高中数学 第3章《概率》古典概型(1)导学案 苏教版必修3

合集下载

高中数学 第3章 概率 3.1 随机事件及其概率教案 苏教版必修3-苏教版高一必修3数学教案

高中数学 第3章 概率 3.1 随机事件及其概率教案 苏教版必修3-苏教版高一必修3数学教案

第3章概率本章概述一、课标要求本章通过对随机现象的研究,学习认识客观世界的方法.多年来,学生学习数学,主要研究确定的现象,对于不确定现象的规律知之甚少.通过本章的学习,使学生进一步了解不仅确定性现象有规律,可以预知结果,可以用数学方法去研究,而且不确定现象也有规律可循,同样也能用数学方法去研究.使学生初步形成用科学的态度、辩证的思想、用随机观念去观察、分析、研究客观世界的态度,寻求并获得认识世界的初步知识和科学态度.1.在具体情境中了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义以及概率与频率的区别.2.通过实例,理解古典概型概率的计算公式,会用列举法计算随机事件所包含的基本事件数以及事件发生的概率.3.了解随机数的意义,能运用模拟方法〔包括计算机产生随机数来模拟〕根据概率,初步体会几何概型的意义.4.通过实例,了解两个互斥事件的概率加法公式.5.通过阅读相关材料,了解人类认识随机现象的过程.6.使学生能初步利用概率知识对实际问题进行分析,并进行理性思考,学会对纷繁复杂的事物进行探索,养成透过事物表面现象把握事物本质所在的思维方法,培养学生理性思维能力与辩证思维能力、创新意识与探究能力、数学建模能力和实践能力,以及表达、交流的能力,增强学生的辩证唯物主义世界观,进一步树立科学的人生观、价值观.7.注重表达数学的文化价值与美学价值,增强学生的审美观,丰富学生的文化底蕴,提高学生的人文素质.二、本章编写意图与教学建议人们在认识自然的过程中,对自然现象进行大量的观察,通过观察得到大量的数据,再对得到的数据进行分析,找出其内在的规律.人们发现,有些现象并不像万有引力定律那样可以得到完全确定的规律.现实世界中发生的事件大多是随机事件,人们通过对随机事件的大量重复试验的结果进行理性的探讨,发现了随机事件也不是毫无规律可循.研究这些规律,最终导致了概率的诞生.学生在初中已经接触了概率的初步知识,本章那么是在此基础上开始系统地学习概率知识.本章又是高中阶段第一次学习这一内容,在后续的学习中还将继续学习概率的其他内容,因此,在高中阶段概率的学习中,起到了承前启后的作用,由于与概率计算密切相关的内容还没有学习,因此,在涉及有关计算的问题时采用枚举法,而在用枚举法时一定要做到既不重复也不遗漏,应该按照一定的顺序来计算有关数据,也可以用表格或树形图来进行有关数据的计算.本章包括了随机事件的概率、古典概型、几何概型以及互斥事件有一个发生的概率等内容.概率的核心问题是要让学生了解随机现象及概率的意义,为了让学生能更深入地理解,可以列举日常生活中的实例,由此正确理解随机事件发生的不确定性及其频率的稳定性,从而加深对概率的理解;古典概型从随机事件发生频率的稳定性导入,通过对频率稳定性研究得出随机事件的发生与否有一定的规律可循,从而得出概率的统计定义.在教学中让学生通过实例理解古典概型的特征是试验结果的有限性和每一个试验结果出现的等可能性,使学生学会把一些实际问题转化为古典概型;从古典概型到几何概型,是从有限到无限的延伸,在几何概型的教学中抓住较强直观性的特点.在教学中有意识地适当地运用现代信息技术辅助教学.在教学中要能做到:(1)注意概念的区别与联系,类似的概念不能够混淆,例如概率与频率,互斥事件与对立事件;(2)在运用公式时注意是否符合公式运用的前提条件;(3)注意顺向思维与逆向思维的合理运用,遵循“正难那么反〞的原那么;(4)注意学习前辈的学习和研究的思维方法,能通过对大量事件的观察抽象出事件的本质.在本章的教学中应注重培养学生学习的信心,提高学生学习数学的兴趣,使学生形成锲而不舍的钻研精神和科学态度;培养学生的数学思维能力,逐步地发展独立获取数学知识的能力,形成批判性的思维习惯,发展数学应用意识和创新意识;通过本章的学习,让学生感受数学与现实世界的重要联系,逐步形成辩证的思维品质;养成准确,清晰,有条理地表述问题以及解决问题的过程的习惯,提高数学表达和交流的能力;进一步拓展学生的视野,逐步认识数学的科学价值、应用价值和文化价值.三、教学内容及课时安排建议3.1 随机事件及其概率整体设计教材分析本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率论的发展、概率趣话以及概率的应用,以此激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率为一课时.本节课主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.通过实例说明一个随机事件的发生是存在着统计规律性的,一个随机事件发生的频率总是在某个常数附近摆.我们给这个常数取一个名字,叫做这个随机事件的概率.它从数量上反映了这个事件发生的可能性的大小.它是0~1之间的一个数.将这个事件记为A,用P(A)表示事件A发生的概率.对于任意一个随机事件A,P(A)必须满足如下基本要求:0≤P(A)≤1.