tDCS在失语症中的应用复习过程

合集下载

tdcs临床使用方法

tdcs临床使用方法
经颅直流电刺激(tDCS)
临床使用方法
目录
常规使用
电流的选择 贴片的选用 导电介质的选
用 基本流程
治疗处方
定位方法
故障处理
记录表使用
固定方法 导电性能差
基本使用方法
经颅直流电刺激仪
阴极
阳极
tDCS的概念
• 电极性质:阴极和阳极; • 刺激部位:受损脑区大脑皮质; • 作用方式:阴极抑制,阳极兴奋; • 刺激强度:单位面积电流强度<0.057mA; • 刺激时间:建议20min/次,重复。
参考资料
抑郁 (+)左侧前额叶背外侧DLPFC (-)对侧肩部 认知 (+)患侧脑区前额 (-)对侧肩部 视空间忽略 (+)非优势半球顶叶 (-)对侧肩部 运动、脊髓损伤 (+)患侧脑区初级运动皮层(顶中央左右 两侧) (-)对侧肩部 上肢痉挛 (+)对侧肩部 (-)患侧脑区手区
参考资料
吞咽障碍(假性球麻痹)、口颜面失用 (+)患侧脑区口舌区 (-)对侧肩部 帕金森病 (+)优势半球运动皮层 (-)对侧肩部 耳鸣 (+)左颞 (-)对侧肩部 纤维肌痛、中枢性疼痛 (+)运动皮层 (-)对侧肩部

一、10──20系统电极放置法 国际脑电图学会规定的标准电极放置法
二、简易定位
1、矢状线(AB):鼻根(A)至枕骨隆突(B)过头顶的连线; 2、外侧裂(CD):矢状线后1/4点(C)和目外眦(D)的连线; 3、BROCA区(H):目外眦(D)与耳屏(E)连线中点(F)的垂线,与外侧裂交点处 (G)
*经颅直流电的刺激效果由电流的强度、刺激部位、极片的面积和 极性决定。
tDCS——极性选择

tdcs帮助学生排除干扰、提高阅读正确率的研究

tdcs帮助学生排除干扰、提高阅读正确率的研究

tdcs帮助学生排除干扰、提高阅读正确率的研究TDCS(经颅直流电刺激)是一种基于脑神经元的弱电刺激技术,该技术可以用来改进学习和认知功能。

目前有很多研究表明TDCS可以帮助学生排除干扰,提高阅读正确率。

本文将针对这一问题进行深入探讨。

一、什么是TDCS技术?经颅直流电刺激(TDSC)是一种技术,可以通过头皮将微弱的直流电流注入特定的大脑区域,从而增强脑神经元的活动。

TDSC技术有两个极端的电极,一个放置在大脑区域上,而另一个则放置在头皮上。

这种方式可以促进大脑神经元的活动,增强神经元的效率。

二、TDSC对学生的学习和认知的影响TDSC技术可以对学生的学习和认知产生积极的影响。

最近的研究表明,TDSC技术可以帮助学生更好地处理来自外界的干扰。

例如研究人员Emilio o. Ferrer和他的同事们发现,在需要进行注意力分配任务的情况下,经过TDSC技术提高后,被试更能精准地筛选正常的词汇。

在现实的阅读学习中,干扰同样是一个比较严重的问题,例如,我们在阅读一篇文章时常常会受到来自周围环境的声音干扰,而经过TDSC技术加工后,大脑神经元会变得更加敏感,处理外部信息的能力也得到了加强。

