2019-2020年人教版A版高中数学选修2-2第一章 1-5《定积分的概念》《教案》
【原创】人教A版选修2-2:第一章 1.5定积分的概念
第一章导数及其应用
其中 a 与 b 分别叫做_积__分__下__限__与_积__分__上__限__,区间[a,
b] 叫做 __积__分__区__间___ , 函数 f(x) 叫做 __被__积__函__数__ ,x 叫 做
__积__分__变__量___,f(x)dx 叫做_被__积___式___.
讲一讲
2.汽车做变速直线运动,在时刻 t 的速度(单位:km/h) 为 v(t)=t2+2,那么它在 1≤t≤2(单位:h)这段时间行驶的 路程为多少?
[尝试解答] 将区间[1,2]等分成 n 个小区间,第 i 个小区间 为1+i-n 1,1+ni (i=1,2,…,n).
第 i 个时间区间的路程的近似值为 Δξi≈Δξi′=v(t)·n1=v1+i-n 1·n1=n3+2in-2 1+i-n312,
数学 ·人教A版选修2-2
第一章导数及其应用
练一练
2.已知作自由落体运动的物体的运动速度 v=gt,求在 时间区间[0,t]内物体下落的距离.
解:①分割. 将时间区间[0,t]等分成 n 个小区间,其中第 i 个区间 为i-n 1t,int(i=1,2,…,n),每个小区间所表示的时间段 Δt =int-i-n 1t=nt ,在各小区间内物体下落的距离,记作 ΔSi.
b
故 f(ξi)·Δxi<0,从而定积分af(x)dx<0,这时它等于图中 所示曲边梯形面积的相反数,
b
b
即af(x)dx<0=-S 或 S=-af(x)dx<0.
数学 ·人教A版选修2-2
第一章导数及其应用
2
(7)
0
4-x2dx 的几何意义是什么?
提示:是由直线 x=0,x=2,y=0 和曲线 y= 4-x2所
高中数学(人教A版)选修2-2课件:1-5 定积分的概念1、2
取 ξi 为小区间的左端点,用以点 ξi 的坐标
i-1i-1 f(ξi)= - 1 n 为 n
1 其一边,以小区间长度 Δx=n为邻边的小矩形面积近似代替第 i
第15页
第一章
1.5
1.5.1、
高考调研
新课标A版 · 数学 · 选 修2-2
【解析】
(1)分割,将曲边梯形分割成 n 个小曲边梯形:
n-1 1 1 2 0, , 用分点n, , … , 把区间 [0,1] 等分成 n 个小区间: n n n i-1 i n-1 n 1 2 , ,…, , … , , , . n n n n n n i-1 i 简写作 (i=1,2,…,n). , n n
要点 1 连续函数 如果函数 y=f(x)在某个区间Ⅰ上的图像是一条连续不断的 曲线,那么就把它称为区间Ⅰ上的连续函数.
第7页
第一章
1.5
1.5.1、
高考调研
新课标A版 · 数学 · 选 修2-2
要点 2 曲边梯形的面积 (1)曲边梯形:由直线 x=a,x=b(a≠b),y=0 和曲线
y=f(x)
1.5 定积分的概念
第4页
第一章
导数及其应用
高考调研
新课标A版 · 数学 · 选 修2-2
1.5.1 1.5.2曲边Leabharlann 形的面积 汽车行驶的路程第5页
第一章
导数及其应用
高考调研
新课标A版 · 数学 · 选 修2-2
课 时 学 案
课 后 巩 固
课 时 作 业
2019-2020学年高二数学人教A版选修2-2课件:1.5.3 定积分的概念 Word版含解析
dx;(3)
1
-1
1- 2 dx.
分析:利用定积分的几何意义,当f(x)≥0时,图形的面积即为定积分的值.
1
解:(1) 0 2dx 表示的是图①中阴影部分所示的长方形的面积,因
为这个长方形的面积为 2,
1
所以 0 2dx=2.
①
-12-
第十二页,编辑于星期日:点 十八分。
目标导航
题型一
(2)
知识梳理
A.
答案:A
第四页,编辑于星期日:点 十八分。
-4-
目标导航
知识梳理
知识梳理
重难聚焦
典例透析
2.定积分的几何意义
如果在区间[a,b]上函数 f(x)连续且恒有 f(x)≥0,那么定积分
(x)dx 表示由直线 x=a,x=b,y=0 与曲线 y=f(x)所围成的曲边梯
形的面积.
【做一做2】 用定积分表示如图所示的阴影部分的面积
2(x)dx;
(x)dx(其中 a<c<b).
第六页,编辑于星期日:点 十八分。
-6-
目标导航
知识梳理
知识梳理
【做一做3】 下列等式不成立的是(
A.
B.
C.
D.
重难聚焦
典例透析
)
[mf(x)+ng(x)]dx=
(x)dx+
(x)dx
[f(x)+1]dx=
(x)dx+b-a
小区间
+-1
+-1 +
1
,
高中数学人教A版选修2-2第一章 1.5 1.5.3 定积分的概念课件
[点睛] 利用定积分的几何意义求定积分的关注点
b
(1)当 f(x)≥0 时,af(x)dx 等于由直线 x=a,x=b,y=0 与 曲线 y=f(x)围成曲边梯形的面积,这是定积分的几何意义.
b
(2)计算af(x)dx 时,先明确积分区间[a,b],从而确定曲边 梯形的三条直边 x=a,x=b,y=0,再明确被积函数 f(x),从
而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积 S
而得到定积分的值:
b
b
当 f(x)≥0 时,af(x)dx=S;当 f(x)<0 时,af(x)dx=-S.
2.定积分的性质
b
(1)akf(x)dx=
b
k a
f(x)dx(k 为常数).
b
b
b
(2)a[f1(x)± f2(x)]dx=
②
(2x2-x+1)dx=
2x2dx-
xdx+
1dx,
0
0
0
0
因为已知0exdx=e22,0ex2dx=e33,
又由定积分的几何意义知:
e
1dx
等于直线
x=0,x=e,y=0,y=1
所围成的图形的
0
e
面积,所以01dx=1×e=e, 故0e(2x2-x+1)dx=2×e33-e22+e=23e3-12e2+e.
0
即02xdx=12×22=2.
2
2
∴原式= 4-x-22dx- xdx=π-2.
0
0
当被积函数的几何意义明显时,可利用定积分的几何 意义求定积分,但要注意定积分的符号.