怎样确定一个事件发生的概率呢?可以从实际问题出发,创设问题情境.具体设计如下:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.三维目标1.通过具体的例子了解随机现象,了解必然事件、不可能事件、随机事件的概念.采用实验探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学.使学生了解一个随机事件的发生既有随机性,又在大量重复试验中存在着一种客观规律性——频率的稳定性,以引出随机事件概率的意义和计算方法.2.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性.3.掌握概率的统计定义及概率的性质.引导学生对身边的事件加以注意、分析,发挥学生的主体作用,设计好探究性试验.指导学生做简单易行的试验,让学生无意识地发现随机事件的某一结果发生的规律性,理论联系实际,激发学生的学习积极性.4.通过概率论的介绍,激发学生对科学的探究精神和严肃认真的科学态度.发动学生动手试验,体验数学的奥秘与数学美,激发学生的学习兴趣.培养学生的辩证唯物主义观点,增强学生的科学意识.重点难点教学重点:1.随机现象的定义,必然事件、不可能事件、随机事件的定义.2.概率的统计定义,概率的基本性质.教学难点:随机事件的定义,随机事件发生存在的统计规律性.课时安排1课时教学过程导入新课设计思路一:〔情境导入〕在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战〞搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船〔为100艘〕编队规模越小,编次就越多〔为每次20艘,就要有5个编次〕,编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.设计思路二:〔问题导入〕观察以下现象,各有什么特点?(1)在标准大气压下,水加热到100 ℃沸腾;(2)抛一石块,下落;(3)同性电荷互相吸引;〔4〕实心铁块丢入水中,铁块上浮;〔5〕射击一次,中靶;〔6〕掷一枚硬币,反面向上.解答:〔1〕、〔2〕两种现象必然发生,〔3〕、〔4〕两种现象不可能发生,〔5〕、〔6〕两种现象可能发生,也可能不发生.推进新课新知探究由上述事例可知现实生活中有很多现象,这些现象在一定条件下,可能发生也可能不发生.在一定条件下事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.对于某个现象,如果能让其条件实现一次,就是进行了一次试验,试验的每一种可能的结果,都是一个事件.在上述现象中,我们如果把〔1〕、(2)的条件实现一次,那么〔1〕、(2)的现象一定会出现“沸腾〞与“下落〞,“沸腾〞与“下落〞都是一个事件.对于在一定条件下必然要发生的事件,叫做必然事件(certain event);我们如果把(3)、〔4〕的条件各实现一次,那么“吸引〞与“上浮〞也都是一个事件,但这两个事件都是不可能发生的.在一定条件下不可能发生的事件,叫做不可能事件(impossible event);当(5)、(6)的条件各实现一次,那么“中靶〞与“反面向上〞也都是一个事件,这两个事件,可能发生,也可能不发生.在一定条件下可能发生也可能不发生的事件,叫做随机事件(random event).必然事件与不可能事件反映的都是在一定条件下的确定性现象,而随机事件反映的是随机现象.我们一般用大写的英文字母表示随机事件,例如随机事件A、随机事件B等,另外我们常常将随机事件简称为事件.由于随机事件具有不确定性,因而从表面上看,似乎偶然性在起着支配作用,没有什么必然性.但是,人们经过长期的实践并深入研究后,发现随机事件虽然就每次试验结果来说具有不确定性,然而在大量重复试验中,它却呈现出一种完全确定的规律性.历史上曾有人做过抛掷硬币的大量重复试验,结果如下表:从表中我们可以看到,当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.对于给定的随机事件A,在相同的条件下,随着试验次数的增加,事件A发生的频率mn 总在某个常数附近摆动并趋于稳定,因此,可以用这个常数来刻画随机事件A发生的可能性的大小,并把这个常数称为随机事件A的概率〔probability〕,记作P(A).必然事件的概率为1,不可能事件的概率为0.因此0≤P(A)≤1 .对于概率的统计定义,教师应说明以下几点:〔1〕求一个事件的概率的基本方法是通过大量的重复试验;〔2〕只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率;〔3〕概率是频率的稳定值,而频率是概率的近似值;〔4〕概率反映了随机事件发生的可能性的大小.应用示例思路1例1 给出以下事件:①某人练习打靶,一枪命中十环;②手机没电,接听;③抛一枚硬币,结果正面向上;④冰棒在烈日下融化;⑤一粒植物种子,播种后发芽;⑥向上抛一只不锈钢杯子,结果杯口向上.其中随机事件的个数是〔〕A.3B.4解析:判断事件是否是随机事件,可以依据随机事件的概念判断,也就是该事件在一定条件下,是否可能发生也可能不发生,如果可能发生也可能不发生,那么该事件为随机事件.