因此,学生可以更好地通过有效的去除干扰从而更好地理解文本。

此外,TDSC技术还可以帮助学生更好地快速处理信息和进行记忆。

对记忆的研究显示,通过TDSC技术加工后,被试更能迅速且准确地进行相关的逻辑与推理等复杂思维过程。

三、TDSC技术使学生更加适应认知需求高峰期学生在学习生涯中经常经历认知需求高峰期。

这些高峰期需要学生在短时间内处理大量的信息,记住很多的知识点和重要信息。

经颅直流电刺激技术(TDSC)可以帮助学生,在短时间内更好地适应认知需求高峰期,提高学习效率。

四、结论通过本文的探讨,我们可以看到TDSC技术是一种很有前途的技术,可以帮助学生更好地适应和应对不同的认知和学习需求。

当然,TDSC技术也存在着一些风险和副作用,尤其是需要避免使用过高电流强度。

外2010Julie Baker-使用tdcs治疗失语症患者

外2010Julie Baker-使用tdcs治疗失语症患者

activation of the left frontal cortex through the application of transcranial direct currentstimulation (tDCS), a noninvasive, safe, and relatively painless method for modulating corticalactivity. tDCS delivers a weak polarizing electrical current to the cortex through a pair ofelectrodes, and depending on the polarity of the current flow, brain excitability can either beincreased via anodal stimulation (A-tDCS) or decreased via cathodal stimulation (C-tDCS).5Previous work suggests that tDCS can modulate linguistic performances in both healthy andneurological patients, with results typically demonstrating that language processing can beimproved by applying A-tDCS to the LH.6–8 However, recent work by Monti andcolleagues 9 challenges such a simple interpretation, in which C-tDCS (2mA; 10-min) appliedto Broca’s area resulted in an improved ability to name pictures in eight patients with chronicnonfluent aphasia; no effects were noted following A-tDCS or sham (placebo-like) tDCS (S-tDCS). We suggest three reasons that may help demonstrate why A-tDCS led to a null result.First, electrodes were placed on the same scalp coordinate for each patient regardless of aphasiatype or severity. Consequently, it is quite probable that the targeted region may not have beenintact in some if not all of the patients. Secondly, there was only a single, brief administrationof tDCS. Finally, patients were not asked to perform a language task during the tDCS session,whereas other previous studies that found effects following A-tDCS, coupled the stimulationwith a relevant task to engage the brain area.6,10 Therefore, while the main goal of the presentstudy was to determine if A-tDCS would improve naming accuracy in PWA when applied tothe left frontal cortex, the study was also designed to address the methodological limitationsfrom the recent work by Monti and colleagues 9 and to therefore incorporate the following: 1)optimized electrode positioning; 2) multiple administrations of tDCS; and 3) a combinedlinguistic task.In the present study, 10 patients with chronic aphasia underwent two separate weeks (five daysper week) of A-tDCS (1 mA, 20-min) and S-tDCS (20-min) while concurrently performing acomputerized anomia treatment. During both types of tDCS, the active electrode was placedon the scalp overlying the left frontal cortex, while the reference electrode was placed on theright shoulder. The location and polarity of the active electrode was chosen based on thepreviously discussed evidence demonstrating that increased activation in the LH, specificallyof the left frontal cortex, was related to naming improvements in PWA.4 Outcome measuresincluded naming performance of both treated and untreated items following A-tDCS and S-tDCS. We hypothesized that multiple administrations of A-tDCS to the scalp overlying the leftfrontal cortex would improve naming accuracy in PWA by exciting the underlying cortexcausing even greater cortical activation.Materials & MethodsPatients Ten patients (five females) with chronic, stroke-induced aphasia aged 45- to 81-years (M =65.50; SD = 11.44) participated in the current study, which was approved by the University ofSouth Carolina’s Institutional Review Board. Patients varied greatly with regard to time post-stroke onset, lesion location, and extent of brain damage (Table 1). For instance, the range oftime post-stroke onset was 10 to 242 months (M = 64.60; SD = 68.42). Additionally, the patientsvaried with regard to their performance on diagnostic measures. Aphasia assessment using theWestern Aphasia Battery-Revised (WAB-R )11 revealed that six (P2, P4, P5, P7, P9, and P10)of the ten patients were classified with fluent aphasia, while the remaining four patients (P1,P3, P6, and P8) were classified with nonfluent aphasia. The WAB-R also yields a compositescore, the Aphasia Quotient (AQ), which provides an overall measure of severity, in whichlower scores denote more severe aphasia, and a score above 93.8 is considered to be withinnormal limits. AQ scores in the current study ranged from 26.3 to 93.5 (M = 69.36; SD = 25.97).Additionally, Subtest 6 (Inventory of Articulation Characteristics ) of the Apraxia Battery forNIH-PA Author Manuscript NIH-PA Author ManuscriptNIH-PA Author ManuscriptAdults-Second Edition (ABA-2)12 revealed that five patients (P1, P2, P3, P6, and P8) presentedwith apraxia of speech (AOS; Table 2). Thus, we suggest that the current patient sample wasideal for an exploratory study as it included a group with a wide range of aphasia severitiesand varying biographical and lesion demographics. Specific inclusion criteria were: 1) one-time stroke in the LH; 2) > 6-months post-stroke onset; 3) < 85-years of age; 4) pre-morbidlyright-handed; 5) native English speaker; and 6) been a participant in a previous study thatincluded functional magnetic resonance imaging (fMRI) examination,4 which was used toguide the location of cortical stimulation in the present study. All 15 patients from the previousfMRI study 4 were considered for participation in the current study but only the current 10patients were able to participate. As for those patients who were not included, four had relocatedout of state and one was unable to fit the current study requirements into his schedule whichincluded full-time employment. Exclusion criteria were: 1) seizures during the previous 36-months; 2) sensitive scalp; 3) previous brain surgery; and 4) medications that raise the seizurethreshold.Study DesignDiagnostic testing was followed by electrode positioning, baseline naming tests, treatmentadministration, and post-treatment naming testing. The computerized anomia treatment,coupled with either A-tDCS or S-tDCS, was administered for five consecutive days followedby a seven-day rest period to avoid carry-over effects. Next, another five-day treatment periodwas administered, coupled with the remaining stimulation type. Whereas previous researchhas revealed an improvement in naming among aphasic patients following a single tDCSsession,9 the current study design reflected evidence suggesting that multiple treatmentsessions are associated with improved treatment outcome in aphasia.13 Hence, a total of fiveconsecutive days were devoted to each treatment phase. We chose to administer five treatmentsessions per phase based on our previous findings, in which some aphasic patients showedimproved picture naming following as few as five sessions with our computerized anomiatreatment task,14 as well as following five treatment sessions utilizing clinician-administeredanomia treatment in a separate study.15The stimulation and treatment task combination lasted for 20-min each session, a time chosenbased on previous tDCS research which demonstrated that tDCS administration is safe up to20-min.8 Finally, a stimulation intensity of 1 mA was chosen given that no significant adverseeffects have been reported at this intensity.16 To assess cardiovascular arousal, blood pressureand heart rate were measured before and after each session. Additionally, discomfort ratingswere recorded following the end of each session using the Wong-Baker FACES Pain RatingScale, a visual description scale designed for patients with limited verbal skills.17fMRI Task & ProcedurePreviously acquired high-resolution T1-MRI and fMRI results associated with an overt picturenaming task were utilized in order to determine placement of the anode electrode on a patient-by-patient basis. MRI data collection relied on a Siemens Trio 3T system. For details on thenaming task as well as the scanning parameters and data analyses, see Fridriksson andcolleagues.18 The location of voxels with the highest Z-scores in the left frontal cortexassociated with correct naming for each patient is listed in Table 3. These coordinates weretargeted for placement of the anode electrode.Electrode PositioningIn order to locate the cortical region to be stimulated by the anode electrode, coordinates ofthe area of the left frontal cortex with the highest level of activation during correct naming onthe previously completed fMRI naming task were entered into MRIreg , a computer programthat allows for the identification of a region of the scalp near a particular brain regionNIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript(/mrireg.html). Utilizing MRIreg and a magnetic positioning tracker system(Flock of Birds ; Ascension Technology, Burlington, VT), the desired cortical region waslocated and demarcated on a latex cap worn by the patient. This cap was carefully fitted on thepatient prior to the start of each tDCS administration in order to accurately position the anodeelectrode in the same area from one day to the next. Following positioning, the cap was removedand the electrodes were held in place with self-adhesive bandages. This was accomplished ona patient-by-patient basis and was therefore tailored for each individual to ensure the activeelectrode was placed over structurally-intact rather destroyed cortex.tDCStDCS (1 mA) was delivered for 20-min per session via two saline-soaked sponge electrodes(5 × 5 cm) and a constant current stimulator (Phoresor® II PM850; Iomed® Inc., Salt LakeCity, Utah) that was placed out of the patients’ sight behind a partition. During both A-tDCSand S-tDCS, the anode electrode was placed over the pre-designated area on the scalp overlyingthe left frontal cortex. To avoid potential confounding factors arising from placing electrodesof two polarities near the brain, as it is hard to infer which electrode is influencing performance,the reference cathode electrode was placed on the right shoulder (Figure 1). For S-tDCS, thestimulator was turned off following 30 s of stimulation since the perceived sensations of tDCSon the skin have been found to fade away by the first 30 s of administration.19 Thus, patientswere blinded to stimulation type. Half of the patients began treatment with A-tDCS during thefirst week and then proceeded to S-tDCS during the second week, while the other half receivedthe opposite order. Patients were randomly assigned to stimulation using a random numbergenerator.Anomia TreatmentThe self-administered anomia treatment consisted of a picture-word matching task. This typeof computerized treatment was utilized in a previous study and demonstrated to be useful inimproving the naming abilities in PWA. For details on the treatment, see Fridriksson andcolleagues.14 This treatment occurred concurrently with the application of tDCS and lasted for20-min per session.Treatment StimuliThe computerized treatment included two separate word lists (List A and List B). Half of thepatients received List A during the first week of treatment and then List B during the secondweek, while the other half received the opposite order. Each word list was comprised of 25color pictures depicting low-, medium-, and high-frequency nouns. The two word lists werecontrolled for word frequency,20 semantic content (categories such as animals, transportation,etc.), and word length (number of syllables per word). Each picture appeared an equal amountof times and occurred randomly during the 20-min session.Outcome MeasuresTo determine whether the patients’ ability to name the treated items improved over the courseof each treatment phase (A-TDCS vs. S-tDCS), a computerized naming test consisting of the25 treated nouns for each phase was administered at baseline, immediately following the fifth(and final) session of each treatment phase (T1), and one-week following the final session ofeach treatment phase (T2) to examine performance maintenance. To determine generalizationfrom treated to untreated items, two additional untargeted word lists (one for each stimulationtype) were administered. The untreated word lists (untreated List A and untreated List B) wereeach comprised of 50 color pictures depicting low-, medium-, and high-frequency nouns.Similar to the treated word lists, the untreated word lists were controlled for word frequency,18 semantic content, and word length. The treated and untreated word lists were combined NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript(treated List A was combined with untreated List A and vice versa for List B) during testingto equal 75 items. Pictures representing each item were displayed on a laptop computer screen,and patients were asked to overtly name each picture as soon as it was displayed. Responseswere audio-recorded and later transcribed and scored by two speech-language pathologists(SLPs) who were blinded to the stimulation type (A-TDCS vs. S-tDCS), administration attempt(baseline vs. T1 vs. T2), and type of item (treated vs. untreated). In cases of disagreement, athird SLP, who was also blinded, made tie-breaking decisions.StatisticsTo examine the effect of tDCS on treatment outcome, a 2×2 repeated measures analysis ofvariance (ANOVA) was performed for both treated and untreated items using stimulation type(A-TDCS, S-tDCS) and time (T1, T2) as factors. Note that treatment outcome was determinedas change in correct naming at the end of treatment compared to baseline. Additional 2×2repeated measures ANOVAs were performed to determine the influence of stimulation orderon treatment outcome for both treated and untreated words, as well as to determine the influenceof the two sets of word lists that were utilized for treatment and testing for both treated anduntreated items. All ANOVAs were performed using ezANOVA (/ezanova).Changes in blood pressure and heart rate from pre- to post-tDCS administrations, as well asdiscomfort ratings were compared between both tDCS conditions utilizing Mann-Whitney Utests. Finally, correlation analyses were performed to examine the relationships betweentreatment outcome and patient demographics, which were executed, along with the Mann-Whitney U tests, using SPSS Version 15.0 software package (SPSS, Inc., Chicago, Illinois).Results All patients tolerated tDCS well and no adverse effects related to the application of tDCS were demonstrated. All patients completed both treatment phases and all accompanying testing sessions. The total number of treatment and testing sessions was seventeen per patient,including one diagnostic testing session, six testing sessions, and ten treatment sessions.Treated ItemsDuring the A-tDCS phase, the mean number of correctly named treated items was 14.2/25 (SD= 8.69; range = 0–24) at baseline, 17.8/25 (SD = 9.44; range = 0–25) at T1 (immediately aftertreatment termination), and 17.7/25 (SD = 9.07; range = 0–25) at T2 (one-week followingtreatment termination). Following A-tDCS treatment, the total increase in correct namingresponses for the entire group was 36 treated items at T1 and 35 treated items at T2. Duringthe S-tDCS phase, the mean number of correctly named treated items was 14.1/25 (SD = 9.79;range = 0–25) at baseline, 15.6/25 (SD = 9.81; range = 0–25) at T1, and 15.2/25 (SD = 9.53;range = 0–25) at T2. Following S-tDCS treatment, the total increase in correct namingresponses for the entire group was 15 items at T1 and 11 items at T2 (Table 4). A 2×2 repeatedmeasures ANOVA (stimulation, time) was conducted for the treated items. Analysis of themain effect of stimulation type revealed that statistically more treated items were namedcorrectly following A-tDCS as compared to S-tDCS (F (1,9) = 5.72, two-tailed p < 0.040). Toestimate the magnitude of this statistically significant effect, we used the generalized etasquared as suggested for repeated measures designs by Olejnik and Algina, 21 in which amedium effect size (0.140) was found. Neither the analysis of the main effect of time (F (1,9)= 0.116, p < 0.741) or the analysis of the interaction (stimulation, time) reached statisticalsignificance (F (1,9) = 0.112, p < 0.745). Our hypothesis was that tDCS would enhancetreatment. Therefore, we conducted a post-hoc (uncorrected) 1-tailed t-tests that revealed abenefit for tDCS versus sham at both the T1 and T2 (t (9)=2.60 p < 0.015, t (9)=1.95 p < 0.042).NIH-PA Author Manuscript NIH-PA Author ManuscriptNIH-PA Author ManuscriptTreatment GeneralizationDuring the A-tDCS phase, the mean number of correctly named untreated items was 27.3/50(SD = 17.15; range = 0–47) at baseline, 31.3/50 (SD = 18.35; range = 0–48) at T1, and 31.5/50(SD = 18.25; range = 0–48) at T2. Following A-tDCS treatment, the total increase in correctnaming responses for the entire group was 40 untreated items at T1 and 42 untreated items atT2. During the S-tDCS phase, the mean number of correctly named untreated items was 28.6/50(SD = 18.18; range = 0–48) at baseline, 28.9/50 (SD = 18.63; range = 0–50) at T1, and 30.1/50(SD = 18.36; range = 0–50) at T2. Following S-tDCS treatment, the total increase in correctnaming responses for the entire group was 3 items at T1 and 15 items at T2 (Table 4). A 2×2repeated measures ANOVA (stimulation, time) did not reach two-tailed statistical significance(F (1,9) = 5.72, p < 0.073). As with treated items, we performed a post-hoc analysis hereconsistent with our prediction that tDCS leads to improved naming performance compared tosham. Accordingly, we conducted a planned (uncorrected) 1-tailed t-tests that revealed abenefit for tDCS versus sham at both the T1 and T2 (t (9)=1.90 p < 0.045, t (9)=1.89 p < 0.046).To estimate the magnitude of this effect, we used generalized eta squared,21 in which a mediumeffect size (0.167) was revealed. Neither the analysis of the main effect of time (F (1,9) = 0.880,p < 0.373) or the analysis of the interaction (stimulation, time) reached statistical significance(F (1,9) = 0.584, p < 0.464).Correlations Multiple correlations were performed to examine the relationship between naming performance following A-tDCS treatment and the following variables: 1) age; 2) years of education; 3) months post-stroke onset; 4) lesion size measured in cc 3; 5) aphasia severity as measured by the AQ from the WAB-R; and 6) AOS severity as measured by the ABA-2. No significant (p < 0.05) relationships were revealed (Table 5).Treatment Order To determine whether the order of stimulation affected treatment outcome, a 2×2 repeated measures ANOVA (order of treatment, time) was performed and revealed that an order effect was not present for the treated items (F (1,9) = 0.116, p < 0.742) or untreated items (F (1,9) =0.880, p < 0.373).Word Lists To determine whether the word lists differed in difficulty, 2×2 repeated measures ANOVA(list, time) was performed. No difference in treatment outcome between the usage of List Aand List B was found for the treated items (F (1,9) = 2.41, p < 0.155) or untreated items (F (1,9)= 0.844, p < 0.382).Blood Pressure, Heart RateChanges in blood pressure and heart rate from pre- to post-tDCS administration were calculatedto determine if the measures were comparable in both tDCS conditions. Mann-Whitney U testsrevealed that changes in systolic blood pressure (p < 0.812), diastolic blood pressure (p <0.948), and heart rate (p < 0.641) from pre- to post-tDCS administration did not differ betweenA-tDCS and S-tDCS.Discomfort RatingsPatient discomfort ratings ranged between 0 and 2 out of 5 (mean = 0.24; SD = 0.56) duringA-tDCS and ranged between 0 and 2 out of 5 (mean = 0.12; SD = 0.39) during S-tDCS.Statistical analysis revealed that the discomfort ratings were comparable between A-tDCS andNIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author ManuscriptS-tDCS (Mann-Whitney U; p < 0.477), indicating that patients did not report a difference incomfort level between the two conditions.Discussion To better understand the effect of tDCS upon aphasia recovery, the present study included 10patients with chronic, stroke-induced aphasia who each underwent five sessions of A-tDCS (1mA; 20-min) and five sessions of S-tDCS (20-min) combined with a computerized anomia treatment. The results suggest that A-tDCS significantly improves naming accuracy in PWA.Explicitly, statistically more treated items were named correctly following A-tDCS as compared to S-tDCS and numerically more untreated items were named correctly following A-tDCS as compared to S-tDCS. Additionally, this study demonstrated that improvements in naming performance were maintained for at least one-week post-treatment. These findings are in agreement with previous evidence demonstrating that A-tDCS over the LH improves language processing.6–8The difference in treatment outcome between A-tDCS and S-tDCS could not be explained by unspecific arousal differences, as changes in the patients’ blood pressure and heart rate recordings from pre- to post-tDCS administrations were found to be comparable across both tDCS conditions. Furthermore, differences could not be explained by scalp sensation attributed to the different stimulation types, as patients did not report a difference in their comfort levels between A-tDCS and S-tDCS. Finally, differences could not be attributed to the order of stimulation type or word list difficulty, as an order effect was not revealed between A-tDCS and S-tDCS nor was a difference revealed for the difficulty level between words lists A and B.Various observations can help explain why A-tDCS over a region of the left frontal cortex improved the naming abilities in PWA. Primarily, this region has been revealed to be exceedingly important for aphasia recovery. For instance, a recent fMRI study investigated theactivation of both hemispheres in 15 patients with chronic aphasia during an overt picturenaming task. The results revealed a positive linear relationship between intensity of activationof the LH, especially the left frontal cortex, and naming accuracy in PWA.4 Results from thepresent study reinforce this finding, as it suggests that improved naming in PWA is supportedby the left frontal cortex. Thus, since A-tDCS increases cortical excitability, it presumablyimproved the patients’ ability to name pictures by focally stimulating function of the left frontalcortex. Similar to the present research, other studies have implicated the LH in aphasiarecovery, and although the specific cortical location may vary, it is probable that improvedspeech and language functioning following aphasia treatment relies, at least partly, on sparedLH regions.1–4 It is important to note, however, that the present results do not discount the roleof the RH in aphasia recovery, as several studies have revealed that right hemisphere regionsreflect a compensatory network.22,23 Therefore, it may be possible that the positive treatmentoutcome revealed in the current study following A-tDCS to the left frontal cortex may bespecific to naming improvements, and the administration of A-tDCS to other areas of the LHand possibly even the RH may improve the performance of other linguistic functions in PWA.While the current study revealed a statistically significant enhancement for A-tDCS, individualpatients exhibited a wide range of treatment outcomes. Understanding this variability may beimportant in optimizing treatment and justifying the clinical benefit for tDCS. Therefore, wefeel it is important to speculate regarding the source of this variability. While our small samplesize (n = 10) makes strong conclusions impossible, we believe that these are importantconsiderations for the development of future studies. We suggest that treatment success wasnot related to biographical factors (e.g., age, education level, lesion size, aphasia severity, andAOS severity) (Table 5). For instance, the patient (P8) with the longest time post-stroke (242-NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscriptmonths), largest lesion (342.2 cc 3), and second most severe aphasia according to the WAB-R (AQ: 27.5) displayed improved naming. However, not all of the patients showed improved naming. For example, two of the patients (P4 and P7) performed nearly at ceiling during baseline testing, and thus, had limited room for improvement. Additionally, one patient (P6)presented with very severe speech and language deficits and did not produce a single correct naming response during any of the six testing sessions. Other patients (P3, P9, and P10)displayed improvements following both A-tDCS and S-tDCS, while the remaining four patients (P1, P2, P5, and P8) displayed clear improvements following A-tDCS as compared to S-tDCS. Three out of these latter four patients (P1, P2, and P8) presented with AOS and two of the four (P1 and P8) were classified as having nonfluent aphasia. Interestingly, both AOS and nonfluent aphasia are associated with damage to the left frontal cortex,24 which was the area stimulated in the present study. It should also be noted that the one of these four particular patients who did not present with AOS (P5), suffered damage to left frontal cortex. These observations lead us to speculate on two possible reasons why some of our patients benefitted from tDCS more than others. First, it may be possible that PWA who benefit the most from A-tDCS to the left frontal cortex are those with either or both AOS and nonfluent aphasia.Secondly, it is possible that stimulating areas closest to a patient’s perilesional area will result in the greatest amount of naming improvement (as presumably the residual portions of a damaged module are often crucial for rehabilitation). That is, three of the four patients (P1, P5,and P8) who benefitted the most from A-tDCS had frontal lobe damage, whereas most of the patients who showed less improvement tended to have posterior damage. This suggests that frontal lobe stimulation is most beneficial for patients with frontal lobe damage whereas posterior stimulation may be more beneficial for those PWA who also present with primarily posterior damage. Clearly, this latter speculation cannot be verified with the present data since our study only included frontal lobe stimulation.One important caveat related to the present work is that it did not address the effect of C-tDCS upon naming. This was a clinical decision based on our hypothesis, which suggested thatnaming performance is positively correlated with cortical excitability. Therefore, it waspresumed that the opposite outcome might be true, in which decreased cortical activationelicited by C-tDCS might inhibit picture naming. This decision was also based on the resultsof numerous studies suggesting greater benefit associated with A-tDCS compared to C-tDCS.6–8 Therefore, while our findings provide clear evidence regarding the beneficial role of A-tDCS, we do not have evidence to comment on the intriguing beneficial effect for C-tDCSreported by Monti and colleagues.9 While it is convenient to consider increased and decreasedcortical excitability as being mutually exclusive, we concede that it is possible that both A-tDCS and C-tDCS may be beneficial. Specifically, one could imagine a situation wherebeneficial changes are preferentially sustained through a Hebbian process, while detrimentalchanges have no long-term consequences. In this scenario, A-tDCS entrains parts of thenetwork that need to be up-regulated, whereas C-tDCS stimulation encourages down-regulation of other portions of the same network.The current experimental design necessarily limits the inferences that can be drawn from thisstudy, which, in turn, provides clear directions for future research. For instance, it is possiblethat measuring reaction time rather than just naming accuracy could have revealed a moresensitive measure of performance change for those patients who performed nearly at ceilingduring baseline testing (e.g., P4 and P7). Additionally, the current study did not assessfunctional language abilities; thus, future studies should consider the inclusion of functionalcommunication measurements to determine the functional relevance of tDCS. Finally, follow-up testing was performed relatively soon following treatment completion; therefore, it isimportant for future tDCS studies to conduct follow-up testing at longer intervals (e.g., two-weeks, one-month, etc.) to determine if treatment effects endure past one-week post-treatment.NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscript。

