点D ,则△AFB ,△BDC 和△AEC 都是直角三角形,四边形AA′B′F ,四边形BB′C′D 和四边形BFED 都是矩形,∴BF =BB′-FB′=BB′-AA′=310-110=200(米),CD =CC′-DC′=CC′-BB′=710-310=400(米),∵BF ∶AF =1∶2,CD ∶BD =1∶1, ∴AF =2BF =400(米),BD =CD =400(米), 又∵FE =BD =400(米),DE =BF =200(米), ∴AE =AF +FE =800(米),CE =CD +DE =600(米),∴在Rt △AEC 中,AC =AE 2+CE 2=8002+6002=1 000(米). 答:钢缆AC 的长度为1 000米.24.(1)证明:连接OC ,如图①.∵OC 切半圆O 于C ,∴OC ⊥DC ,又AD ⊥CD.∴OC ∥AD.∴∠OCA =∠DAC.∵OC =OA ,∴∠OAC =∠ACO.∴∠DAC =∠CAO ,即AC 平分∠DAB.(2)解:在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴在Rt △OCF 中,CF =OC·sin 60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD.∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k.又△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k.在Rt △COE中,sin E =CO EO =3k 9k =13.(第24题)25.解:(1)在Rt △OBA 中,∠AOB =30°,OB =33, ∴AB =OB·tan 30°=3. ∴点A 的坐标为(3,33).设反比例函数的解析式为y =kx(k ≠0),∴33=k 3,∴k =93,则这个反比例函数的解析式为y =93x .(2)在Rt △OBA 中,∠AOB =30°,AB =3, sin ∠AOB =AB OA ,即sin 30°=3OA ,∴OA =6.由题意得:∠AOC =60°,S 扇形AOA′=60·π·62360=6π.在Rt △OCD 中,∠DOC =45°,OC =OB =33, ∴OD =OC·cos 45°=33×22=362. ∴S △ODC =12OD 2=12⎝⎛⎭⎫3622=274.∴S 阴影=S 扇形AOA′-S △ODC =6π-274.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA. ②解:∵△OCP 与△PDA 的面积比为,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x. 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x)2+42. 解得x =5.∴AB =AP =2OP =10.(第26题)(2)解:作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP. ∴MP =MQ.又BN =PM ,∴BN =QM.∵MQ ∥AN ,∴∠QMF =∠B NF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB.∴QF =FB.∴QF =12QB. ∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ. ∴EF =EQ +QF =12PQ +12QB =12PB. 由(1)中的结论可得PC =4,BC =8,∠C =90°.∴PB =82+42=45,∴EF =12PB =2 5. ∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.。
2017-2018上学期九年级数学期末试卷
2017—2018学年度九年级数学期末测试卷一、选择题(本大题共6个小题,每小题3分,共18分). 1.如图所示的几何体的俯视图是( )2.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补3.矩形的长为x ,宽为y ,面积为8,则y 与x 之间的函数关系式用图象表示大致为( )A .B .C .D .4.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣8x +12=0的两个根,则该三角形的周长是( )A .10 B .14 C .10或14D .不能确定5.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .b B .a=2b C .b D .a=4b6.二次函数y =ax 2+bx +c (a ≠0)的图象如上图所示,对称轴是直线x =1,下列结论:①ab <0; ②b 2>4ac ;③3a +c <0;④a +b +2c <0.其中正确的是( )A .①②③④B .②④C .①②④D .①④二、填空题(本大题共6小题,每小题3分,满分18分) 7.方程x 2=2x 的解为 .8.已知两个相似的三角形的面积之比是16:9,那么这两个三角形的周长之比是 .CDBA正面9.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标 志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有 黄羊 只. 10.如下图1,双曲线(0)ky k x=≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 ______ .11.如下图2,在A 时测得某树的影长为4m ,B 时又测得该树的影长为16m ,若两次日照的光线互相垂直,则树的高度为 .12.如下图3,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE CE 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(1)计算:sin 245°+cos30°•tan60°;(2) 如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .14.(1)如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形;(2)如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形.15.市某中学拟在周一至周五的五天中随机选择2天进行开展安全逃生疏散演练活动,请完成下列问题:(1)周二没有被选择的概率;(2)选择2天恰好为连续两天的概率.16.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.17.如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E,F,求证:四边形CEDF是正方形.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,∠A=30°,cos B=45,ACAB的长.19.某社区鼓励居民到社区阅览室借阅读书,该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?20.如图(1),太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.如图(2)是该太极揉推器的左视图,立柱AB的长为125cm,支架OC的长为40cm,支点C到立柱顶点B的距离为25cm,支架OC与立柱AB的夹角OCA=120°,转盘的直径DE为60cm,点O是DE的中点,支架OC与转盘直径DE垂直.求转盘最低点E离地面的高度.(结果保留根号)五、(本大题共2小题,每小题9分,共18分).21.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.(4)直接写出抛物线上一点P的坐标,使得S△PAB=S△ABC。
静安区2018年初三数学一模试卷及答案
静安区2017学年第一学期期末学习质量调研九年级数学 2018.1(考试时间:100分钟 总分:150分)考生注意:1. 本试卷含三个大题,共25题,答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效。
2. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
3. 答题时可用函数型计算器。
一、 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1. 化简()52a a ⋅-所得的结果是( )(A )7a ; (B )7a -; (C )10a ; (D )10a -. 2. 下列方程中,有实数跟的是 ( ) (A )011=+-x ; (B )11=+x x ; (C )0324=+x ; (D )112-=-x . 3. 如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成,利用它可以把线段按一定的比例伸长或缩短,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OC OA 3=,OD OB 3=),然后张开两脚,使A ,B 两个尖端分别在线段a 的两个端点上,当cm CD 8.1=时,AB 的长是 ( )(A )cm 2.7;(B )cm 4.5; (C )cm 6.3; (D )cm 6.0.4. 下列判断错误的是 ( )(A )如果0=k 或0 =a ,那么0=a k ; (B )设m 为实数,则()b m a m b a m+=+;(C )如果e a //,那么e a a=;(D )在平行四边形ABCD 中,=-. 5. 在ABC Rt ∆中,︒=∠90C ,如果31sin =A ,那么B sin 的值是 ( ) (A )322; (B )22; (C )42; (D )3.第3题图学校 班级 准考证号 姓名…………………密○……………………………………封○……………………………………○线……………………………C ABD C B A 6. 将抛物线3221--=x x y 先向左平移1个单位,再向上平移4个单位后,与抛物线c bx ax y ++=22重合,现有一直线323+=x y 与抛物线c bx ax y ++=22相交,当32y y ≤时,利用图像写出此时x 的取值范围是 ( )(A )1-≤x ; (B )3≥x ; (C )31≤≤-x ; (D )0≥x .二、填空题 7. 已知31==d c b a ,那么db c a ++的值是 . 8. 已知线段AB 长是2厘米,p 是线段AB 上的一点,且满足BP AB AP ⋅=2,那么AP 长为____厘米. 9. 已知ABC △的三边长是262、、,DEF △的两边长分别是1和3,如果ABC △与DEF △相似,那么DEF △的第三边长应该是 .10. 如果一个反比例函数图像与正比例函数x y 2=图像有一个公共点),1(a A ,那么这个反比例函数的解析式是 .11. 如果抛物线c bx ax y ++=2(其中c b a 、、是常数,且0≠a )在对称轴左侧的部分是上升的,那么a 0.(填“<”或“>”)12. 将抛物线2)(m x y +=向右平移2个单位后,对称轴是y 轴,那么m 的值是 .13. 如图,斜坡AB 的坡度是4:1,如果从点B 测得离地面的铅垂线高度BC 是6米,那么斜坡`AB 的长度是 米.(第15题图) (第13题图)14. 在等腰ABC Δ中,已知5==AC AB ,8=BC ,点G 是重心,联结BG ,那么CBG ∠的余切值是__________. 15. 如图,ABC Δ中,点D 在边AC 上,C ABD ∠=∠,9=AD ,7=DC ,那么=AB _______. 16. 已知梯形ABCD ,BC AD //,点E 和点F 分别在两腰AB 和DC 上,且EF 是梯形的中位线,3=AD ,4=BC 。
2023年部编版九年级数学下册期末考试卷(附答案)