由随机事件的概念可知:①③⑤⑥是随机事件.答案:B点评:判断某一事件是否是随机事件依据随机事件的概念,同样判断某一事件是否是必然事件或是不可能事件也是依据相应的概念,因此,此题中的②是不可能事件,④是必然事件.例2 指出以下事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?〔1〕假设a、b、c 都是实数,那么a(bc)=(ab)c ;〔2〕没有空气,动物也能生存下去;〔3〕在标准大气压下,水在温度90°时沸腾;〔4〕直线y=k(x+1)过定点(-1,0);〔5〕某一天内某人接听20次;〔6〕一个袋内装有形状、大小相同的一个白球和一个黑球,从中任意摸出1个球为白球.分析:根据必然事件、随机事件和不可能事件的定义来判断.解:由必然事件的定义可知〔1〕、〔4〕是必然事件;由随机事件的定义知〔5〕、〔6〕是随机事件;由不可能事件的定义可知(2〕、〔3〕是不可能事件.点评:要判断一个事件是必然事件、随机事件还是不可能事件,应紧紧抓住这些事件的定义,从定义出发来作出判断.例3 任取一个由50名同学组成的班级〔称为一个标准班〕,至少有两位同学的生日在同一天〔记为事件T〕的概率是0.97,据此,我们知道( )A.取定一个标准班,事件T发生的可能性为97%B.取定一个标准班,事件T发生的概率大约是97%C.任意取定10 000个标准班,其中必有9 700个班有事件T发生D.随着抽取的班级数n的不断增大,事件T发生的频率逐渐接近0.97,并在它附近摆动解析:根据随机事件的概率的定义必须进行大量试验,才能得出某一随机事件的概率,因此,此题应从定义出发来研究.对于取定的一个标准班来说,T要么发生要么不发生,所以A,B都不对;对任意取定的10 000个标准班,也可能出现极端情况,如T都不发生,因此C也不对;据概率的统计定义知,选项D正确.答案:D点评:利用概率的统计定义计算随机事件的概率,需要大量重复的试验.对某一个随机事件来说,在一次试验中不一定发生,但在大量重复试验下它的发生又呈现一定的规律.通过对概率的定义的感悟,感受数学学科的实验性,体会偶然与必然的辩证统一.例4 对某电视机厂生产的电视机进行抽样检测的数据如下:〔1〕计算表中优等品的各个频率;〔2〕该厂生产的电视机优等品的概率是多少?分析:利用概率的定义来求解此题.解:〔1〕各次优等品的频率为 0.8, 0.92, 0.96, 0.95, 0.956, 0.954;〔2〕优等品的概率是0.95.点评:通过此题进一步理解概率的定义,领悟概率其实是某一随机事件发生的可能性的大小.例5 历史上曾有人做过抛掷硬币的大量随机试验,结果如下:〔1〕计算表中正面向上的频率;(2)试估计事件“正面向上〞的概率.分析:先运用频率计算的方法计算频率,再运用概率的定义确定事件“正面向上〞的概率.解:(1)表中频率自上而下依次为:0.518 1,0.506 9,0.501 6,0.500 5,0.499 6;〔2〕由(1)的结果发现:当抛掷的次数很多时,“正面向上〞的频率接近于常数0.5,在它附近摆动,所以抛掷一枚硬币,正面向上的概率约为0.5.点评:通过计算随机事件发生的频率来估计随机事件的概率是求随机事件概率常用的方法.思路2例1 指出以下事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件.〔1〕我国东南沿海某地明年将受到3次热带风暴的侵袭;〔2〕假设a为实数,那么|a|≥0;〔3〕某人开车经过10个交叉路口都遇到绿灯;〔4〕一个正六面体的六个面分别标有数字1、2、3、4、5、6,将该正六面体连续抛掷两次,向上的一面数字之和大于12.分析:要判断某一事件是必然事件、随机事件还是不可能事件,可以依据必然事件、随机事件以及不可能事件的定义来判断.解:由必然事件、随机事件和不可能事件的定义可知:〔2〕是必然事件;〔1〕、〔3〕是随机事件;〔4〕是不可能事件.点评:对于某一事件是必然事件、随机事件还是不可能事件的判断依据是定义,其关键是看事件本身是如何发生的.例2 在一只口袋中装有形状与大小都相同的2只白球和3只黑球,从中任意取出3只球,试编拟一些事件,使它们分别为随机事件、必然事件和不可能事件.分析:要编拟一些事件,使其为随机事件、必然事件和不可能事件,就是在一定条件下,所编拟的事件必定发生那么为必然事件,必定不发生那么为不可能事件,可能发生也可能不发生那么为随机事件.解:事件A :任意取出3只球,恰有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至少有1只球是黑球,那么事件B 是必然事件;事件C :任意取出3只球,都是白球,那么事件C 是不可能事件.点评:此题在编拟随机事件、必然事件和不可能事件时,是开放性问题,因此根据相应的概念来编拟,答案不唯一.除了上述解答外,还可以是其他答案,例如:事件A :任意取出3只球,至少有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至多有2只球是白球,那么事件B 是必然事件;事件C :任意取出3只球,没有一只黑球,那么事件C 是不可能事件.