[活学活用]
3
计算 ( 9-x2-x3)dx的值. -3
2019高中数学选修2-2人教版课件:第一章1-5-1-5-3定积分的概念
2,„,n), i 1 i 则 f(ξi)Δxi= · = 2(i=1,2,„,n). nn n ③求和:Sn= fn·Δxi=
i= 1 n i n
i= 1
i 1 1 n · = 2 i= n n n
i= 1
1 n(n+1) n+1 · = . n2 2 2n ④取极限:∫1 0xdx= Sn= n+1 1 = . 2n 2
2.求由曲线 y=ex,直线 x=2,y=1 围成的图形的 面积时,若选择 x 为积分变量,则积分区间为( A.[0,e2] B.[0,2] C.[1,2] )
D.[0,1]
x y = e , x=0, 解析:解方程组 可得 y=1, y=1,
所以积分区间为[0,2]. 答案:B
b af(x)dx
注意积分结果的符号问题. 因为定积分∫
是介于 x 轴、函数 f(x)的图象以及直线 x=a,x=
b 之间的各部分面积的代数和,在 x 轴上方的取正号,在 x 轴下方的取负号.
3.定积分和曲边梯形面积的关系 设曲边梯形在 x 轴上方的面积为 S 上,x 轴下方的面 积为 S 下,则: (1)当曲边梯形的面积在 x 轴上方时,如图①所示, 则∫b af(x)dx=S 上. (2)当曲边梯形的面积在 x 轴下方时,如图②所示, 则∫b af(x)dx=-S 下.
ξi
i- 1 =xi-1=1+ n (i=1,2,„,n),
i- 1 i- 1 于是 f(ξi)=f(xi-1)=1+1+ =2+ . n n
n i-1 1 2 i-1 (3)求和:(ξi)Δxi= f2+ ·n= f + 2 n n n i 1 i 1
2 (1)∫2 1f(x)dx=∫1f(t)dt.(
数学选修2-2人教新课标A版1-5-3定积分的概念课件(32张)
(3)ʃ1-1(x3+3x)dx.
解
∵y=x3+3x 为奇函数,∴
1 1
(x3+3x)dx=0.
解析答案
类型三 定积分的性质 例 3 计算ʃ3-3( 9-x2-x3)dx 的值. 解 如图, 由定积分的几何意义得 ʃ3-3 9-x2dx=π×232=92π,ʃ3-3x3dx=0, 由定积分性质得 ʃ3-3( 9-x2-x3)dx=ʃ3-3 9-x2dx-ʃ3-3x3dx=92π.
答案
返回
题型探究
类型一 定积分的概念
例1 (1)定积分ʃbaf(x)dx的大小( A ) A.与f(x)和积分区间有关,与ξi的取法无关 B.与f(x)有关,与区间及ξi的取法无关 C.与f(x)及ξ1的取法有关,与区间无关 D.与f(x)、积分区间和ξi的取法都有关 解析 由定积分的概念可得.
重点难点 个个击破
解析答案
(2)用定积分的定义计算ʃ30x2dx.
反思与感悟
解析答案
跟踪训练1 用定义计算 ʃ21(1+x)dx .
解析答案
类型二 定积分的几何意义 例2 (1)如图所示,f(x)在区间[a,b]上,则阴影部分的面积S为( ) A.ʃbaf(x)dx B.ʃcaf(x)dx-ʃbcf(x)dx C.-ʃcaf(x)dx-ʃbcf(x)dx D.-ʃcaf(x)dx+ʃbcf(x)dx
第一章 §1.5定积分的概念
1.5.3 定积分的概念
学习目标
1.了解定积分的概念,会用定义求定积分. 2.理解定积分的几何意义. 3.掌握定积分的基本性质.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 定积分的概念
思考 分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共 同点. 答 两个问题均可以通过“分割、近似代替、求和、取极限”解决,都 可以归结为一个特定形式和的极限.
人教版高中数学选修2-2第一章导数及其应用第五节(第一课时)曲边梯形的的面积和定积分的概念(共19张
n nn
nn
nn
每个区间的长度为 x i i 1 1 nn n
过各区间端点作x轴的垂线,从而得到n 个小曲边梯形,他们的面积分别记作
S1, S2,, Si ,, Sn.
2、近似代替
S第i个黄色矩形
1 n
f
(i-1) n
10
S第1个黄色矩形
n
f
() n
0
S第2个黄色矩形
1 n
f
(1) n
1 n3
凡 事 都是 多 棱 镜 , 不 同 的 角 度 会 看 到 不 同 的 结果 。 若 能 把 一 些 事 看 淡 了 ,就 会 有 个 好 心 境 , 若 把 很 多事 看 开 了 , 就 会有 个 好 心 情 。 让 聚 散 离 合 犹 如 月 缺 月 圆那 样 寻 常 , 让 得 失 利 弊 犹 如花 开 花 谢 那 样 自 然 , 不 计 较, 也 不 刻 意 执 着; 让 生 命 中 各 种 的 喜 怒 哀 乐 , 就 像 风 儿一 样 , 来 了 , 不 管 是 清 风 拂面 , 还 是 寒 风 凛 冽 , 都 报 以自 然 的 微 笑 , 坦然 的 接 受 命 运 的 馈 赠 , 把 是 非 曲 折 , 都当 作 是 人
n
i 1
f i x
n i 1
ba n
f i
当n→∞时,上式无限接近某个常数,这个常数叫做函数
f
(x)在区间[a,b]上的定积分
记作 b a
f
xdx
b a
f xdx lim n
n i 1
ba n
f i
定积分的定义:即
b a
f
(x)dx
lim
n
n i1
2019-2020学年高二数学人教A版选修2-2教师用书:第1章 1.5.3 定积分的概念 Word版含解析
1.5.3 定积分的概念1.了解定积分的概念.(难点)2.理解定积分的几何意义.(重点、易混点) 3.掌握定积分的几何性质.(重点、难点)[基础·初探]教材整理1 定积分的概念 阅读教材P 45内容,完成下列问题.如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑i =1nf(ξi )Δx =________________,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛ab f(x(dx =__________.其中a 与b 分别叫做__________与__________,区间[a ,b ]叫做______,函数f (x )叫做____________,x 叫做__________,f (x )d x 叫做__________.【答案】 ∑i =1n b -a n f (ξi ) lim n→∞∑i =1n b -an f (ξi ) 积分下限 积分上限 积分区间 被积函数积分变量 被积式⎠⎛12(x +1)d x 的值与直线x =1,x =2,y =0,f (x )=x +1围成的梯形的面积有什么关系?【解析】 由定积分的概念知:二者相等. 教材整理2 定积分的几何意义 阅读教材P 46的内容,完成下列问题.