2023年部编版九年级数学下册期末考试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .3 3.若式子2m 2(m 1)+-有意义,则实数m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠4.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个C .6个D .8个 5.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠36.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,⊙O 中,半径OC ⊥弦AB 于点D ,点E 在⊙O 上,∠E=22.5°,AB=4,则半径OB 等于( )A.2B.2 C.22D.39.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④10.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+=⎪⎝⎭____________.2.分解因式:34x x-=________.3.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当CEB'△为直角三角形时,BE的长为________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.解分式方程:22x 1x 4x 2+=--2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE=33,DF=3,求图中阴影部分的面积.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了 名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、B5、C6、A7、D8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、x (x +2)(x ﹣2).3、24、3或32.5、40°6、①③④.三、解答题(本大题共6小题,共72分)1、x 3=-2、22m m-+ 1. 3、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或(-或(-.4、(1)DE 与⊙O 相切,理由略;(2)阴影部分的面积为2π﹣2. 5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)120件;(2)150元.。
2018年山西省中考数学试卷(答案+解析)
2018年山西省中考数学试卷(答案+解析)好在BC上,且AB'=2AC,则AB的长度为()A.3B.6C.9D.129.(3分)___在一张长方形的纸片上剪去一个正方形,然后将剩下的部分固定在桌子上,如图所示.如果剪掉的正方形面积是整个纸片面积的1/5,那么剩下部分的周长是纸片周长的()A.1/5B.2/5C.3/5D.4/510.(3分)已知函数f(x)=x2+bx+c,其中b,c为常数,当x∈[0,2]时,f(x)的最大值为4,最小值为2.则b+c的值为() A.1B.2C.3D.42018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑。
)1.(3分) 下面有理数比较大小,正确的是()A。
<﹣2B。
﹣5<3C。
﹣2<﹣3D。
1<﹣42.(3分) “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果。
下列四部著作中,不属于我国古代数学著作的是()A。
《九章算术》B。
《几何原本》C。
《海岛算经》D。
《周髀算经》3.(3分) 下列运算正确的是()A。
(﹣a3)2=﹣a6B。
2a2+3a2=6a2C。
2a2•a3=2a6D。
(−)3=−bb/32b8b4.(3分) 近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):城市。
| 邮政快递业务量太原市 | 3303.78大同市 | 332.68长治市 | 302.34运城市 | 725.86临汾市 | 416.01吕梁市 | 338.87晋中市 | 319.791~3月份我省这七个地市邮政快递业务量的中位数是()A。
319.79万件B。
332.68万件C。
338.87万件D。
416.01万件6.(3分) 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观。
2018年新人教版九年级下册中考数学期末试卷(附答案)
新人教版九年级下册数学中考模拟试卷(附答案)时量:120分钟,满分:120分同学:希望你树立信心,迎难而上,胜利将一定会属于你的!一、细心填一填(每小题3分,共30分)1、掷一枚普通的正方体骰子,出现点数为偶数的概率为 。
2、约分x 2-4x+4x 2-4=3、一元二次方程(2x-1)2-7=x 化为一般形式 4、a 8÷a 2=5、如图1,点A 、B 、C 在⊙O 上,∠ACB =25°, 则∠AOB = 。
6、已知圆锥底面半径为2cm ,每线长为6cm ,则 该圆锥的侧面积是 。
7、已知如图2,△ABC 中,D 在BC 上,且∠1= ∠2,请你在空白处填一个适当的条件:当 时, 则有△ABD ≌△ACD 。
8、将“等腰三角形两底角相等”改写成“如果……,那么……”的形式是 。
9、方程x 2=x 的根是10、一段时间里,某学生记录了其中7天他每天完成家庭作业的时间,结果如下(单位:分钟)80、90、70、60、50、80、60,那么在这段时间内该生平均每天完成家庭作业所需时间约为 分钟。
30分)11、计算2006°+(13)-1的结果是:A 、200613 B 、2009C 、4D 、4312、能判定两个直角三角形全等的是: 图1C 、两条边分别相等D 、斜边与一直角边对应相等13、若x =1是方程x 2+kx +2=0的一个根,则方程的另一个根与K 的值是:A 、2,3B 、-2,3C 、-2,-3D 、2,-314、三角形的外心是指: A 、三角形三角平分线交点B 、三角形三条边的垂直平分线的交点C 、三角形三条高的交点D 、三角形三条中线的交点15、已知如图3,AC 是线段BD 的垂直平分线, 则图中全等三角形的对数是:A 、1对B 、2对C 、3对D 、4对16、分式1a-x ,5ay-xy的最简公分母是:A 、(a-x)(ay-xy)B 、a(a-x)C 、y(a-x)D 、a-x17、两圆半径分别是7和3,圆心距是4,则这两圆的位置关系是: A 、内含B 、内切C 、相交D 、外切18、一扇形面积是3π,半径为3,则该扇形圆心角度数是 A 、120°B 、90°C 、60°D 、150°19、从总体中抽取一部分数据作为样本去估计总体的某种属性,下面叙述正确的是 A 、样本容量越大,样本平均数就越大 B 、样本容量越大,样本的标准差就越大 C 、样本容量越小,样本平均标准差就越大 D 、样本容量越大,对总体的估计就越准确。
天津市部分区2018-2019学年度第一学期期末考试九年级数学答案
天津市部分区2018~2019学年度第一学期期末考试九年级数学参考答案及评分标准一、选择题:(每小题3分,共36分)二、填空题:(每小题3分,共18分) 13.-3 14.(-2,3); 15.1120; 16.30; 17.9; 18.2三、解答题:(66分)19.解:∵PA 、PB 是⊙O 的切线,A 、B 为切点 ∴PA=PB ,∠OAP=90° ………… 4分 ∵∠BAC=20°∴∠PAB=∠OAP -∠BAC=90°-20°=70°…… 5分 又∵PA=PB∴∠PAB=∠PBA=70° …………6分∴∠P=180°-∠PAB -∠PBA=180°-70°-70°=40° …………8分 ∴∠P 的度数为40°20.解:设这两年平均每年退耕还林的增长率为x根据题意,得 21200(1)1728x += ………………………… 4分 解得:10.2x =,2 2.2x =- ………………………… 6分 2.2x =-不合题意,舍去 ………………………… 7分0.220%x == 答:这两年平均每年退耕还林的增长率为20%. ……………… 8分 21.解:(1)树状图如下:1 2 3 4……4分 1 2 3 4 1 2 3 4 1 4 1 2 3 4共有16种结果,其中两次取出的小球的标号相同共有4种. …………5分 ∴ P(标号相同)=41164= …………7分(2)根据上图可知:共有16种结果,其中两次取出的小球标号的和等于6的为2+4,3+3,4+2,共3种. …………8分∴ P(两次取出的标号和等于6)=316…………10分解:(1)列表如下:……4分共有16种结果,其中两次取出的小球的标号相同的是(1,1),(2,2),(3,3),(4,4),共有4种. …………5分∴P(标号相同)=41164=…………7分(2)根据上图可知:共有16种结果,其中两次取出的小球标号的和等于6的为(4,2),(3,3),(2,4),共3种. …………8分∴ P(两次取出的标号和等于6)=316…………10分22.(1)证明:连接OA∵C为AB的中点∴A C C B=∴AC=BC …………1分又∵∠ACB=120°∴∠B=30° …………2分∴∠O=2∠B=60°…………3分∵∠D=∠B=30°∴∠OAD=180°-(∠O+∠D)=90° …………4分∴ AD与⊙O相切…………5分(2)解:∵∠O=60°,OA=OC ∴△OAC 为等边三角形∴∠ACO=60° …………6分 又∵∠ACB=120°∴∠ACB=2∠ACO ,AC=BC∴OC ⊥AB ,AB=2BE …………7分又∵CE=4,∠B=30°∴BC=2CE=8 …………8分 在Rt △EBC 中B E =…………9分 ∴2AB BE == 所以弦AB的长为 …………10分 23.解:设每个房间每天的定价增加x 元,宾馆所得利润为y 元根据题意,得(16020)(50)10xy x =+-- …………5分整理,得 2136700010y x x =-++ …………6分 其中0500x ≤≤,且x 是10的倍数 …………7分 当36180122()10b x a =-=-=⨯- …………8分∴ 房价定为160+180=340时,宾馆利润最大 …………9分∴ 2214()700036410=10240144()10ac by a⨯-⨯--==⨯-最大值 ………10分答:房价定为340元时,宾馆利润最大,一天的最大利润为10240元.24.解:(1)根据图象知:B (4,0),C (5,-3) …………1分 把B (4,0),C (5,-3)代入22y ax bx =++,得 1642025523a b a b ++=⎧⎨++=-⎩…………2分解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩所以抛物线解析式为213222y x x =-++ …………4分 当332122()2x =-=⨯-时,2134()2()2522184()2y ⨯-⨯-==⨯- ∴ 顶点坐标为325(,)28. …………6分 (2)图象正确【过点(-1,0)】. …………8分 (3)令0y =,得2132022x x -++= 解得 11x =-,24x =抛物线与x 轴交点坐标为(-1,0),(4,0)∴ 当14x -<<时,0y > …………10分 25.解:图①图②F(1)连接DA …………1分∵ C是OA的中点,DC⊥OA∴ DA=OD …………2分又∵ OA=OD∴ OA=OD=DA ……3分△AOD为等边三角形∴∠AOD=60°所以∠AOD的度数为60°. ………4分(2)连接AD∵ PD与⊙O相切,OD为半径∴ PD⊥OD …………5分又∵ AE∥PD∴ AE⊥OD,AE=2AF …………6分由(1)知:∠DOA=60°∴∠P=30° …………7分∴∠EAO=∠P=30°又∵ AO=4∴ FO=12AO=2 …………8分∴==…………9分∴ AE=2AF=所以AE的长为…………10分(说明:解答题用其他方法解,只要合理,请参照评分标准酌情给分)。
新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷
新⼈教版2017—2018学年度上学期期末教学质量监测九年级数学试卷2017—2018学年度上学期期末教学质量监测九年级数学试卷(考试时间90分钟,试卷满分120分)⼀、选择题:(每题3分,计24分)1、⼀元⼆次⽅程2280x -=的解是()1212. 2 . 2 . 2, 2 . A x B x C x x D x x ==-==-==2、在平⾯直⾓坐标系中,点P (2,⼀ 4)关于原点对称的点的坐标是() A.(2,4 ) B.(⼀2,4) C.(⼀2,⼀4) D.(⼀4,2) 3、下列说法中,正确的是()A. 随机事件发⽣的概率为1B.. 概率很⼩的事件不可能发⽣C. 不可能事件发⽣的概率为0D. 投掷⼀枚质地均匀的硬币1000次,正⾯朝上的次数⼀定是500次 4、如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC ,AD,若∠ADC=55°,则∠CAB 的度数为() A.35° B.45° C.55° D.65°5、⼀个不透明的袋中装有除颜⾊外均相同的5个红球和n 个黄球,从中随机摸出⼀个,摸到红球的概率是58,则n 是() A.5 B.8C.3D.136、如图,⊙O 与正⽅形ABCD 的边AB,AD 相切,且DE 与⊙O 相切与点E 。
若⊙O 的半径为5,且AB=12,则DE=()(4题图)A.5B. 6C.7D. 1727、“赶陀螺”是⼀项深受⼈们喜爱的运动,如图所⽰是⼀个陀螺的⽴体结构图,已知底⾯圆的直径AB=6cm ,圆柱体部分的⾼BC=5cm,圆锥体部分的⾼CD=4cm,则这个陀螺的表⾯积是()A. 284cm πB.245cm πC. 274cm πD.254cm π8、已知⼆次函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是() A.当a = 1时,函数图像经过点(⼀1,0)B. 当a = ⼀2时,函数图像与x 轴没有交点C. 若 0a <,函数图像的顶点始终在x 轴的下⽅D. 若 0a﹥,则当1x ≥时,y 随x 的增⼤⽽增⼤⼆、填空题(每⼩题3分,共21分)9、若m 是⽅程210x x +-=的⼀个根,则代数式22018m m +-=_______________ 10、将抛物线24y x =向左平移3个单位长度,再向下平移2个单位长度,得到的抛物线的解析式_____________________11、在4张完全相同的卡⽚上分别画上①、②、③、④。
