水热法制备ZnO纳米结构及其应用
ZnO纳米线的微乳-水热法制备与气敏性能
中图分类号: T Q 1 3 2 . 4 ; O 6 4 9 . 4 文献标识码 : A 文章 编 号 : 1 6 7 1 —3 2 0 6 ( 2 0 1 3 ) 0 2— 0 2 2 1— 0 4
Mi c r o e mu l s i o n - me d i a t e d h y d r o t h e r ma l s y n t h e s i s a n d g a s s e n s i n g pe r f o r ma n c e o f ZnO n a n o wi r e s
Байду номын сангаас
WU Y a n - ] u n , L I R o n g, Z E N G C h u n — me i , H E P n g , G O U X i n g — l o n g
( C h e m i c l a S y n t h e s i s a n d P o l l u t i o n C o n t r o l K e y L a b o r a t o r y o f S i e h u a n P r o v i n c e , C o l l e g e o f C h e m i s t  ̄ a n d C h e m i c a l E n g i n e e r i n g , C h i n a We s t N o r ma l U n i v e r s i t y , N a n e h o n g 6 3 7 0 0 0 , C h i n a )
s o r s e x h i b i t e d r a p i d r e s p o n s e t o i s o p r o p y l a l c o h o l , a c e t o n e, a c e t i c a c i d a n d f o r ma l d e h y d e w i t h l o w c o n c e n —
水热法制备ZnO纳米结构
LOGO
图在Si衬底上,先期对ZnO籽晶层图形化处理,后生长的ZnO 纳米图形化结构,采用电子束光刻技术对籽晶层进行图形化 处理,从而实现了单根纳米棒生长的控制 在纳米棒阵列图形化方面,通过对籽晶层先期图形化处理, 可以设计各种图形,如图4[17](a)和(b)所示,另外采用 电子束光刻等技术,可以图形化出只够一根纳米棒生长的籽 晶颗粒,从而可实现对单根纳米棒生长的控制,如图(c)所示 , LOGO
水热法制备ZnO纳米结构
LOGO
参考文献
[1] Duan X, Huang Y, Cui Y, et al, et al. Nature(London), 2001, 409: 66—68. [2] Huang M H, Mao S, Feick H, et al. Science, 2001, 292: 1897—1900. [3] 李海玲,王永生,滕枫,等.光谱学与光谱分析, 2004, 24(10): 1172—1175. [4] Beermann N, Vayssieres L, Lindquist S E, et al. J. Electrochem. Soc., 2000, 147: 2456—2459. [5] Huang J L,Chen S J,Tseng Y K,et al.ZnO nanopencils:Efficient field emitters.Appl Phys Lett, 2005,87:013110. [6] Huang M H, Mao S,Yang PD, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001,292:1897. [7] Hirano S,Ibe K,Kuwabara M,et al.Room-temperature nanowire ultraviolet lasers:An aqueous pathway for zinc oxide nanowires with low defect density.J Appl Phys,2005,98:094305. [8] Wei Q,Meng G W,Zhang L D,et al.Temperature-controlled growth of ZnO nanostructure: branched nanobelts and wide nanosheets.Nanotechnology,2005,16:2561. [9 ] Z. Qiu,K.S.Wong,M.WU,W.Lin,and H.Xu, Appl Phys.Lett.2005,84,2739.
水热生长直立均匀 zno 纳米棒阵列的影响因素
水热生长直立均匀 zno 纳米棒阵列的影响因素水热生长直立均匀 ZnO 纳米棒阵列的影响因素一、引言水热法是一种简单且有效的方法,用于合成直立均匀的 ZnO 纳米棒阵列。
这种方法不仅能够制备出具有优良性能的纳米材料,而且还在能源、光电、催化等领域具有广泛的应用。
了解影响水热生长直立均匀ZnO 纳米棒阵列的因素,对于优化合成策略、提高纳米材料的性能具有重要意义。
本文将从表面处理、反应条件、溶液浓度和衬底选择等方面,探讨影响水热生长直立均匀 ZnO 纳米棒阵列的因素。
二、表面处理表面处理是实现直立均匀 ZnO 纳米棒阵列生长的关键步骤之一。
在水热法合成过程中,通过表面处理可以改变衬底表面的性质,从而对纳米棒的生长行为产生影响。
常用的表面处理方法包括使用酸洗、其它表面活化剂等。
这些表面处理方法可以去除衬底表面的杂质和缺陷,提高纳米棒的生长均匀性。
三、反应条件反应条件是影响水热生长 ZnO 纳米棒阵列的重要因素之一。
合适的温度和反应时间可以促进纳米棒的生长,并控制其生长方向和尺寸。
通常情况下,较高的反应温度和较长的反应时间有利于纳米棒的纵向生长,而较低的反应温度和较短的反应时间则可以促使纳米棒的横向生长。
适当的溶液浓度和 PH 值也对纳米棒的生长具有重要影响。
四、溶液浓度溶液浓度是影响水热生长 ZnO 纳米棒阵列的重要因素之一。
溶液浓度的增加可以提高纳米棒的密度和尺寸,并且可以增加纳米棒的生长速率。
然而,当溶液浓度过高时,会导致纳米棒之间的相互作用增强,从而影响纳米棒的均匀生长。
在水热法合成 ZnO 纳米棒阵列时,需平衡溶液浓度和均匀性之间的关系,选择适当的浓度,以实现均匀的生长。
五、衬底选择衬底的选择对于实现水热生长直立均匀 ZnO 纳米棒阵列也有重要影响。
合适的衬底可以提供足够的成核点,促使纳米棒的生长。