从几何上看,如果在区间[a ,b ]上函数f (x )连续且恒有f (x )≥0,那么定积分⎠⎛a b f (x )d x 表示由__________________所围成的曲边梯形的面积.这就是定积分⎠⎛ab f (x )d x 的几何意义.【答案】 直线x =a ,x =b ,y =0和曲线y =f (x)判断(正确的打“√”,错误的打“×”) (1)⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .( ) (2)⎠⎛a b f (x )d x 的值一定是一个正数.( ) (3)⎠⎛012x d x <⎠⎛022x d x ( ) 【答案】 (1)√ (2)× (3)√ 教材整理3 定积分的性质阅读教材P 47的内容,完成下列问题.1.⎠⎛ab kf (x )d x =________________________(k 为常数). 2.⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±__________________. 3.⎠⎛ab f (x )d x =______________(其中a <c <b ). 【答案】 1.k ⎠⎛a b f (x )d x 2.⎠⎛a b f 2(x )d x 3.⎠⎛a c f (x )d x +⎠⎛cb f (x )d x填空:(1)由y =0,y =cos x ,x =0,x =π2围成的图形的面积用定积分的形式表示为__________. (2)⎠⎛-11f (x )d x =⎠⎛-10f (x )d x +__________. (3)⎠⎛a b (x 2+2x )d x =⎠⎛ab 2x d x +________. 【答案】 (1) ⎠⎜⎛0π2cos x d x (2)⎠⎛01f (x )d x (3)⎠⎛a b x 2d x[小组合作型]⎠⎛1【精彩点拨】 根据定积分的意义,分四步求解,即分割、近似代替、求和、取极限. 【自主解答】 令f (x )=3x +2. (1)分割在区间[1,2]上等间隔地插入n -1个分点,将区间[1,2]等分成n 个小区间⎣⎢⎡⎦⎥⎤n +i -1n ,n +i n (i =1,2,…,n ),每个小区间的长度为Δx =n +i n -n +i -1n =1n. (2)近似代替、作和取ξi =n +i -1n(i =1,2,…,n ),则S n =∑i =1nf ⎝⎛⎭⎪⎫n +i -1n ·Δx =∑i =1n错误!·错误!=错误!错误!=错误![0+1+2+…+(n -1)]+5=32×n2-n n2+5=132-32n. (3)取极限 ⎠⎛12(3x +2)d x=lim n→∞S n =lim n→∞⎝ ⎛⎭⎪⎫132-32n =132.利用定义求定积分的步骤[再练一题]1.利用定积分的定义计算⎠⎛12(-x 2+2x )d x 的值.【解】 令f (x )=-x 2+2x . (1)分割在区间[1,2]上等间隔地插入n -1个分点,把区间[1,2]等分为n 个小区间⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n (i =1,2,…,n ),每个小区间的长度为Δx =i n -i -1n =1n.(2)近似代替、作和取ξi =1+in (i =1,2,…,n ),则S n =∑i =1nf ⎝ ⎛⎭⎪⎫1+i n ·Δx =∑i =1n ⎣⎢⎡⎦⎥⎤-⎝⎛⎭⎪⎫1+i n 2+2⎝ ⎛⎭⎪⎫1+i n ·1n=-1n3[(n +1)2+(n +2)2+(n +3)2+…+(2n )2]+2n2[(n +1)+(n +2)+(n +3)+…+2n ]=-1n3错误!+错误!·错误!=-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n .(3)取极限⎠⎛12(-x 2+2x )d x =lim n→∞S n =lim n→∞ ⎣⎢⎡-13⎝⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n + ⎦⎥⎤3+1n=23.(1)⎠⎛-33-39-x2d x ;(2)⎠⎛03(2x +1)d x ; (3)⎠⎛-11-1(x 3+3x )d x . 【导学号:62952046】【精彩点拨】 对于本题(1)、(2)可先确定被积函数、积分区间,画出图形,然后用几何法求出图形面积,从而确定定积分的值;对于(3)可根据被积函数的奇偶性求解.【自主解答】 (1)曲线y =9-x2表示的几何图形为以原点为圆心以3为半径的上半圆如图(1)所示.其面积为S =12·π·32=92π.由定积分的几何意义知⎠⎛-339-x2d x =92π.(2)曲线f (x )=2x +1为一条直线.⎠⎛03(2x +1)d x 表示直线f (x )=2x +1,x =0,x =3围成的直角梯形OABC 的面积,如图(2).其面积为S =12(1+7)×3=12.根据定积分的几何意义知⎠⎛03(2x +1)d x =12.(3)∵y =x 3+3x 在区间[-1,1]上为奇函数,图象关于原点对称,∴曲边梯形在x 轴上方部分面积与x 轴下方部分面积相等.由定积分的几何意义知⎠⎛-11(x 3+3x )d x =0.定积分的几何意义的应用(1)利用定积分的几何意义求⎠⎛ab f (x )d x 的值的关键是确定由曲线y =f (x ),直线x =a ,x =b 及y =0所围成的平面图形的形状.常见的图形有三角形、直角梯形、矩形、圆等可求面积的平面图形.(关键词:平面图形的形状)(2)不规则的图形常利用分割法将图形分割成几个容易求定积分的图形求面积,要注意分割点要确定准确.(关键词:分割)[再练一题]2.上例(1)中变为⎠⎜⎛-32329-x2d x ,如何求解? 【解】 由y =9-x2,知x 2+y 2=9(y ≥0),x ∈⎣⎢⎡⎦⎥⎤-32,32,其图象如图所示:由定积分的几何意义,知⎠⎜⎛-32329-x2d x 等于圆心角为60°的弓形C ED 的面积与矩形ABC D的面积之和.S 弓形=12×π3×32-12×3×332=6π-934,S 矩形=|AB |×|BC |=2×32×9-⎝ ⎛⎭⎪⎫322=932,∴⎠⎜⎛-32329-x2d x =6π-934+932=6π+934.[探究共研型]探究1【提示】 可先把每一段函数的定积分求出后再相加. 探究2 怎样求奇(偶)函数在区间[a ,b ]上的定积分?【提示】 ①若奇函数y =f (x )的图象在[-a ,a ]上连续,则⎠⎛-a a f (x )d x =0;②若偶函数y =g (x )的图象在[-a ,a ]上连续,则⎠⎛-a a g (x )d x =2⎠⎛0a g (x )d x .(1)f (x )=⎩⎨⎧x +1,0≤x<1,2x2,1≤x≤2,则⎠⎛02f (x )d x =( )A.⎠⎛02(x +1)d xB.