失语症的经颅直流电刺激治疗

失语症的经颅直流电刺激治疗
的部 位不 一致 , 但语 言功 能的改善 至少部分是左半球存活 区 在起 作用 。 以往对失 语症 的影像学研究 观察 到右半球 的左 侧语 言
抑制性 t D C S 可 以对失语 症的图命 名 、 听理 解 、 阅读及 书写 产
生不 同 的影 响 , 并 对卒 中后 失语症 显示 出其 特定 的治疗 效
C h i es n e J o u r n a l o fR e h a b i l i t a t i o n Me d i c i n e ,A p r . 2 0 1 5 , V o 1 . 3 0 ,N o . 4

综述 ・
失语症的经颅直流 电刺激 治疗
汪质语言 区的功能改善 。 随后 , B a k e r 等 对 Mo n t i 的研究结果 , 即阳极 t DC S 没有
近年 来 , 经 颅磁 刺激 ( t r a n s c r a n i a l ma g n e t i c s t i mu l a t i o n . T MS ) 、 经 颅直 流 电刺 激 ( t r a n s c r a n i a l d i r e c t c u r r e n t s t i mu l a —
的更 强激活 。这 种激活被 解释 为语 言加工 系统 的左半球 部
个电极位于左额颞 区, 另 一个 电极 位 于 右 肩 ; 刺 激 时 间
1 0 mi n , 刺激 前后 评价 图命名 。结 果显示 , 左额 颞 区阳极 刺
分损 害造 成的经胼胝体去抑制 、 反 常反应 , 而不反 映恢 复 ; 或
语症患者命名 准确 率呈 正相关 。那么 , 阳极t DC S 增加 了左
兴奋 性长达 9 0 mi n 。使用 相同的方法 , 9 mi n 阴极 刺激导致皮

经颅直流电刺激对失语症合并认知障碍的个案观察

经颅直流电刺激对失语症合并认知障碍的个案观察

COllex
stimulation
humans
IJ】.Neurology,2001,57(10):1899_一1901.
Nitsche cathodal
tor
MA,Nitsche MS,K1ein CC,et DC polarization
a1.Level of
action
of
induced inhibition
(transcranБайду номын сангаасal direct
current
电极置于健侧肩部,直流电强度为1.2mA,20mird次,1次厌,
每周治疗5天,持续两周。 1.3统计学分析 计数资料采用Fisher精确检验。
stimulation,tDCS)是否可促进其
记忆和语言功能的改善,是本文所要回答的问题。
l资料与方法 1.1临床资料 患者男性,49岁,大学文化。因右侧肢体活动不利伴言 语不利2个月入院。语言障碍表现为中至轻度理解困难,严 重图命名困难,朗读能力保留。头颅MRI示左侧基底核、放 射冠及半卵圆中心多发性脑梗死,伴脑萎缩。临床诊断为脑 梗死(左侧大脑中动脉区)、命名性失语。 1.2方法 1.2.1检查方法:应用“汉语失语症心理语言评价与治疗系 统”(PACAl.0,敏力捷(维京)有限公司)的相关检查,评价患 者听觉词一图匹配、视觉词一图匹配、视图命名、高表象词朗 读。 应用蒙特利尔认知评估(JL京版)评价患者的视空间与 执行功能、命名、注意、语言、抽象、延迟记忆、定向功能。 1.2.2治疗方法:治疗步骤为单纯言语治疗2周后,进行言 语治疗加tDCS治疗2周,治疗前后分别进行听觉词一图匹配、 视觉词一图匹配、图命名、高表象词朗读测验,以及蒙特利尔 认知评估(北京版)。 3讨论 目前对认知障碍和失语症的治疗方法普遍采用药物治 疗与语言、认知训练。治疗效果较慢,且药物治疗副作用 2结果 2.1语言检查结果 患者于言语训练前听觉词一图匹配测验得分19/30,视觉 词一图匹配测验得分21/30,视图命名测验得分0/30,高表象 词朗读测验得分27/30。检查结果提示患者有轻度的语义认 知系统障碍,朗读较好,图命名严重受损。 经2周言语训练后,患者听觉词一图匹配与视觉词一图匹 配测验、图命名检查结果无明显改变(表1)。 2.2认知功能检查结果 蒙特利尔认知评估(北京版)检查结果提示该患者认知 功能严重受损(表2)。 经过2周的言语训练后(tDCS治疗前),对患者进行第二次 认知功能评价,结果显示认知功能无明显改善(表2)。经2周的 tDCS并结合言语训练后,进行第三次语言与认知功能评价,结 果显示语言功能接近正常,认知功能明显改善(表l—2)。

经颅直流电刺激对非流利型原发性进行性失语症语言功能的作用

经颅直流电刺激对非流利型原发性进行性失语症语言功能的作用

sessions:anodal
left posterior perisylvian
region(PPR)on
and
the
afiemoon.The auditory word—picture identification,picture naming,word
with psycholinguistic of assessment in Chinese
1112 WWW.rehabi.com.cn
万方数据
中圈属重区学集矗2015年,第30卷,第11期
Conclusion:Significant
ture
improvement short
an
in
word—auditory
comprehension,word reading,word
over
repetition
comparison post-B2 VS.pre—B2.ApEn
indi—
areas
and non—stimulated
areas.
DOI:10.3969/j.issn.1001—1242.2015.11.005 +基金项目:国家自然科学基金资助课题(30600186;81171011);首都l临床特色应用研究(Z121107001012144);国家科技支撑计划 (2013BAHl4F03);海淀区社会事业研发专项项目(¥2013013) 1首都医科大学宣武医院康复医学科,北京,100053;2中日友好医院康复医学科;3北京市中关村医院康复医学科;4通讯作者 作者简介:汪洁,女,硕士,副主任治疗师;收稿日期:2015—01—05
近年来,根据言语理解和产生障碍,PPA被分为3
stimulation,tDCS)是一种非侵袭性、利用微电流调 节大脑皮质神经细胞活动的技术,通过放置在头皮

tDCS医院培训(精神)

tDCS医院培训(精神)
阳极刺激诱导区域性脑血流增加17.1%,当刺激停止时, 血流量恢复到基线水平;
Cathodal stimulation induced a smaller increase (5.6%) during stimulation, a significant decrease compared to baseline (−6.5%) after cessation, and a continued decrease in the post-stimulation period. 阴极刺激时诱导较小的血流增加(5.6%),停止刺激后 血流量与基线比较显著降低(-6.5%),持续到刺激后 期。
tDCS刺激的深度
丘脑 脑干背侧
tDCS的作用机制
总的来说:阳极兴奋 阴极抑制
具体而言: 对静息膜电位的改变:阳极使去极化、阴极超极化; 对局部脑血流量的改变:阳极增加、阴极降低; 对任务相关脑区的影响:阳极激活、阴极减弱; 后续效应:1-2小时; 调节突触微环境:改变 NMDA 受体或GABA 的活性,从而起到调 节突触可塑性的作用; 更多……
• tDCS性价比更高,因此对资源匮乏地区吸引力更大
一、tDCS的发展简史
经颅直流电发展简史——带电鱼治病
tDCS(transcranial direct current stimulation)是近年来新兴的 电刺激方式,但是应用直流电刺激大脑来调节脑功能是一项古老的技术。
活的发电机——电鳐
经颅直流电发展简史——从发展到延搁
主要应用领域涉及多种精神及神经类疾病
二、tDCS的基本知识
tDCS的概念
一种非侵入性的,利用恒定、低强度直流电(1—2mA)调节大脑皮层神 经元活动的技术。
u