常用的衬底材料包括硅片、玻璃基片等。
选择不同的衬底材料,可以调控纳米棒的生长方向和排列密度,从而实现不同的纳米棒阵列结构。
ZnO纳米材料的合成与应用研究
ZnO纳米材料的合成与应用研究概述:ZnO纳米材料作为一种具有广泛应用前景的半导体材料,其合成与应用研究一直备受关注。
本文旨在探讨ZnO纳米材料的合成方法以及其在各个领域的应用,从而深入了解其在科学研究和工业应用中的潜力。
一、ZnO纳米材料的合成方法1. 水热法合成水热法是一种常用的制备ZnO纳米材料的方法。
它通过调节反应条件和反应时间,可以获得具有不同形貌和尺寸的ZnO纳米颗粒。
水热法合成ZnO纳米材料具有简单、低成本、可扩展性强等优点,因此受到了广泛关注。
2. 溶胶-凝胶法合成溶胶-凝胶法是一种通过溶胶中的化学反应和胶体形成过程制备纳米材料的方法。
在ZnO纳米材料的合成中,可以通过溶胶-凝胶法控制反应条件,如温度、浓度和PH值等,以实现获得具有不同形貌和尺寸的纳米颗粒。
3. 气相法合成气相法是制备ZnO纳米材料的一种常用方法。
它通过将金属有机化合物或金属化合物加热到高温,然后通过氧化反应生成ZnO纳米颗粒。
气相法合成的ZnO纳米材料具有高纯度、高晶度和尺寸可控性好等特点。
二、ZnO纳米材料在光电子领域的应用1. 光催化应用ZnO纳米材料具有优异的光催化性能,可以利用其吸收紫外光的特性来分解有害有机物和杀灭细菌。
因此,ZnO纳米材料被广泛应用于光催化净化空气、水处理和消毒等领域。
2. 光电器件应用由于ZnO纳米材料的特殊电学性质和优异的光电性能,它在光电器件领域具有广泛应用潜力。
例如,ZnO纳米材料可以用于制备光电传感器、光电调制器、太阳能电池等。
三、ZnO纳米材料在生物医学领域的应用1. 抗菌材料ZnO纳米材料具有较高的抗菌性能,可以通过抑制细菌的生长来达到消毒和杀菌的目的。
因此,在生物医学领域,ZnO纳米材料被广泛应用于医疗设备、外科用品和医疗纺织品等。
2. 肿瘤治疗由于ZnO纳米材料的优异光学性质,在肿瘤治疗中可以利用其光热效应。
将ZnO纳米材料注入肿瘤组织,并利用红外激光的吸收来使其产生局部高温,从而实现对肿瘤的治疗。
两步水热法制备枝干状ZnO纳米结构的研究
摘 要 : 采 用 两步水热 法 , 第 1步利 用 Au作 为催 化 剂 生长 Z n O 纳 米杆 ; 第 2步 利 用醋 酸 锌 分 解 成 Z n O
纳 米 颗 粒 作 籽 晶层 在 Z n O 纳 米杆 的侧 壁 生长 Z n O 纳 米枝条 , 在 S i 片上成 功 制备 了枝 干状 Z n O 纳米 结 构 。
关键 词 : 水热生长 ; 枝干状 Z n O纳米结构 ; 籽 晶层 ; 生 物 兼 容 性
C 积l O n m T i l S O n m A u
中图分类 号 : T B 3 4
文献标 识码 : A
第1 步水热 生长
DOI : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 1 — 9 7 3 1 . 2 0 1 3 . 2 1 . 0 1 2
首先 , 将 S i 片分别置 于 丙酮 、 无 水 乙醇 、 去 离 子水 中超声 清洗 1 0 ai r n , 氮 气 吹干 , 并在 1 0 0 。 C烘 台上 烘烤
5 mi n去 除残 余 水 分 。利 用 电子 束 蒸 镀 ( E d wa r d Au— TO5 0 0 ) 在s i 片 上 分别 沉 积 1 0 n m T i 和5 0 n m Au薄
锨
文 章编 号 : 1 0 0 1 — 9 7 3 1 【 2 0 1 3 ) 2 1 — 3 1 0 8 — 0 5
材
料
2 0 1 3 年 第2 1 期( 4 4 ) 卷
两 步 水 热 法 制 备枝 干状 Z n O 纳 米 结构 的研 究
ZnO纳米粉体制备与表征解析
ZnO纳米粉体制备与表征一实验目的1. 了解氧化锌的结构及应用2. 掌握“共沉淀和成核/生长隔离、水热法和微波水热、溶胶-凝胶法、反相微乳液”技术制备纳米材料的的方法与原理。
3. 了解同步热分析仪、X-射线衍射仪、扫描电子显微镜(SEM )与比表面测定仪等表征手段和原理二基本原理2.1氧化锌的结构氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。
氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体结构,四面体的面与正极面C(00001)平行,四面体的顶角正对向负极面(0001),晶格常数a=342pm, c=519pm,密度为5.6g/cm3,熔点为2070K,室温下的禁带宽度为 3.37eV.女口图1-1、图1-2所示:图1-1 ZnO晶体结构在 C (00001)面的投影图1-2 ZnO纤锌矿晶格图2.2氧化锌的性能和应用纳米氧化锌(ZnO)粒径介于1- 100nm之间,由于粒子尺寸小,比表面积大,因而,纳米ZnO表现出许多特殊的性质如无毒、非迁移性、荧光性、压电性、能吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、杀菌、图象记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。
同时氧化锌材料还被广泛地应用于化工、信息、纺织、医药行业。
纳米氧化锌的制备是所有研究的基础。
合成纳米氧化锌的方法很多,一般可分为固相法、气相法和液相法。
本实验采用共沉淀和成核/生长隔离技术制备纳米氧化锌粉。
2.3氧化锌纳米材料的制备原理不同方法制备的ZnO晶形不同,如:2.3.1共沉淀和成核/生长隔离法借助沉淀剂使目标离子从溶液中定量析出是材料制备领域液相法的重要技术。
常规共沉淀制备是将盐溶液与碱溶液直接混合并通过搅拌的方式实现,由于混合不充分,反应界面小、存在浓度梯度、反应速度和扩散速度慢,先沉淀的粒子上形成新沉淀粒子,新旧粒子的同时存在,导致粒子尺寸分布极不均匀。
(2023)最新水热法制备ZnO纳米材料及其影响因素的研究开题报告
(2023)最新水热法制备ZnO纳米材料及其影响因素的研究开题报告.答案(一)研究背景随着纳米科技和材料科学的发展,纳米材料已成为当前研究的热点。
其中,氧化锌纳米材料因其优异的物理、化学性质及广泛的应用领域备受关注。
水热法作为制备氧化锌纳米材料的一种方法,具有简单易行、成本低廉等优点,因此受到广泛关注。
研究目的本文旨在对水热法制备氧化锌纳米材料进行研究,并探究影响其制备过程及性质的因素,从而为其应用领域提供理论和实验依据。
研究内容1.概述水热法制备氧化锌纳米材料的过程2.系统研究影响制备氧化锌纳米材料过程的因素,包括反应温度、反应时间、溶液浓度等。