⎠⎛022x 2d x C.⎠⎛01(x +1)d x +⎠⎛122x 2d x D.⎠⎛122x d x +⎠⎛02(x +1)d x (2)已知⎠⎛02f (x )d x =8,则⎠⎛02[f (x )-2x ]d x =________.【自主解答】 (1)∵f (x )在[0,2]上是连续的,由定积分的性质(3)得⎠⎛02f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x =⎠⎛01(x +1)d x +⎠⎛122x 2d x .(2)由定积分的性质(2)可得 ⎠⎛02[f (x )-2x ]d x =⎠⎛02f (x )d x -⎠⎛022x d x =⎠⎛02f (x )d x -2⎠⎛02x d x . 又∵⎠⎛02f (x )d x =8,⎠⎛02x d x =12×2×2=2,∴⎠⎛02[f (x )-2x ]d x =⎠⎛02f (x )d x -2⎠⎛02x d x =8-2×2=4.【答案】 (1)C (2)4利用定积分的性质求定积分的技巧灵活应用定积分的性质解题,可以把比较复杂的函数拆成几个简单函数,把积分区间分割成可以求积分的几段,进而把未知的问题转化为已知的问题,在运算方面更加简洁.应用时注意性质的推广:(1)⎠⎛ab [f 1(x )±f 2(x )±…±f n (x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛a b f 2(x )d x ±…±⎠⎛ab f n (x )d x ; (2)⎠⎛a b f (x )d x =⎠⎜⎛a c1f (x )d x +⎠⎜⎛c1c2f (x )d x +…+⎠⎜⎛cnb f (x )d x (其中a <c 1<c 2<…<c n <b ,n ∈N *).[再练一题]3.已知⎠⎛0e x d x =e22,⎠⎛0e x 2d x =e33,求下列定积分的值.(1)⎠⎛0e (2x +x 2)d x ;(2)⎠⎛0e (2x 2-x +1)d x .【解】 (1)⎠⎛0e (2x +x 2)d x=2⎠⎛0e x d x +⎠⎛0e x 2d x =2×e22+e33=e 2+e33.(2)⎠⎛0e (2x 2-x +1)d x =2⎠⎛0e x 2d x -⎠⎛0e x d x +⎠⎛0e 1d x , 因为已知⎠⎛0e x d x =e22,⎠⎛0e x 2d x =e33,又由定积分的几何意义知:⎠⎛0e 1d x 等于直线x =0,x =e ,y =0,y =1所围成的图形的面积,所以⎠⎛0e 1d x =1×e =e ,故⎠⎛0e (2x 2-x +1)d x =2×e33-e22+e =23e 3-12e 2+e.1.下列等式不成立的是( )A.⎠⎛a b [mf (x )+ng (x )]d x =m ⎠⎛a b f (x )d x +n ⎠⎛a b g (x )d xB.⎠⎛a b [f (x )+1]d x =⎠⎛a b f (x )d x +b -aC.⎠⎛a b f (x )g (x )d x =⎠⎛a b f (x )d x ·⎠⎛ab g (x )d x D.⎠⎛-2π2πsin x d x =⎠⎛-2π0sin x d x +⎠⎛02πsin x d x 【解析】 利用定积分的性质可判断A ,B ,D 成立,C 不成立. 例如⎠⎛02x d x =2,⎠⎛022d x =4,⎠⎛022x d x =4, 即⎠⎛022x d x ≠⎠⎛02x d x ·⎠⎛022d x . 【答案】 C2.图1-5-3中阴影部分的面积用定积分表示为()图1-5-3A.⎠⎛012x dxB.⎠⎛01(2x -1)d xC.⎠⎛01(2x +1)d xD.⎠⎛01(1-2x )d x 【解析】 根据定积分的几何意义,阴影部分的面积为⎠⎛012x d x -⎠⎛011d x =⎠⎛01(2x -1)d x .【答案】 B3.由y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式是________. 【导学号:62952047】【解析】 ∵0<x <π2,∴sin x >0.∴y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式为⎠⎜⎛0π2 sin x d x .【答案】 ⎠⎜⎛0π2 sin x d x4.若⎠⎛a b [f (x )+g (x )]d x =3,⎠⎛a b [f (x )-g (x )]d x =1,则⎠⎛a b [2g (x )]d x =________.【解析】 ⎠⎛ab [2g (x )]d x=⎠⎛a b [(f (x )+g (x ))-(f (x )-g (x ))]d x =⎠⎛a b [f (x )+g (x )]d x -⎠⎛a b [f (x )-g (x )]d x =3-1=2. 【答案】 25.用定积分的几何意义求⎠⎛-114-x2d x .【解】 由y =4-x2可知x 2+y 2=4(y≥0),其图象如图.⎠⎛-114-x2d x 等于圆心角为60°的弓形C E D 的面积与矩形ABCD 的面积之和. S 弓形=12×π3×22-12×2×2sin π3=2π3-3.S 矩形=|AB |·|BC |=23.∴⎠⎛-114-x2d x =23+2π3-3=2π3+3.。
最新人教版高中数学选修2-2第一章《定积分的概念》教材梳理
庖丁巧解牛知识·巧学一、曲边梯形的面积 1.曲边梯形我们把直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形. 2.曲边梯形面积的算法把区间[a,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形,每个小曲边梯形“以直代曲”,即用矩形的面积近似替代小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值.方法点拨 拆分越来越细,近似程度就会越来越好,即用划归为计算矩形面积和逼近的思想方法求出曲边梯形的面积. 3.求曲边梯形面积的步骤(1)分割:将[a,b ]等分成n 个小区间:[a,a+n a b -],[a+n a b -,a+na b )(2-],…,[a+n a b n ))(1(--,b ].第i 个区间为[a+n a b i ))(1(--,a+na b i )(-].分别过n 个小区间的端点作y 轴的平行线将曲边梯形分成n 个小曲边梯形,每个小曲边梯形的面积记作ΔS 1、ΔS 2,…,ΔS n .S=∑=∆ni iS1.(2)近似代替:当Δx 很小时,可用小矩形的面积ΔS i ′近似地代替ΔS i , 即ΔS i ≈ΔS i ′=f [a+na b i ))(1(--]Δx.(3)求和:S n =∑='∆ni iS 1.