经颅直流电刺激联合言语训练对脑梗死后失语症的治疗效果

经颅直流电刺激联合言语训练对脑梗死后失语症的治疗效果

[收稿日期]2019-08-16 [修回日期]2020-04-10[基金项目]首都医科大学附属北京康复医院院内课题培育项目(2017-053)[作者单位]首都医科大学附属北京康复医院言语康复科,北京100144[作者简介]张 茜(1980-),女,硕士,主治医师.[通信作者]代 欣,硕士,副主任医师.E⁃mail:42577364@[文章编号]1000⁃2200(2020)05⁃0601⁃05㊃临床医学㊃经颅直流电刺激联合言语训练对脑梗死后失语症的治疗效果张 茜,代 欣,贺 媛,魏 冰,贾海艳,张瑾秀,郭瑞琪,王海英[摘要]目的:研究经颅直流电刺激(tDCS)联合言语训练对脑梗死后失语症病人的治疗作用㊂方法:选取脑梗死后失语症病人100例,按照随机数字表法分常规组和联合组,各50例㊂常规组予以言语训练,联合组予以tDCS 联合言语训练㊂比较2组病人干预前后的西部失语症测试(WAB)评分㊁日常生活交流能力量表(CADL)评分㊁简易智力状态检查量表(MMSE)评分和图片命名测试结果,并通过波士顿诊断性失语症检查法分级评价病人治疗效果㊂结果:联合组病人治疗总有效率为94.00%(47/50),明显高于常规组的74.00%(37/50)(P <0.01)㊂干预前,2组病人WAB 评分㊁CADL 评分㊁MMSE 评分和图片命名测试结果差异均无统计学意义(P >0.05);干预后,联合组病人WAB 各子测试评分㊁CADL 评分㊁MMSE 评分均高于常规组(P <0.05~P <0.01),图片命名测试中训练和未训练图片的正确命名数均明显多于常规组(P <0.01)㊂结论:tDCS 联合言语训练可改善脑梗死后失语症病人病情严重程度,改善病人言语功能㊁日常生活交流能力和认知功能,激活㊁协调大脑神经网络系统,改善病人命名泛化效应和固化效应㊂[关键词]脑梗死后失语症;经颅直流电刺激;言语训练[中图法分类号]R 743.3 [文献标志码]A DOI :10.13898/ki.issn.1000⁃2200.2020.05.012Effect of transcranial direct current stimulation combined with speech trainingin the treatment of aphasia after cerebral infarctionZHANG Qian,DAI Xin,HE Yuan,WEI Bing,JIA Hai⁃yan,ZHANG Jin⁃xiu,GUO Rui⁃qi,WANG Hai⁃ying(Department of Speech Rehabilitation ,Beijing Rehabilitation Hospital Affiliated to Capital Medical University ,Beijing 100144,China )[Abstract ]Objective :To study the effects of transcranial direct current stimulation(tDCS)combined with speech training in the treatment of aphasia after cerebral infarction.Methods :A total of 100patients with aphasia after cerebral infarction were randomly divided into the regular group and combined group(50cases in each group).The speech training in regular group was implemented,andthe tDCS combined speech training in combined group was implemented.The western aphasia battery (WAB )score,daily life communication skills scale(CADL)score,mini⁃mental state examination scale(MMSE)score and picture naming test results were compared bewteen two groups before and after the intervention.Results :The total effective rate in combined group(94.00%)was significantly higher than that in regular group(74.00%)(P <0.01).Before intervention,the differences of the WAB score,CADL score,MMSE score and results of picture naming test between two groups were not statistically significant (P >0.05).After intervention,the WAB score,CADL score and MMSE score in combined group were higher than those in regular group(P <0.05to P <0.01),and the correct number of training pictures and untraining pictures in combined group were more than that in regular group(P <0.01).Conclusions :The tDCS combined with speech training can improve the severity of aphasia patients after cerebral infarction,their speech function,daily communication ability,cognitive function,activate and coordinate the brain neural network system and patient′sgeneralization effect and curing effect.[Key words ]aphasia after cerebral infarction;transcranial direct current stimulation;speech training 失语症是脑梗死后大脑功能区受损引起的一种后遗症,发病率为20%~40%,严重影响病人日常生活,但现阶段尚缺乏特效的治疗药物,如何促进病人语言能力恢复仍是临床亟待解决的问题之一[1]㊂言语训练是脑梗死后失语症常用康复治疗方法,临床证实其可取得一定效果[2-3],但在方法选取与实施方面尚未形成统一㊁标准化流程㊂经颅直流电刺激(transcranial direct current stimulation,tDCS)是一种利用低强度㊁恒定直流电调节大脑皮层神经元活动的神经调控技术[4]㊂早期报道[5]指出,应用直流电或脉冲刺激灵长类动物,超过50%电流穿过颅骨到达脑组织,并在不引起动作电位条件下,以电场的方式引起细胞膜局部电位㊁阈电位的改变,从而调节大脑运作方式㊂胡荣亮等[6]研究发现,tDCS 能促进大脑损伤周边区神经再募集,改善记忆力㊁注意力㊂本研究将tDCS联合言语训练应用于脑梗死后失语症病人中,以西部失语症测试(WAB)评分和波士顿诊断性失语症检查法(BDAE)分级等为指标,探讨其治疗效果㊂现作报道㊂1 资料与方法1.1 一般资料 选取2016年11月至2018年12月我院收治的脑梗死后失语症病人100例㊂纳入标准:参考‘中国急性缺血性脑卒中诊治指南2014“[7]诊断为脑梗死;以往无言语障碍;首次出现失语症;病人家属知情同意并自愿签署知情同意书;体内无金属植入;无恶性肿瘤;母语为汉语;均为右利手㊂排除标准:合并卒中后抑郁者;应用心脏起搏器者;生命体征不稳定者;电解质紊乱者;颅内高压者;有出血倾向者;有癫痫病史者;认知异常者;有听觉障碍㊁视觉障碍者㊂将病人按照随机数字表法分为常规组和联合组,各50例㊂2组病人的性别㊁年龄㊁病程㊁学历和BDAE分级差异均无统计学意义(P>0.05)(见表1),具有可比性㊂表1 2组病人一般资料比较[n;百分率(%)]分组n男女年龄/岁BDAE分级/级 1 2 3 4 病程/周学历 初中及以下 高中及以上 联合组50282265.07±3.425(10.00)21(42.00)18(36.00)6(12.00) 5.63±0.75 40(80.00)10(20.00)常规组50242664.79±2.557(14.00)19(38.00)20(40.00)4(8.00) 5.52±1.22 37(74.00)13(26.00)χ2 0.640.46*0.94△0.54*0.52P >0.05>0.05>0.05>0.05>0.05 *示t值;△示u c值1.2 方法 常规组予以言语训练㊂(1)发音器官训练:包括唇(抿嘴㊁鼓腮㊁呲牙㊁缩唇㊁咧嘴)㊁舌(顺逆时针运动㊁缩舌㊁伸舌㊁舌尖舔上颚㊁左右口角㊁牙齿㊁两侧腮㊁上下嘴唇)㊁下颌(闭口㊁张口㊁咀嚼㊁左右活动)的训练,开始训练时,治疗师对着矫形镜进行示范,指导病人进行模仿,训练由慢到快,循序渐进,待病人熟练后,则治疗师予以指令,嘱病人单独完成㊂每个动作5~8次,每次5~10min,每天训练5~10次㊂(2)听觉刺激训练:通过报纸㊁电视㊁广播媒介,选取病人喜欢的小品㊁歌曲㊁音乐㊁散文等多种手段,引起病人注意,进行文字理解㊁听觉理解训练,刺激思维,通过反复提供语言信号,保证足够强度的听觉语言刺激㊂同时可配合对应图片㊁食物刺激,如在病人面前放置图片,治疗师每讲出一个名字,嘱病人拿出相应图片;或将食物放置于病人面前,反复强调 吃饭” 拿筷子”等,增加刺激㊂每次20min,每天2次㊂(3)构音训练:指导病人张口发 啊” 哦” 呜”和叹气 h”㊁吹蜡烛 p”等音,利用口部肌肉运动训练发音转化能力,并循序渐进延长发音时间,按照字㊁词㊁词组㊁句子㊁短文顺序进行训练,速度由慢至快,训练围绕日常生活常用口语进行,如 你好” 再见” 睡觉” 吃饭”等,并询问病人简短问题,引导病人进行回答,注意应给病人一定回答时间,鼓励其进行表达㊂每个动作5~8次,每次5min,每天训练5次㊂(4)日常生活交流训练:病情严重者可先借助 说话卡片”,嘱病人用手指出想要表达内容,并指导病人应用手势进行交流,如摆手㊁点头等,同时应用家人照片进行训练,如 照片上的是谁?” 你喜欢他吗?”等㊂中度失语者先从 走㊁跑㊁拿㊁喝㊁吃㊁穿”单词开始,再过渡至 走路㊁吃饭㊁跑步㊁喝水㊁穿衣”等词组,并引导㊁鼓励病人在特定场景中讲出 好吗” 不知道” 再见”等,当病人口形与发音不正确时,及时予以纠正㊂轻度失语者主要通过加强交流进行训练,请病人谈谈自己做过最勇敢的事㊁爱好㊁家庭等,并强化听㊁说㊁读㊁写训练,增加病人词汇量,改善语言表达能力㊂以上训练过程中,应充分调动病人家属积极性,嘱其积极配合病人进行训练,多对病人进行表扬㊁关心㊁鼓励㊂每次20min,每天2次㊂以上言语训练干预进行6周㊂联合组予以tDCS联合言语训练(方法同常规组)㊂tDCS治疗采用智能电刺激仪(四川科仪诚科技有限公司),电极面积4.5cm×5.8cm㊂采用国际脑电图10⁃20标准定位法,定位额下回三角部,左侧Broca区及右侧Broca镜像区定位分别为F7⁃Cz 与T3⁃Fz间交叉点㊁F8⁃Cz与T4⁃Fz间交叉点㊂病人右侧肩部放置阴极,左侧额下回三角部区放置阳极,刺激时间20min,电流强度1.2mA,完成后换为左侧肩部放置阳极,右侧额下回三角部区放置阴极,刺激参数设置同上㊂每天1次,每周6次,共进行6周㊂1.3 观察指标 (1)干预6周后,对2组病人进行BDAE分级,评价治疗效果㊂BDAE分级主要用于评估失语症严重程度,分为0(无有意义的言语或听觉理解能力)~5级(病人主观上感到有点困难,有极少可分辨得出的言语障碍,但听者不一定能明显觉察到),分级越高,表示失语症越轻㊂以BDAE分级增加≥2级㊁1级㊁0级分别为显效㊁有效㊁较差,总有效率=(显效例数+有效例数)/总例数×100%㊂(2)比较2组病人干预前后WAB评分,评价病人言语功能㊂WAB包含听理解(执行指令㊁听词辨认㊁是/否问题)㊁自发言语(图片描述㊁6个简单问答)㊁命名(物品命名㊁完成句子㊁列名㊁反应性命名)㊁复述(15个条目)4个子测试,分值越高,表示病人对应功能越强㊂(3)比较2组干预前后日常生活交流能力量表(CADL)评分和简易智力状态检查量表(MMSE)评分,评价病人日常生活交流能力和认知功能㊂CADL评分0~33分为交流过程需全面辅助,34~67分为需大部分辅助,68~92分为能在家庭内独立交流,>92分为交流能力达实用水平,分值越高,表示病人交流能力越好;MMSE共19项30分,分值越高,表示病人认知功能越好㊂(4)比较2组病人干预前后图片命名测试结果,评价病人命名泛化效应㊁固化效应㊂测试包括未训练图片46张与训练图片75张,图片在电脑屏幕中以随机顺序出现,要求病人对图片命名,每张图片呈现5s,统计病人命名正确数㊂1.4 统计学方法 采用t检验㊁χ2检验和秩和检验㊂2 结果2.1 2组病人治疗效果比较 干预6个月后,联合组病人治疗总有效率为94.00%,明显高于常规组的74.00%(P<0.01)(见表2)㊂表2 2组病人治疗效果比较[n;百分率(%)]分组n显效有效较差总有效χ2P 联合组5023(46.00)24(48.00)3(6.00)47(94.00)常规组509(18.00)28(56.00)13(26.00)37(74.00)7.44<0.01合计10030(30.00)52(52.00)16(16.00)84(84.00)2.2 2组病人干预前后WAB评分比较 2组病人干预前WAB各子测试评分差异均无统计学意义(P>0.05);干预后,2组WAB各子测试评分均较干预前明显升高(P<0.01),且联合组干预后听理解㊁自发言语㊁命名㊁复述评分均高于常规组干预后(P<0.05~P<0.01)(见表3)㊂表3 2组病人干预前后WAB评分比较(x±s;分)时间分组n听理解自发言语命名复述干预前联合组507.82±1.2312.29±2.23 2.11±0.97 4.62±1.05常规组507.78±1.3112.35±2.17 2.08±0.94 4.55±1.14t 0.160.140.160.32P >0.05>0.05>0.05>0.05干预后联合组509.31±1.05** 15.63±3.44** 6.58±1.16** 8.25±1.09**常规组508.68±0.97**14.05±2.89** 4.77±1.34** 6.03±1.11**t 3.12 2.497.2210.09P <0.01<0.05<0.01<0.01 组内配对t检验:与干预前比较**P<0.012.3 2组病人干预前后CADL评分和MMSE评分比较 干预前,2组病人CADL评分和MMSE评分差异均无统计学意义(P>0.05);干预后,2组CADL评分和MMSE评分均较干预前明显升高(P <0.01),且联合组均明显高于常规组(P<0.01) (见表4)㊂2.4 2组病人干预前后图片命名测试比较 干预前,2组病人图片命名测试结果差异无统计学意义(P>0.05);干预后,2组训练图片和未训练图片正确命名数均较干预前明显增加(P<0.01),且联合组均明显多于常规组(P<0.01)(见表5)㊂ 表4 2组病人干预前后CADL评分和MMSE评分比较(x±s;分)分组n CADL评分 干预前 干预后 MMSE评分 治疗前 治疗后 联合组5046.63±8.4795.33±5.76**18.91±4.4424.56±3.21**常规组5047.34±5.1982.44±8.35**18.85±3.6721.19±2.15** t 0.518.990.07 6.17P >0.05<0.01>0.05<0.01 组内配对t检验:与干预前比较**P<0.013 讨论 调查[8-9]发现,脑梗死后失语症病人与无失语者相比,具有较高的疾病复发率㊁病死率及更多的保健资源消耗,恢复期漫长,不仅延长了住院时间,亦增加住院费用,给家庭㊁社会带来沉重负担㊂言语训练是脑梗死后失语症最基本且重要的一种治疗方法,利用神经可塑性,通过较强语言刺激㊁听觉刺激㊁视觉刺激等反复强化训练,能激活病人受损语言符号系统,促进言语功能恢复㊂但脑梗死后失语症病人病情复杂,恢复难度较大,临床上进行言语训练时,常因缺乏统一标准㊁详细实施方法而难以贯彻落实㊂表5 2组病人干预前后图片命名测试结果比较(x±s)分组n训练图片正确命名数 干预前 干预后 未训练图片正确命名数 干预前 干预后 联合组508.21±4.9148.06±10.35** 6.19±3.5529.47±8.52**常规组508.53±3.7227.74±12.61** 6.24±3.6318.04±7.19** t 0.378.810.077.25P >0.05<0.01>0.05<0.01 组内配对t检验:与干预前比较**P<0.01 以往有学者[10-11]采用词导航训练法或常规语言训练法治疗失语症,但该方法需病人具备基本发音器官功能与构成音功能㊂本研究针对这一现象,充分考虑脑梗死后失语症病人可能存在的发音器官功能异常与构音障碍后设计言语训练方法,首先通过训练病人唇㊁舌㊁下颌发音器官,提高病人发音器官灵活性,为后续训练奠定基础,且通过听觉刺激训练,反复向病人提示物体名称,强化刺激,结合情境练习㊁手势等,加深病人记忆,同时通过构音训练,指导病人张口发音,循序渐进延长发音时间,增强病人描述能力㊂研究[12]指出,大脑对语言的支配是一个复杂功能连接网络,故推测失语症发生机制可能与语言功能区被破坏,或由于镜像区代偿㊁远隔效应,左右大脑半球间连接异常有关[12]㊂有观点[13]认为,右侧大脑半球镜像区可补偿左侧半球损伤的语言区部分功能㊂但近年证据[14-15]指出,脑梗死后失语症病人右侧语言功能相对应的皮质兴奋性异常升高,并可能成为阻碍语言恢复重要原因㊂tDCS是一种非侵入性技术,刺激器输出微弱直流电,在阳极㊁阴极形成一个环路,穿过颅骨作用于大脑皮质,可引起皮层双相㊁极性依赖性改变,从而影响相应感知觉㊁运动和认知行为[16]㊂有学者[17]应用tDCS抑制右侧半球活动,左侧病灶周围兴奋性提高,并伴有语言功能提升㊂另有研究[18]指出,降低非优势半球镜像区兴奋性可能是tDCS促进语言功能恢复原因所在㊂本研究结果显示,联合组病人治疗总有效率为94.00%,明显高于常规组的74.00%;干预后2组病人WAB各子测试评分㊁CADL评分㊁MMSE评分和图片命名测试结果均较治疗前明显改善,且联合组各项均优于常规组㊂提示tDCS联合言语训练可改善脑梗死后失语症病人病情严重程度,提高病人言语功能,并可激活㊁协调大脑神经网络系统,改善病人命名泛化效应㊁固化效应㊂tDCS改善病人语言功能机制还可能包括通过低频交变电磁场,舒张血管壁上皮细胞㊁肌细胞,松弛痉挛脑血管,改善脑部血流灌注;低频交变电磁场可产生电磁波,作用于脑细胞后,可增强受损脑区营养物质摄取,加快受损脑细胞的功能修复;可诱导N⁃甲基天冬氨酸受体功能发生极性-依赖性修饰,通过参与突触可塑性形成,介导神经重塑而发挥促进言语功能恢复的作用[19]㊂此外tDCS治疗区与治疗参数的选择亦可影响疗效,邓静等[20]研究参照国际脑电图10⁃20标准定位法选取额下回三角部位作为治疗区治疗脑梗死,刺激时间设置为20min,电流强度设置为1.2mA,发现治疗后病人语言功能得到改善㊂tDCS作为一种非侵袭性脑刺激技术,具有应用方便等的优点,能从多途径促进病人语言功能的恢复,应用前景广阔,但头发㊁骨密度㊁头皮可阻碍电流向大脑的运输,引起个体间导电性的差异,且准确定位治疗区难度较大,对操作者要求较高,这是其局限性所在,相信未来这些问题能通过更先进的技术解决,使更多病人获益㊂本研究不足之处在于,纳入的脑梗死后失语症病人均为右利手,tDCS联合言语训练是否适应于左利手病人及能否获得相似效果,仍有待后续进一步探讨,且纳入的样本量较小,可能造成数据的偏倚,更可靠的结果仍有待进一步探讨㊂综上所述,tDCS联合言语训练可改善脑梗死后失语症病人病情严重程度,提高病人言语功能㊁日常生活交流能力㊁认知功能,可激活㊁协调大脑神经网络系统,改善病人命名泛化效应㊁固化效应㊂[参考文献][1] TAKAHASHI N,KAWAMURA M,KOBAYASHI Y.Impairmentsin the comprehension of indoor object/body part words and familyrelationships in a patient with aphasia due to cerebral infarction ofthe left parietal and temporal lobes[J].Case Rep Neurol,2018,10(2):181.[2] DONG XS,SONG GF,WU CJ,et al.Effectiveness of rehabilitationtraining combined with acupuncture on aphasia after cerebralhemorrhage:A systematic review protocol of randomized controlledtrial[J].Medicine(Baltimore),2019,98(24):e16006. [3] LIU G,SUN JJ,YANG J,et al.Xingnao Kaiyin acupuncturecombined with speech training for post⁃stroke aphasia[J].ChinAcup Moxib,2019,39(4):355.[4] SDOIA S,CONVERSI D,PECCHINENDA A,et al.Access toconsciousness of briefly presented visual events is modulated bytranscranial direct current stimulation of left dorsolateral prefrontalcortex[J].Sci Rep,2019,9(1):10950.[5] KWAN A,FORBES PA,MITCHELL DE,et al.Neural substrates,dynamics and thresholds of galvanic vestibular stimulation in thebehaving primate[J].Nat Commun,2019,10(1):1904. [6] 胡荣亮,陈卓铭,冯尚武,等.经颅直流电刺激小脑对遗忘型轻度认知功能障碍患者言语工作记忆能力的影响[J].中华物理医学与康复杂志,2016,38(4):267.[7] 中华医学会神经病学分会.中国急性缺血性脑卒中诊治指南2014[J].中华神经科杂志,2015,48(4):246.[8] TAN X,GUO Y,DUN S,et al.Crossed aphasia following cerebralinfarction in a right⁃handed patient with atypical cerebrallanguage dominance[J].J Neurol,2018,265(7):1671. [9] HAN J,LEE HI,SHIN YI,et al.Factors influencing return towork after stroke:The Korean Stroke Cohort for Functioning andRehabilitation(KOSCO)study[J].BMJ Open,2019,9(7):e028673.[10] 张芹,江钟立,方欣,等.词联导航训练法联合经颅直流电刺激改善失语症言语流畅度及命名能力的临床观察[J].中国康复医学杂志,2017,32(8):879.[11] 张洪,刘静,杨未风,等.经颅直流电刺激联合常规言语康复治疗脑卒中后非流畅性失语症的疗效观察[J].康复学报,2017,27(3):39.[12] ELBOURN E,KENNY B,POWER E,et al.Discourse recoveryafter severe traumatic brain injury:exploring the first year[J].Brain Inj,2018,33(2):143.[13] ANGLADE C,THIEL A,ANSALDO AI,The complementary roleof the cerebral hemispheres in recovery from aphasia after stroke:A critical review of literature[J].Brain Inj,2014,28(2):138.[14] XING S,LACEY EH,SKIPPERKALLAL LM,et al.Righthemisphere grey matter structure and language outcomes inchronic left hemisphere stroke[J].Brain,2016,139(Pt1):227.[15] MARANGOLO P,FIORI V,SABATINI U,et al.Bilateraltranscranial direct current stimulation language treatmentenhances functional connectivity in the left hemisphere:preliminary data from aphasia[J].J Cogn Neurosci,2016,28(5):724.[16] BIOU E,CASSOUDESALLEe H,COGNÉM,et al.Transcranialdirect current stimulation in post⁃stroke aphasia rehabilitation:Asystematic review[J].Ann Phys Rehabil Med,2019,62(2):104.[17] GALLETTA EE,CANCELLI A,COTTONE C,et e ofcomputational modeling to inform tDCS electrode montages for thepromotion of language recovery in post⁃stroke aphasia[J].BrainStimul,2015,8(6):1108.[18] HOPE TMH,LEFF AP,PREJAWA S,et al.Right hemispherestructural adaptation and changing language skills years after lefthemisphere stroke[J].Brain,2017,140(6):1718. [19] FRIDRIKSSON J,BASILAKOS A,STARK BC,et al.Transcranialdirect current stimulation to treat aphasia:Longitudinal analysis ofa randomized controlled trial[J].Brain Stimul,2019,12(1):190.[20] 邓静,唐金华,倪丽君.经颅直流电刺激对非流利型原发性进行性失语症的治疗作用[J].中国听力语言康复科学杂志,2017,15(6):449.(本文编辑 卢玉清)(上接第600页)了脊髓损伤并发症发生的概率㊂综上所述,甲泼尼龙鞘内注射有助于改善脊髓损伤病人的康复效果,提高病人最终的康复水平,值得在临床推广应用㊂[参考文献][1] 王涛丽,顾兵,李华南,等.急性脊髓损伤后的炎症反应及其抗炎治疗[J].中国药理学通报,2015,31(4):452. [2] 李建军,王永方.脊髓损伤神经学分类国际标准[J].中国康复理论与实践,201l,17(10):964.[3] 龙梅香,郑嫦燕,傅丽.脑梗塞恢复期病人应用卧式康复操行早期康复护理的临床效果观察[J].国际医药卫生导报,2015,21(12):1648.[4] 曹永武,姚加佳,吴雪莹,等.上肢PNF训练对颈部不完全性脊髓损伤病人日常生活能力的影响[J].按摩与康复医学,2015,6(8):21.[5] 李常威.早期康复治疗对脊柱骨折合并脊髓损伤病人术后疗效的影响研究[J].中国伤残医学,2018,26(15):6. [6] WANG KF,LIU HY,WANG O,et al.Effects of intrathecalinjection of methylprednisolone sodium succinate in acute spinalcord injury rabbits[J].Chin J Surg,2013,51(5):426.. [7] 叶静,张凌.脊髓损伤病人膀胱功能训练和心理康复护理[J].中国现代医生,2010,48(29):55.[8] 张勇,宋宇锋,赵斌.早期康复训练对脊髓损伤后病人功能恢复的影响[J].山西职工医学院学报,2016,26(2):26. [9] 周斌,王维,刘春霞.盆底肌训练对脊髓损伤病人膀胱功能障碍的疗效探讨[J].基层医学论坛,2015,19(9):1168. [10] 张成,黄怀,沈丹彤,等.早期康复治疗对腰段脊髓损伤术后病人日常生活活动能力的影响分析[J].中国临床保健杂志,2015,18(5):529.[11] GIANGREGORIO L,CRAVEN C,RICHARDS K,et al.Arandomized trial of functional electrical stimulation for walking inincomplete spinal cord injury:Effects on body composition[J].JSpinal Cord Med,2012,35(5):351.[12] DEL GAIZO,DANIEL J,CONOR M,et al.The effect ofmethylprednisolone intravenous infusion on the expression ofciliary neurotrophic factor in a rat spinal cord injury model[J].Spine J,2013,13(4):439.[13] HALL ED,SPRINGER JE.Neuroprotection and acute spinal cordinjury:A reappraisal[J].Neuro Rx,2004,1(1):80. [14] MIRACLE AC,FOX MA,AYYANGAR RN,et al.Imagingevaluation of intrathecal baclofen pump⁃catheter systems[J].AmJ Neuroradiol,2011,32(7):1158.(本文编辑 姚仁斌)。