人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案
E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。
2018年人教版九年级数学下册期末达标检测试卷含答案
期末达标检测卷(分,分钟)一、选择题(每题分,共分).下列立体图形中,主视图是三角形的是( ).在△中,∠=°,=,=,则的值为( ).以上都不对.如图,菱形的顶点在轴上,顶点的坐标为(-,).若反比例函数=(>)的图象经过点,则的值为( ).-.-..(第题)(第题)(第题).如图,∥∥,直线,与这三条平行线分别交于点,,和点,,.已知=,=,=,则的长为( ).....如图,在▱中,若为的中点,与交于点,则△与△的面积比为( ).....如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为,到屏幕的距离为,且幻灯片中的图形的高度为,则屏幕上图形的高度为()....(第题)(第题)(第题).如图,反比例函数=和正比例函数=的图象交于(-,-),(,)两点,若>,则的取值范围是( ) .-<<.-<<.<-或<<.-<<或>.如果点(-,),(,),(,)都在反比例函数=的图象上,那么( ).<<.<<.<<.<<.如图,在一笔直的海岸线上有、两个观测站,=.从站测得船在北偏东°的方向,从站测得船在北偏东°的方向,则船离海岸线的距离(即的长)为( )..(+)..(-).如图,边长为的正方形中,点在延长线上,连接交于点,=(≤≤),=.则在下面函数图象中,大致能反映与之间函数关系的是( )(第题)二、填空题(每题分,共分).写出一个反比例函数=(≠),使它的图象在每个象限内,的值随值的增大而减小,这个函数的解析式为..在△中,∠=°,=,则∠的度数是..在下列函数①=+;②=+;③=;④=-中,与众不同的一个是(填序号),你的理由是..在某一时刻,测得一根高为的竹竿的影长为,同时测得一栋建筑物的影长为,那么这栋建筑物的高度为..活动楼梯如图所示,∠=°,斜坡的坡度为,斜坡的坡面长度为,则走这个活动楼梯从点到点上升的高度为.(第题)(第题)(第题)(第题).如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是..如图,在△中,∥,分别交,于点,.若=,=,则△的面积与△的面积的比是..如图,在平面直角坐标系中,一次函数=+(≠)的图象与反比例函数=(≠)的图象交于第二、四象限的,两点,与轴交于点.已知(-,),(,-),∠=,则此一次函数的解析式为..如图,反比例函数=在第一象限的图象上有两点,,它们的横坐标分别是,,则△的面积是.(第题)(第题).如图,在矩形纸片中,=,=,点在上,将△沿折叠,点恰落在边上的点处;点在上,将△沿折叠,点恰落在线段上的点处,有下列结论:①∠=°;②△∽△;③△=△;④+=.其中正确的是(把所有正确结论的序号都填上).三、解答题(题分,题分,题分,题分,其余每题分,共分).计算:(-π)-°++-..如图,在平面直角坐标系中,一次函数=+(≠)的图象与反比例函数=(≠)的图象交于第二、四象限内的、两点,与轴交于点,过点作⊥轴,垂足为,=,∠=,点的坐标为(,-).()求△的周长;()求该反比例函数和一次函数的解析式.(第题).如图,点,,表示某旅游景区三个缆车站的位置,线段,表示连接缆车站的钢缆,已知,,三点在同一铅直平面内,它们的海拔高度′,′,′分别为米,米,米,钢缆的坡度=∶,钢缆的坡度=∶,景区因改造缆车线路,需要从到直线架设一条钢缆,那么钢缆的长度是多少米?(注:坡度是指坡面的铅直高度与水平宽度的比)(第题).如图①,为半圆的直径,为圆心,为圆弧上一点,垂直于过点的切线,垂足为,的延长线交直线于点.()求证:平分∠;()若=,为的中点,⊥,垂足为点,求的长;()如图②,连接交于点,若=,求的值.(第题).如图,有一块含°角的直角三角板的直角边的长恰与另一块等腰直角三角板的斜边的长相等,把这两块三角板放置在平面直角坐标系中,且=.()若某反比例函数的图象的一个分支恰好经过点,求这个反比例函数的解析式;()若把含°角的直角三角板绕点按顺时针方向旋转后,斜边恰好落在轴上,点落在点′处,试求图中阴影部分的面积.(结果保留π)(第题).矩形一条边=,将矩形折叠,使得点落在边上的点处.()如图①,已知折痕与边交于点,连接,,.①求证:△∽△;②若△与△的面积比为,求边的长.()如图②,在()的条件下,擦去和,连接.动点在线段上(不与点,重合),动点在线段的延长线上,且=,连接交于点,作⊥于点.试问动点,在移动的过程中,线段的长度是否发生变化?若不变,求出线段的长度;若变化,说明理由.(第题)答案一、二、=(答案不唯一).°.③;只有③的自变量取值范围不是全体实数点拨:这是开放题,答案灵活,能给出合适的理由即可...或或..=-+..①③④点拨:∵△沿折叠,点恰落在边上的点处,∴∠=∠,=,==.在△中,∵=,=,∴==,∴=-=-=.设=,则=,=-=-.在△中,∵+=,∴(-)+=,解得=,∴=.∵△沿折叠,点恰落在线段上的点处,∴∠=∠,==,=,∴∠=∠+∠=∠=°,∴①正确;=-=-=,设=,则=,=-.在△中,∵+=,∴+=(-),解得=,∴==,=.∵∠=∠,=,=,∴≠,∴△与△不相似,∴②错误;∵△=·=××=,△=·=××=,∴△=△,∴③正确;∵+=+=,而=,∴+=,∴④正确.三、.解:原式=-×++-=-..解:()由=,⊥轴,∠=,得=.∴点坐标为(-,).由勾股定理,得==,∴△的周长为++=++=.()将点坐标代入=(≠),得=-×=-,∴反比例函数的解析式为=.当=-时,-=,解得=,∴点坐标为(,-).将、两点坐标代入=+,得解得∴一次函数的解析式为=-+..解:过点作⊥′于点,交′于点,过点作⊥′于点,则△,△和△都是直角三角形,四边形′′,四边形′′和四边形都是矩形,∴=′-′=′-′=-=(米),=′-′=′-′=-=(米),∵∶=∶,∶=∶,∴==(米),==(米),又∵==(米),==(米),∴=+=(米),=+=(米),∴在△中,===(米).答:钢缆的长度为米..()证明:连接,如图①.∵切半圆于,∴⊥,又⊥.∴∥.∴∠=∠.∵=,∴∠=∠.∴∠=∠,即平分∠.()解:在△中,∵==,∴∠=°.∴在△中,=·°=×=.()解:连接,如图②.∵∥,∴△∽△.∴==.不妨设==,则=.又△∽△,∴===.∴=.在△中,===.(第题) .解:()在△中,∠=°,=,∴=·°=.∴点的坐标为(,).设反比例函数的解析式为=(≠),∴=,∴=,则这个反比例函数的解析式为=.()在△中,∠=°,=,∠=,即°=,∴=.由题意得:∠=°,扇形′==π.在△中,∠=°,==,∴=·°=×=.∴△===.∴阴影=扇形′-△=π-..()①证明:如图①,∵四边形是矩形,∴∠=∠=∠=°,∴∠+∠=°.由折叠可得∠=∠=°,∴∠+∠=°.∴∠=∠.又∵∠=∠,∴△∽△.②解:∵△与△的面积比为,且△∽△,∴==.∴==.设=,则易得=-.在△中,∠=°,由勾股定理得=(-)+.解得=.∴===.(第题)()解:作∥,交于点,如图②.∵=,∥,∴∠=∠=∠.∴=.又=,∴=.∵∥,∴∠=∠,∠=∠,∴△≌△.∴=.∴=.∵=,⊥,∴=.∴=+=+=.由()中的结论可得=,=,∠=°.∴==,∴==.∴在()的条件下,点,在移动的过程中,线段的长度不变,它的长度恒为.。
2023年人教版九年级数学(下册)期末试卷及答案(完整)
2023年人教版九年级数学(下册)期末试卷及答案(完整)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,46.函数13y x =+-的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥C .3x ≠D .2x >,且3x ≠ 7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A.B.C.D.8.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.29.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°10.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC 边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A.12B.920C.25D.13二、填空题(本大题共6小题,每小题3分,共18分)1.方程3122xx x=++的解是___________.2.分解因式:ab 2﹣4ab+4a=________.3.33x x -=-,则x 的取值范围是__________. 4.如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为__________.5.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°,将DAE 绕点D 逆时针旋转90°,得到DCM .若AE=1,则FM 的长为__________.6.如图,已知Rt △ABC 中,∠B=90°,∠A=60°,AC=23+4,点M 、N 分别在线段AC 、AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为__________.三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.已知关于x 的一元二次方程:x 2﹣2x ﹣k ﹣2=0有两个不相等的实数根.(1)求k 的取值范围;(2)给k 取一个负整数值,解这个方程.3.如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P 的坐标.4.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.5.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.6.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y 件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、C4、B5、B6、A7、B8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、3 22、a(b﹣2)2.3、3x≤4、(4,3)5、2.56三、解答题(本大题共6小题,共72分)1、x=﹣3.2、(1)k>﹣3;(2)取k=﹣2, x1=0,x2=2.3、(1)3yx=;(2)x>1;(3)P(﹣54,0)或(94,0)4、(1)略;(2)112.5°.5、(1)2、45、20;(2)72;(3)1 66、(1)1502y x=-+(2)当x为10时,超市每天销售这种玩具可获利润2250元(3)当x为20时w最大,最大值是2400元。
2017–2018学年度第一学期期末初三数学模拟试卷二(含答案)
= .故选 B.
二、填空题 (每小题 2 分,共 20 分) 11.x ≤2;12.5;13.8;14.3π;15.解:函数与 x 轴的另一交点的坐标是:(-3,0),
则一元二次方程的根是:x1=1,x=-3.故答案是:x1=1,x2=-3.;16.解:设 A 点坐标
为(0,a),(a>0),则 x2=a,解得 x= ,∴点 B( ,a), =a,则 x= ,
DE
AB=
.
17.现定义运算“★”,对于任意实数 a、b,都有 a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,
若 x★2=6,则实数 x 的值是
.
版权所有@蔡老师数学
- 2 - / 12
18.如图,AB 是⊙O 的弦,AB=4,点 C 是⊙O 上的一个动点,且∠ACB=45°.若点 M,N 分 别是 AB,BC 的中点,则 MN 长的最大值是 .
(2)设点 D 是线段 AB 上的动点,过点 D 作 y 轴的平行线交抛物线于点 E,求线段 DE
长度的最大值.
y
版权所有@蔡老师数学
CO B
Ax
- 4 - / 12
„„„„„„„„„„„„„„„„„„„„„„„装„„„„„订„„„„„线„„„„„„„„„„„„„„„„„„„„„„
.
学号
26.(8 分)如图,AP 是∠MAN 的平分线,B 是射线 AN 上的一点,以 AB 为直径作⊙O 交
19.解:原式=(4 3- 3)× 6…………………………………………………………2 分
=3 3× 6……………………………………………………………………4 分
= 9 2 ……………………………………………………………………6 分
2018届人教版九年级数学下册期末检测试卷含答案