(4)取极限:S=∑=∞→∞→'∆=ni i n nn S S1lim lim .深化升华 ①近似代替时,用第i 个小区间左端点对应的函数值与Δx 相乘求出的为不足近似值.用右端点对应的函数值与Δx 相乘求出的为过剩近似值;当n→∞时这两种取法求得的曲面面积是相同的,实质上只要取区间[a+n a b i ))(1(--,a+na b i )(-]内任何一点对应的函数值计算小曲面的面积,只要n→∞,求得的结果都一样. ②求和时首先可提公因式n1,再将和进行处理,算出S n . ③取极限时注意n→∞. 二、汽车行驶的路程一般地,如果物体做变速直线运动,速度函数为v=v(t),那么我们可以采用分割、近似代替、求和、取极限的方法,求出它在a≤t≤b 内所做的位移s.方法点拨 其解决的方法与求曲边梯形面积类似,我们采取“以不变代变”的方法,把求变速直线运动的路程问题,化归为求匀速直线运动的路程问题. 三、定积分的概念 1.定积分的概念如果函数f(x)在区间[a,b ]上连续,用分点a=x 0<x 1<…<x i -1<x i <…<x n =b,将区间[a,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i=1,2,…,n),作和式x=∑∑==-=∆ni n i inab x f 11)(εf(ξi ),当n→∞时,上述和式无限接近于某个常数,这个常数叫做函数f(x)在区间[a,b ]上的定积分,记作dx x f ba⎰)(,即∑⎰=-=ni i baf nab dx x f 1)()(ε.这里a 与b 分别叫做积分下限和积分上限,区间[a,b ]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积式.疑点突破 ①定积分是一种“和”的极限.在定积分的定义中,含着分割、近似代替、求和、取极限这种解决问题的思想.这种思想方法来源于“计算底在区间[a,b ]上,高为y=f(x)的曲边梯形的面积”等问题.②定积分上限和下限之间的关系.在定义中假设a<b.当a=b 或a>b 时,不难验证dx x f aa⎰)(=0,dx x f b a⎰)(=dx x f ab⎰-)(.③定积分的值仅与被积函数f(x)及积分区间[a,b ]有关,与积分变量用什么字母无关. ④定积分dx x f ba⎰)(存在的必要条件是函数f(x)在区间[a,b ]上有界.因此,当函数f(x)在区间[a,b ]上无界时,定积分dx x f ba⎰)(是不存在的.⑤定积分是一个常数.因为定积分是一种“和”的极限值,所以是一个常数,因此,(dx x f ba⎰)()′=0,d dx x f ba⎰)(=0.2.定积分的几何意义图1-5-1当函数f(x)在区间[a,b ]上恒为正时,定积分dx x f ba⎰)(的几何意义是以曲线f(x)为曲边的曲边梯形的面积.一般情况下(如图1-5-1),定积分dx x f b a⎰)(的几何意义是介于x 轴、函数f(x)的图象以及直线x=a 、x=b 之间各部分面积的代数和,在x 轴上方的面积取正号;在x 轴下方的面积取负号. 3.定积分的性质由定积分的定义,可得到定积分的如下性质: (1)dx x kf ba ⎰)(=k dx x f ba⎰)((k 为常数).(2)⎰⎰⎰±=±ba b abadx x f dx x f dx x f x f )()()]()([2121.(3)⎰⎰⎰+=bcc abadx x f dx x f dx x f )()()(深化升华 不论a,b,c 三点的相互位置如何,恒有⎰⎰⎰+=bcc abadx x f dx x f dx x f )()()(.这一性质表明定积分对于积分区间具有可加性. 知识拓展 性质4.若在区间[a,b ]上,f(x)≥0,则dx x f ba⎰)(≥0.推论1.若在区间[a,b ]上,f(x)≤g(x),则dx x f ba⎰)(≤dx x g ba⎰)(.推论2.|dx x f ba⎰)(|≤⎰badx x f |)(|.性质5.(估值定理)设函数f(x)在区间[a,b ]上的最小值与最大值分别为m 与M,则 m(b-a)≤dx x f ba⎰)(≤M(b -a).证明:因为m≤f(x)≤M,由性质4的推论1得⎰bamdx ≤dx x f ba⎰)(≤⎰baMdx ,即m⎰badx ≤dx x f b a⎰)(≤M ⎰badx .故m(b-a)≤dx x f ba⎰)(≤M(b -a).利用这个性质,由被积函数在积分区间上的最小值及最大值,可以估计出积分值的大致范围. 问题·探究问题1 火箭发射后t s 的速度为v(t),假定0≤t≤10,对函数v(t)按f(x 1)Δx+f(x 2)Δx+…+f(x n )Δx 式所作的和具有怎样的实际意义?思路:本题考查“近似代替”“无限细分”和“无穷积累”的数学思想方法. 探究:将区间[0,10]等分成n 个小区间,每个小区间的长度为Δt,在每个小区间上取一点,依次为t 1,t 2,…,t i ,…,t n ,虽然火箭的速度不是常数,但在一个小区间内其变化很小,所以可以用v(t 1)来代替火箭在第一个小区间上的速度,这样v(t 1)Δt≈火箭在第一个时段内运行的路程;同理,v(t 2)Δt≈火箭在第二个时段内运行的路程,从而S n =v(t 1)Δt+v(t 2)Δt+…+v(t n )Δt≈火箭在10 s 内运行的总路程.这就是函数v(t)在时间区间[0,10]上按f(x 1)Δx+f(x 2)Δx+…+f(x n )Δx 所作的和的实际背景. 当Δt 无限趋近于0,S n 就是无限趋近于火箭在10 s 内所运行的总路程. 问题2 定积分的几何意义是什么?思路:利用定积分的定义,先分割,再近似代替,然后作和,求出极限即得所求. 探究:从几何上看,如果在区间[a,b ]上函数f(x)连续且恒有f(x)≥0,那么定积分dx x f ba⎰)(表示由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积.这就是定积分dxx f ba⎰)(的几何意义. 典题·热题例n n nn nn222)1()21()11(lim ++++∞→ =_________________.思路解析: n n nn nn222)1()21()11(lim ++++∞→=∑+=∞→n i n n ni e 121)1ln(lim =∑+=∞→n i n n ni e11)1ln(2lim =⎰21ln 2xdxe答案:e ⎰21ln 2xdxe例2用定积分的定义求出由y=3x,x=0,x=1,y=0围成的图形的面积.思路分析:利用定积分的定义,先分割,再近似代替,然后作和,求出极限即得面积. 解:(1)分割:把区间[0,1]等分成n 个小区间[n i n i ,1-](i=1,2,…n).其长度为Δx=n1,把曲边梯形分成n 个小曲边梯形,其面积记为ΔS i (i=1,2,…n).