【专科特色第八十二期】经颅直流电刺激(tDCS)技术

【专科特色第八十二期】经颅直流电刺激(tDCS)技术

【专科特色第八十二期】经颅直流电刺激(tDCS)技术早期研究证实,用灵长类动物代替人接受脉冲或直流电刺激,发现超过一半的电流都穿过了颅骨到达脑组织。

tDCS是一种老式刺激方法的新应用,把1-2mA的微弱直流电通过表面电极导入颅内,对神经的刺激不能引起动作电位,但能以电场作用方式影响刺激电极部位下神经细胞的膜电位,引起细胞膜局部电位、阈电位的改变,正极下神经元兴奋性增加,负极下神经元兴奋性减小。

因为操作方便、价格便宜、容易普及,tDCS对神经兴奋性的双向调节正引起临床医学界的兴趣。

tDCS的发展历程自古以来就有很多关于不受控电刺激对大脑进行调控的报告。

最初埃及人发现了鲶鱼的电特性,但是他们不知道该如何在临床应用。

Plato 和Aristotle 发现,电鳐鱼放电时会使人产生麻木的感觉。

后来人们将电鳐鱼放到头皮上用于治疗头痛,虽然方法很简易,但这是最早的应用经颅直流电刺激。

随后,罗马人开始培养专门用于治疗头痛的电鳐鱼,并开始在庞贝古城推广。

到了11 世纪人们开始尝试利用电来治疗疾病,穆斯林名医Ibn-Sidah曾经建议使用活的电鲶治疗来治疗癫痫(epilepsy)。

随着18世纪电池的发明,对经颅直流电刺激进行系统评估成为可能。

Walsh (1773), Galvani (1791, 1797), 以及Volta(1792) 都认识到不同时长的电刺激可以诱发不同的生理改变。

事实上,第一个关于电流刺激临床应用的系统性报告也可以回溯到这一时期,意大利生理学家Giovanni Aldini等人采用经颅电刺激治疗抑郁症。

随着认识的发展,技术逐步成熟,对于经颅电刺激的研究正在不断地完善。

但是在最近的历史中,由于电休克(ECT)及精神药物的使用以及可信神经生理学标志物的缺乏共同造成利用直流电对中枢神经系统(CNS)进行刺激不再被作为精神病学重要治疗和研究手段,tDCS被暂时冷落。