例3 用一台自动机床加工一批零件,从中抽出100个逐个进行直径检验,结果如下:从这100个螺母中,任意抽取一个,求事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率并求这几个事件发生的概率约为多少?分析:分别求出事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率,再根据这几个事件的频率得出概率.解:事件A 的频率为17+10026=0.43,概率约为0.43; 事件B 的频率为10081526171710+++++=0.93,概率约为0.93; 事件C 的频率为10022+=0.04,概率约为0.04;事件D 的频率为1001=0.01,概率约为0.01. 点评:根据概率的统计定义求随机事件的概率的常用方法是先求随机事件发生的频率,再由频率得出随机事件发生的概率.例4 某射手在同一条件下进行射击,结果如下表所示:〔1〕填写表中击中靶心的频率;〔2〕这个射手射击一次,击中靶心的概率约是多少?分析:击中靶心的频率=击中靶心的次数÷射击的次数,再根据概率的统计定义可知:击中靶心的概率应为频率在某一常数P 的左右摆动,那么常数P 即为该事件的概率.解:〔1〕表中击中靶心的频率依次为0.8,0.95,0.88,0.92,0.89;〔2〕因频率在常数0.89的左右摆动,所以射手射击一次,击中靶心的概率约是0.89. 点评:在运用概率的统计定义求某一事件的概率时,应该先求频率,再根据频率来求该事件的概率.知能训练一、课本随机现象练习.解答:2.(1)随机事件;(2)不可能事件;(3)必然事件;(4)不可能事件;(5)随机事件;(6)随机事件.3.必然事件:③;不可能事件:⑤;随机事件:①②④.4.必然事件:太阳每天都从东方升起;不可能事件:电灯在断电时发亮;随机事件:同时抛两枚硬币,正面都向上.二、课本随机事件的概率练习.解答:1.不对.2.不同意,随机事件的发生概率与该事件以前是否发生无关,故下次发生的概率仍为21. 3.不一定,第10个人治愈的概率仍为10%.点评:通过练习,进一步加深必然事件、不可能事件、随机事件以及概率的概念的理解. 课堂小结本节课主要研究了以下内容:1.随机事件、必然事件、不可能事件的概念.2.随机事件A 的概率:一般地,如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率n m 作为事件A 发生的概率的近似值,即P(A)≈nm .3.由于随机事件A 在各次试验中可能发生,也可能不发生,所以它在n 次试验中发生的次数〔称为频数〕m 可能等于0〔n 次试验中A 一次也不发生〕,可能等于1〔n 次试验中A 只发生一次〕,……也可能等于n 〔n 次试验中A 每次都发生〕.我们说,事件A 在n 次试验中发生的频数m 是一个随机变量,它可能取得0、1、2、…、n 这n+1个数中的任一个值.于是,随机事件A 的频率nm 也是一个随机变量,它可能取得的值介于0与1之间,即0≤P 〔A 〕≤1.特别,必然事件的概率为1,即P(Ω)=1,不可能事件的概率为0,即P()=0.这里说明随机事件的频率究竟取得什么值具有随机性.然而,经验说明,当试验重复多次时随机事件的频率又具有稳定性.4.说明:①求一个事件概率的基本方法是做大量的重复试验;②当频率在某个常数附近摆动时,这个常数叫做事件A 的概率;③概率是频率的稳定值,而频率是概率的近似值;④概率从数量上反映了随机事件发生的可能性的大小;⑤必然事件的概率是1,不可能事件的概率是0,因此0≤P〔A 〕≤1.作业课本习题3.1 1、2.设计感想本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率的发展、概率趣话以及概率的应用,以激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率分为两部分,第一部分主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.第二部分是随机事件的概率.怎样确定一个事件发生的概率呢?设计时,从实际问题出发,创设问题情境.除了已有设计之外还可以有如下设计:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel ,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n 位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n 位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.最终得出概率的统计定义.习题详解1.〔1〕随机事件 〔2〕不可能事件 〔3〕随机事件 〔4〕必然事件 〔5〕不可能事件〔6〕必然事件 〔7〕随机事件 〔8〕随机事件2.D.3.(1)〔2〕概率约为0.81.4.。

高中数学第3章概率3.3几何概型教学案苏教版必修3(1)(2021学年)

高中数学第3章概率3.3几何概型教学案苏教版必修3(1)(2021学年)