期末检测卷时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题4分,满分40分) 1.如图,该几何体的俯视图是( )2.已知反比例函数y =kx(k >0)的图象经过点A (1,a ),B (3,b ),则a 与b 的关系正确的是( )A .a =bB .a =-bC .a <bD .a >b3.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB =1,BC =3,DE =2,则EF 的长为( )A .4B .5C .6D .8第3题图 第4题图4.△ABC 在网格中的位置如图所示,则cos B 的值为( ) A.55 B.255 C.12D .2 5.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm ,到屏幕的距离为60cm ,且幻灯片中的图形的高度为6cm ,则屏幕上图形的高度为( )A .6cmB .12cmC .18cmD .24cm第5题图 第6题图6.如图,反比例函数y 1=k 1x 和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点.若k 1x >k 2x ,则x的取值范围是( )A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.已知两点A (5,6),B (7,2),先将线段AB 向左平移一个单位长度,再以原点O 为位似中心,在第一象限内将其缩小为原来的12得到线段CD ,则点A 的对应点C 的坐标为( )A .(2,3)B .(3,1)C .(2,1)D .(3,3)8.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2km.从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4kmB .(2+2)kmC .22kmD .(4-2)km第8题图 第10题图9.两个全等的等腰直角三角形(斜边长为2)按如图放置,其中一个三角形45°角的顶点与另一个三角形ABC 的直角顶点A 重合.若三角形ABC 固定,当另一个三角形绕点A 旋转时,它的直角边和斜边所在的直线分别与边BC 交于点E ,F ,设BF =x ,CE =y ,则y 关于x 的函数图象大致是( )10.如图,直线y =12x 与双曲线y =k x (k >0,x >0)交于点A ,将直线y =12x 向上平移4个单位长度后,与y 轴交于点C ,与双曲线y =kx(k >0,x >0)交于点B ,若OA =3BC ,则k 的值为( )A .3B .6 C.94 D.92二、填空题(本大题共4小题,每小题5分,满分20分)11.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.12.已知函数y =-1x ,当自变量的取值为-1<x <0或x ≥2时,函数值y 的取值范围为________________.13.如图,△ABC 的两条中线AD 和BE 相交于点G ,过点E 作EF ∥BC 交AD 于点F ,那么FGAG=________.14.如图,在正方形ABCD 中,连接BD ,点E 在边BC 上,且CE =2BE .连接AE 交BD 于F ,连接DE ,取BD 的中点O ,取DE 的中点G ,连接OG .下列结论:①BF =OF ;②OG ⊥CD ;③AB =5OG ;④sin ∠AFD =255;⑤S △ODG S △ABF =13.其中正确的结论是________(填序号).三、(本大题共2小题,每小题8分,满分16分) 15.计算:sin45°+cos30°3-2cos60°-sin60°(1-sin30°).16.根据下列视图(单位:mm),求该物体的体积.四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,点A ,B 的坐标分别是(0,3),(-4,0). (1)将△AOB 绕点A 逆时针旋转90°得到△AEF ,点O ,B 对应点分别是E ,F ,请在图中画出△AEF ,并写出E ,F 的坐标;(2)以O 点为位似中心,将△AEF 作位似变换且缩小为原来的23,在网格内画出一个符合条件的△A 1E 1F 1.18.如图,在平面直角坐标系中,过点A (2,0)的直线l 与y 轴交于点B ,tan ∠OAB =12,直线l 上的点P 位于y 轴左侧,且到y 轴的距离为1.(1)求直线l 的函数表达式;(2)若反比例函数y =mx 的图象经过点P ,求m 的值.五、(本大题共2小题,每小题10分,满分20分)19.如图,在Rt △ABC 中,∠C =90°,BC =1,AC =2,把边长分别为x 1,x 2,x 3,…,x n 的n 个正方形依次放入△ABC 中,请回答下列问题:(1)按要求填表:(2)第n 个正方形的边长x n =________.20.某中学广场上有旗杆如图①所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图②,某一时刻,旗杆AB 的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC 为4米,落在斜坡上的影长CD 为3米,AB ⊥BC ,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ 在斜坡上的影长QR 为2米,求旗杆的高度(结果精确到0.1米,参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08).六、(本题满分12分)21.如图,已知四边形ABCD 内接于⊙O ,A 是BDC ︵的中点,AE ⊥AC 于A ,与⊙O 及CB 的延长线交于点F ,E ,且BF ︵=AD ︵.(1)求证:△ADC ∽△EBA ;(2)如果AB =8,CD =5,求tan ∠CAD 的值.七、(本题满分12分)22.如图,直线y =ax +1与x 轴、y 轴分别相交于A ,B 两点,与双曲线y =kx (x >0)相交于点P ,PC ⊥x 轴于点C ,且PC =2,点A 的坐标为(-2,0).(1)求双曲线的解析式;(2)若点Q 为双曲线上点P 右侧的一点,且QH ⊥x 轴于H ,当以点Q ,C ,H 为顶点的三角形与△AOB 相似时,求点Q 的坐标.八、(本题满分14分)23.(1)如图①,在正方形ABCD 中,对角线AC 与BD 相交于点O ,请填空:AODC =________(直接写出答案);(2)如图②,将(1)中的△BOC 绕点B 逆时针旋转得到△BO 1C 1,连接AO 1,DC 1,请你猜想线段AO 1与DC 1之间的数量关系,并证明;(3)如图③,矩形ABCD 和Rt △BEF 有公共顶点B ,且∠BEF =90°,∠EBF =∠ABD =30°,则AEDF 的值是否为定值?若是定值,请求出该值;若不是定值,请简述理由.参考答案与解析1.B 2.D 3.C 4.A 5.C 6.C 7.A 8.B 9.C 解析:由题意得∠B =∠C =45°,∠EAF =45°.∵∠AFE =∠C +∠CAF =45°+∠CAF ,∠CAE =45°+∠CAF ,∴∠AFB =∠CAE ,∴△ACE ∽△FBA ,∴AB BF =CEAC.又∵△ABC 是等腰直角三角形,且BC =2,∴AB =AC = 2.∵BF =x ,CE =y ,∴2x =y2,∴xy =2(1<x <2).故选C. 10.D 解析:过点A 作AD ⊥x 轴于点D ,过点B 作BE ⊥y 轴于点E ,则易得△AOD ∽△CBE ,∴AD CE =ODBE =AO BC =3.设点A 的横坐标为3a ,则其纵坐标为3a 2,即OD =3a ,AD =3a 2,则BE =OD 3=a ,CE =AD 3=a2.∵直线BC 是由直线AO 向上平移4个单位长度得到的,∴CO =4,∴EO =4+a2,即点B 的坐标为⎝⎛⎭⎫a ,4+a 2.又∵点A ,B 都在反比例函数y =k x 的图象上,∴k =3a ·3a 2=a ⎝⎛⎭⎫4+a 2,解得a =1或a =0(舍去),∴k =92.故选D. 11.75° 12.y >1或-12≤y <0 13.1414.①②④⑤ 解析:∵CE =2BE ,∴BE CE =12,∴BE BC =13.∵四边形ABCD 是正方形,∴AB =BC =CD =DA ,AD ∥BC ,∴△BFE ∽△DF A ,∴BF DF =EF AF =BE DA =BE BC =13.∵O 是BD 的中点,G 是DE 的中点,∴OB =OD ,OG =12BE ,OG ∥BC ,∴BF =OF ,OG ⊥CD ,①正确,②正确;OG =12BE =16BC =16AB ,即AB =6OG ,③错误;连接OA ,∴OA =OB =2OF ,OA ⊥BD ,∴由勾股定理得AF =5OF ,∴sin ∠AFD =AO AF =2OF 5OF=255,④正确;∵OG=12BE ,△DOG ∽△DBE ,∴S △DOG S △BDE =14.设S △ODG =a ,则S △ABE =S △BED =4a .∵EF AF =13,∴S △BEF =a ,S △AFB =3a ,∴S △ODG S △ABF =13,⑤正确.故正确的结论是①②④⑤. 15.解:原式=22+323-2×12-32⎝⎛⎭⎫1-12=24+34-32+34=24.(8分) 16.解:这是上下两个圆柱的组合图形.(3分)V =16×π×⎝⎛⎭⎫1622+4×π×⎝⎛⎭⎫822=1088π(mm 3).(7分) 答:该物体的体积是1088πmm 3.(8分)17.解:(1)△AEF 如图所示,(3分)E (3,3),F (3,-1).(5分)(2)△A 1E 1F 1如图所示(注:若同向位似画出△A 1E 1F 1同样得分).(8分)18.解:(1)∵点A 的坐标为(2,0),∴OA =2.∵tan ∠OAB =OB OA =12,∴OB =1,∴点B 的坐标为(0,1).(2分)设直线l 的函数解析式为y =kx +b ,则⎩⎪⎨⎪⎧b =1,2k +b =0,解得⎩⎪⎨⎪⎧k =-12,b =1.∴直线l 的函数解析式为y =-12x +1.(4分)(2)∵点P 到y 轴的距离为1,且点P 在y 轴左侧,∴点P 的横坐标为-1.又∵点P 在直线l 上,∴点P 的纵坐标为-12×(-1)+1=32,∴点P 的坐标是⎝⎛⎭⎫-1,32.(6分)∵反比例函数y =m x 的图象经过点P ,∴32=m-1,∴m =-1×32=-32.(8分)19.解:(1)23 49 827(6分) 解析:设第一个正方形的边长是x ,它落在AB ,BC ,AC 上的顶点分别为D ,E ,F ,则△BED ∽△BCA ,∴DE AC =BD AB =x 2,同理得到DF BC =AD AB =x ,两式相加得到x 2+x =1,解得x =23.同理可得第二个正方形的边长是49=⎝⎛⎭⎫232,第三个正方形的边长是827=⎝⎛⎭⎫233.(2)⎝⎛⎭⎫23n(10分)20.解:过点C 作CM ∥AB 交AD 于M ,过点M 作MN ⊥AB 于N ,则MN =BC =4米,BN =CM .(3分)由题意得CM CD =PQ QR ,即CM 3=12,∴CM =32米,∴BN =32米.(5分)∵在Rt △AMN 中,MN =4米,∠AMN =72°,∴tan72°=AN MN ,∴AN ≈12.3米.(7分)∴AB =AN +BN ≈12.3+32=13.8(米).(9分) 答:旗杆的高度约为13.8米.(10分)21.(1)证明:∵四边形ABCD 内接于⊙O ,∴∠CDA +∠ABC =180°.又∵∠ABE +∠ABC =180°,∴∠CDA =∠ABE .(2分)∵BF ︵=AD ︵,∴∠DCA =∠BAE ,∴△ADC ∽△EBA .(6分)(2)解:∵A 是BDC ︵的中点,∴AB ︵=AC ︵,∴AB =AC =8.(8分)由(1)可知△ADC ∽△EBA ,∴∠CAD =∠AEC ,DC AB =AC AE ,(10分)∴tan ∠CAD =tan ∠AEC =AC AE =DC AB =58.(12分) 22.解:(1)把A (-2,0)代入y =ax +1中得a =12,∴直线的解析式为y =12x +1.当y =2时,x =2,∴点P 的坐标为(2,2).(2分)把P (2,2)代入y =k x 中得k =4,∴双曲线的解析式为y =4x.(4分)(2)设点Q 的坐标为(a ,b ).∵Q (a ,b )在双曲线y =4x 上,∴b =4a .∵直线y =12x +1交y 轴于B 点,∴点B 的坐标为(0,1),∴BO =1.∵点A 的坐标为(-2,0),∴AO =2.(6分)当△QCH ∽△BAO 时,CH AO =QHBO ,即a -22=b 1,∴a -2=2b ,a -2=2×4a ,解得a =4或a =-2(舍去),∴点Q 的坐标为(4,1).(9分)当△QCH ∽△ABO 时,CHBO =QH AO ,即a -21=b 2,∴2a -4=4a ,解得a =1+3或a =1-3(舍去),∴点Q 的坐标为(1+3,23-2).综上所述,点Q 的坐标为(4,1)或(1+3,23-2).(12分)23.解:(1)22(3分) 解析:∵四边形ABCD 是正方形,∴AD =DC ,△AOD 是等腰直角三角形,∴AO AD =22,∴AO DC =22. (2)猜想:AO 1DC 1=22.(4分)证明如下:∵△BOC 绕点B 逆时针旋转得到△BO 1C 1,∴∠ABO =∠CBO =∠O 1BC 1,∴∠ABO 1=∠DBC 1.∵四边形ABCD 是正方形,∴AB BD =22.又∵O 1B BC 1=OB BC =22,∴AB BD =O 1B BC 1.又∵∠ABO 1=∠DBC 1,∴△ABO 1∽△DBC 1,∴AO 1DC 1=AB BD =22.(8分) (3)AE DF 为定值.(9分)在Rt △EBF 中,∠EBF =30°,∴BE BF =32.在Rt △ABD 中,∠ABD =30°,∴AB BD =32,∴BE BF =AB BD .∵∠EBF =∠ABD ,∴∠EBA =∠FBD ,∴△AEB ∽△DFB ,∴AE DF =AB BD =32.(14分)。