(2)近似代替:用小矩形面积代替小曲边梯形面积,ΔS i =f(n i 1-)Δx=3·n i 1-·n 1=23n(i-1),(i=1,2,…n). (3)作和:21213)1(3n i n S ni ni i =-=∆∑∑==[1+2+…+(n -1)]=n n 123-∙. (4)求极限:S=23123lim )1(3lim12=-∙=-∞→=∞→∑n n i nn ni n . 深化升华 本题考查的是用定积分的方法求面积,用定积分的定义求面积是定积分的一个应用方式,也是定积分产生的源泉.通常的做法就是将图形分成一些非常小的图形,然后求出这些小图形面积的和,最后再求极限.例3已知某运动的物体做变速直线运动,它的速度v 是时间t 的函数v(t),求物体在t=0到t=t 0这段时间内所经过的路程s.思路分析:利用定积分的定义,先分割,再近似代替,然后作和,求出极限即得路程. 解:(1)分割:将时间区间[0,t 0]分成n 等份:[nit n i ,10-t 0](i=1,2,…,n),每个小区间所表示的时间为Δt=nt 0;各区间物体运动的距离记作Δs i (i=1,2,…,n). (2)近似代替:在每个小区间上以匀速直线运动的路程近似代替变速直线运动的距离.在小区间[00,1t nit n i -]上任取一时刻ξi (i=1,2,…,n).用时刻ξi 的速度v(ξi )近似代替第i 个小区间上的速度.由匀速直线运动的路程公式,每个小区间上物体运动所经过的距离可以近似地表示为Δs i ≈v(ξi )Δt(i=1,2,…,n).(3)求和:因为每个小区间上物体运动的距离可以用这一区间上做匀速直线运动的路程近似代替,所以在时间[0,t 0]内物体运动的距离s,就可以用这一物体分别在n 个小区间上作n 个匀速直线运动的路程和近似代替,即s=∑∑==∆≈∆ni in i it v S 11)(ε.(4)求极限:当所分时间区间越短,即Δt=n t 0越小时,∑=∆ni i t v 1)(ε的值越接近于s.因此,当n→∞,即Δt=n t 0→0时,∑=∆ni i t v 1)(ε的极限,就是所求的物体在时间区间[0,t 0]上经过的路程.由此得到s=∑=∞→∆ni in t v 1)(limε.深化升华 s=∑=∞→∆ni in t v 1)(limε为做变速直线运动的物体在[0,t 0]这段时间内所运动的路程,其中ξi 为区间[00,1t n i t n i -]上的任意值,取ξi =n i 1-t 0时,s=∑=∞→∆-ni n t t n i v 10)1(lim ;取ξi =n i t 0时,s=∑=∞→∆ni n t t n iv 10)(lim ;取ξi =i i n t n it n t i )1()1(000-=⨯-时,s=∑=∞→∆-ni n t i i nt v 1])1([lim.当物体做匀速直线运动时,上面的结论仍成立. 例4利用定积分的几何意义,说明下列等式. (1)⎰12xdx =1;(2)21112π=-⎰-dx x .思路分析:定积分的几何意义是指曲边梯形的面积,只要理解被积函数和积分极限的意义,并作出图形,即可得到解决. 解:(1)如图1-5-2,⎰12xdx 表示由曲线y=2x,直线x=0,x=1,y=0所围成的图形(直角三角形)的面积, 由S Δ=21×2×1=1,故⎰102xdx =1.(2)如图1-5-3,⎰--1121dx x 表示圆x 2+y 2=1在第一、二象限的上半圆的面积.由S 半圆=2π,又在x 轴上方,故21112π=-⎰-dx x .图1-5-2 图1-5-3 例5利用定积分计算⎰23dx x 的值.思路分析:令f(x)=x 3,按分割、近似代替、作和、求极限四步求解.解:令f(x)=x 3.⎰23dx x ≈∑=-+ni ni a f 1)2(·n 2=∑=n i ni n 13)2(2=]321[16])2()4()2[(233334333n n n n n n n ++++=+++2222)1(4)1(4n n n n +=+∙= 取极限⎰23dx x =22)1(4lim nn n +∞→=4. 误区警示 将区间[0,2]分成n 个小区间,每个区间长为n2,并且第i 个区间是[n i n i 2,)1(2-],习惯上按n1计算ξ. 例6估计定积分⎰+π023sin 21dx x的值. 思路分析:首先计算出被积函数在给定区间上的最大值和最小值,然后利用估值定理求解. 解:∵当x ∈[0,π]时,0≤sinx≤1,∴0≤23sin x≤1, 因此有2≤2+23sin x≤3,31≤x23sin 21+≤21, 于是由估值定理有2sin 21323πππ≤+≤⎰dx x.。
人教a版数学【选修2-2】1.5.3《定积分的概念》ppt课件
[答案] C
π π [解析] 由定积分的几何意义知 sinxdx>0, cosxdx=0,
0 0
所以C不成立,故应选C.
3.下列值等于1的是(
1 A. xdx
0
)
1 B. (x+1)dx
0
C. 1dx
1(x)dx± f2(x)dx b a ② f ( x )]d x = __________________ ; [f1(x)± 2 b a
a
b c ③ f ( x )d x =
a
f(x)dx f(x)dx+__________ (其中a<c<b).
典例探究学案
定积分的定义
1 3 求 x dx.
0
[分析] 这里的被积函数f(x)=x3显然是连续函数.现按定
1 3 义中包含的几个步骤来求 x dx.
0
[解析] (1)分割[0,1]: n-1 n 1 2 0<n<n<…< n <n=1. (2)近似代替:作和
1 1 2 1 n 1 3 3 ·+ ·+…+ 3·. n n n n n n i 1 . = n3· n i=1
n
(因为x3连续,所以ξi可随意取而不影响极限,故我们此处 将ξi取为[xi,xi+1]的右端点也无妨)
(3)取极限:
i 1 nn+1 1 n 3 1 2 3 ·= 4 i = 4 n n n n 2 i =1 i=1
1 0
[答案] C [解析] 由积分的几何意义可知选C.
π 4.由正切曲线y=tanx,直线x=0和x= 4 ,x轴所围成的平 面区域的面积用积分表示为________.
人教版高中数学选修2-2《1.5.3:定积分的概念》
y
所以
1
0
1 x dx =
2
4
1 x
小结
1、定积分的概念
b
a
ba f ( x)dx = lim f (i ) n n i =1
n
2、几何意义
当f x 0时, f ( x)dx = S
a
b
当f x 0时, f ( x)dx = S
O a
b a
b x
b a
S = S1 S2 = f ( x)dx g ( x)dx
ba 当f x 0时,定积分 f x dx = lim f i a n n i =1 1值是正还是负? y
b n
探究1:
2此时它的值还是阴影
y=f (x)
部分面积吗?如果不是 , 两者之间又是什么关系 呢?