近年来,在现代生活中,人们对于癫痫、慢性疼痛等疾病的关注越来越多,这也成为促进神经刺激技术发展的重要因素。

经颅直流电刺激在精神疾病治疗中应用的研究进展

经颅直流电刺激在精神疾病治疗中应用的研究进展

经颅直流电刺激在精神疾病治疗中应用的研究进展摘要:经颅直流电刺激(tDCS)是近年来在神经科学和临床医学中逐渐受到关注的非侵入性神经调节技术。

本文主要探讨了tDCS在治疗精神疾病,特别是抑郁症、焦虑症和精神分裂症中的应用及其研究进展。

此外,还讨论了该技术的工作原理、安全性和潜在风险。

研究表明,tDCS在改善这些精神疾病的症状上显示出潜在的疗效,尤其是对于那些对传统药物治疗无效的患者。

然而,该技术的长期效果和安全性仍然是亟待解决的问题。

关键词:经颅直流电刺激;精神疾病;神经调制;治疗效果1.引言随着科技和医学的发展,人们对于非药物治疗手段的探索从未停止。

经颅直流电刺激作为一种新兴的神经调节技术,在神经科学和临床领域中的应用逐渐受到关注。

不同于传统的药物治疗,tDCS通过对大脑皮质施加微小电流,调节神经元的兴奋性,从而达到治疗的目的。

这种非侵入性的技术为许多难以治愈的精神疾病提供了新的治疗可能性。

本文将对tDCS在精神疾病治疗中的应用及其研究进展进行详细探讨。

2.tDCS的工作机制2.1基础原理经颅直流电刺激(tDCS)已经成为近年来神经调制领域的热门话题,其基本原理源于其能够通过头皮上的电极直接作用于大脑皮质。

这种直接的作用方式是通过施加小电流来实现的,而这小电流所产生的效应与其强度和方向密切相关。

2.2阳极与阴极的作用经颅直流电刺激中的正电极和负电极对大脑皮质有着截然不同的作用。

阳极,即正电极,其施加的电流可以增强神经元的兴奋性,使得受其作用的大脑区域变得更为活跃。

相对而言,阴极,即负电极,所产生的效应则是抑制神经元的兴奋性,使其处于一种较为静息的状态。

2.3电流的调节及其影响为了达到预期的治疗效果,医生和研究人员需要仔细选择tDCS的电流参数。

电流的强度、方向以及持续时间都会影响到刺激的效果。

例如,较强的电流强度可能会产生更明显的神经调制效果,但同时也可能带来更多的副作用。

电流的方向决定了哪一部分大脑区域受到刺激,而持续时间则影响到刺激的长久性。

TDCS培训资料

TDCS培训资料

TDCS培训资料TDCS(经颅直流电刺激)是一种非侵入性的脑神经调控技术,通过在头皮上施加微弱的直流电流来改变神经元的兴奋性,从而影响大脑功能。

TDCS已经被广泛应用于临床研究和治疗领域,例如改善认知功能、治疗抑郁症、帮助康复等。

本文将为您提供关于TDCS培训的详细资料,包括工作原理、操作方法、安全注意事项以及应用领域等内容。

1. 工作原理TDCS通过在头皮上施加微弱的直流电流来改变神经元的兴奋性。

正极电极(称为“阳极”)和负极电极(称为“阴极”)被安置在头皮上,电流从阳极流入大脑,然后从阴极流出。

这种电流的作用是改变神经元的膜电位,从而影响神经元的活动。

2. 操作方法TDCS的操作相对简单,但需要遵循一些基本步骤:步骤1:准备设备和材料。

需要一个TDCS设备(包括阳极和阴极电极、电流控制器等)、导电凝胶、海绵垫、电极固定带等。

步骤2:选择适当的电极位置。

根据具体的治疗目标,选择正确的电极位置。

一般来说,阳极放置在目标区域上方,阴极放置在目标区域下方。

步骤3:准备头皮。

用清洁剂清洁头皮,以确保电流的传导效果。

步骤4:涂抹导电凝胶。

在电极和头皮之间涂抹一层导电凝胶,以提高电流的传导效率。

步骤5:安装电极。

将电极固定在正确的位置上,并确保其与头皮充分接触。

步骤6:控制电流强度和时间。

根据具体情况,设置适当的电流强度和刺激时间。

一般来说,电流强度在1-2mA之间,刺激时间在20-30分钟之间。

步骤7:开始刺激。

启动TDCS设备,开始施加直流电流刺激。

3. 安全注意事项尽管TDCS是一种相对安全的技术,但仍然需要注意以下事项:3.1. 使用专业设备和材料。

确保使用经过认证的TDCS设备和相关材料,以确保安全性和有效性。

3.2. 遵循操作规程。

遵循正确的操作步骤,确保电极的正确放置和电流的适当控制。

3.3. 防止过度刺激。

不要超过推荐的电流强度和刺激时间,以免引起不必要的副作用。

3.4. 不适应人群。

TDCS不适用于孕妇、心脏病患者、癫痫患者以及有皮肤病、创伤等问题的人群。

tDCS联合Schuell法语言训练在脑梗死后失

tDCS联合Schuell法语言训练在脑梗死后失

食诱导的D N肾损害[J].新医学,2019,50(11):826-831.[13]Y F B,WA N G C L,X U M Z,e t a l.T h e c l i n i c a l e f f e c t i v e-n e s s a n d s a f e t y o f t r a d i t i o n a l C h i n e s e m e d i c i n e u r e m i c c l e a r a n c e g r a n u l e c o m b i n e d w i t h h i g h-f l u x h e m o d i a l y s i s i n t h e t r e a t m e n t o f u r e m i c p r u r i t u s:a p r o t o c o l f o r s y s-t e m a t i c r e v i e w a n d m e t a a n a l y s i s[J].M e d i c i n e,2021,100(25):e26423.[14]HU H C,Z H E N G L T,Y I N H Y,e t a l.A s i g n i f i c a n t a s-s o c i a t i o n b e t w e e n r h e i n a n d d i a b e t i c n e p h r o p a t h y i n a n i-m a l s:a s y s t e m a t i c r e v i e w a n d m e t a-a n a l y s i s[J].F r o n t P h a r m a c o l,2019,10:1473.[15]L U P H,WA N G J Y,C HU O H E,e t a l.E f f e c t s o f u r e-m i c c l e a r a n c e g r a n u l e s i n u r e m i c p r u r i t u s:a m e t a-a n a l y s i s [J].T o x i n s(B a s e l),2021,13(10):702.(收稿日期:2022-02-14修回日期:2022-10-04)㊃临床探讨㊃D O I:10.3969/j.i s s n.1672-9455.2022.23.036t D C S联合S c h u e l l法语言训练在脑梗死后失语患者中的应用效果陈杨新郑天佑中医院内七科,河南郑州451100摘要:目的探讨经颅直流电刺激(t D C S)联合S c h u e l l法语言训练在脑梗死后失语患者中的应用效果㊂方法选取2020年1月至2021年8月该院102例脑梗死后失语患者作为研究对象,根据治疗方法不同将其分为A组(n=51)㊁B组(n=51)㊂A组接受t D C S联合S c h u e l l法语言训练治疗,B组接受S c h u e l l法语言训练治疗,两组均持续治疗6周㊂比较两组治疗后总有效率,治疗前后中国康复研究中心失语症检查法(C R R C A E)㊁美国国立卫生研究院卒中量表(N I H S S)㊁脑卒中专门化生活质量量表(S S-Q O L)㊁失语指数(A Q)评分,以及神经功能重建介质[脑源性神经营养因子(B D N F)㊁胰岛素样生长因子-1(I G F-1)㊁神经生长因子(N G F)]水平㊂结果 A组总有效率较B组升高(P<0.05);治疗6周后A组命名㊁朗读㊁复述及表达评分,S S-Q O L㊁A Q评分均较B组升高(P<0.05),N I H S S评分较B组降低(P<0.05),A组血清N G F㊁B D N F㊁I G F-1水平均较B组升高(P<0.05)㊂结论t D C S联合S c h u e l l法语言训练对脑梗死后失语患者治疗效果较好,可有效调节其神经功能,重建介质,缓解病情,提升患者生活质量㊂关键词:脑梗死;失语;S c h u e l l法语言训练;经颅直流电刺激;神经功能中图法分类号:R743.3;R493文献标志码:A文章编号:1672-9455(2022)23-3295-03脑梗死后失语多是由于脑组织缺血㊁缺氧,引发局部器质性损伤所致,属临床常见病症,可直接影响患者身体健康及生活质量[1-2]㊂目前,临床尚缺乏该病症特效治疗药物,如何帮助患者恢复语言能力仍是临床亟待解决问题之一㊂S c h u e l l法语言训练为临床常用康复治疗方法之一,可一定程度缓解患者病情,但单一应用对部分患者言语功能改善效果欠佳[3]㊂经颅直流电刺激(t D C S)属脑刺激技术(非入侵性),可通过电场方式改变细胞膜阈电位及局部电位,调节大脑运作[4]㊂但在S c h u e l l法语言训练治疗脑梗死后失语患者基础上,联合应用t D C S治疗能否进一步提升治疗效果,临床鲜有报道㊂基于此,本研究选取本院102例脑梗死后失语患者为研究对象,旨在从疗效㊁神经功能等层面分析上述两种治疗方式联合应用的价值㊂现分析如下㊂1资料与方法1.1一般资料经本院医学伦理会批准,选取2020年1月至2021年8月本院102例脑梗死后失语患者作为研究对象㊂根据治疗方法不同将其分为A组(n=51)㊁B组(n=51)㊂A组中男30例,女21例;年龄54~73岁,平均(65.26ʃ4.72)岁;病程7~14d,平均(10.50ʃ1.23)d;脑梗死位置:侧脑室旁39例,基底节12例㊂B组中男28例,女23例;年龄52~74岁,平均(64.10ʃ4.83)岁;病程7~15d,平均(10.66ʃ1.34)d;脑梗死位置:侧脑室旁37例,基底节14例㊂两组基线资料比较,差异无统计学意义(P>0.05),均衡可比㊂所有患者对本研究知情并签署知情同意书㊂1.2纳入与排除标准(1)纳入标准:符合脑梗死相关诊断标准[5];均伴失语症状;首次发病;依从性良好,能配合完成相关检查及治疗㊂(2)排除标准:存在免疫系统疾病;严重恶性肿瘤;严重器质性病症;精神异常㊁认知功能障碍;对本研究所用治疗及训练干预方案存在禁忌证或不耐受㊂1.3方法两组患者均常规予以营养神经㊁改善脑循环㊁维持水电解质平衡㊁抗血小板聚集等对症支持㊂A组患者接受t D C S联合S c h u e l l法语言训练治疗,B 组接受S c h u e l l法语言训练治疗㊂两组均持续治疗6周㊂治疗方法:(1)S c h u e l l法语言训练包括言语构音㊁听觉刺激㊁阅读书写㊁称呼㊁心理康复及整体语言康复训练等,每次30m i n,每天1次㊂(2)t D C S:取仰卧位,以I S200型智能电刺激仪(四川智能电子实业有限公㊃5923㊃检验医学与临床2022年12月第19卷第23期 L a b M e d C l i n,D e c e m b e r2022,V o l.19,N o.23司)在线刺激,模式:直流电,2.0m A强度;B r o c a区定位:左侧位于F7~C z与T3~F z交叉点,右侧位于F8~C z与T4~F z交叉点;体表刺激:左侧B r o c a区放置阳极,右肩放置阴极,治疗20m i n,而后于左肩放置阳极,右侧B r o c a区放置阴极,治疗20m i n㊂每天不超过1次,每周5次㊂1.4疗效评估标准两组均于治疗6周后实施评估,以西方成套测验(WA B)评分[6]评定疗效㊂WA B 评分升高(较治疗前)>70%,能正常交流;有效: WA B评分升高(较治疗前)40%~70%,语言沟通能力提升,但存在出错率;无效:未及上述标准㊂将显效㊁有效计入总有效率㊂1.5观察指标(1)两组总有效率㊂(2)两组治疗前㊁治疗6周后中国康复研究中心失语症检查法(C R R C A E)评分[7],包括命名㊁朗读㊁复述及表达4个部分,总分100分,分值越低,言语功能越差㊂(3)两组治疗前㊁治疗6周后美国国立卫生研究院卒中量表(N I H S S)[8]㊁脑卒中专门化生活质量量表(S S-Q O L)[9]㊁失语指数(A Q)[10]评分,N I H S S评分0~42分,得分越高神经功能受损程度越严重;S S-Q O L总分15~75分,评分越高生活质量越好;A Q总分100分,分值越高,失语程度越轻㊂(4)两组治疗前㊁治疗6周后神经功能重建介质[脑源性神经营养因子(B D-N F)㊁胰岛素样生长因子-1(I G F-1)㊁神经生长因子(N G F)]水平㊂取3m L静脉血,3000r/m i n离心10 m i n(离心半径10c m)分离血清,酶联免疫吸附试验测定血清B D N F㊁I G F-1㊁N G F水平㊂1.6统计学处理采用S P S S22.0统计软件进行数据分析,计量资料以xʃs表示,两组比较采用独立样本t检验,治疗前后比较,采用配对t检验;计数资料以率或构成比表示,采用χ2检验或秩和检验进行比较㊂以P<0.05为差异有统计学意义㊂2结果2.1两组临床疗效对比治疗6周后A组治疗总有效率高于B组,差异有统计学意义(χ2=4.993,P= 0.026)㊂见表1㊂表1两组总有效率对比[n(%)]组别n显效有效无效总有效A组5132(62.75)17(33.33)2(3.92)49(96.08) B组5122(43.14)20(39.22)9(17.65)42(82.35)2.2两组C R R C A E评分对比治疗6周后两组C R R C A E评分中命名㊁朗读㊁复述及表达评分均较治疗前升高,且A组高于B组,差异均有统计学意义(P<0.05)㊂见表2㊂表2两组治疗前㊁治疗6周后C R R C A E评分对比(xʃs,分)组别n时间命名朗读复述表达A组51治疗前32.43ʃ4.4625.32ʃ3.0529.05ʃ4.8623.19ʃ2.29治疗前56.89ʃ4.28a41.54ʃ4.74a62.25ʃ6.26a45.15ʃ3.98a B组51治疗6周后31.08ʃ4.5726.24ʃ3.1728.49ʃ4.6322.68ʃ2.26治疗6周后45.15ʃ4.77a b34.75ʃ3.37a b53.98ʃ5.31a b30.07ʃ2.96a b 注:与同组治疗前对比,a P<0.05,与A组治疗6周后对比,b P<0.05㊂2.3两组N I H S S㊁S S-Q O L㊁A Q评分对比治疗6周后两组S S-Q O L㊁A Q评分均较治疗前升高,N I H S S 评分均较治疗前降低,且A组S S-Q O L㊁A Q评分较B 组高,N I H S S评分较B组低,差异均有统计学意义(P<0.05)㊂见表3㊂表3两组治疗前㊁治疗6周后N I H S S㊁S S-Q O L㊁A Q评分对比(xʃs,分)组别n时间N I H S S评分S S-Q O L评分A Q评分A组51治疗前9.17ʃ1.2430.27ʃ4.8952.44ʃ3.86治疗6周后4.10ʃ0.85a45.38ʃ6.33a85.71ʃ4.93a B组51治疗前8.90ʃ1.3029.21ʃ5.1653.28ʃ3.95治疗6周后5.88ʃ0.96a b39.48ʃ5.75a b79.60ʃ4.18a b 注:与同组治疗前对比,a P<0.05;与A组治疗6周后对比,b P< 0.05㊂2.4两组神经功能重建介质对比治疗6周后两组血清N G F㊁B D N F㊁I G F-1水平均较治疗前升高(P< 0.05),且A组较B组高(P<0.05)㊂见表4㊂表4两组治疗前㊁治疗6周后神经功能重建介质对比(xʃs,μg/L)组别n时间B D N F N G F I G F-1 A组51治疗前4.83ʃ1.0535.48ʃ6.1587.16ʃ12.53治疗6周后8.50ʃ1.48a60.28ʃ9.25a163.58ʃ18.68a B组51治疗前5.18ʃ1.1136.33ʃ6.0889.24ʃ11.67治疗6周后6.67ʃ1.21a b52.42ʃ7.73a b151.76ʃ16.52a b 注:与同组治疗前对比,a P<0.05;与A组治疗6周后对比,b P< 0.05㊂3讨论脑梗死后失语指患者言语中枢神经发生器质性病变,致使其言语沟通能力产生障碍,包括语言符号表达㊁理解能力丧失或受损,可对患者日常生活造成㊃6923㊃检验医学与临床2022年12月第19卷第23期 L a b M e d C l i n,D e c e m b e r2022,V o l.19,N o.23极大负面影响[11]㊂故临床针对脑梗死后失语患者应采取积极有效的治疗措施,以提高其言语功能㊂S c h u e l l法语言训练为临床针对脑梗死后失语患者常用的康复治疗方式,可通过刺激-反应-反馈回路,帮助患者最大限度重建或恢复语言符合系统功能,提高脑功能代偿作用,但脑梗死后失语患者病情复杂,临床实施言语训练时,尚缺乏统一标准,具体实施方法难以贯彻落实,致使整体治疗效果欠佳[12]㊂既往有研究报道指出,在常规言语康复训练基础上,联合应用t D C S技术治疗脑梗死后失语患者,可通过刺激器输出微强度直流电,于阴㊁阳极间形成环路,穿过颅骨并作用于大脑皮质,从而改变皮层双极性依赖性,影响相应运动㊁感知觉及认知行为,进一步改善患者言语功能[13]㊂本研究中,治疗6周后A组治疗总有效率(96.08%)较B组(82.35%)升高,同时命名㊁朗读㊁复述及表达评分,以及S S-Q O L㊁A Q评分均较B组升高(P<0.05),N I H S S评分较B组降低(P<0.05)㊂由此可见,t D C S联合S c h u e l l法语言训练可改善脑梗死后失语患者病情严重程度,提升其言语功能㊁神经功能及生活质量㊂这可能与t D C S以下机制有关:(1) t D C S可通过低频交变电磁场,松弛痉挛脑血管,并舒张肌细胞及上皮细胞,改善脑部血流灌注;(2)t D C S 所产生电磁波可作用于脑细胞,促使受损脑区域营养物质摄取能力提升,从而促进受损脑细胞功能修复;(3)t D C S可通过参与突触可塑性,介导神经重塑,从而促进患者言语功能恢复㊂此外,大脑缺血㊁缺氧后脑细胞坏死及脑功能损伤引发脑梗死后失语,而受损细胞多为神经保护细胞,修复或保护受损神经细胞可促使患者言语功能改善[14]㊂本研究结果显示,治疗6周后A组血清N G F㊁B D N F㊁I G F-1水平较B组升高(P<0.05)㊂血清N G F㊁B D N F㊁I G F-1均属为神经营养因子,具有保护神经功能,促使神经细胞增殖,修复受损神经细胞的作用[15]㊂由此推测,t D C S联合S c h u e l l法语言训练可通过促进脑组织结构及功能重塑,修复局部失活神经功能,调节神经功能重建介质水平,促使神经功能恢复,从而改善脑梗死后失语患者言语功能,但具体机制尚不清楚,可作为后续研究重点深入探究㊂综上所述,针对脑梗死后失语患者,t D C S联合S c h u e l l法语言训练治疗效果优于单一S c h u e l l法语言训练治疗,联合治疗可调节神经功能,重建介质,提升患者生活质量,促进病情恢复㊂参考文献[1]孙莉,徐建奇,沈晓艳,等.低强度激光鼻腔内照射联合综合言语训练治疗脑梗死后失语症[J].神经损伤与功能重建,2018,13(2):76-78.[2]马志辉,杨艳君,刘兢,等.不同针刺方法治疗阴虚风动型脑梗死后运动性失语症的平行对照研究[J].四川中医, 2019,37(5):176-178.[3]赵德福,赵瑜,杨孝芳.督脉取穴针刺联合S c h u e l l语言康复训练对脑卒中后失语症患者言语功能,M o C A评分及语言中枢活动功能的影响[J].临床和实验医学杂志, 2021,20(8):886-890.[4]张雅妮,刘爱玲,练涛.经颅直流电刺激在脑卒中后失语症康复中的应用[J].中西医结合心脑血管病杂志,2018, 16(3):308-310.[5]中华医学会神经病学分会.中华医学会神经病学分会脑血管病学组.中国急性缺血性脑卒中诊治指南2018[J].中华神经科杂志,2018,51(9):666-682.[6]姚婧璠,徐成,陈红燕,等.卒中后失语语言和非语言认知功能相关的静息态功能磁共振成像研究[J].中国卒中杂志,2021,16(3):251-258.[7]蒋孝翠,刘臻,夏晓昧.低频重复经颅磁刺激联合动作观察疗法治疗卒中后非流利性失语的疗效观察[J].中国康复,2021,36(2):72-76.[8]ZÖL L N E R J P,M I S S E L W I T Z B,K A P S M,e t a l.N a t i o n a li n s t i t u t e s o f h e a l t h s t r o k e s c a l e(N I H S S)o n a d m i s s i o n p r e d i c t s a c u t e s y m p t o m a t i c s e i z u r e r i s k i n i s c h e m i c s t r o k e:a p o p u l a t i o n-b a s e d s t u d y i n v o l v i n g135,117c a s e s [J].S c i R e p,2020,10(1):3779.[9]李春,赵高峰,王新新,等.小卒中后情感淡漠发生率的动态变化及对患者生活质量的影响[J].中华行为医学与脑科学杂志,2020,29(6):511-516.[10]黎春镛,罗高权,刘榴,等.多奈哌齐对急性缺血性脑卒中运动性失语患者的言语功能的影响[J].神经损伤与功能重建,2020,15(2):78-80.[11]张晓玲,何伟亮,赵雪平,等.重复经颅磁刺激治疗脑梗死患者失语的疗效研究[J].脑与神经疾病杂志,2020,28(6):331-333.[12]刘兢,刘渝册,马志辉,等.针刺不同腧穴组方联合S c h u e l l语言训练治疗缺血性脑卒中后失语症的平行对照研究[J].针灸临床杂志,2018,34(3):19-21. [13]张茜,代欣,贺媛,等.经颅直流电刺激联合言语训练对脑梗死后失语症的治疗效果[J].蚌埠医学院学报,2020,45(5):601-605.[14]廖春华,刘朝晖,何珊珊,等.脑血疏口服液联合语言训练治疗卒中后失语的临床疗效[J].中西医结合心脑血管病杂志,2020,18(7):1142-1144.[15]赵灿灿,赵胜秋,赵俊玲.运动性引导想象训练结合电动深层肌肉刺激对脑卒中患者神经功能缺损㊁下肢功能及N G F㊁B D N F水平的影响[J].临床和实验医学杂志, 2021,20(12):1323-1327.(收稿日期:2022-03-15修回日期:2022-10-30)㊃7923㊃检验医学与临床2022年12月第19卷第23期 L a b M e d C l i n,D e c e m b e r2022,V o l.19,N o.23。