【人教五四新版】2022-2023学年九年级下册数学期末调研试卷(含解析)
【人教五四新版】2022-2023学年九年级下册数学期末调研试卷一.选择题(共10小题,满分30分,每小题3分)1.实数﹣6的倒数是()A.﹣B.C.﹣6D.62.下列运算正确的是()A.a2+a2=a4B.a3﹣a2=a C.a3•a2=a6D.a6÷a3=a33.下列图形中,既是轴对称又是中心对称图形的是()A.B.C.D.4.三通管的立体图如图所示,则这个几何体的左视图是()A.B.C.D.5.将抛物线y=x2向左平移3个单位长度,再向上平移3个单位长度后,所得抛物线的解析式为()A.y=(x+3)2+3B.y=(x﹣3)2+1C.y=(x+2)2+1D.y=(x+3)2+16.小明在画函数(x>0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是()x…0.51 1.52 2.53 3.5456…y…6321…A.(1,6)B.(2,3)C.(3,2)D.(4,1)7.在△ABC中,∠A:∠B:∠C=1:2:3,AB=6cm,则BC的值是()A.6cm B.4cm C.3cm D.3cm8.某学校安装红外线体温检测仪(如图1),其红外线探测点O可以在垂直于地面的支杆OP 上自由调节(如图2).已知最大探测角∠OBC=67°,最小探测角∠OAC=37°.测温区域AB的长度为2米,则该设备的安装高度OC应调整为()米.(精确到0.1米.参考数据:sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tan37°≈)A.2.4B.2.2C.3.0D.2.79.抛掷一枚质地均匀的散子(骰子六个面上分别标有1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的概率是()A.B.C.D.10.如图,四边形ABCD为平行四边形,点E在AD上,连接CE,延长BA交CE的延长线于点F,则下列结论中一定正确的是()A.=B.=C.=D.=二.填空题(共10小题,满分30分,每小题3分)11.2021年3月5日李克强总理在2020年工作总结中指出,城镇新增就业11860000人,将数据11860000用科学记数法表示为.12.若函数在实数范围内有意义,则函数x的取值范围是.13.分解因式:﹣m2+4m﹣4=.14.化简:的结果为.15.若代数式的值是,则x=.16.不等式组的解集为.17.设m,n是非零自然数,并且19n2﹣98n﹣m=0,则m+n的最小值是.18.已知圆心角为150°的扇形面积是15πcm2,则此扇形的半径为.19.在矩形ABCD中,对角线AC、BD相交于点O,OA=AB,则∠ACB=度.20.如图,△ABC中,点D在BC边上,AD=BD,点F在AC边上,∠AFB=∠ADC,AD、BF交于点E,tan∠BAD=,若△BED的周长为32,CD=14,则线段AE的长为.三.解答题(共7小题,满分60分)21.(7分)先化简,再求代数式的值,其中x=2sin60°+1,y=tan45°.22.(7分)(1)已知在△ABC中,AB=,AC=,BC=5,则△ABC的形状为.(直接写出结果)(2)试在4×4的方格纸上画出△ABC,使它的顶点都在方格的顶点上.(每个小方格的边长为1)23.(8分)某县政府为了解2018年该县贫困户的脱贫情况,随机调查了部分贫困户,并根据调查结果制作了如下两幅统计图(不完整)请根据统计图回答下列问题(1)随机调查的贫困户有户,m=,n=.并补全条形统计图.(2)扇形统计图中,本年度脱贫部分的圆心角是度;(3)记者从县扶贫办了解到,该县共有2600户贫困户,请你估计到2018年底该县实现脱贫的贫困户有多少户(含彻底脱贫和本年度脱贫)?24.(8分)如图,在Rt△ABC中,∠ACB=90°,D,E分别是AB,AC的中点,连接CD,过点E作EF∥CD交BC的延长线于点F.(1)证明:四边形CDEF是平行四边形;(2)若∠ABC=30°,AC的长是5cm,求四边形CDEF的周长.25.(10分)某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品7件和B种商品6件共需430元.(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店购进A、B两种商品共50件,A种商品每件的售价为50元,B种商品每件的售价为30元,且该商店将购进的50件商品全部售出后,获得的利润超过395元,求该商店至少购进A种商品多少件?26.(10分)如图,AB是⊙O弦,CE⊥AB,垂足为E.点D是直线CE上的动点.(1)如图1.当点D在圆O上时,连接半径OB.求证:∠ADC=∠OBD.(2)如图2.当点D在圆O外时,直线DG交直线AB与点K,当=时,求证:DA =DG.(3)如图3.在(2)的条件下,连接FB、EG,∠FBE=2∠GEB.若tan∠FBE=,AE =4,求DE的长.27.(10分)如图,直线与坐标轴分别相交于点A、B,点C在线段AO上,点D 在线段AB上,且AC=AD.将△ACD沿直线CD翻折得到△ECD.(1)求AB的长;(2)求证:四边形ACED是菱形;(3)设点C的坐标为(0,m),△ECD与△AOB重合部分的面积为S,求S关于m的函数解析式,并直接写出自变量m的取值范围.答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:﹣6的倒数是﹣,故选:A.2.解:A.a2+a2=2a2,故A不符合题意;B.a3﹣a2=a2(a﹣1),故B不符合题意;C.a3•a2=a5,故C不符合题意;D.a6÷a3=a3.故D符合题意.故选:D.3.解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,不是中心对称图形.故选:B.4.解:该几何体的左视图是:故选:D.5.解:将抛物线y=x2向左平移3个单位长度,再向上平移3个单位长度后,所得抛物线的解析式为y=(x+3)2+3.故选:A.6.解:∵x=4,y=1,不满足y=,∴(4,1)不在反比例函数的图象上,故选:D.7.解:∵∠A+∠B+∠C=180°,∠A:∠B:∠C=1:2:3,∴∠A=30°,∠C=90°,∵AB=6cm,∴BC=AB=3cm,故选:C.8.解:设BC=xm,∵AB=2m,∴AC=(x+2)m,∵∠OBC=67°,∠OAC=37°∴tan∠OBC=tan67°≈,tan∠OAC=tan37°≈,∵OC=BC•tan∠OBC=BC•tan67°≈x,OC=AC•tan∠OAC=AC•tan37°≈(x+2),∴x=(x+2),解得:x=,∴OC≈x=≈2.2m,故选:B.9.解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是=;故选:B.10.解:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,∴△FAE∽△FBC,∴(相似三角形对应边成比例),即.故选:C.二.填空题(共10小题,满分30分,每小题3分)11.解:将11860000用科学记数法表示是1.186×107.故1.186×107.12.解:由题意得:x﹣6>0,∴x>6,故x>6.13.解:原式=﹣(m2﹣4m+4)=﹣(m﹣2)2,故﹣(m﹣2)214.解:原式=2+5=7.15.解:根据题意得:=,去分母得:2x﹣2=x+2,解得:x=4,检验:把x=4代入得:2(x+2)=12≠0,则分式的解为x=4.故4.16.解:,解不等式①得:x>﹣2,解不等式②得:x≤0.5,则不等式组的解集为﹣2<x≤0.5,故﹣2<x≤0.517.解:∵19n2﹣98n﹣m=0,∴m=19n2﹣98n,∵m,n是非零自然数,∴19n2﹣98n>0,n>0,∴19n﹣98>0∴n>,∴n的最小值为6,①∴m+n=19n2﹣97n,设y=19n2﹣97n,则二次函数的对称轴为:n=,由开口向上的二次函数的性质及n为自然数可知,当n=3时,函数取得最小值,②,由①②可知符合题意的n为6∴n=6,m=96,∴m+n最小值为:6+96=102.故102.18.解:∵扇形的圆心角为150°,它的面积为15πcm2,∴设扇形的半径为:r,则:15π=,解得:r=6.故6cm.19.解:如图,∵四边形ABCD是矩形,∴OA=OC=AC,BO=DO=BD,AC=BD,∠ABC=90°,∴OB=OA,∵OA=AB,∴△OAB是等边三角形,∴∠BAO=60°,∴∠ACB=90°﹣60°=30°.故30.20.解:如图,延长AD至H,使DH=CD=14,∵BD=AD,∠ADC=∠BDH,∴△BDH≌△ADC(SAS),∴∠H=∠C,∴∠AFB=∠ADC,∴E、D、C、F共圆,∴∠BEH=∠C,∴∠H=∠BEH,作BN⊥EH于N,∴EN=HN,作AG⊥BC于G,∵tan∠ABD==,∴设AG=2a,BG=3a,设DG=x,∴AD=BD=BG﹣DG=3a﹣x,在Rt△ADG中,AD=3a﹣x,AG=2a,DG=x,∴(3a﹣x)2﹣x2=(2a)2,∴x=a,∴DG=a,∴tan∠BDN=tan∠ADG===,∵tan∠BDN==,∴设BN=12k,DN=5k,∴EN=HN=14﹣5k,BD=13k,∴DE=EN﹣DN=(14﹣5k)﹣5k=14﹣10k,∵BE+DE+BD=32,∴BE+(14﹣10k)+13k=32,∴BE=18﹣3k,在Rt△BNE中,BN=12k,BE=18﹣3k,NE=14﹣5k,∴(12k)2+(14﹣5k)2=(18﹣3k)2,∴k=1或k=﹣(舍去),∴AD=BD=13k=13,DE=14﹣10k=14﹣10=4,∴AE=AD﹣DE=13﹣4=9,故答案是:9.三.解答题(共7小题,满分60分)21.解:原式=÷=•=,当x=2×+1=+1,y=1时,原式===.22.解:(1)在△ABC中,∵AB=,AC=,BC=5,∴AB2+AC2=5+20=25=BC2,∴△ABC为直角三角形.(2)如图所示:故直角三角形.23.解:(1)随机调查的贫困户有10÷5%=200户,×100%=30%,200﹣10﹣60﹣200×60%=10,×100%=5%,∴m=30,n=4,补全条形统计图如图所求,故200,30,5;(2)扇形统计图中,本年度脱贫部分的圆心角是360°×30%=108°,故108;(3)2600×(30%+60%)=2340(户)答:2018年底该县实现脱贫的贫困户有2340户.24.(1)证明:∵D,E分别是AB,AC的中点,∴DE是Rt△ABC的中位线,∴DE∥FC,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴CD=EF,DE=CF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2CD,由(1)知,DE是Rt△ABC的中位线,∴BC=2DE在Rt△ABC中,∠ACB=90°,∠ABC=30°,∴AB=2AC=10(cm),∴BC===5(cm),∴四边形DCFE的周长=2CD+2DE=AB+BC=(10+5)cm.25.解:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,依题意得:,解得:.答:A种商品每件的进价为40元,B种商品每件的进价为25元.(2)设该商店购进A种商品m件,则购进B种商品(50﹣m)件,依题意得:(50﹣40)m+(30﹣25)(50﹣m)>395,解得:m>29.又∵m为整数,∴m的最小值为30.答:该商店至少购进A种商品30件.26.解:(1)证明:如图,延长BF交圆一点F,连接DF,∵BF是直径,∴∠BDF=90°,∴∠OBD=90°﹣∠F∵CE⊥AB,∴∠AED=90°,∴∠ADC=90°﹣∠A,∵∠F=∠A(同弧所对圆周角相等),∴∠ADC=∠OBD;(2)证明:如图,过点O分别作OM⊥AH交点M,ON⊥FG交点N,连接OD,∵=,∴AH=FG,OM=ON,AM=MH=FN=NG,∵OD=OD,∴Rt△MOD≌Rt△NOD(HL),∴DM=DN,∴DA=DM+MA,DG=DN+NG,即DA=DG;(3)作IJ⊥BE于J,在AB上截取JL=,∴IL=IB,∴∠ILB=∠FBE=2∠GEB,∴∠EIL=∠GEB,∴EL=IL,∵tan∠ILB=tan∠FBE=,∴不妨设IJ=4k,LJ=3k,则EL=IL=5k,∴tan∠GEB===,连接HF,作DM⊥FH于M,作HN⊥DF于N,∵四边形ABFH内接于圆O,∴∠DHF=∠B,∴tan∠DHF==tan B=,∴不妨设DM=4a,HM=3a,由(2)易知:DH=DF=5a,由:S=FH•DM=DF•HN得,△DHF6a•4a=5a•HN,∴HN=a,∴sin∠HDN==,将△DAE绕D逆时针旋转到△APG,则∠PDG=∠ADE,PG=AE=4,∴∠PDE=∠HDN,延长DE交PG的延长线于Q,∴sin∠PDG=sin∠HDN=,∴不妨设:DQ=25m,PQ=24m,则DE=DP=7m,∴EQ=DQ﹣DE=25m﹣7m=18m,QG=PQ﹣PG=24m﹣4,作GR⊥DQ于R,在Rt△QRG中,QG=24m﹣4,sin∠RGQ=sin∠PDQ=,∴RQ=QG=(24m﹣4),RG=(24m﹣4),在Rt△ERG中,tan∠RGE=tan∠BEG=,∴RE=RG=(24m﹣4),根据:RE+EQ=RQ得,(24m﹣4)+18m=(24m﹣4),解得:m=,∴DE=7m=7×=.27.解:(1)令x=0,y=3,∴OC=3;令y=0,x=4,∴OB=4;∴AB==5;(2)由于△ACD沿直线CD翻折得到△ECD;又∵AC=AD;∴AD=DE=CD=AC;∴四边形ACED为菱形;(3)∵C(0,m);∴OC=m;∴AC=3﹣m;当点E在x轴上时,如图:∵四边形ACED为菱形,∴CE∥AD,∴△COE∽△AOB,∵CE=AC=3﹣m,∴,∴,∴m=,①当时,过点D作DH⊥AC,∴DH∥BO,∴△ADH∽△AOB,∴,AD=AC=3﹣m,∴,∴,∵△ACD ≌△ECD ,∴S =AC •HD ==,②当0时,∵CE ∥AB ,∴△CON ∽△AOB ,∴,∴,∴CN =,ON =,∴NE =3﹣m ﹣=3﹣,MN =﹣=,∴EM =,∴S =S △CED ﹣S △MNE =﹣,综上所述,S =.第21页/总21页。