解:
2
2
sin xdx
y
f(x)=sinx
2
1
S1 -1
S2
2
x
2
2
f ( x)dx =
0
2
f ( x)dx 2 f ( x)dx
0
= S 2 S1 = 0
结论:
(1)若奇函数 y = f x 的图像在 a, a
上连续,则
f x dx = 0;
y y=f ( x)
O
a y=g(x)
b
x
S = S1 S2 = f ( x)dx g ( x)dx
a a
b
b
结论:
人教A版高中数学选修2-2课件1.5.3定积分的概念.pptx
(1)当
f(x)是偶函数时,a-
f(x)dx=
a
20af(x)dx;
(2)当 f(x)是奇函数时,-aa f(x)dx=0.
精彩推荐典例展示
名师解题
利用定积分的几何意义巧求面积
例4 善于思考的小王发现:半径为a,圆心在原点的
圆,如果固定直径AB,把圆内的所有与轴平行的弦都压缩
到原来的b倍,就得到一种新的图形——椭圆.他受祖冲
令 y= 1-x-12≥0, 则 (x- 1)2+ y2= 1(0≤ x≤ 1, y≥ 0),
由定积分几何意义知 S1=01 1- x-12dx
=1π·12=π.
4
4
对于
S2=01 xdx, 由其几何意义知
S2=12×
1×
1=1, 2
故01[ 1- x-12-x]dx=S1-S2=π4-12.
如果函数 f(x)在区间[a,b]上连续,用分点 a=x0<x1<…<xi
-1<xi<…<xn=b 将区间[a,b]等分成 n 个小区间,在每个
n
小区间 [xi-1, xi ]上任取一点
ξi(i=
1,
2,…,
n),作和
式∑ i=1
f(ξi)Δx=___∑ i_=n_1_b_-_n_a_f_(_ξ_i)____,当 n→∞时,上述和式无 限接近某个常数,这个常数叫做函数 f(x)在区间[a,b]上 的 __定__积__分___,
令 g= a2-x2(0≤x≤a), 得 x2+g2=a2(0≤x≤a,g≥0),
依题意,得a 0
a2 - x2dx= πa2, 4
∴ S1=ba0a
a2-x2 dx=b·πa2=πab. a4 4
人教版A版高中数学选修2-2第一章+1.5《定积分的概念》【素材】
1.5定积分的概念一、教材分析课程定位:定积分是一节重要的基础理论课。
通过本节课的学习,使学生获得够用的微积分、向量代数及空间解析几何的基本知识、必要的基础理论和常用的运算方法,为学习后续课程的学习和进一步扩展数学知识奠定必要的基础。
地位作用:本节课选自人教A版选秀2-2第一章第5节,定积分的概念是高中数学的重点,也是高等数学中最主要的经典理论。
这节课上承导数、不定积分,下接定积分在几何、物理等其他学科中的应用。
教学内容:本节内容为定积分概念,主要包括三方面内容:两个引例――曲边梯形的面积和变速直线运动的路程;定积分的定义及几何意义;定积分的性质。
教学目标:知识目标――通过探求曲边梯形的面积,使学生了解“分割、近似、求和、取极限”的思想方法;能力目标――通过类比“割圆术”,引导学生萌发“以直代曲”的想法,逐步培养学生的辨证思维能力和知识迁移的能力;情感目标――从实践中创设情境,渗透“化整为零零积整”的辨证唯物观,培养学生的创新意识和科技服务于生活的人文精神。
二、教学方法学情分析:学生具备一定初等数学基础知识,但学生的基础不扎实。
教学方法:数学课程对于高中学生来说,往往难度很大,教学时力求从学生已有知识和实际学习情况出发引入新课,启发、诱导学生参与教学活动,提出问题、分析问题、解决问题,适当采用自学辅导法(阅读教材)、通过以上方法的运用,让学生掌握重点知识,突破难点,提高应用知识的能力。
教师特别要做到:(1)在介绍数学概念的时候,力争以实例引入,使概念尽可能不以严格“定义”的形式出现。
(2)在介绍基本定理的时候,尽可能地在通俗易懂的叙述中渐入主题,让学生有一种“水到渠成”之感。
(3)在讲解运算规则和规律时,用一些精简易记的文字语言解读数学公式,加强学生对数学公式涵义的理解。
三、设计理念以问题为教学主线,本节课的教学终始以问题的解决为线索。
这节课属于概念教学,遵循概念教学的五流程:体验概念、提炼概念、形成概念、巩固概念和应用概念。
2020版高中数学人教A版选修2-2课件:1.5.3 定积分的概念
n
n2
1 (1 1 )(2 1 ) 1. 6n n
(3)取极限:
当n→+∞时,S→4 ,且s→ ,4
3
3
所以
01(x2+1)dx=
4 3
.
【方法总结】ab
f(x)dx,
b
a
|f(x)|dx,|
b
a
f(x)dx|
几何
意义的区别
由于被积函数f(x)的值在区间[a,b]上可正可负,也就
是说它的图象可以在x轴上方,也可以在x轴下方,还可
C.
0 x2dx+
1
2dx
1
0
D. 0 2xdx+ 1x2dx
1
0
【解析】选D.因为f(x)在不同区间上的解析式不同,所 以积分区间应该与对应的解析式一致.利用定积分的性 质可得正确答案为D.
类型二 定积分几何意义的应用
【典例2】(1)计算:
6
0
(2x-4)dx=________.
(2)用图象表示下列定积分:①
sin
xcos
xdx.
因为y=sin xcos x为奇函数,
所以 2sin xcos xdx=0. 2
利用定积分的几何意义,如图,
所以 0 3x 1dx 7 1 2 8,
2
2
2
0
2x 1dx 3 11 2.
2
所以 2f2(x)dx+
s2in
xcos
xdx=-8+2+0=-6.
2
【方法总结】利用定积分的性质求定积分的策略 (1)利用性质可把定积分分成几个简单的积分的组合, 对于每一个积分都可以利用定积分的几何意义求出,从 而得到所求定积分的值.
人教新课标A版高二数学《选修2-2》1.5.3 定积分的概念
3 3
9-x2 dx -
9π x dx= . 2
3
课时训练
A
2.用定积分表示下列阴影部 分的面积(不要求计算):
(1)S1=____________(如图1);
(2)S2=____________(如图2);
课时小结谢ຫໍສະໝຸດ 大家!1.5.3 定积分的概念
学习目标
1.了解定积分的概念.