2017-2018学年高中数学第3章概率3.3 几何概型教学案苏教版必修3(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第3章概率 3.3 几何概型教学案苏教版必修3(1))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第3章概率 3.3 几何概型教学案苏教版必修3(1)的全部内容。

错误!预习课本P106~109,思考并完成以1.什么是几何概型?几何概型有何特征?2.几何概型的计算公式是什么?错误!1.几何概型的定义对于一个随机试验,将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.2.几何概型的特征(1)在每次随机试验中,不同的试验结果有无穷多个,即基本事件有无穷多个.(2)在随机试验中,每个试验结果出现的可能性相等,即基本事件的发生是等可能的.[点睛](1)判断一个随机试验是否为几何概型时,两个条件“无限性”与“等可能性”的验证缺一不可.(2)注意几何概型与古典概型的区别,前者基本事件有无限个,而后者只有有限个.(3)在几何概型中,“等可能"一词应理解为对应于每个试验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关.3.几何概型的计算公式在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内"为事件A,则事件A 发生的概率P(A)=错误!.这里要求D的测度不为0,其中“测度"的意义依D确定,当D分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等.错误!1.下列概率模型:①从1~10中任意取一个整数,求取到5的概率;②从区间[1,10]内任意取一个数,求取到5的概率;③一枚硬币连掷三次,求出现一次正面朝上的概率;④一个十字路口的交通信号灯中,红灯、黄灯、绿灯亮的时间分别为30秒、50秒、60秒,求某辆车到达路口遇见绿灯的概率.其中是几何概型的是________(填序号).答案:②④2.在区间[1,3]上任取一数,则这个数大于1。

高中数学第3章概率3.2古典概型互动课堂学案苏教版必修3

高中数学第3章概率3.2古典概型互动课堂学案苏教版必修3

3.2 古典概型互动课堂疏导引导根本领件是指在一次试验中可能出现每一个根本结果.假设在一次试验中,每个根本领件发生可能性一样,那么称这些根本领件为等可能根本领件.例如:在掷硬币试验中,必然事件由根本领件“正面朝上〞和“反面朝上〞组成;在掷骰子试验中,随机事件“出现偶数点〞可以由根本领件“2点〞“4点〞和“6点〞共同组成.案例1 从含有两件正品a 1,a 2和一件次品b 13件产品中每次任取1件,每次取出后不放回,连续取两次.〔1〕写出这个试验根本所有事件;〔2〕以下随机事件由哪些根本领件构成:事件A :取出两件产品都是正品;事件B :取出两件产品恰有1件次品.【探究】(1)根本领件〔a 1,a 2〕,(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)共有6个根本领件. 〔2〕事件A 包含2个根本领件〔a 1,a 2〕,(a 2,a 1).事件B 包含4个根本领件〔a 1,b 1〕,(b 1,a 1),(a 2,b 1)(b 1,a 2).规律总结 (1)在求根本领件时,一定要注意结果时机是均等,这样不会漏写.其次要按规律去写.〔2〕在这个试验中〔a 1,a 2〕和〔a 2,a 1〕,(a 1,b 1)和〔b 1,a 1〕,(a 2,b 1)和〔b 1,a 2〕是不同根本领件,在取第1件产品时,a 1,a 2,b 1被取到时机一样,假设第一次取出a 1,那么第2次取时,a 2,b 1时机也是一样.古典概型是指具有以下两个特点随机试验概率模型称为古典概型:〔1〕所有根本领件只有有限个;〔2〕每个根本领件发生都是等可能.疑难疏引 〔1〕一个试验是否为古典概型,在于这个试验是否具有古典概型两个特征——有限性和等可能性.②并不是所有试验都是古典概型,例如在适宜条件下“种下一粒种子观察它是否发芽〞,这个试验根本领件为“发芽〞,“不发芽〞,而种子“发芽〞与“不发芽〞这两种结果出现时机一般不是均等,这个试验就不属于古典概型.(2)古典概型由于满足根本领件有限性和根本领件发生等可能性这两个重要特征,所以求事件概率就可以不通过大量重复试验,而只要通过对一次试验中可能出现结果进展分析和计算即可.如果一次试验等可能根本领件共有n 个,那么每一个等可能事件发生概率为n1.假设某个事件A 包含了其中m 个等可能事件,那么事件A 发生概率为P 〔A 〕=nm =基本事件总数中所含的基本事件数A . 疑难疏引 〔1〕古典概型概率取值范围在古典概型中,假设根本领件总数为n,某个事件A 包含了其中m 个根本等可能事件,那么必有0≤m≤n,所以事件A 发生概率取值范围是0≤P(A)≤1.其中,当m=0时,事件A 是不可能事件,它发生概率为0,当m=n 时,事件A 是必然事件,它发生概率是1,当0<m <n 时,事件A 是随机事件,此时它发生概率取值范围是0<P(A)<1.〔2〕解决古典概型问题关键是分清根本领件个数n 与事件A 中所包含结果数,因此要注意以下三个方面:①本试验是否具有等可能性;②本试验根本领件有多少个;③事件A 是什么.