3.对制备得到的氧化锌纳米材料进行表征,包括粒径、形貌、结晶性等。
4.探究氧化锌纳米材料的性质,包括光学性质、催化性能等。
5.对影响氧化锌纳米材料性质的因素进行研究和分析。
研究方法1.采用水热法制备氧化锌纳米材料。
2.利用SEM、TEM等显微分析技术对氧化锌纳米材料进行形貌和结构的表征。
3.利用XRD、FTIR、UV-Vis等分析技术对氧化锌纳米材料的晶体结构、光学性质等进行分析。
4.利用对苯二酚-光度法、紫外光谱法等方法对氧化锌纳米材料的催化性能进行测定。
研究意义1.为水热法制备氧化锌纳米材料提供一种新途径。
2.探究影响制备过程及性质的因素,为优化氧化锌纳米材料的制备提供依据。
3.系统地分析氧化锌纳米材料的性质,为其在光学、催化等领域的应用提供理论基础。
4.对于绿色合成、减少污染、节约成本等方面也有一定的贡献。
研究计划阶段时间任务第一阶段2023.1-2023.3 文献综述,明确研究思路和方向第二阶段2023.4-2023.6 开展水热法制备氧化锌纳米材料的实验第三阶段2023.7-2023.9 对制备得到的氧化锌纳米材料进行表征和性质研究第四阶段2023.10-2023.12分析影响氧化锌纳米材料制备和性质的因素,撰写论文第五阶段2024.1-2024.2 完善并提交毕业论文参考文献1.Li Y, Wang Y, Zhang L, et al. Synthesis of ZnOnanoparticles in microemulsions and theircharacterization[J]. Materials Science and Engineering: B, 2008, 149(1): 10-14.2.Liu F, He S, Ge C, et al. Hydrothermal synthesis of ZnOnanostructures with different morphologies[J]. Journalof Alloys and Compounds, 2009, 467(1-2): 369-373.3.Chen X, Mao S S. Titanium dioxide nanomaterials:Synthesis, properties, modifications, andapplications[J]. Chemical Reviews, 2007, 107(7): 2891-2959.4.Pan S, An L, Li W, et al. Hydrothermally grown ZnOnanorods and nanosheets: Characterization and gassensing properties[J]. Sensors and Actuators B: Chemical, 2011, 156(2): 700-706.5.Singh R P, Singh P, Singh A K. A comprehensive review onsynthesis, characterization, photocatalytic activity,and mechanism of ZnO nanoparticles[J]. Advances inColloid and Interface Science, 2017, 242: 65-79.结论经过实验和分析,本文得出以下结论: 1. 水热法是一种可行的制备氧化锌纳米材料的方法; 2. 反应温度、时间和溶液浓度是影响氧化锌纳米材料制备和性质的关键因素; 3. 制备得到的氧化锌纳米材料在形貌、结晶性、光学性质和催化性能等方面表现出良好的性质; 4. 氧化锌纳米材料具有潜在的光学、电化学和催化应用前景。
微波水热法制备纳米ZnO粉体的研究
关键 词 : Z n O; 纳 米粉 体 ; 微 波 水 热 法
2 实 验
2 . 1 样 品 的 制 备
中 图 分 类 号 : TB 3 4
文 献标 识码 : A
实 验所 用试 剂均 为分 析纯 。以硝酸 锌 和 氢氧 化 钠
NH。・ H: O 和 HNO。 调节 溶液 体 系的 p H值( 1 ~9 ) ,
然后 将调 好 p H 值 的溶 液 加 入 微 波 消 解 罐 中 , 密 封 后 置 于微波 消解 仪 ( E THOS A型) 中进 行 微 波 加 热 , 控 制溶 液 的温度 ( 8 O ~1 5 0 ℃) 使 之 发 生 化 学 反 应 。 当反 应进 行一 定 时 问( 5 ~3 0 ai r n ) 后, 停止加热 , 取 出溶 液 ,
摘 要 : 以硝 酸锌 和 氢氧化 钠 为原料 , 通 过 微 波 水 热
法 制 备 了 Zn O 纳 米 粉 体 。 采 用 X射 线 衍 射 、 透 射 电
介 电作 用进 行 能 量传 递 , 而 且加 热 过 程 从 物 质 内部 开 始, 能产生 与 常规传 热过程 相反 的温度梯 度l 1 。 因 此, 微 波水 热法 具有 加热 速度 快 、 反应 灵 敏 、 受热均匀、 对 很多 反应 体 系具 有 加 速 化 学 反 应 的 优 点 , 在 制 备 均 匀、 粒度 分 布狭 窄 的纳米 级粉 体方 面具 有 独特 的优 势 , 故其 在 制备 纳米 粉体 方 面得到 了广 泛 的研 究 n 。本 文 以硝 酸锌 与 氢 氧化 钠 为 原 料 , 采 用 微 波 水 热 技 术 制 备了 Z n O 纳米 粉体 , 并对 影 响粉 体性 能 的相关 因素 进
Li掺杂ZnO纳米阵列的水热合成和水热法原理及制备方法汇总(DOC)
Li掺杂ZnO(AZO)纳米阵列的水热合成摘要:准一维纳米材料,包括纳米线、纳米棒、纳米针、纳米管、纳米带、纳米同轴电缆和异质结等是当前纳米材料科学领域的前沿和热点。
有序的纳米阵列结构能够合理控制材料的定向生长,进而实现对其尺寸、维度、组成、晶体结构乃至物性的调控,从而有利于在纳米器件中的应用。
ZnO纳米线与碳纳米管,硅纳米线被认为是21世纪主要的纳米材料,在光学,光电子学,能源,传感器,关键词: Li掺杂 ZnO 纳米阵列水热合成1.1引言纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1~100nm)或由它们作为基本单元构成的材料。
由于纳米材料尺寸小,可与电子的德布罗意波长、超导相干波长及激子玻尔半径相比拟,电子被局限在一个体积十分微小的纳米空间,电子输运受到限制,颗粒、原子团簇。
由于这些材料一般具有量子效应,因此二维、一维和零维的纳米材料又被称为量子阱、量子线和量子点。