2.会用定义求一些简单的定积分.
5.用定积分表示下图中阴影部分的面积.
正
负 0
自主测评
A
C
C
题型一 用定义求定积分
s
i 1 i
n
方法提炼 用定义求定积分的步骤 ①分割;
②近似代替;
③求和;
④取极限
跟踪演练
解:令 f(x)=3x+2,(1)分割.在区间[1,2]上等间隔地插入 n -1 个分点,把区间[1,2]等分成 n
3 2 3 2
π 3 3 π 3 1 -x d x = - + = + . 3 4 2 3 4
2
题型三 利用性质求定积分
解:(1)如图:
由定积分的几何意义得:
3 3
2 π×3 9π 2 9-x dx= = , 2 2
3 3
x dx=0.
3 3
3
由定积分性质得
3 3
( 9-x - x )dx =
n+i-1 n+i 个小区间 , n n
n+i n+i-1 1 (i=1,2,…, n), 每个小区间的长度为 Δx= - = . n n n
(2)近似代替. n+i-1 取 ξi= (i=1,2,…,n), n 用小矩形的面积代替小曲边梯形的面积 ΔSi=f(ξi)·Δx. (3)求和.所有这些小矩形面积的和 Sn=i= Σ1f(ξi)Δx=i= Σ1 (3ξi+2)Δx
人教版A版高中数学选修2-2:1.5.3定积分的概念
b
i
x
[ xn1,xn ],各小段时间的长依次为
x1 x1 x0 ,x2 x2 x1,xn xn xn1,
在每个小区间[ xi1 xi ]上任意到一个点i ,求函数值f (i )
,并与小区间长度xi相乘得f (i )xi (i 1,2,3,, n), 再求
(2) 2 sin2 x cos xdx
0
0
解: (1)
3 e3xdx
0
1 3
3 e3xd 3 x
0
1 3
e3x 3 0
1 (e9 3
1)
(2) 2 sin2 x cos xdx 0
2 sin2 xd sin x 1 sin3 x 2 1
0
3
03
(3)
把[a,b]分成n个小区间 [ xi1, xi ] (i 1,2, ... , n)
y
y f (x)
其长度为
xi xi xi1 (i 1,2, ... , n) o a xi1 xi b x
过各个分点作x轴的垂线,将曲边梯形分成n个 小曲边梯形,其面积为?
(1)分割:(前面)
定积分的概念
The Concept of Definite Integral
定积分的概念
定积分概念的引入
1. 求曲边梯形的面积
曲边梯形是指由连续曲线 y
y f ( x) ( f ( x) 0)、 和直线
A?
y f (x)
y 0、x a、x b 所组成
的平面图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年人教版A 版高中数学选修2-2第一章 1-5《定积分的概
念》《教案》
教学目标:
1、通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;
2、借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分法求简单的定积分.
3、理解掌握定积分的几何意义;
教学重点:定积分的概念、定积分法求简单的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意义. 教学过程:
一.创设情景
复习:
1. 回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤:
2.对这四个步骤再以分析、理解、归纳,找出共同点.
二.新课讲授
1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点
0121i i n a x x x x x x b -=<<<<<<<=
将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b a
x n
-∆=
),在每个小区间[]1,i i x x -上取一点()1,2,
,i i n ξ=,作和式:1
1
()()n
n
n i i i i b a
S f x f n
ξξ==-=∆=∑∑
如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数
S 为函数()f x 在区间[,]a b 上的定积分。
记为:()b
a
S f x dx =
⎰
其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。
说明:(1)定积分
()b
a
f x dx ⎰
是一个常数,即n S 无限趋近的常数S (n →+∞时)称为
()b
a
f x dx ⎰
,而不是n S .
(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点
[]1,i i i x x ξ-∈;③求和:1
()n
i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a
f x dx f n ξ→∞=-=∑⎰ (3)曲边图形面积:()b
a
S f x dx =
⎰;变速运动路程2
1
()t t S v t dt =⎰
;
变力做功 ()b
a
W F r dr =
⎰
2.定积分的几何意义 说明:一般情况下,定积分
()b
a
f x dx ⎰
的几何意义是介于x 轴、函数()f x 的图形以及直线
,x a x b ==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去负
号.(可以先不给学生讲).
分析:一般的,设被积函数()y f x =,若()y f x =在[,]a b 上可取负值。
考察和式()()()12()i n f x x f x x f x x f x x ∆+∆++∆+
+∆
不妨设1(),(),,()0i i n f x f x f x +<
于是和式即为
()()()121(){[()][]}i i n f x x f x x f x x f x x f x x -∆+∆+
+∆--∆+
+-∆
()b a
f x dx ∴=⎰阴影A 的面积—阴影B 的面积(即x 轴上方面积减x 轴下方的面积)
2.定积分的性质
根据定积分的定义,不难得出定积分的如下性质: 性质1 a b dx b
a
-=⎰1
性质2
⎰⎰
=b
a
b
a
dx x f k dx x kf )()( (其中k 是不为0的常数) (定积分的线性性质)
性质3
1212[()()]()()b
b b
a
a
a
f x f x dx f x dx f x dx ±=±⎰
⎰⎰ (定积分的线性性质)
性质4 ()()()()b c b
a
a
c
f x dx f x dx f x dx
a c
b =+<<⎰⎰⎰其中
(定积分对积分区间的可加性)
说明:①推广:1212[()()()]()()()b
b b
b
m m a
a
a
a
f x f x f x dx f x dx f x dx f x ±±
±=±±
±⎰
⎰⎰⎰
②推广:
12
1
()()()()k
b
c c b
a
a
c c f x dx f x dx f x dx f x dx =++
+⎰
⎰⎰⎰
③性质解释:
三.典例分析
例1.计算定积分
2
1
(1)x dx +
⎰
分析:所求定积分即为如图阴影部分面积,面积为52。
即:
2
1
5(1)2
x dx +=
⎰
思考:若改为计算定积分
2
2
(1)x dx -+⎰
呢?
改变了积分上、下限,被积函数在[2,2]-上出现了负值如何解决呢?(后面解决的问题)
四.课堂练习
计算下列定积分 1.5
0(24)x dx -⎰ 5
(24)945x dx -=-=⎰
2.
1
1
x dx -⎰
1111
1111122
x dx -=⨯⨯+⨯⨯=⎰
AMNB AMPC CPNB
S S S =+曲边梯形曲边梯形曲边梯形
五.回顾总结
1.定积分的概念、定积分法求简单的定积分、定积分的几何意义.六.布置作业。