只有清楚了这三个方面问题,解题才不至于出错.〔3〕求古典概率应按下面四个步骤进展:第一,仔细阅读题目,弄清题目背景材料,加深理解题意.第二,判断本试验结果是否为等可能事件,设出所求事件A.第三,分别求出根本领件个数n 与所求事件A 中所包含根本领件个数m.第四,利用公式P 〔A 〕=nm 求出事件A 概率. 可见在运用公式计算时,关键在于求出m 、n.在求n 时,应注意这n 种结果必须是等可能,在这一点上比拟容易出错.例如,先后抛掷两枚均匀硬币,共出现“正,正〞“正,反〞“反,正〞“反,反〞这四种等可能结果.如果认为只有“两个正面〞“两个反面〞“一正一反〞这三种结果,那么显然这三种结果不是等可能.在乘m 时,可利用列举法或者结合图形采取了列举方法,数出事件A 发生结果数.〔4〕用集合观点去审视概率在一次试验中,等可能出现n 〔例如n=5〕个结果可组成一个集合I,这n 个结果就是集合In 个元素.各个根本领件都对应于集合I 含有1个元素子集,包含m 〔例如m=3〕个结果事件A 对应于I 含有m 个元素子集A.从集合角度看,事件A 概率是I 子集A 元素个数card 〔A 〕与集合I 元素个数card(I)比值,即P 〔A 〕=(例如53). 案例2 抛掷两颗骰子,求〔1〕点数之和是4倍数概率;〔2〕点数之和大于5小于10概率.【探究】抛掷两颗骰子,根本领件总数为36.但所求事件根本领件个数不易把握,很容易出现遗漏或重复,故可借助直观图形,以便更准确地把握根本领件个数.作图,从以下图中容易看出根本领件与所描点一一对应,共36种.(1)记“点数之和是4倍数〞事件为A,从图中可以看出,事件A 包含根本领件共有9个:〔1,3〕,〔2,2〕,〔3,1〕,〔2,6〕,〔3,5〕,〔4,4〕,〔5,3〕,〔6,2〕,〔6,6〕.所以,P 〔A 〕=41. 〔2〕记“点数之和大于5小于10”为事件B,从图中可以看出,事件B 包含根本领件共有20个,即〔1,5〕,〔2,4〕,〔3,3〕,〔4,2〕,〔5,1〕,〔1,6〕,〔2,5〕,〔3,4〕,〔4,3〕,〔5,2〕,〔6,1〕,〔2,6〕,〔3,5〕,〔4,4〕,〔5,3〕,〔6,2〕,〔3,6〕,〔4,5〕,〔5,4〕,〔6,3〕. 所以P 〔B 〕=.规律总结 〔1〕计算这种概率一般要遵循这样步骤:①算出根本领件总个数n ;②算出事件A 中包含根本领件个数m ;③算出事件A 概率,即P 〔A 〕=nm .应注意这种结果必须是等可能.〔2〕在求概率时,常常可以把全体根本领件用直角坐标系中点表示,以便准确地找出某事件所含根本领件个数.案例3 一个口袋内有大小相等一个白球和已编有不同号码3个黑球.(1)假设从中摸出一球后放回,再摸一球,求两次摸出球都是黑球概率.(2)假设从中一次摸出2球,求2球都是黑球概率.【探究】(1)第一次摸球有4种不同结果,每一种结果是等可能,第二次摸球也有4种不同结果,每一种结果也是等可能,所以共有4×4=16种不同结果.这16种结果是等可能,所以一次试验是古典概型,它根本领件总数为16.第一次摸出黑球有3种不同结果,第二次摸出黑球也有3种不同结果,故摸出球都是黑球根本领件数为3×3=9,设A=“有放回摸2球黑球〞,那么P 〔A 〕=169. 〔2〕一次摸出2球,可以看作不放回抽样2次.第一次抽取有4种不同结果,第二次抽取有3种不同结果,且它们都是等可能,所以一次试验共有4×3=12种不同结果,并且是等可能,是古典概型.共有12个根本领件.第一次摸出黑球有3种结果,第二次摸出黑球有2种不同结果,故摸出2球,都是黑球根本领件数为3×2=6.设B=“一次摸出2时为黑球〞,那么P 〔B 〕=.规律总结(1)为有放回抽取问题,此类问题每次抽取球可以重复,每次抽取结果个数一样,可以无限地进展下去.〔2〕是不放回抽取问题,此类问题每次摸出球不出现重复,每次抽取结果个数不同,只能抽取有限次.案例4 甲、乙两人做掷骰子游戏,两人各掷一次,谁掷得点数多谁就取胜,求甲取胜概率.【探究】首先列举出所有可能根本领件,列出所求事件包含根本领件,再根据古典概型概率公式进展计算.解法一:甲将骰子抛掷一次,出现点数有1、2、3、4、5、6这6种结果,对甲掷得每个结果,乙又掷得点数分别为1、2、3、4、5、6这6种结果,于是共有6×6=36种不同结果. 把甲掷得i 点,乙掷得j 点〔1≤i,j≤6〕记为〔i,j 〕.事件“甲取胜〞包含以下15种结果:〔2,1〕,〔3,1〕,〔3,2〕,〔4,1〕,〔4,2〕,〔4,3〕,〔5,1〕,〔5,2〕,〔5,3〕,〔5,4〕,〔6,1〕,〔6,2〕,〔6,3〕,〔6,4〕,〔6,5〕. 故甲取胜概率为3615=125. 解法二:3615=125. 规律总结 掷骰子是典型题型,此题与解析几何知识相联系,在如以下图所示直角坐标系中,假设x 表示甲掷得点数,y 表示乙掷得点数,此题实质就是求点〔x,y 〕落在直线y=x 下方概率.活学巧用1.写出以下试验根本领件:〔1〕甲、乙两队进展一场足球赛,观察甲队比赛结果〔包括平局〕________________; 〔2〕从含有6件次品50件产品中任取4件,观察其中次品数__________________. 