经颅直流电刺激在失语症康复中的应用研究进展

经颅直流电刺激在失语症康复中的应用研究进展

经颅直流电刺激在失语症康复中的应用研究进展朱苏琼;顾介鑫【期刊名称】《中国康复理论与实践》【年(卷),期】2018(024)001【摘要】经颅直流电刺激(tDCS)可以有效促进脑卒中后失语症的康复.基于失语症康复三种主要假说,将tDCS应用于失语症临床治疗时,需综合考虑失语症患者大脑左半球的损伤阶段、损伤部位和损伤程度.大脑左半球核心语言功能区未受严重损伤时,宜采用tDCS兴奋大脑左半球以增强病灶周围区兴奋性,使病灶周围区发挥代偿作用;或采用tDCS抑制大脑右半球,以削弱健侧半球对患侧半球的非正常化抑制.大脑左半球核心语言功能区严重损伤时,则宜采用tDCS兴奋大脑右半球,使得大脑右半球发挥代偿作用.此外,还需考虑脑区之间白质纤维束连接是否完整,若白质纤维束受损,tDCS的治疗效果会降低.通过兴奋或抑制大脑皮层的功能,tDCS可增强大脑皮层活动的功能连接,调节脑的神经加工,进而改善失语症患者的词汇检索障碍、发音障碍,提高他们的日常口头交际能力.tDCS的治疗效果具有长期性与普遍化,但仍需进一步探究.【总页数】6页(P84-89)【作者】朱苏琼;顾介鑫【作者单位】江苏师范大学语言科学与艺术学院,江苏徐州市 221009;江苏师范大学语言科学与艺术学院,江苏徐州市 221009【正文语种】中文【中图分类】R742【相关文献】1.经颅直流电刺激在脑卒中后失语症康复中的应用 [J], 张雅妮;刘爱玲;练涛2.经颅直流电刺激联合常规康复治疗在脑卒中偏瘫上肢运动功能和失语症康复中的作用 [J], 王成秀;杨凤翔;邹伟庚3.经颅直流电刺激联合常规康复治疗在脑卒中偏瘫上肢运动功能和失语症康复中的作用分析 [J], 王彦青;肖小华4.经颅直流电刺激在卒中后吞咽障碍康复治疗中的应用研究进展 [J], 李安;夏艳秋;傅建玲;袁梦;郭馨予;崔丽君5.经颅直流电刺激在脑性瘫痪患儿康复中的应用研究进展 [J], 何文杰;洪小霞;徐开寿因版权原因,仅展示原文概要,查看原文内容请购买。

经颅直流电刺激改善卒中后失语的系统综述

经颅直流电刺激改善卒中后失语的系统综述

经颅直流电刺激改善卒中后失语的系统综述陈雅婷;张劼;张优媚;张双双;叶祥明【期刊名称】《中国康复理论与实践》【年(卷),期】2022(28)5【摘要】目的系统评价经颅直流电刺激(tDCS)对卒中后失语症(PSA)的治疗作用。

方法在PubMed、Web of Science、Cochrane Library、Embase、中国知网和万方数据库中检索tDCS治疗卒中后失语的相关文献,检索时间为建库至2021年12月。

提取相关内容进行系统综述。

结果共返回文献1026篇,最终纳入45篇,发表时间为2010年至2021年,研究对象为卒中后失语患者,主要结局指标为言语量表和各子项。

大部分研究治疗组治疗后言语量表评分高于对照组,少数波士顿失语症检查中未见改善,或仅复杂语言任务有改善。

tDCS能改善卒中后失语患者的复述、命名、拼写、言语流畅度等。

影响患者恢复的因素可能有电极位置、电流、持续时间、强度和左侧皮质完整性。

结论tDCS治疗PSA对不同语言子项均有效果;不同tDCS方案对不同语言功能的效果有所差异。

【总页数】10页(P534-543)【作者】陈雅婷;张劼;张优媚;张双双;叶祥明【作者单位】蚌埠医学院研究生院;浙江省人民医院康复医学科;浙江中医药大学第三临床医学院【正文语种】中文【中图分类】R743.3【相关文献】1.经颅直流电刺激联合记忆强化训练治疗缺血性脑卒中后失语症患者的临床效果2.经颅直流电刺激对脑卒中后运动性失语疗效及对抑郁状态的影响3.经颅直流电刺激在卒中后失语症治疗中的应用研究进展4.双额叶在线经颅直流电刺激联合强制诱导性语言疗法在卒中后亚急性期失语症患者中的应用效果5.经颅直流电刺激联合镜像神经元疗法治疗脑卒中后非流畅性失语的临床疗效因版权原因,仅展示原文概要,查看原文内容请购买。