2018年人教版中考复习数学《 结论判断题》专项检测(含答案)
专题二 结论判断题类型一 代数结论判断题1. 关于x 的一元二次方程x 2+2mx+2n=0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny+2m=0同样也有两个整数根且乘积为正.给出三个结论:①这两个方程的根都是负根;②(m-1)2+(n-1)2≥2;③-1≤2m -2n≤1.其中正确结论的个数是()A. 0个B. 1个C. 2个D. 3个2.如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC.则下列结论:①abc <0;②2b 4ac 4a >0;③ac-b+1=0;④OA·OB =-c a.其中正确结论的个数是( )A. 4B. 3C. 2D. 13. 如图是抛物线y1=ax 2+bx+c (a≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx+n (m≠0)与抛物线交于A 、B 两点.下列结论:①2a+b=0;②abc >0;③方程ax 2+bx+c=3有两个相等的实数根;④抛物线与x 轴的另一个交点是(-1,0);⑤当1<x <4时,有y 2<y 1.其中正确的是( )A. ①②③B. ①③④C. ①③⑤D. ②④⑤4.如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a-2b+c<0;③不等式ax2+bx+c≥0的解集是x≥3.5;④若(-2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是( )A. ①②B. ①④C. ①③④D. ②③④第4题图第5题图的图象,判断5. 观察图中给出的直线y=k1x+b和反比例函数y=2kx下列结论错误的有( )①k2>b>k1>0;②直线y=k1x+b与坐标轴围成的△ABO的面积是4;的解为x1=-6,y1=-1,x2=2,y2=3;③方程组y=k1x+b,y=2kx.④当-6<x<2时,有k1x+b>2kxA. 1个B. 2个C. 3个D. 4个6.对于二次函数y=kx2-(2k-1)x+k-1(k≠0),有下列结论:①其图象与x轴一定相交;②若k<0,函数在x>1时,y随x的增大而减小;③无论k取何值,抛物线的顶点始终在同一条直线上;④无论k取何值,函数图象都经过同一个点.其中所有正确的结论是______.(填写正确结论的序号)x2-2 7.在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=13交于A,B两点,且A点在y轴左侧,P点的坐标为(0,-4),连接PA , PB.有以下说法:①PO2=PA·PB;②当k>0时,(PA+AO)(PB-BO)的值随k的增大而增大;③当3,BP2=BO·BA;④△PAB面积的最小值为6.其中正确的是_____.(写出所有正确说法的序号)类型二几何结论判断题1.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM.下列结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC.其中结论正确的有()A. 1个B. 2个C. 3个D. 4个第1题图第2题图2. 如图,在半径为6 cm的⊙O中,点A是劣弧BC的中点,点D是优弧BC 上一点,且∠D =30°,下列四个结论:①OA ⊥BC ;②BC=63 cm ;③sin ∠AOB 3④四边形ABOC 是菱形.其中正确结论的序号是( )A. ①③B. ①②③④C. ②③④D. ①③④3. 如图,在Rt △ABC 中,∠ABC=90°,AB =BC.点D 是线段AB 上的一点,连接CD ,过点B 作BG ⊥CD,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连接DF.给出以下四个结论:①AF =B A A G FC;②若点D 是AB 的中点,则AF 2AB ;③当B 、C 、F 、D 四点在同一个圆上时,DF =DB ;④若DB 1=AD 2,则S △ABC =9S △BDF .其中正确的结论序号是( )A. ①②B. ③④C. ①②③D. ①②③④第3题图 第4题图4. 如图,AB 是⊙O 的直径,BC ⊥AB ,垂足为点B ,连接CO 并延长交⊙O 于点D 、E ,连接AD 并延长交BC 于点F.则以下结论:①∠CBD =∠CEB;②CD =E B B D BC;③点F 是BC 的中点;④若BC3= AB2101.其中正确的是( )A. ①②B. ③④C. ①②④D. ①②③5.如图,在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB 上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①2; ②当点E与点B重合时,MH=12;③AF+BE=EF;④MG·MH=12,其中正确结论为( )A. ①②③B. ①③④C. ①②④D. ①②③④第5题图第6题图6. 如图,在菱形ABCD中,∠ABC中,∠ABC=60°,点E、F分别从点B、D同时出发,以同样的速度沿边BC、DC向点C运动(点E、F不与点B、D重合).给出以下四个结论:①AE=AF;②EF∥BD;③当点E、F分别为边BC、DC的中点时,EF3④当点E、F分别为边BC、DC的中点时,△AEF的面积最大.上述结论中正确的个数有( )A. 1B. 2C. 3D. 47. 如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM、AH,则以下四个结论:①△BDF≌△DCE; ②∠BMD=120°;③△AMH是等边三角形;④S四边形ABCD=3AM2.其中正确结论的个数是( )A. 1B. 2C. 3D. 4第7题图第8题图8. 如图,正方形ABCD内一点E,满足△CDE为正三角形,直线AE交BC于F点,过E点的直线GH⊥AF,交AB于点G,交CD 于点H.以下结论:①∠AFC=105°;②GH=2EF;③2CE=EF+EH;.其中正确结论的个数是()④AE2=EH3A. 1B. 2C. 3D. 49.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是AD的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中正确结论是______(只需填写序号). 第9题图10. 点P是正方形ABCD的边CD上一点,EF垂直平分BP分别交BC,AD于点E,F,GP⊥EP交AD于G,连接BG交EF于H,有下列结论:①BP=EF;②以BA为半径的⊙B与GP相切;③∠FHG=45°;④若G为AD的中点,则DP=2CP.其中正确的结论是______.(填所第10题图有正确结论的序号)11.如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③QN=3;④△BMG是等边三角形;⑤P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是3.其中正确结论的是序号是________. 第11题图【答案】专题二结论判断题类型一代数结论判断题1.D【解析】逐项分析:①∵关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,∴由根与系数的关系可得x1x2=2n>0,∴x1,x2同号;同理y1y2=2m>0,y1,y2为同号,∵x1+x2=-2m<0,y1+y2=-2n<0,∴x1,x2,y1,y2均为负整数.故①正确.②∵一元二次方程x2+2mx+2n=0有两个整数根,∴Δ=4m2-4×2n=4m2-8n≥0,即m2-2n≥0,同理可得n2-2m≥0,∴m2+n2-2n-2m≥0,即(m-1)2+(n-1)2≥2.故②正确.③由①得x1,x2,y1,y2均为负整数,∵一元二次方程的根均为整数,∴x1,x2,y1,y2均小于等于-1,设X=x2+2mx+2n,Y=y2+2ny+2m,则X,Y分别为x,y的二次函数,其图象开口向上,与横轴的交点坐标均小于或等于-1且为整数,因此,当x=-1时,X=1-2m+2n≥0,m-n≤12;当y=-1时,Y=1-2n+2m≥0,m-n≥-12,即-12≤m-n≤12,∴-1≤2m-2n≤1.故③正确.故选D.2. B【解析】∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有两个交点,∴Δ=b2-4ac>0,而a<0,∴2b-4ac4a<0,所以②错误;∵C (0,c),OA=OC,∴A(-c,0),把A(-c,0)代入y=ax2+bx+c 得ac2-bc+c=0,∴ac-b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1·x2=ca ,∴OA·OB=-x1x2=-ca,所以④正确.故选B.3. C【解析】逐项分析:①对称轴是x=1,即-b2a=1,则2a+b=0.所以①正确.②∵抛物线开口向下,∴a<0;∵对称轴x=-b2a=1>0,∴ b>0;∵抛物线与y轴交于正半轴,∴c>0,则abc<0.所以②错误.③∵抛物线的顶点坐标是A(1,3),∴当函数值是3时,对应的x的值只有一个1,则方程ax2+bx+c=3有两个相等的实数根.所以③正确. ④B(4,0)关于对称轴x=1的对称点是(-2,0),则抛物线与x轴的另一个交点是(-2,0).所以④错误.⑤当1<x<4时,抛物线在直线上方,∴y2<y1.所以⑤正确.故选C.4. B【解析】逐项分析:①∵抛物线与x轴有两个交点,∴b2-4ac>0,∴b2>4ac.所以①正确.②当x=-2时,y=4a-2b+c,∵抛物线的对称轴为x=1,∴(-2,4a-2b+c)关于x=1的对称点为(4,16a+4b+c),即4a-2b+c=16a+4b+c,由题图可知(4,16a+4b+c)在第一象限,∴4a-2b+c=16a+4b+c>0.所以②错误.③∵抛物线的对称轴为x=1,∴由题图可知抛物线两交点的横坐标分别为3.5和-1.5,∴不等式ax2+bx+c≥0的解集为x≤-1.5或x≥3.5.所以③错误.④∵二次函数y=ax2+bx+c的对称轴是直线x=1,∴x=-2与x=4时的函数值相等,∵4<5,∴当抛物线开口向上时,在对称轴的右边,y随x的增大而增大,∴y1<y2.所以④正确.故选B.5. A【解析】①∵反比例函数y=2kx的图象经过点(2,3),∴k2=2×3=6,∴y=6x.∵直线y=k1x+b经过点(2,3)和点(-6,-1),∴2k1+b=3,-6k1+b=-1,∴k1=12,b=2,∴y=12x+2.∴k2>b>k1>0,正确;②∵y=12x+2,∴当y=0,x=-4,∴点A的坐标是(-4,0),当x=0时,y=2.∴点B的坐标是(0,2).∴△ABO的面积是12×4×2=4,正确;③观察图象,发现直线y=k1x+b和反比例函数y=k2x的图象交于点(-6,-1),(2,3),则方程组y=k1x+b,y=k2x的解为x1=-6,y1=-1,x2=2y2=3,正确;④观察图象,可知当-6<x<0或x>2时,有k1x+b>2kx,错误.6. ①③④【解析】令y=0,则kx2-(2k-1)x+k-1=0,解得x1=1,x2=k-1k ,∴函数图象与x轴的交点为(1,0),(k-1k,0),故①④正确;当k<0时,k-1k>1,∴函数在x>1时,y随x的增大先增大然后再减小,故②错误;∵x=-b2a =--(2k-1)2k=1-12k,y=24ac-b4a=24k(k-1)-(2k-1)4k=-14k,∴y=12x-1 2,即无论k取何值,抛物线的顶点始终在直线y=12x-12上,故③正确;综上所述,正确的结论是①③④.7. ③④【解析】如解图:①当k=0时,y=0,即直线与x轴重合,则A、B两点为y=13x2-2与x轴的交点.