答案:〔1〕胜、平、负〔2〕0,1,2,3,42.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.〔1〕写出这个试验所有根本领件;〔2〕求这个试验根本领件总数;〔3〕“恰有两枚正面向上〞这一事件包含哪几个根本领件?解析:〔1〕这个试验根本领件〔正,正,正〕,〔正,正,反〕,〔正,反,正〕,〔正,反,反〕,〔反,正,正〕,〔反,正,反〕,〔反,反,正〕〔反,反,反〕.〔2〕根本领件总数是8.〔3〕“恰有两枚正面向上〞包含以下3个根本领件:〔正,正,反〕,〔正,反,正〕,〔反,正,正〕.3.作投掷2颗骰子试验,用〔x,y 〕表示结果,其中x 表示第1颗骰子出现点数,y 表示第2颗骰子出现点数,写出:〔1〕事件“出现点数之和大于8”;〔2〕事件“出现点数相等〞;〔3〕事件“出现点数之和大于10”.解析:〔1〕〔3,6〕,〔4,5〕,〔4,6〕,〔5,4〕,〔5,5〕,〔5,6〕,〔6,3〕,〔6,4〕,〔6,6〕. 〔2〕〔1,1〕,〔2,2〕,〔3,3〕,〔4,4〕,〔5,5〕,〔6,6〕.〔3〕〔5,6〕,〔6,5〕,〔6,6〕.4.以下试验中,是古典概型有〔 〕250 mm±0.6 mm 一批合格产品中任意抽一根,测量其直径dC.抛一枚硬币,观察其出现正面或反面解析:C 项中试验满足古典概型两个特征——有限性和等可能性.答案:C5.向一圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能,你认为这是古典概型吗?为什么?解析:不是古典概型.因为该试验虽具有古典概型特征——等可能性,但不具有有限性,而具有无限性.6.同时掷一样两枚硬币, 观察正、反面出现情况,这个试验根本领件为〔正,正〕,〔正,反〕,〔反,反〕,它共有3个根本领件,故出现〔正,正〕概率是31.这个题目解法是否正确. 解析:根本领件为〔正,正〕,〔正,反〕,〔反,正〕,〔反,反〕,它有4个根本领件,故出现〔正,正〕概率为41. 答案:不正确7.将1枚硬币抛2次,恰好出现1次正面概率是〔 〕 A.21 B.41 C.43 解析:抛2次恰好出现1次正面包含2个根本领件,这个试验根本领件总数为4, ∴恰好出现1次正面概率是.答案:A8.据人口普查统计,育龄妇女生男生女是等可能,如果允许生育二胎,那么某一育龄妇女两胎均是女孩概率是〔 〕 A.21 B.31 C.41 D.51解析:事件“该育龄妇女连生两胎〞包含4个根本领件,即〔男,男〕、〔男,女〕、〔女,男〕、〔女,女〕,故两胎均为女孩概率是41. 答案:C9.在一次问题抢答游戏中,要求找出对每个问题所列出4个答案中唯一正确答案.其抢答者随意说出了其中一个问题答案,这个答案恰好是正确答案概率为〔 〕 A.21 B.41 C.81 D.161 解析:P=.答案:B10.一只口袋内装有大小一样5只球,其中3只白球,2只黑球,从中一次摸出两只球.问: 〔1〕共有多少个根本领件?〔2〕摸出两只球都是白球概率是多少?解析:〔1〕分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下根本领件〔摸到1,2号球用〔1,2〕表示〕:〔1,2〕,〔1,3〕,〔1,4〕,〔1,5〕,〔2,3〕〔2,4〕,〔2,5〕,〔3,4〕,〔3,5〕,〔4,5〕因此,共有10个根本领件.〔2〕如以下图,上述10个根本领件发生可能性一样,且只有3个根本领件是摸到两只白球〔记为事件A 〕,即〔1,2〕,〔1,3〕,〔2,3〕,故P 〔A 〕=103.答:〔1〕共有10个根本领件;〔2〕摸出两只球都是白球概率为103. 11.将骰子先后抛掷2次,计算:〔1〕一共有多少种不同结果?〔2〕其中向上数之和是5结果有多少种?〔3〕向上数之和是5概率是多少?分析:将骰子先后抛掷2次,实际上是分两个步骤完成,第一次抛掷骰子出现点数有6种结果,第二次抛掷骰子出现点数也有6种结果.只有将这两个步骤依次全部完成才算是将骰子先后抛掷两次这件事完成.因此将骰子先后抛掷两次试验根本领件数为6×6=36.解:〔1〕将骰子抛掷1次,它落地时向上数有1,2,3,4,5,6这6种结果,根据题意,先后将骰子抛掷2次,一共有6×6=36种不同结果.〔2〕在上面所有结果中,向上数之和为5结果有〔1,4〕,〔2,3〕,〔3,2〕,〔4,1〕4种,其中括弧内前、后两个数分别为第1、2次抛掷后向上数.上面结果可用以下图表示,其中不在虚线框内各数为相应2次抛掷后向上数之和.〔3〕由于骰子是均匀,将它抛掷2次所有36种结果是等可能出现,其中向上数之和是5结果〔记为事件A 〕有4种,因此,所求概率P 〔A 〕=.答:先后抛掷骰子2次,一共有36种不同结果;向上数之和为5结果有4种,概率是91. 12.有红、黄两种颜色小旗各2面,从中任取2面挂在一根旗杆上,求:〔1〕2面旗子同色概率;〔2〕2面旗子颜色各不一样概率.解析:设两面红旗和两面黄旗分别记为红1、红2和黄1、黄2,那么根本领件共有〔红1,红2〕,〔红1,黄1〕,〔红2,黄1〕,〔红1,黄2〕,〔红2,黄2〕,〔黄1,黄2〕计6个. 〔1〕设2面旗子同色这一事件为A,那么A为〔红1,红2〕,〔黄1,黄2〕共2个,所以2面旗子同色概率为P=.〔2〕设2面旗子不同色这一事件为B,那么B为〔红2,黄1〕,〔红2,黄1〕,〔红1,黄2〕,〔红1,黄2〕,B包含4个根本领件,所以2面旗子颜色不一样概率为.13.从1,2,3,…,50中任取一个数,求以下事件概率.〔1〕它是奇数;〔2〕它能被5整除;〔3〕它是奇数且能被5整除.解析:〔1〕设从50个数中任取一数,取得奇数为事件A,那么A包含25个根本领件,故P〔A〕=.〔2〕设取得一数,该数被5整除为事件B,B包含10个根本领件,故P〔B〕=.〔3〕设取得一数,该数是奇数且被5整除为事件C,那么C包含5个根本领件,故P〔C〕=.。