近十多年来,以碳纳米管为代表的准一维纳米新材料因其特殊的一维纳米结构(纳米管、纳米线、纳米同轴电缆、纳米带等),呈现出一系列优异的力、光、电、声、磁、热、储氢、吸波等性质,在未来纳米器件领域中具有广阔的应用前景,成为纳米材料家族中一类引入瞩目的群体。
然而,和量子阱、量子点的研究相比,准一维纳米材料的研究进展相对较慢,其原因在于准一维纳米材料尤其是结构可控的准一维纳米材料的制备比较困难。
尽管一维纳米结构可以利用纳米光刻技术(电子束光刻、结构、组分、形态、大小以及位置等进行人为的控制,从而直接生长出所需的准一维纳米材料和纳米结构。
因此,物理、化学合成将成为制备准一维纳米材料的一种十分重要的新途径。
对一维纳米材料可控生长技术、表征技术和应用技术的深入研究将会促进纳米科学和技术的发展,有助于发现新的效应,发展新的器件。
ZnO属于带隙较宽( 室温下3.37eV) 的半导体材料, 由于本征缺陷的存在, 使得ZnO往往具有的N 型导电性。
纳米ZnO多孔材料的制备及其光学性质的研究
纳米ZnO多孔材料的制备及其光学性质的研究纳米ZnO多孔材料的制备及其光学性质的研究引言纳米材料作为一类具有特殊结构和性质的材料,近年来受到了广泛关注。
纳米材料的制备方法众多,其中纳米ZnO多孔材料因其优异的光学性质,备受研究者的青睐。
本文主要对纳米ZnO多孔材料的制备方法及其光学性质进行了综述和分析。
纳米ZnO多孔材料的制备方法纳米ZnO多孔材料的制备方法因其结构特点的需要而不同。
目前常见的制备方法主要有几种:溶胶-凝胶法、气相沉积法、水热法等。
溶胶-凝胶法是将溶液中的Zn源加入到混合溶液中,形成溶胶,再将溶胶经由加热和脱水过程得到凝胶。
凝胶会再经由煅烧,形成多孔ZnO材料。
这种方法可以根据需求控制凝胶形成的速率和温度,得到不同孔结构的材料。
气相沉积法是指在一定的气氛下,通过将气体中的Zn源转变成蒸汽等方式,将其将其转移到基底表面沉积形成多孔ZnO材料。
这种方法具有高纯度、高晶质和规模化生产等优点。
水热法是利用高压合成器中的高温高压水介质,将合成所需晶种和反应物置于高温高压水箱中,通过水热反应合成纳米ZnO多孔材料。
水热法制备的多孔材料具有晶型可控性强、形貌可调性好等优点。
纳米ZnO多孔材料的光学性质研究纳米ZnO多孔材料在光学性质研究上表现出了许多特殊的性质,如荧光性质、吸光性质和光催化性质等。
首先,纳米ZnO多孔材料在荧光性质方面具有较强的发射和吸收特性。
纳米ZnO多孔材料由于其特殊的孔结构和大小效应,导致其光子峰位置具有明显的红移现象。
这种红移现象会进一步影响其吸收能力和发射光谱。
因此,合理调控纳米ZnO多孔材料的孔结构和孔径大小,对其荧光性质研究具有重要意义。
其次,纳米ZnO多孔材料表现出的吸光性能也备受关注。
纳米ZnO多孔材料的孔结构导致了其对光的吸收增强,进而影响了其吸收能力。
潜在应用领域包括太阳能电池、光电传感器等。
最后,纳米ZnO多孔材料具有较好的光催化性能。
纳米ZnO多孔材料具有大比表面积和特殊的孔结构,能够提供更多的吸附和反应位点,从而提高光催化反应速率。
《ZnO纳米材料的水热法制备及丙酮气敏性能优化研究》范文
《ZnO纳米材料的水热法制备及丙酮气敏性能优化研究》篇一一、引言随着纳米科技的飞速发展,氧化锌(ZnO)纳米材料因其独特的物理和化学性质,在光电子器件、传感器、催化剂等领域展现出广泛的应用前景。
ZnO纳米材料的气敏性能对于气体检测、环境监测和安全防护等领域具有极高的应用价值。
本文将详细介绍ZnO纳米材料的水热法制备工艺及其在丙酮气敏性能的优化研究。
二、ZnO纳米材料的水热法制备1. 材料与试剂制备ZnO纳米材料所需的主要材料和试剂包括:锌盐(如硝酸锌)、碱(如氢氧化钠)、去离子水以及表面活性剂等。
2. 制备方法水热法是一种制备ZnO纳米材料的常用方法。
具体步骤如下:(1)将一定浓度的锌盐溶液与碱溶液混合,调节pH值;(2)加入表面活性剂,以控制ZnO纳米颗粒的形貌和尺寸;(3)将混合液转移至反应釜中,加热并保持一定时间;(4)反应结束后,冷却、离心、洗涤,得到ZnO纳米材料。
3. 制备工艺优化通过调整反应物的浓度、pH值、反应温度和时间等参数,可以优化ZnO纳米材料的制备工艺,提高其产率和质量。
三、丙酮气敏性能优化研究1. 丙酮气敏性能测试采用气敏传感器对制备的ZnO纳米材料进行丙酮气敏性能测试。
通过测量传感器在不同浓度丙酮气体下的电阻变化,评估其气敏性能。
2. 性能优化措施(1)材料改性:通过掺杂其他元素或采用复合材料的方法,提高ZnO纳米材料的气敏性能。
(2)表面修饰:利用表面活性剂或生物分子对ZnO纳米材料进行表面修饰,提高其与丙酮气体的相互作用,从而提高气敏性能。
(3)结构优化:通过调整ZnO纳米材料的形貌、尺寸和结晶度等,优化其气敏性能。
3. 优化效果分析通过对比优化前后的气敏性能测试结果,分析优化措施对ZnO纳米材料气敏性能的影响。
结果表明,经过优化后的ZnO纳米材料在丙酮气体检测方面表现出更高的灵敏度、更低的工作温度和更好的选择性。
四、结论本文研究了ZnO纳米材料的水热法制备工艺及其在丙酮气敏性能的优化研究。
水热法制备纳米ZnO的研究现状
p e a a in p o e s r p r t r c s ,gr wt c a i a d p o e t so a o Z O e iwe .I o n h tt et p fr w t ~ o o h me h n s m n r p r i f n - n i r ve d tSf u d t a h y e o a ma e e n s
Pr c siga d Di & M o l c n lg , u z o g Unv ri fS in ea dTeh oo y W u a 3 0 4:3 S ez e y o esn n e ud Te h oo y H a h n iest o ce c n c n lg , h n 4 0 7 y h n h n Ke L b r tr fS e ilF n to a ae ilS e z e ie st , h n h n5 8 6 ) a o ao yo p ca u cin l tra , h n h n Unv r i S e z e 1 0 0 M y
( S aeKe b rt r fCr sa t r lS a d n v riy Jn n 2 0 0 1 tt yLa o ao y o y tl Ma ei , h n o g Uniest ,ia 5 1 0;2 Sa eKe a o ao yo tras a tt y L b rtr fMaeil