TDCS培训资料

TDCS培训资料

TDCS培训资料TDCS(经颅直流电刺激)是一种非侵入性的神经调节技术,通过在头皮上施加微弱的直流电流来改变大脑神经元的活动,从而对认知功能和神经疾病产生影响。

本文将为您提供TDCS培训资料,包括TDCS的原理、应用领域、安全性和操作指南等方面的详细介绍。

一、TDCS的原理TDCS通过在头皮上施加微弱的直流电流,改变大脑神经元的极化状态,从而影响神经元的兴奋性和抑制性。

正极电极(阳极)会增加神经元的兴奋性,而负极电极(阴极)则会抑制神经元的兴奋性。

通过调节电流强度、施加时间和电极位置等参数,可以实现对特定脑区的调节。

二、TDCS的应用领域1. 认知增强:TDCS可以改善学习和记忆能力,提高注意力和集中力,促进创造思维和解决问题的能力。

2. 抑制症状治疗:TDCS可以用于治疗抑郁症、焦虑症、阿尔茨海默病等神经疾病,减轻症状并改善患者的生活质量。

3. 运动康复:TDCS可以促进运动功能的恢复和康复,用于中风、帕金森病等运动障碍的治疗。

4. 疼痛管理:TDCS可以减轻慢性疼痛,改善患者的疼痛感知和生活质量。

5. 神经康复:TDCS可以促进神经损伤的恢复和康复,用于脑卒中、脊髓损伤等神经系统疾病的治疗。

三、TDCS的安全性TDCS是一种安全且非侵入性的神经调节技术,已经广泛用于临床和科研领域。

在正确操作下,TDCS的副作用非常少,并且通常是轻微和暂时的。

一些可能的副作用包括头皮刺痛、轻微头痛、皮肤过敏等,但这些副作用往往可以通过减小电流强度或调整电极位置来缓解。

此外,TDCS不会对大脑结构产生永久性损害。

四、TDCS的操作指南1. 选择电极:根据需要调节的脑区选择合适的电极,一般使用2x2寸的海绵电极。

2. 准备设备:确保TDCS设备正常工作,电流稳定并符合安全标准。

3. 皮肤准备:用温水清洁电极接触的头皮区域,以去除污垢和油脂,保证良好的电极贴附。

4. 定位电极:根据需要调节的脑区,将正极电极(阳极)和负极电极(阴极)正确放置在头皮上。

左外侧裂后部经颅直流电刺激对失语症动作图命名的作用

左外侧裂后部经颅直流电刺激对失语症动作图命名的作用

左外侧裂后部经颅直流电刺激对失语症动作图命名的作用汪洁;吴东宇;宋为群;袁英【期刊名称】《中国康复医学杂志》【年(卷),期】2013(028)002【摘要】目的:前期研究结果提示左外侧裂后部周围区(PPR)阳极经颅直流电刺激(tDCS)可以提高失语症患者物体图命名能力.本研究的目的是明确左侧PPR区阳极tDCS对失语症患者动作图命名的作用.方法:采用自身对照A-B期设计.对接受2周常规语言治疗+tDCS假刺激(A期)后,动作图命名无明显变化的8例脑卒中后(>3个月)失语症患者进行2周常规语言治疗+tDCS治疗(B期).结果:A期治疗前后动作图命名非治疗项和治疗项均无明显改善,提示患者语言功能处于“平台期”.B期治疗后较治疗前动作图命名的非治疗项和治疗项均明显改善(P<0.05),提示动作图命名有泛化作用;动宾结构非治疗项未见明显变化,治疗项显著提高(P<0.05).结论:对左PPR区实施阳极tDCS,可以促进失语症患者动作图命名的能力,并对动词命名有泛化作用.【总页数】5页(P119-123)【作者】汪洁;吴东宇;宋为群;袁英【作者单位】首都医科大学宣武医院康复医学科,北京,100053;首都医科大学宣武医院康复医学科,北京,100053;首都医科大学宣武医院康复医学科,北京,100053;首都医科大学宣武医院康复医学科,北京,100053【正文语种】中文【中图分类】R743.3;R454.1【相关文献】1.前后语言区经颅直流电刺激对失语症图命名作用的比较 [J], 汪洁;吴东宇;袁英;闫彦宁;杨玉慧2.双额叶在线经颅直流电刺激对失语症图命名的作用 [J], 汪洁;吴东宇;宋为群;袁英3.应用在线经颅直流电刺激探查外侧裂后部对失语症恢复的作用 [J], 汪洁;吴东宇;袁英;陈颂玲4.左外侧裂后部经颅直流电刺激对失语症图命名及听理解作用的研究 [J], 汪洁;吴东宇;宋为群;袁英5.左Broca区和外侧裂后部经颅直流电刺激对脑卒中后运动性失语的疗效分析 [J], 凌水桥;黄晓煌;罗卫欢因版权原因,仅展示原文概要,查看原文内容请购买。

经颅直流电刺激结合头皮针治疗脑卒中运动性失语患者的疗效观察

经颅直流电刺激结合头皮针治疗脑卒中运动性失语患者的疗效观察

经颅直流电刺激结合头皮针治疗脑卒中运动性失语患者的疗效观察马凯敏;俞坤强;徐日;唐冬梅;吴李秀;王红梅;周敏亚【期刊名称】《中国康复》【年(卷),期】2024(39)4【摘要】目的:探讨经颅直流电刺激(tDCS)左背外侧前额叶结合头皮针对脑卒中运动性失语患者的临床疗效。

方法:选取74例脑卒中运动性失语患者,随机分为观察组和对照组,每组各37例。

对照组给予言语训练及头针治疗,同时给予tDCS伪刺激治疗,观察组在给予言语训练及头针治疗的同时联合tDCS治疗,共治疗4周。

2组患者于治疗前后采用中国康复研究中心汉语标准失语症检查量表(CRRCAE)、波士顿诊断性失语症测验(BDAE)评估患者的语言功能,采用采用日常生活交流能力量表(CADL)评定患者语言交流能力,采用简明健康调查量表(SF-36)评定患者的生存质量。

结果:2组患者治疗前CRRCAE评分、BDAE等级、CADL评分、SF-36评分比较差异无统计学意义。

治疗4周后,2组患者的CRRCAE评分、CADL评分、SF-36评分均较治疗前升高(P<0.05),BDAE等级较前改善(P<0.05);治疗后观察组CRRCAE评分、CADL评分、SF-36评分均较对照组升高(P<0.05),BDAE等级较对照组改善(P<0.05)。

结论:tDCS刺激左背外侧前额叶结合头皮针可以更好的改善脑卒中运动性失语症的语言功能、日常交流能力及生活质量。

【总页数】5页(P195-199)【作者】马凯敏;俞坤强;徐日;唐冬梅;吴李秀;王红梅;周敏亚【作者单位】丽水市第二人民医院康复医学科【正文语种】中文【中图分类】R49;R743.3【相关文献】1.头针结合重复经颅磁刺激治疗脑卒中后运动性失语的临床观察2.重复经颅磁刺激结合言语训练对脑卒中后运动性失语症患者的疗效观察3.经颅直流电刺激联合常规言语治疗对脑卒中后运动性失语患者图命名能力的影响观察4.耳穴压豆结合高频重复经颅磁刺激治疗脑卒中后运动性失语的疗效观察5.普通针刺联合头针及经颅直流电刺激治疗脑梗死后运动性失语疗效观察因版权原因,仅展示原文概要,查看原文内容请购买。

TDCS培训资料

TDCS培训资料

TDCS培训资料什么是TDCSTDCS是“经颅直流电刺激”(Transcranial Direct Current Stimulation)的缩写,是一种非侵入性的脑部刺激技术。

它通过轻微的直流电刺激,通过头皮到达大脑皮层,进而起到促进神经元群活动或抑制神经元活动的作用。

TDCS是一种低成本、容易使用、便携的技术,被广泛用于神经科学、认知心理学、神经康复等领域的研究和治疗中。

TDCS的优势TDCS有以下几个优势:1.低成本:相对于其他颅脑刺激技术(如经颅磁刺激、深脑刺激等),TDCS的成本较低。

2.便携:TDCS设备大小较小、重量较轻,易于随身携带。

3.易用:TDCS的操作非常简单,甚至可以在家自行操作,不需要专业人员的指导。

4.安全性高:TDCS是一种非侵入性、低风险的脑部刺激技术,一般不会引起明显的疼痛等副作用。

5.广泛应用:TDCS在神经康复、认知增强、情绪调节等方面都有广泛的应用。

TDCS的应用领域TDCS被广泛应用于以下领域:1. 神经康复神经康复是指通过训练和治疗重建或改善神经系统功能的过程。

TDCS在神经康复中的应用很多,如在中风后的语言障碍、运动障碍和认知障碍的康复中,以及在帕金森病、脑卒中等神经系统疾病的治疗中。

2. 认知增强TDCS被广泛应用于大脑认知功能的改善,如注意力、记忆、学习、决策等方面。

这些应用涉及到的领域包括教育、工业、军事、运动训练等。

3. 情绪调节TDCS也被用于治疗情绪障碍,如抑郁症、焦虑症等。

研究表明,TDCS可促进脑功能区的活动,进而改善情绪调节。

TDCS的注意事项1. 脑部疾病患者应慎用TDCS不适合所有人,特别是那些有脑部疾病的人。

因此,在使用TDCS之前,必须先了解这种技术的适应症和禁忌症。

2. 需要正确定位电极TDCS的有效性和安全性取决于正确定位电极。

因此,在使用TDCS之前,需要对大脑皮层细分区域有足够的了解,确保电极同时覆盖大脑目标区域。

3. 需要进行充分的操作培训TDCS虽是非侵入性技术,但在操作时需遵循严格的标准程序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tDCS在失语症中的应用
咸宁市中医医院 丁文妍
什么是失语症?
失语症是指与语言功能有关的脑组织的病变,如脑卒中,脑外伤、 脑肿瘤、脑部炎症等,造成患者对人类进行交际符号系统的理解 和表达能力的损害,尤其是语音、词汇、语法等成分、语言结构 和语言的内容与意义的理解和表达障碍,以及作为语言基础的语 言认知过程的减退和功能的损害。失语症不包括由于意识障碍和 普通的智力减退造成的语言症状,也不包括听觉、视觉、书写、 发音等感觉和运动器官损害引起的语言、阅读和书写障碍。
经颅磁刺激(transcranial magnetic stimulation,TMS)和经 颅直流电刺激(transcranial direct current stimulation, tDCS)是近10余年来快速发展的2项非侵入性脑刺激技术 (noninvasive brain stimulation,NBS),因其可以促进或抑 制大脑皮质的兴奋性,已被广泛应用于各种脑功能障碍的治疗。
2020/4/30
谢谢!
2020/4/30
6.12检查 听理解:25/30 命名:24/30 阅读语义:29/30 朗读:59/30
6.26检查 听理解:28/30 命名:27/30 阅读语义:无 朗读:无
tDCS的适用范围
肢体方面:肌张力、平衡 失语症; 吞咽障碍; 认知障碍; 认知-情绪 视知觉和视空间 抑郁症
tDCS的禁忌症
1.心脏起搏器 2.脑刺激装置 3.颅内金属植入装置,如动脉夹、颅骨修补 4.脑室-腹腔分流术 5.未得到良好控制的癫痫患者 6.避免将电极安放至可能对脑干和小脑产生刺激的地方
并发现右颞上区阴极C-tDCS较左颞上区阳极A-tDCS及假刺激对听 理解的改善更显著。
tDCS对听理解的作用
这提示抑制右半球比激活损伤的左半球可以更好地促进听理解的 恢复。阴极抑制右颞上区改善听理解,而阳极兴奋右PPR区就会 降低听理解能力(汪洁等,2011)。
这一现象可以用半球间经胼胝体去抑制解释,健侧Wernicke区的 抑制性刺激降低了该区皮层兴奋性,通过缓解对损伤的 Wernicke区的经胼胝体抑制,改善了理解能力。
影像学位置:左侧侧脑室旁,基底节区。
损伤部位对言语功能情况分析:患者损伤部位主要在壳核和基底 节靠后基底节内囊后肢,左侧侧脑室旁;其中影响言语的部位 为壳核和基底节内囊后肢,壳核可能导致患者阅读理解障碍, 内囊后肢可导致患者出现听理解障碍,出现一些新词和杂乱语;
6.3检查 听理解:23/30 命名:18/30 阅读语义:17/30 朗读:51/30
tDCS对图命名的作用-左Broca区
为了确保作用电极放置在结构完整的左额叶,将功能核磁共振检 查正确命名时左额叶最高激活区为阳极刺激部位。在tDCS加语 言治疗前后进行命名治疗项和非治疗项评价。结果显示,阳极 tDCS言语治疗显著改善失语症患者的命名准确性。
tDCS对听理解的作用
研究者(You,2011)对卒中后亚急性期完全性失语症患者进行治 疗
tDCS对于血流的改变
阳极刺激诱导区域性脑血流增加17.1%,当刺激停止时,血流量 恢复到基线水平
阴极刺激时诱导较小的血流增加(5.6%),停止刺激后血流量与 基线比较显著降低(-6.5%),持续到刺激后期。
2 体表刺激部位(阳极)为左侧外侧裂周围区(见图 )。 体表定位采用 Rhoton(颅脑解剖与手术入路) 的方法。
与TMS不同,tDCS并不诱导产生动作电位,它有神经调节效应 (neuromodulation)
2020/4/30
tDCS的工作机制
利用微弱电流(1-2 mA)调节大脑皮质神经细胞活动 由阴极和阳极两个表面电极片构成 阴极对大脑皮层起抑制作用,阳极对大脑皮层起兴奋作用 刺激效果由电流强度、刺激部位、极片的面积和极性来决定
一组电极为阴极位于CP6(右颞上区) 一组电极为阳极位于CP5(左颞上区) 假刺激时阳极放置于左颞上回,阴极置于对侧眶上区。
随机分为三组,每组7例患者,接受不同刺激。每次刺激时患者接 受常规语言治疗,共10次,每次30min
tDCS对听理解的作用
西方失语症成套测验结果显示三组患者的失语商、自发言语和听 词理解显著改善,这不能排除自发恢复的影响
2020/4/30
贺方娟,女,51岁,山东人,高中学历,强右利手。既往“高血 压”病史。患者2015年6月3号晚一点多洗完脸回卧室途中突然 昏迷,昏迷3天后醒转,说话含糊不清,只能听懂2-3字,家人 基本靠猜测,右侧肢体偏瘫。
临床检查语言表现为:听理解较好,自发言语较流畅,新词错语 较多,复述较好,命名、阅读较差,朗读较好。
外侧裂:鼻根与枕外隆凸连线的后四分之一的交点与目外眦的 连线,止于乳突直上与其交点;
2020/4/30
颅骨定位-PPR(外侧裂周围区)
使用恰当的电极位置,tDCS可以改变视觉、躯体感觉以及前额叶 皮质神经元的兴奋性和功能特性;刺激外侧裂周区后部,可以增 强语言处理能力;应用于运动和视觉皮质部,tDCS可以促进学习 进程。
2020/4/30
tDCS的原理
经颅直流电刺激(transcranial direct currentstimulation, tDCS)是一种利用低强度恒定电流(1—2mA)来改变表面神 经元膜电位的去极化或超极化方向,影响自发神经活动的皮质兴 奋性改变的技术。
tDCS的工作机制
早期的动物和临床研究发现,直流电的阴极靠近神经细胞胞体 或树突时,静息电位阈值升高,神经元放电减少,阳极使静息 电位阈值降低,神经元放电增加。
颅骨定位-Broca区
tDCS对图命名的作用-左Broca区
Broca区在语言加工中起到重要作用。Baker研究对象为脑卒中后 慢性失语症(10~242个月)、含额叶损伤和非额叶损伤患者
治疗1周(5d)阳极tDCS或1周假刺激合+语言治疗,休息7d,然后 进行另一个治疗期
刺激强度1mA, 20min,作用电极位于左额叶皮层颅骨,参考电极 位于右肩。
相关文档
最新文档