令13x2-2=0得,则A点坐标为(,0),B,0),又∵P点坐标为(0,-4).则PA=22-+-==PB,(6)(4)22∴PA·PB=22.又∵PO=4,∴PA·PB=22≠PO2=16,故①错误; ②由①知:当k=0时,PA=PB=22,AO=BO=6,∴(PA+AO)·(PB-BO)=(22+6)( 22-6)=16.当k持续增大,即y=kx持续接近y轴,至与y 轴重合时,易知A点坐标为(0,-2),则PA=2,AO=2,PB-BO=PO=4,∴(PA+AO)(PB-BO)=16,则当k增大时,(PA+AO)·(PB-BO)不随k的增大而增大,故②错误;③当k=-3时,A(-23,2),B(3,-1),∴OB=2,BP=23,3x2-2,则可AB=6,∴BP2=BO·BA,故③正确;④令kx=13化简为x2-3kx-6=0,设该方程的两根分别为a,b,即A,B 的横坐标分别为a,b,则|a-b|=22≥,(a+b)-4ab=9k+2426∴当k=0,即直线AB与x轴重合时,S△PAB的最小值×4×26=46.故④正确.综上,正确答案为③④.=12类型二几何结论判断题1. D【解析】∵△ABD、△BCE为等边三角形,∴AB=BD, BC=BE,∠ABD=∠EBC=60°,∠DBE=180°-∠ABD-∠DBE =180°-∠ABD-∠EBC=60°,∴∠ABE=∠DBC=120°.∴△ABE ≌△DBC(SAS).故结论①正确;由△ABE≌△DBC可得,∠BAE=∠BDC,又∵∠DPM=∠BPA,∴∠DMP=∠PBA=60°.故结论②正确;∵△ABE≌△DBC,∴∠BEP=∠BCQ,∵∠PBE=∠QBC=60°,BE=BC,∴△BEP≌△BCQ(ASA), ∴BP=BQ,∵∠PBQ=60°,∴△BPQ为等边三角形,故结论③正确;作BH⊥AE,BG⊥CD,如解图.∵△ABE≌△DBC, ∴S△ABE=S△DBC,即AE·BH=CD·BG.∵AE=CD,∴BH=BG.∴MB平分∠AMC(到角的两边距离相等的点在角的平分线上).故结论④正确,故选D.2.B【解析】如解图,设AO与CB交于点E∵点A是劣弧BC的中点,OA过圆心,∴OA⊥BC,故①正确∵∠D=30°,∴∠ABC=∠D=30°,∴∠AOB=60°,∵点A是劣弧BC的中点,∴BC=2CE,∵OA=OB,∴OA=OB=AB=6 cm,∵BE=AB·cos30°=6×3=33cm,∴BC=2BE=63cm,故②正确.∵∠AOB=60°,∴sin∠AOB=sin60°=3,故③正确;∵∠AOB=60°,∴AB=OB,∵点A是劣弧BC的中点,∴AC=AB,∴AB=BO=OC=CA,∴四边形ABOC 是菱形,故④正确.故选B.3.C【解析】逐项分析:①∵AG∥BC,∴△AFG∽△CFB ,∴AG AF= BC FC ,又∵BC=AB, ∴AG AF=AB FC,∴①正确;②∵∠DEF=∠GAB=90°,∠ABG=∠EBD,∴△ABG∽△EBD,同理可证,△EBD∽△BCD,∴△ABG∽△EBD∽△BCD,∴D 为AB 中点时,AG BD 1=AB BC 2=,∵AB=BC ,∴AGBC=12,∵AG ∥BC ,∴△AFG ∽△CFB,得AG AF 1=BC FC 2=,∴AF =12FC =13AC ,∵BC =AB ,AC =2AB =2BC ,∴AF =13AC =23AB ,∴②正确.③当B 、C 、F 、D 四点在同一个圆上时,∵CD ⊥BF,则CD 平分BF 所对的弧,∴DF=DB.∴③正确.④如解图,过点F 作FH ⊥AB 于点H ,设FH=h ,∵DB 1AD 2=, ∴DB 1AB 2=,可得DB 1BC 3=,∵△ABG ∽△BCD,∴AG BD 1=AB BC 3=, 又∵△AFG ∽△CFB,∴AF AG AG 1=FC BC AB 3==,AF 1AC 4=, 又△AHF ∽△ABC ,∴FH AF 1=BC AC 4=,即S △FDB ∶S △ABC =BD FH =AB BC ⋅⋅ 1113412=⋅=. ∴S △ABC=12S △FDB.④错误.故选C.4. C 【解析】∵BC ⊥AB 于点B ,∴∠CBD+∠ABD=90°,∵∠BAD+∠ABD=90°,∴∠CBD=∠BAD,∵∠BAD=∠CEB, ∴∠CEB=∠CBD,故①正确.∵∠C=∠C,∠CEB=∠CBD, ∴△EBC ∽△BDC ,∴BD CD =BE BC,故②正确. ∵∠EBD=∠BDF =90°,∴DF ∥BE ,假设点F 是BC 的中点,则点D 是EC 的中点,∴ED=DC ,∵ED 是直径,长度不变,而DC的长度是不定的,∴DC不一定等于ED,故③是错误的.∵BC3=AB2, 设BC=3x,AB=2x,∴OB=OD=x,∴在Rt△CBO 中, ∴在Rt△CBO中,OC=10x,∴CD=(10-1)x,∵由(2)知,BD CD=BE BC ,∴BD CD(101)=BE BC-=,∵tanE=BD BE ,∴tanE=(101)3-,故④正确.故选C.5.C【解析】逐项分析:①在Rt△ABC中,∠ACB=90°,AC=BC=1,∴由勾股定理可知:AB=22AC+BC2=.所以①正确.②当点E与点B重合,如解图①所示,此时∠FCB=∠CBF=45°,则BF=CF,同理AF=CF,∴点F是AB的中点,∵FG⊥AC,∴FG∥BC,∴点G是AC的中点,∴CG=12AC=12.易得四边形CHMG是矩形,∴MH=CG=12.所以②正确;③如解图②,过点C作CD⊥AB于点D,过点D作PK⊥BC,分别交BC、GM于点P,K,过点D作QS⊥AC分别交AC、MH于点Q、S.∴DP=SH,Rt△ACD≌Rt△BCD(HL),∴AD=BD,∴CD=12AB=BD,∠DCB=∠ECF=45°,则∠ECH=∠FCD,又∵∠CDF=∠CHE=90°,∴△CDF ∽△CHE ,∴HE CH =FD CD ,∴当CH >CD 时,HE >FD ,在Rt △FDK 中,FD >DK ,则HE >DK ,即HE >MS ,HS >ME ,易得△MEF 是等腰直角三角形,∴FE=2ME,又∵CD=2DP=2HS,∴EF <CD.∵AB=2CD ,∴EF <12AB ,∵AF+BE+EF=AB ,∴AF+BE >EF.所以③错误.④如解图③,连接DG ,DH ,∵CD ⊥AB ,FG ⊥CG ,∴点G 、C 、D 、F 共圆,∴∠FGD=∠FCD ;同理∠HDE=∠HCE ,∵∠FCD=∠HCE ,∴∠FGD=∠HDE ,易得∠GFD=∠DEH=135°,∴△GFD ∽△DEH ,∴GF DF =DE HE.在△GCF 与△CDE 中,易得∠GCF=∠DCE ,又∵∠CGF=∠CDE=90°,∴△GCF ∽△DCE ,∴CG CF =CD CE ,∵△CDF ∽△CHE,∴CH HE =CD DF,∴CH CG HE CF =CD CD DF CE⋅⋅,∵CD=22,∴CH·CG=12.HE DF 1DF HE 2⋅=,∴MG·MH=12.所以④正确.故选C.6. C 【解析】∵点E 、F 分别从点B 、D 出发,以同样的速度沿边BC 、DC 向点C 运动,∴BE=DF ,在△ABE 和△ADF中,AB=AD ,∠B=∠D ,BE=DF ,∴△ABE ≌△ADF (SAS ),∴AE=AF,故①正确;∵△ABE ≌△ADF ,∴BE=DF.又∵两点以相同速度运动,∴CE=CF.∴∠CEF =1802C ︒-∠,∵∠DBC=1802C︒-∠,∠CEF=∠DBC,∴EF∥BD,故②正确;当E、F 分别为边BC、DC的中点时,EF=12BD=BO,连接AC,∵在菱形ABCD中,∠B=60°,∴AC⊥BD,∠CBD=30°,∴∠BCO=60°,BO=32BC=3·2BE=3BE,∴EF=3BE,故③正确;∵△AEF的面积=菱形ABCD的面积-△ABE的面积-△ADF的面积-△CEF的面积=3 2AB2-12BE·AB×32×2-12×32×(AB-BE)2=-34BE2+34AB2,∴△AEF的面积是BE的二次函数,∴当BE=0时,△AEF 的面积最大,故④错误.故正确的结论有①②③.7.C【解析】在菱形ABCD中,∵AB=BD,∴AB=BD=AD, ∴△ABD是等边三角形,∴根据菱形的性质可得∠BDF=∠C=60°,∵BE=CF,∴BC-BE=CD-CF,即CE=DF,在△BDF和△DCE中,CE=DF,∠BDF=∠C=60°,BD=CD,∴△BDF≌△DCE(SAS),故①正确;∵△BDF≌≌△DCF(已证),∴∠DBF=∠EDC,∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,∴∠BMD=180°-∠DM F=180°-60°=120°,故②正确;∵∠DEB=∠EDC+∠C=∠EDC+ 60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,∴∠DEB=∠ABM,又∵AD∥BC,∴∠ADH=∠DEB,∴∠ADH=∠ABM,在△ABM和△ADH中,AB=AD,∠ADH=∠ABM,DH=BM,∴△ABM≌△ADH(SAS),∴AH=AM,∠BAM=∠DAH,∴∠MAH=∠MAD+∠DAH=∠MAD+∠B AM=∠BAD=60°,∴△AMH是等边三角形,故③正确;∵△ABM≌△ADH,∴△AMH的面积等于四边形ABMD的面积,又∵△AMH的面积=12AM·32AM=34AM2,∴S四边形ABMD=34AM2,S四边形ABCD≠S四边形ABMD,故④错误,综上所述,正确的是①②③共3个.8.C【解析】∵△CDE为正三角形,∴∠CDE=60°,∴∠ADE=90°-60°=30°,∵AD=DE=CD,∴∠DAE=∠DEA=12(180°- 30°)=75°,∴∠BAF=90°-75°=15°,∴∠AFC=90°+15°=105°,故①正确;如解图,过点H作HK⊥AB于点K,则HK=AD,∵GH⊥AF,∴∠BAF+∠AGE=90°,又∵∠AGE+∠KHG=90°,∴∠BAF=∠KHG,在△ABF和△HKG中,∠BAF=∠KHGHK=AB∠B=∠HKG,∴△ABF≌△HKG(ASA),∴AF=GH,∵△CDE为正三角形,∴点E在CD的垂直平分线上,根据平行线分线段成比例定理,点E是AF的中点,∴AF=2EF,∴GH=2EF,故②正确;∵GH⊥AF,∠DEA=75°,∴∠DEH=90°-75°=15°,K∴∠CEH=60°-15°=45°,∴∠CEF=90°-45°=45°,过点F作FM⊥CE于M,过点H作HN⊥CE于N,则MF=EM,NH=EN,∵△CDE是等边三角形,∴∠DCE=60°,∴∠ECF=90°-60°=30°,∴CM=3MF,NH=3CN,∴CE=3MF+MF=3CN+CN,∴MF=CN,∴CE=2EF+2EH,∴2CE=EF+EH,故③正确;AE EF2MF3==,故④错误.EH EH33CN?29. ②③【解析】逐项分析:①∵在⊙O中,AB是直径,点D 是⊙O上一点,点C是弧AD的中点,∴AC=CD≠BD,∴∠BAD≠∠ABC,所以①错误;②如解图①,连接OD,∵DG是⊙O的切线,∴OD⊥GD,∵OA=OD,∴∠OAD=∠ODA,∵∠ODA+∠GDP=90°,第9题解图①∠EAP+∠EPA=∠EAP+∠GPD=90°,∴∠GPD=∠EPA=∠GDP,∴GP=GD,所以②正确;③如解图②,补全⊙O,延长CE交⊙O于点F,∵弦CE⊥AB于点E,∴A为CF的中点,即AF=AC,又∵C为AD的中点,∴AC=CD,∴AF=CD,∴∠CAP=∠ACP,∴AP=CP.∵AB为⊙O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,所以③正确.综上可知,正确的结论是②③.10. ①②③④【解析】作NF⊥BC于N,如解图,∴∠FNE=90°,∵四边形ABCD是正方形,∴∠ABC=∠BCD=∠ADC=∠BAD=90°,AB=BC=CD=DA.∴NF=AB=CB.∵EF垂直平分BP,∴∠2=∠3,∠2+∠NEF=90°,∵∠1+∠NEF=90°,∴∠1=∠2,在△BCP和△FNE中,∠2=∠1,BC=FN,∠C=∠FNE,∴△BCP≌△FNE(ASA),∴BP=EF,故①正确;作BM⊥PG于M,∵GP⊥EP,∴BM∥EP,∠BMP=∠BMG=90°,∴∠3=∠5,∠BMP=∠C.∴∠2=∠5,在△BPC和△BPM中,∠C=∠BMP,∠2=∠5,BP=BP,∴△BPC≌△BPM(AAS),∴BC=AB=BM,∴以BA为半径的⊙B与GP相切,故②正确;在Rt△BMG和Rt△BAG中,BG=BG,BM=AB,∴Rt△BMG≌Rt△BAG(HL),∴∠6=∠7.∵∠2+∠5+∠6+∠7=90°,∴2∠5+2∠6=90°,∴∠5+∠6=45°,即∠PBG=45°.∴∠8=45°.∴∠FHG=45°,故③正确;当G为AD的中点时,设AG=GD=x,CP=y,则GM=x,PM=y,PD=2x-y,在Rt△PGD中,由勾股定理,得(x+y)2=x2+(2x-y)2,∴y=23x,即CP=23x,∴PD=2x-23x=43x,∴DP=2CP,故④正确.∴正确的结论有:①②③④.11. ①④⑤【解析】如解图,连接AN,∵EF垂直平分AB,∴AN=BN,根据折叠的性质,可得AB=BN,∴AN=AB=BN.∴△ABN为等边三角形.