Ab ta t sr c Th e eo m e to a o Zn ( D, D , D n D) s n h sz d b y r t e m a m eh d i cu i g e d v l p n fn n - O 0 1 2 a d 3 y t e ie y h d o h r l t o n l d n
氧化锌纳米棒的水热法制备及染料敏化电池的应用研究的开题报告
氧化锌纳米棒的水热法制备及染料敏化电池的应用研究的开题报告1. 研究背景及意义随着环保意识的提高以及对可再生能源的需求,染料敏化太阳能电池(DSSCs)作为一种新型的太阳能转换设备受到越来越多的关注。
其中,氧化锌(ZnO)作为一种重要的半导体材料具有广泛的应用前景,因其良好的光电性能和低成本而得到广泛的研究。
目前,制备氧化锌纳米棒是一种常见的方法,其可以通过水热法来进行制备。
此外,氧化锌纳米棒的制备方法、形貌、尺寸和结构等都会对其性能造成影响。
因此,本研究旨在通过水热法制备氧化锌纳米棒,并研究其在染料敏化电池中的应用,进一步探索和改善其性能,为可再生能源领域做出贡献。
2. 研究内容和方法2.1 研究内容(1)采用水热法制备氧化锌纳米棒。
(2)对制备的氧化锌纳米棒进行表征,包括形貌、尺寸、结构等。
(3)制备染料敏化电池,并将制备的氧化锌纳米棒应用于染料敏化电池中,研究其性能。
2.2 研究方法(1)水热法制备氧化锌纳米棒,采用乙酸锌(Zn(CH3COO)2)和氢氧化钠(NaOH)作为前驱体,反应时间、温度、浓度等参数进行控制。
(2)采用扫描电子显微镜(SEM)、透射电镜(TEM)等表征手段,对制备的氧化锌纳米棒进行形貌和尺寸等方面的表征,采用X射线衍射(XRD)对其结构进行分析。
(3)制备染料敏化电池,并将制备的氧化锌纳米棒应用于染料敏化电池中。
通过对其光电性能进行测试,包括开路电压、短路电流密度、填充因子等,研究其在染料敏化电池中的应用性能。
3. 预期结果通过水热法制备的氧化锌纳米棒具有良好的形貌和尺寸等方面的特点。
将其应用于染料敏化电池中,预期可以得到较好的光电性能参数,为其在可再生能源领域的应用提供新思路和方向。
4. 研究展望在本研究的前提下,我们将在未来的研究中进一步探索氧化锌纳米棒的优化方法和多样性,以更好地实现其在染料敏化电池中的应用。
预计可以通过对纳米材料的改进,更好地提升其光电能力,并最终在可再生能源领域发挥重要的作用。
ZnO纳米材料的制备与应用概况
1.1 纳米材料概述上世纪70年代纳米颗粒材料问世,80年代中期在实验室合成了纳米块体材料,80年代中期以后,成为材料科学和凝聚态物理研究的前沿热点。
纳米材料研究的内涵不断的扩大,从最初的纳米颗粒(纳米晶、纳米相、纳米非晶等以及由它们组成的薄膜与块体,到纳米丝、纳米管、微孔和介孔材料(包括凝胶和气凝胶[1]。
纳米微粒的粒径一般在1~100nm,具有粒子尺寸小、比表面积大、表面原子数多、表面能和表面张力随粒径的下降急剧增大等特点,其组成的材料具有量子尺寸效应、表面效应、体积效应和宏观量子隧道效应,不同寻常的电学、磁学、光学和化学活性等特性,已在化工、制药、微电子、环境、能源、材料、军事、医学等领域展示了广泛的应用前景[2]。
1.2 氧化锌(ZnO概述氧化锌(ZnO是一种新型无机化工材料,它既是性能优良的压电、热电和铁电材料,同时也是一种新型的宽禁带半导体材料,被广泛应用于橡胶、染料、油墨、涂料、玻璃、压电陶瓷、气体传感器、图像记录材料、光电子及日用化工等领域,特别是纳米ZnO用于毛织物的后整理,使织物具有抗菌除臭、消毒、抗紫外线的功能,国内外在纳米ZnO制备和应用领域的研究正在不断的加强和深化。
目前己经制备出了多种不同形貌的ZnO一维纳米材料,并在激光、场发射、光波导、非线性光学等领域上有了新的用途[3]。
1.2. 1纳米ZnO的性质纳米氧化锌为白色粉末,其粒子尺寸小,比表面积大,因而它具有明显的表面与界面效应、量子尺寸效应、体积效应和宏观量子遂道效应以及高透明度、高分散性等特点,使其在化学、光学、生物和电学等方面表现出许多独特优异的物理和化学性能。
室温下,ZnO禁带宽度约为3.37eV,是一种新型的宽禁带直接带隙化合物半导体材料。
其激子束缚能高达60meV,在室温下不会全部分解,这意味着ZnO光致发光和受激辐射具有较低的闭值,因而更易在室温下实现高效受激发射。
ZnO被认为是一种更合适的用于室温或更高温度下的紫外光发射材料。
纳米结构ZnO的制备及性能研究
纳米结构ZnO的制备及性能研究一、本文概述氧化锌(ZnO)是一种重要的半导体材料,因其独特的物理和化学性质,在纳米科技领域引起了广泛的关注。
纳米结构ZnO的制备及性能研究对于推动材料科学、电子学、光电子学、生物医学等多个领域的发展具有重要意义。
本文旨在深入探讨纳米结构ZnO的制备方法、结构特性、以及其在各种应用场景中的性能表现。
本文将概述纳米结构ZnO的基本性质,包括其晶体结构、能带结构、光学特性等。
随后,我们将详细介绍几种常见的纳米结构ZnO制备方法,包括物理法、化学法以及生物法等,并对比各种方法的优缺点。
在此基础上,我们将重点关注纳米结构ZnO的性能研究,包括其电学性能、光学性能、光催化性能、以及生物相容性等。
我们将通过实验数据和理论分析,全面揭示纳米结构ZnO的性能特点及其在不同应用场景中的潜在应用价值。
本文还将展望纳米结构ZnO的未来发展趋势,探讨其在新能源、环保、生物医学等领域的应用前景。
我们希望通过本文的研究,能够为纳米结构ZnO的制备和性能优化提供有益的参考,推动其在各个领域的实际应用。
二、ZnO纳米结构的制备方法ZnO纳米结构的制备方法多种多样,主要包括物理法、化学法以及生物法等。
这些方法的选择取决于所需的ZnO纳米结构的尺寸、形貌、纯度以及应用的特定要求。
物理法:物理法主要包括真空蒸发、溅射、激光脉冲沉积等。
这些方法通常在高温、高真空环境下进行,能够制备出高质量的ZnO纳米结构。
然而,这些方法通常需要昂贵的设备和复杂的操作过程,限制了其在大规模生产中的应用。
化学法:化学法因其设备简单、操作方便、易于大规模生产等优点,在ZnO纳米结构制备中得到了广泛应用。
其中,溶胶-凝胶法、化学气相沉积法、水热法和微乳液法等是常用的化学制备方法。
例如,溶胶-凝胶法通过控制溶液中的化学反应,可以制备出具有特定形貌和尺寸的ZnO纳米颗粒。
化学气相沉积法则可以通过调节反应气体的流量、温度和压力等参数,实现ZnO纳米线的可控制备。
纳米zno 磁
纳米ZnO磁引言纳米ZnO是一种具有广泛应用潜力的半导体材料,其独特的磁性性质使其在磁学领域引起了极大的关注。
本文将深入探讨纳米ZnO的磁性质及其应用,以期对相关研究和应用有更深入的了解。
纳米ZnO的制备方法纳米ZnO可以通过多种方法制备,常见的有物理法、化学法和生物法。
下面将对几种常见的制备方法进行简要介绍。
物理法1.热蒸发法:通过在高温下将金属Zn蒸发,然后在基底上沉积形成纳米ZnO。
2.溅射法:利用高能离子轰击金属Zn目标,将Zn原子扔出并沉积在基底上形成纳米ZnO。
化学法1.水热法:将金属Zn与水和氧化剂在高温高压条件下反应,生成纳米ZnO。
2.水热合成法:将阳离子和阴离子反应生成沉淀,然后通过煅烧得到纳米ZnO。
生物法利用生物模板,如细菌、酵母等,将纳米ZnO沉积在其表面形成纳米结构。
纳米ZnO的磁性质纳米ZnO磁性的产生与其表面缺陷、晶格结构、掺杂等因素密切相关。
下面将从这些方面对纳米ZnO的磁性质进行探讨。
纳米ZnO表面的缺陷对其磁性有着重要影响。
表面缺陷可以提供未配对自旋,从而产生磁性。
例如,氧空位和氧缺陷可以引入未配对自旋,并通过超交换相互作用来决定纳米ZnO的磁性。
晶格结构纳米ZnO的晶体结构也对其磁性质起着重要作用。
晶格缺陷和晶格畸变可以导致自旋偏转和自旋翻转,从而产生磁性。
此外,纳米ZnO的晶粒大小和形状也会影响其磁性。
掺杂通过掺杂一定量的过渡金属、稀土元素等,可以有效改变纳米ZnO的磁性。
例如,Co、Ni等过渡金属的掺杂可以引入自旋极化,从而增强纳米ZnO的磁性。
纳米ZnO的应用纳米ZnO具有独特的磁性质,因此在多个领域有着广泛的应用前景。
磁存储利用纳米ZnO的磁性质,可以实现高密度、高速率的磁存储器件。
纳米ZnO的小尺寸和可调控的磁性使其成为理想的磁存储介质。
磁共振成像纳米ZnO具有优良的磁共振成像性能,可用于生物医学领域的磁共振成像。
其高信噪比和对比度使其成为生物组织的理想成像材料。
zno纳米粒子的制备及表征
zno纳米粒子的制备及表征ZnO纳米粒子是一种具有广泛应用前景的材料,具有独特的光学、电学和磁学性质。
本文将探讨zno纳米粒子的制备方法以及常用的表征技术。
制备方法溶剂热法溶剂热法是一种常用的制备ZnO纳米粒子的方法。
其基本步骤如下:1.取一定量的锌盐(如硝酸锌)和一种溶剂(如乙醇)。
2.将锌盐溶解在溶剂中,形成锌离子溶液。
3.将溶液进行加热,通常在反应温度为80-150摄氏度之间。
4.在加热过程中,溶液中的锌离子逐渐转化为ZnO纳米晶体。
5.经过一定时间的反应,将溶液进行冷却和离心处理,将产生的ZnO纳米粒子收集。
水热法水热法也是一种常用的制备ZnO纳米粒子的方法。
其基本步骤如下:1.取一定量的锌盐(如硝酸锌)和一定量的水。
2.将锌盐溶解在水中,形成锌离子溶液。
3.将溶液进行加热到高温(通常为180-200摄氏度)。
4.在高温高压的环境下,锌离子逐渐转化为ZnO纳米晶体。
5.经过一定时间的反应,将溶液冷却,将产生的ZnO纳米粒子进行离心和洗涤。
6.最后,将得到的纳米粒子进行干燥。
气相沉积法气相沉积法是一种以气体为原料,通过化学反应在基底上生长ZnO纳米晶体的方法。
其基本步骤如下:1.准备一种Zn源气体(如乙酸镐)和一种氧源气体(如氧气)。
2.将这两种气体送入反应室中,并控制流量和温度。
3.在适当的反应条件下,气相中的原料气体在基底上发生反应生成ZnO纳米晶体。
4.反应结束后,得到的纳米粒子进行洗涤和干燥。
表征技术ZnO纳米粒子的表征对于研究其结构和性质具有重要意义。
下面介绍几种常用的表征技术:X射线衍射(XRD)X射线衍射是一种分析物质结构的技术。
对于ZnO纳米粒子的表征,可以通过X射线衍射仪器来获取X射线衍射图谱。
通过分析图谱中的衍射峰位置和强度,可以确定样品的晶体结构、晶粒尺寸和晶体取向。
扫描电子显微镜(SEM)扫描电子显微镜是一种观察样品形貌和表面形态的技术。
通过扫描电子显微镜可以得到高分辨率的ZnO纳米粒子图像。
纳米ZnO粉的新水热法制备技术
梯 度 :把 釜升温 至要 求 的温 度 , 在 恒温 下保 并 持 l 后 ,立 即打 开放 气 阀 ,直 至完 全 反应 : h之 最后 , 断 高压 釜的 电源 ,使 高压 釜 冷却 至室 切
温 ; 后 , 所得产 物用 水洗 净 , 滤和 烘干 , 然 将 过
纳米粉。 这种放气水热法的操作程序 如下: 放
般认为小扭距有利于降低交流损耗。 总之 , 在 既有横向场又有纵向场的情况下 , 为使交流损
耗最 小要 选 择合 适 的扭距 。
( 京 荣) 汪
纳米 Z O粉 的新水热 法 制备技术 n
Z O粉是用于传感器 、压敏 电阻、颜料、 n 电子 记录 器 、 用等 的重 要材 料 。_O粉 的制 医 7 , n
维普资讯
新 材 料 ・新 = 艺 i =
变 了带截面 上 的 电流 分布 而 使交 流 损耗 增加 , 这 种增加 还 随扭转 扭距 的减 小而 增加 , 横 向 而 磁场 导致 的交 流损 耗 是随 扭距 减 小而 减 小的 。 对 纵 向场 不论 是 正 的 还 是 负 的 都 使交 流 损 耗 增加 。 值 分析还 表 明 ,具有 大 的宽 厚 比的 高 数 扭 的 ,电流 分布 几 乎是对称 的,发 现横 向场并
T 超 导带,不像低 T 超导圆线那样存在一个 c 能使交流损耗最 小的最佳交流纵 向场, 其传输 电流 产 生的水 平磁 场沿 带 子 周边 是不均 匀 的 ,
所 以不能轻 易看 到 存在 最 佳 的纵 向磁场 。 电 对 力应 用 中最普 遍 的 既存 在 横 向场 又 有 纵 向场 的载流 高 T 超 导 带来 说 ,因为 带 子芯 丝是 紧
30 n 到 7n 为 了揭示 水 热放 气 法 的形成 5 0m 0m。
水热法制备Cu-ZnO纳米催化剂用于乙酸乙酯加氢
燃料乙醇为清洁能源,由汽油或柴油中加入一定比例的无水乙醇制得。
以其替代汽油可缓解能源危机。
生产燃料乙醇的生物质原料(如玉米等)因产量不足和价格持续上涨等问题,使燃料乙醇开发面临停滞。
因中国“富煤、贫油、少气”的能源状况,煤炭资源具有中长期保有能力,煤化工下游产品醋酸产能严重过剩,醋酸酯化可以制备醋酸酯,将醋酸酯作为原料进行催化加氢制乙醇的路线符合国家能源安全战略。
为探究铜锌物质的量比对催化剂形貌和乙酸乙酯加氢性能的影响,明确二者最佳比例并制备高效酯加氢催化剂,本文采用简单环保的水热法制备具有开放式结构的铜-氧化锌纳米花催化剂,通过多种表征手段和性能探究铜摩尔分数对催化剂结构和性能的影响,将测试结果与反应机理进行联系,以期找到催化剂最佳形貌、铜摩尔分数、水热制备条件,为工业应用提供理论依据。
摘要:以六水合硝酸锌、三水合硝酸铜、尿素为原料,采用水热法制备了不同铜锌物质的量比n(n=1/4、3/7、2/3、1和3/2,对应铜摩尔分数分别为20%、30%、40%、50%和60%)的铜-氧化锌催化剂,用SEM、XRD、H2-TPR、BET等方法对铜-氧化锌催化剂进行了结构表征。