∴∠ABN=60°,∠PBN=60°÷2=30°,即结论①正确;∵∠ABN=60°,∠ABM=∠NBM,∴∠ABM=∠NBM=60°÷2=30°,∴AM=AB·tan30°=2×33=233,即结论②不正确;∵EF∥BC,QN是△MBG的中位线,∴QN=1 2BG;∵BG=BM=AB÷cos∠ABM=2÷32=433,∴QN=1 2×433=233,即结论③不正确;∵∠ABM=∠MBN=30°,∠BNM=∠BAM=90°,∴∠BMG=∠BNM-∠MBN=90°-30°=60°,∴∠MBG=∠ABG-∠ABM=90°-30°=60°,∴∠BGM =180°-60°-60°=60°,∴∠MBG=∠BMG=∠BGM=60°,∴△BMG为等边三角形,即结论④正确;∵△BMG是等边三角形,点N是MG的中点,∴BN⊥MG,∴BN=BG·sin60°=43×23=2,当P与Q重合时,PN+PH的值最小,∵P 是BM的中点,H是BN的中点,∴PH∥MG,∵MG⊥BN,∴PH ⊥BN ,又∵PE ⊥AB ,∴PH=PE ,∴PN+PH=PN+PE=EN ,∵EN ===PN+PHPN+PH的最小值是,即结论⑤正确.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年九年级数学下册期末达标检测试卷(人教版附答案)期末达标检测卷 (120分,90分钟) 题号一二三总分得分一、选择题(每题3分,共30分) 1.下列立体图形中,主视图是三角形的是( ) 2.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为( ) A.35 B.45 C.34 D.以上都不对 3.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(-3,2).若反比例函数y =kx(x>0)的图象经过点A,则k的值为( ) A.-6 B.-3 C.3 D.6 (第3题) (第4题) (第5题) 4.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C 和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( ) A.4 B.5 C.6 D.8 5.如图,在▱ABCD中,若E为DC的中点,AC与BE 交于点F,则△EFC与△BFA的面积比为( ) A.1�2 B.1�2 C.1�4 D.1�8 6.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( ) A.6 cm B.12 cm C.18 cm D.24 cm (第6题) (第7题) (第9题) 7.如图,反比例函数y1=k1x和正比例函数y2=k2x的图象交于A(-1,-3),B(1,3)两点,若k1x>k2x,则x的取值范围是( ) A.-1<x<0 B.-1<x<1 C.x<-1或0<x<1 D.-1<x<0或x>1 8.如果点A(-1,y1),B(2,y2),C(3,y3)都在反比例函数y=3x的图象上,那么( ) A.y1<y2<y3 B.y1<y3<y2 C.y2<y1<y3 D.y3<y2<y1 9.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为( ) A.4 km B.(2+2)km C.22km D.(4-2)km 10.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是( ) (第10题) 二、填空题(每题3分,共30分) 11.写出一个反比例函数y=kx(k≠0),使它的图象在每个象限内,y的值随x值的增大而减小,这个函数的解析式为____________. 12.在△ABC中,∠B=45°,cosA=12,则∠C的度数是________. 13.在下列函数①y=2x+1;②y=x2+2x;③y =3x;④y=-3x中,与众不同的一个是________(填序号),你的理由是____________________________________. 14.在某一时刻,测得一根高为2 m的竹竿的影长为1 m,同时测得一栋建筑物的影长为12 m,那么这栋建筑物的高度为 ________m. 15.活动楼梯如图所示,∠B=90°,斜坡AC的坡度为1�1,斜坡AC的坡面长度为8 m,则走这个活动楼梯从A点到C点上升的高度BC为________. (第15题) (第16题) (第17题) (第18题) 16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________. 17.如图,在△ ABC 中,DE∥BC,分别交AB,AC于点D,E.若AD=1,DB=2,则△ADE的面积与△ABC的面积的比是________. 18.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象交于第二、四象限的A,B两点,与x轴交于C点.已知A(-2,m),B(n,-2),tan ∠BOC=25,则此一次函数的解析式为________________. 19.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB的面积是________. (第19题) (第20题) 20.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32S△FGH;④AG+DF=FG.其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:(5-π)0-6tan30°+12-2+|1-3|.22.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH =43,点B的坐标为(m,-2). (1)求△AHO的周长; (2)求该反比例函数和一次函数的解析式.23.如图,点A,B,C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB的坡度i1=1∶2,钢缆BC的坡度i2=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比) (第23题) 24.如图①,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E. (1)求证:AC平分∠DAB; (2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长; (3)如图②,连接OD交AC于点G,若CGGA=34,求sinE 的值.25.如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=33. (1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式; (2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π) (第25题)26.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处. (1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA. ① 求证:△OCP∽△PDA;② 若△OCP与△PDA的面积比为1�4,求边AB的长. (2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.答案一、1.A 2.A 3.D 4.C 5.C 6.C 7.C 8.B 9.B 10.C 二、11.y=3x(答案不唯一) 12.75° 13.③;只有③的自变量取值范围不是全体实数点拨:这是开放题,答案灵活,能给出合适的理由即可. 14.24 15.42 m 16.6或7或8 17.1�9 18.y=-x+3 19.8 20.①③④点拨:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10.在Rt△ABF 中,∵AB=6,BF=10,∴ AF=102-62=8,∴DF=AD-AF=10-8=2.设EF=x,则CE=x,DE=CD-CE=6-x.在Rt△DEF中,∵DE2+DF2=EF2,∴(6-x)2+22=x2,解得x=103,∴DE=83.∵△ABG 沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠EBG=∠2+∠3=12∠ABC=45°,∴①正确;HF =BF-BH=10-6=4,设AG=y,则GH=y,GF=8-y.在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8-y)2,解得y=3,∴AG=GH=3 ,GF=5.∵∠A=∠D,ABDE=94,AGDF=32,∴ABDE≠AGDF,∴△ABG 与△DEF不相似,∴②错误;∵S△ABG=12AB•AG=12×6×3=9,S△FGH=12GH•HF=12×3×4=6,∴S△ABG=32S△FGH,∴③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,∴④正确.三、21.解:原式=1-6×33+4+3-1=4-3. 22.解:(1)由OH=3,AH⊥y 轴,tan∠AOH=43,得AH=4. ∴A点坐标为(-4,3).由勾股定理,得AO=OH2+AH2=5,∴△AHO的周长为AO+AH+OH=5+4+3=12.(2)将A点坐标代入y=kx(k≠0),得k=-4×3=-12,∴反比例函数的解析式为y=-12x. 当y=-2时,-2=-12x,解得x=6,∴B点坐标为(6,-2).将A、B两点坐标代入y=ax+b,得-4a+b=3,6a+b=-2,解得a=-12,b=1. ∴一次函数的解析式为y=-12x+1. 23.解:过点A作AE⊥CC′于点E,交BB′于点F,过B点作BD⊥CC′于点D,则△AFB,△BDC和△AEC都是直角三角形,四边形AA′B′F,四边形BB′C′D和四边形BFED都是矩形,∴BF =BB′-FB′=BB′-AA′=310-110=200(米),CD=CC′-DC′=CC′-BB′=710-310=400(米),∵BF∶AF=1∶2,CD∶BD=1∶1,∴AF=2BF=400(米),BD=CD=400(米),又∵FE=BD=400(米),DE=BF=200(米),∴AE=AF+FE=800(米),CE=CD+DE =600(米),∴在Rt△AEC中,AC=AE2+CE2=8002+6002=1000(米).答:钢缆AC的长度为1 000米. 24.(1)证明:连接OC,如图①.∵OC切半圆O于C,∴OC⊥DC,又AD⊥CD.∴OC∥AD.∴∠OCA =∠DAC.∵OC=OA,∴∠OAC=∠ACO.∴∠DAC=∠CAO,即AC平分∠DAB. (2)解:在Rt△OCE中,∵OC=OB=12OE,∴∠E=30°. ∴在Rt△OCF中,CF=OC•sin60°=2×32=3. (3)解:连接OC,如图②.∵CO∥AD,∴△CGO∽△AGD.∴CGGA=COAD=34.不妨设CO=AO=3k,则AD=4k.又△COE∽△DAE,∴COAD=EOAE=34=EO3k+EO.∴EO =9k.在Rt△COE中,sinE=COEO=3k9k=13. (第24题) 25.解:(1)在Rt△OBA中,∠AOB=30°,OB=33,∴AB=OB•tan 30°=3. ∴点A的坐标为(3,33).设反比例函数的解析式为y=kx(k≠0),∴33=k3,∴k=93,则这个反比例函数的解析式为y=93x. (2)在Rt△OBA中,∠AOB=30°,AB=3,sin ∠AOB=ABOA,即sin 30°=3OA,∴OA=6. 由题意得:∠AOC=60°,S扇形AOA′=60•π•62360=6π. 在Rt△OCD中,∠DOC=45°,OC=OB=33,∴OD =OC•cos 45°=33×22=362. ∴S△ODC= 12OD2=123622=274. ∴S阴影=S扇形AOA′-S△ODC=6π-274. 26.(1)①证明:如图①,∵四边形ABCD是矩形,∴∠C=∠D=∠B=90°,∴∠1+∠3=90°. 由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°.∴∠3=∠2 . 又∵∠C=∠D,∴△OCP∽△PDA. ②解:∵△OCP与△PDA 的面积比为1�4,且△OCP∽△PDA,∴OPPA=CPDA=12.∴CP=12AD =4. 设OP=x,则易得CO=8-x. 在Rt△PCO中,∠C=90°,由勾股定理得 x2=(8-x)2+42. 解得x=5. ∴AB=AP=2OP=10. (第26题) (2)解:作MQ∥AN,交PB于点Q,如图②. ∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP. ∴MP=MQ.又BN=PM,∴BN=QM. ∵MQ∥AN,∴∠QMF=∠B NF,∠MQF=∠FBN,∴△MFQ≌ △NFB.∴QF=FB. ∴QF =12QB. ∵M P=MQ,ME⊥PQ,∴EQ=12PQ. ∴EF=EQ+QF=12PQ+12QB =12PB. 由(1)中的结论可得PC=4,BC=8,∠C=90°. ∴PB=82+42=45,∴EF=12PB=25. ∴在(1)的条件下,点M,N在移动的过程中,线段EF的长度不变,它的长度恒为25.。