研究了铜摩尔分数对催化剂形貌及乙酸乙酯加氢反应的影响。
结果表明,水热法制得的铜-氧化锌催化剂均为纳米片自组装成的开放型纳米花结构。
当铜摩尔分数为40%时,纳米片厚度小于50 nm,纳米花直径约10 μm,乙酸乙酯转化率最高,铜摩尔分数过低或过高时加氢活性下降。
表征发现,铜摩尔分数为40%的催化剂中铜与氧化锌的结合强度适中,活性位分散均匀。
考察了水热条件对催化性能的影响,在最优水热条件(130 ℃、10 h)下合成的催化剂乙酸乙酯转化率达到94%〔加氢反应条件为220 ℃、氢气压力3 MPa、氢气与乙酸乙酯物质的量比20、液时空速2.0 g酯/(g催化剂·h)〕。
在催化剂稳定性(300 h)测试中乙酸乙酯转化率保持在92%以上。
zno纳米线
ZnO纳米线的研究进展摘要:ZnO纳米线是很重要的准一维纳米材料。
本文主要介绍ZnO纳米线的合成、结构分析、特性和应用。
首先,本文讨论了纳米线合成步骤的设计以及分别通过气相和化学生长方法合成纳米线。
其次,本文描述了ZnO纳米线独特的光电性能和气敏特性。
最后,本文对一些使用纳米线制作的新器件和应用进行了跟踪报道,如超灵敏的化学生物纳米传感器,染料太阳能电池,发光二极管,纳米激光器等。
1. 引言在纳米技术领域,最引人注目并且最具代表性的一维纳米结构主要有三种:碳纳米管、硅纳米线和ZnO纳米线/纳米带。
ZnO作为一种优良的纳米材料,已经引起人们很大的兴趣。
ZnO作为一种重要的半导体材料,在光学、光电子学、能源、生物科技等方面有广泛的应用(图1)[1]。
它所展现出的丰富的纳米结构形态,是其它材料无法比拟的。
图1 ZnO特性和应用的概要[1]2. ZnO的晶体结构通常情况下,ZnO具备纤锌矿结构,其晶胞为六角形,空间群为C6mc,晶格常数为a = 0.3296nm,c = 0.52065nm。
O2-和Zn2+构成正四面体单元,整个结构缺乏中心对称。
ZnO的结构可以简单描述为:由O2-和Zn2+构成的正四面体组成的大量交互平面,沿c轴叠加形成的,如图2所示[2]。
图2 ZnO的纤锌矿结构[2]3. ZnO纳米线的合成氧化物纳米结构的合成主要通过高温下的物理气相生长途径和低温下的化学途径。
3.1 VLS生长纳米线可以应用于制作激光器、发光二极管及场效应晶体管。
ZnO纳米线生长需要用到基底和晶体颗粒。
大规模优良的垂直ZnO纳米线阵列最早生长在(1120)晶面取向的蓝宝石基底上,其中用Au纳米颗粒做催化剂[3]。
不像通常的VLS过程,纳米线阵列的生长需要适当的生长速率,因为催化剂需要是熔融态,并且构成合金,从而一步步凝结,最后在蓝宝石表面上完成外延生长。
因此,需要相对较低的生长温度来减小气体浓度。
把ZnO和石墨粉末混合在一起,也就是碳热蒸发,可以把气化温度从1300℃降低到900℃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水热法制备ZnO纳米结构及其应用摘要纳米结构的ZnO由于具有优异的光、电、磁、声等性能,已经成为光电、化学、催化、压电等领域中聚焦的研究热点之一。
不同纳米结构的ZnO其制备方法多种多样,本文着重综述了水热法制备ZnO纳米结构,并探讨了ZnO纳米结构的生长机理和调控,同时展望了ZnO纳米结构在各领域中的最新应用。
关键词ZnO纳米结构水热法生长机理生长调控应用引言氧化锌是一种宽禁带直接半导体材料,室温下其禁带宽度为3.37 eV,激子束缚能为60 meV,可以实现室温下的激子发射,产生近紫外的短波发光,被用来制备光电器件,如紫外探测器、紫外激光器等。
另外ZnO还具有很好的导电、导热和化学稳定性能,在太阳能电池、传感器和光催化方面有广泛的应用前景。
因此成为国际上半导体材料研究的热点之一。
而一维半导体材料更由于其独特的物理特性及在光电子器件方面的巨大潜力,备受人们的关注[1, 2]。
将纳米ZnO用于电致发光器件中对提高器件性能很有帮助[3]。
在基底上高度有序生长的ZnO 纳米结构可制作短波激光器[2]和Graetzel太阳能电池电极[4],成为人们的研究热点。
目前国内外研究者已成功地合成了多种ZnO纳米结构:Huang等[5]制备出的ZnO纳米铅笔状结构具有尖端和高的比表面积,有望用于场发射微电子器件方面;杨培东[6]、Shingo Hirano[7]小组分别用气相传输法和水热法合成的ZnO纳米线阵列表现出室温紫外激光发射行为,可用来制备紫外纳米激光器;张立德[8]研究小组用简单的热蒸发方法得到了一种ZnO纳米薄片状结构,可用于纳米传感器方面。
另外,研究者还制备出ZnO纳米环、纳米带、纳米花和多足状等结构。
合成ZnO纳米结构的方法多种多样,主要有气相沉积法、模板法及催化助溶法、电化学法,其它还有诸如沉淀法、溶胶-凝胶法、多羟基化合物水解法等。
近年来水热法制备ZnO纳米结构成为了研究者关注的热点,与其它方法相比,水热法具有设备简单,反应条件温和,可大面积成膜,工艺可控等优点。
1.水热法制备ZnO纳米结构简介及研究新进展1.1水热法制备ZnO纳米结构简介水热法是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热加压(或自生蒸汽压),创造一个相对高温、高压的反应环境,使通常难溶或不溶的物质溶解,并且重结晶而进行无机合成与材料处理的一种方法。
经过十多年的发展,水热法逐步发展成为纳米材料制备最常用的方法之一。
由于水热法自身的优点和特殊性,在科技高度交叉的21世纪,水热法已不再局限于晶体生长,而是跟纳米技术、地质技术、生物技术和先进材料技术息息相关,水热法的研究也向深度与广度发展。
目前很多的水热法合成ZnO纳米结构采用在75~250℃的密闭容器中进行。
采用的试剂为锌盐、碱或氨水、表面活性剂或分子模板(如乙二胺)等。
在这样的低温和简单设备下,同样也得到了质量很好的不同形貌的ZnO单晶[9]。
水热法合成ZnO纳米结构引起人们广泛关注的主要原因是:(l)水热法采用中温液相控制,能耗相对较低,适用性广,既可用于超微粒子的制备,也可得到尺寸较大的单晶。
(2)原料相对廉价易得,反应在液相快速对流中进行,产率高、物相均匀、纯度高、结晶良好,并且形状、大小可控。
(3)在水热过程中,可通过调节反应温度、压力、处理时间、溶液成分、pH值、前驱物和矿化剂的种类等因素,来达到有效地控制反应和晶体生长特性的目的。
(4)反应在密闭的容器中进行,可控制反应气氛而形成合适的氧化还原反应条件,获得某些特殊的物相,尤其有利于有毒体系中的合成反应,这样可以尽可能地减少环境污染。
1.2水热法制备ZnO纳米结构的研究新进展ZnO纳米结构是水热法制备较多的材料,目前,水热法已经成功地制备了不同形状的ZnO纳米结构,如图1所示。
关于ZnO水热制备的SCI论文已达数百篇,它是目前水热合成的材料中形貌特征最丰富的材料。
图1 丰富多彩的ZnO纳米结构:(a)ZnO纳米线阵列、(b)单根ZnO纳米棒、(c)ZnO纳米块、(d)选择性生长的ZnO纳米簇、(e)ZnO纳米片、(f)ZnO纳米花、(g)ZnO纳米带、(h)ZnO纳米絮以及(i)ZnO纳米针状结构。
为了有效控制其形貌与尺寸,研究者采用了各种方法来改进ZnO纳米结构的水热合成工艺,比如添加表面活性剂、络合剂或其他辅助剂是常用的一种手段,这些助剂包括十六烷基四甲基澳化胺(CTAB)、六次甲基四胺(HMT)、十二烷基磺酸钠(SDS)、聚乙烯醇(PV A)、柠檬酸(CA)等。
孙灵东等利用CTAB—水—环己醇—庚烷体系在140℃水热处理20小时得到了ZnO的纳米线[10]。
而利用HMT 对锌离子的络合作用,可以使得ZnO在较低的温度下(90℃)实现沿着C轴方向生长,从而得到ZnO的阵列[11]。
张辉等人利用柠橡酸CA、CTAB、PV A等辅助水热法制备了盘形状、花状等各种形貌的ZnO纳米结构[12]。
另外,水热法也可以用来制备ZnO纳米阵列,Guo等人利用水热法合成具有较好排列ZnO纳米柱阵列[13]。
同时,最近研究者对传统水热法进行了一些有效的改进,产生了如下新型的特殊水热法:①磁场水热法,②电化学水热法,③微波水热法,④超声水热法等。
这些特殊水热法快速、高效,因而近年来受到越来越多的关注。
2.ZnO纳米结构的生长2.1水热法制备ZnO纳米结构的生长机理在水热条件下, ZnO纳米结构的生长(以试剂氯化锌(ZnCl2)、氨水(NH4·OH)、助剂:十六烷基三甲基氯化铵(1631)为例),首先是ZnCl2在溶液中水解生成Zn2+并与NH4·OH溶液中水解生成的氨根离子和OH-相结合生成Zn(OH)2胶体,Zn(OH)2在过量氨根离子存在的条件下水解形成生长基元锌氨络离子(Zn(NH3)42+),然后一部分生长基元通过氧桥合作用形成具有一定结构的ZnO晶核,残余的生长基元在ZnO晶核上继续定向生长,当加入表面活性剂的量不同时生成的ZnO纳米结构的形态不同,如图2所示,水热反应方程如下:ZnCl2 + 2NH4·OH = Zn(OH)2 + 2NH4ClZn(OH)2 + 4NH4·OH = Zn(NH3)42+ + 2OH- + 4H2O Zn(NH3)42+ + 2OH- = ZnO + 4NH3 + H2O图2 ZnO纳米结构的生长机理示意图图2为ZnO纳米结构的生长机理示意图,当ZnO晶核形成后,1631的弱碱性可以使ZnCl2更快地水解释放出Zn2+阳离子,当ZnO晶核形成后,1631与晶核结合影响晶核的发育生长,加入少量1631时,得到的产物为比表面积较小的纳米棒自组装而成的多枝状ZnO纳米结构,如图4(a)~(c);当加入1631的量逐渐增加时,得到的产物为比表面积较大的六方柱的团聚体和六方短柱状的颗粒,如图2(d)~(e),表明在ZnO纳米结构的生长过程中,1631对产物的比表面积有着显著的影响,经过分析,表面活性剂1631在ZnO晶核形成后的生长过程中主要有以下4种作用:(1)弱碱性作用,增大溶液的pH值有助于ZnCl2水解释放出Zn2+;(2)吸附作用,表面活性剂吸附在ZnO晶核或粒子的表面可以抑止其二维平面生长;(3)侵蚀作用,当表面活性剂的浓度增大到一定值时,其可侵蚀ZnO晶体的表面,在表面形成一定数量的缺陷,为后来ZnO晶粒提供二次成核的位置;(4)分散作用,表面活性剂可以分散已生长完全的ZnO晶体,防止其团聚。
2.2水热法制备ZnO纳米结构的生长调控目前水热法制备ZnO纳米结构不仅能合成出各种形状,而且在调控ZnO纳米结构生长方面也取得了很大进步。
首先在生长方向调控上,目前在各种衬底上,采用ZnO籽晶层可以较为容易地控制ZnO纳米棒阵列的纵向生长,得到整齐的阵列,如图1(a)所示。
在纳米棒阵列横向生长方面,Wang Z L等引入金属Cr的辅助以及采用RF淀积了较厚的ZnO籽晶层,可以达到70%的纳米棒横向生长,如图3所示[14]。
图3 在Si衬底上,引入金属Cr的辅助以及采用RF淀积了较厚的ZnO籽晶层,水热法在横向所生长的ZnO纳米棒阵列在密度调控方面,研究发现溶液反应条件,如温度、浓度、pH值、反应时间以及衬底条件都将对所得纳米棒产生影响[15]。
Ma等研究发现其中溶液的浓度对所得纳米棒阵列的密度具有决定作用[16],其研究发现溶液浓度由1M/L下降为0.0001M/L,对应的纳米棒的密度也由1010rods/cm2下降为l06rods/cm2。
图4 在Si衬底上,先期对ZnO籽晶层图形化处理,后生长的ZnO纳米图形化结构,采用电子束光刻技术对籽晶层进行图形化处理,从而实现了单根纳米棒生长的控制在纳米棒阵列图形化方面,通过对籽晶层先期图形化处理,可以设计各种图形,如图4[17](a)和(b)所示,另外采用电子束光刻等技术,可以图形化出只够一根纳米棒生长的籽晶颗粒,从而可实现对单根纳米棒生长的控制,如图4(c)所示,这不仅有利于图形化设计,对调控纳米棒密度等也较为有意义。
在高长径比(>50)纳米棒方面,水热法较难合成出高长径比一维ZnO纳米结构,但Yang等通过在溶液中加入(PEI)来抑制纳米棒侧面的生长,从而得到了长径比高达125的纳米线结构,如图5(a)所示,这对于需要高比表面积的器件,如太阳能电池以及传感器等比较有意义。
图5[17] (a)通过在水热法溶液中引入PEI试剂,生长得到的高长径比ZnO纳米线阵列,(b)在pH=13.2的溶液中所生长得到的二维纳米片结构在二维ZnO纳米结构方面,如纳米片等,尽管生长原理还没有一致的结论,但Sun等通过调节溶液pH值,既可以得到纳米棒结构(pH=9),还可得到厚度为~20nm、宽度>200nm的二维的纳米片结构(pH=13.2),如图5(b)所示。
由上可以看出,尽管水热法在调控纳米结构方面已有很大进步,但仍处于探索阶段。
3. ZnO纳米结构的性能及应用纳米线、纳米管、纳米棒、纳米片、纳米阵列、纳米花等形貌各异的ZnO 纳米材料,由于纳米效应,它们的结构和性能与块状材料显著不同,从而体现出特殊的应用潜力,特别是近年在场效应晶体管、肖特基二极管、紫外光探测器、气敏传感器、纳米发电机等领域中的器件应用,引起人们极大的研究兴趣[18]。
3.1化学传感领域由于金属氧化物表面的氧空位兼具电学活性和化学活性,这些氧空位作为n 型半导体的施主物质时,可显著提高氧化物的电导率。
当NO2和O2等分子吸附氧空位上的电荷后,可导致导带耗尽电子,所以处于氧化气氛中的ZnO为高阻状态。
当ZnO处于CO或H2等还原气氛中,气体将与表面的吸附氧反应,从而降低表面O2的浓度,最终导致电导率的提高。