高中数学第3章概率3.2古典概型教材梳理导学案苏教版必修3

高中数学第3章概率3.2古典概型教材梳理导学案苏教版必修3

3.2 古典概型庖丁巧解牛知识·巧学一、根本领件概念和概率在一次试验中可能出现每一个根本结果称为根本领件.如果一次试验等可能根本领件共有n 个,那么每一个等可能根本领件概率为n1. 一次试验中,只可能出现一种结果,即产生一个根本领件,任何两个根本领件是互斥〔不可能同时发生〕,如掷骰子试验中,一次试验只能出现一个点数,任何两个点数不可能在一次试验中同时发生.且任何随机事件都可以表示成根本领件和(至少有一个发生),在掷骰子试验中,随机事件“出现偶数点〞由根本领件出现“2点〞“4点〞“6点〞共同组成. 误区警示 在计算根本领件概率时要明确根本领件与根本领件总数之间关系,如掷骰子试验中,P(“1点〞)=P(“2点〞)=…=P(“6点〞)=61.而如果将事件看成是偶数点或奇数点,那么事件总数就不再是6而是2,P(偶数点)=P(奇数点)=21.二、古典概型特点我们将满足下述条件随机试验概率模型称为古典概型. 〔1〕所有根本领件只有有限个; 〔2〕每个根本领件发生都是等可能; 一个试验是否为古典概型,在于这个试验是否具有古典概型两个特征——有限性和等可能性.误区警示 并不是所有试验都符合古典概型.例如,在适宜条件下“种下一粒种子观察它是否发芽〞,这个试验根本领件只有两个:发芽、不发芽.而“发芽〞或“不发芽〞这两种结果出现时机一般是不均等.又如,从规格直径为300 mm±0.6 mm 一批合格产品中任意抽一根,测量其直径d ,测量值可能是从299.4 mm 到300.6 mm 之间任何一个值,所有可能结果有无限多个,这两个试验都不属于古典概型.只具有有限性不是古典概型,只具有等可能性也不是古典概型,生活中还有许多这样例子. 三、古典概型概率公式如果一次试验等可能根本领件共有n 个,某个事件A 包含了其中为m 个等可能根本领件,那么事件A 发生概率为nm,即在古典概型中,P(A)=总的基本事件个数包含的基本事件个数A .这个公式只适应于计算古典概率,而古典概型中“等可能性〞判断是很重要,如先后抛掷两枚硬币,求“一枚出现正面,另一枚出现反面〞概率.因为先后抛掷两枚质地均匀硬币,可出现“正,正〞“正,反〞“反,正〞“反,反〞这4种等可能结果,而“一枚出现正面,另一枚出现反面〞这一事件包括“正,反〞“反,正〞两种结果,因此“一枚出现正面,另一枚出现反面〞概率是P==21,但答此题时,有时错误地认为先后抛掷2枚质地均匀硬币,只会出现“2个正面〞、“2个反面〞、“1正1反〞这3种情况,从而得到P=31结论,实际上上述3种情况不是等可能.深化升华 在一次试验中,等可能出现n 个结果组成一个集合I ,这n 个结果就是集合In 个元素,各根本领件均对应于集合I 含有1个元素子集,包含m 个结果事件A 对应于I 含有m 个元素子集A.因此从集合角度看,事件A 概率是子集A 元素个数〔记作:card(A)〕与集合I 元素个数〔记作:card(I)〕比值即P 〔A 〕=.方法归纳 用这个式子计算概率时,关键是求出m 、n ,其中n 为一次试验中等可能出现结果数,m 为某个事件所包含结果数.求n 时应注意这n 种结果必须是等可能,且要注意这m 个结果一定是这n 个结果一局部. 四、求等可能性事件概率步骤首先反复阅读题目,收集整理题目中各种信息;其次判断本试验是否是等可能,利用列举法等知识计算本试验根本领件有多少个; 然后指出事件A 是什么,它包含多少个根本领件; 最后利用古典概型计算公式计算事件A 概率. 典题·热题知识点 古典概型概率计算例1 两个完全一样均匀正方体玩具,各个面上分别刻有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次.两个玩具数字之和共有多少种不同结果?其中数字之和为12有多少种情况?数字之和为6共有多少种情况?分别计算这两种情况概率.思路分析:掷骰子有36个根本领件,具有有限性和等可能性,因此是古典概型.可利用图表法求解根本领件总数和事件A 包含根本领件数.其中共有36种不同情况,但数字之和却只有2,3,4,5,6,7,8,9,10,11,12共11种不同结果,从中可以看出,出现2只有1种情况,而出现12也只有1种情况,它们概率均为361,因为只有甲、乙均为1或均为6时才有结果.出现数字之和为6共有(1,5),(2,4),(3,3),(4,2),(5,1)5种情况,所以其概率为365. 误区警示 数字之和实际上只有2,3,4,5,6,7,8,9,10,11,12共11种不同结果,但它们出现可能性却不相等,会出现“两端小,中间大〞情况,所以并不能简单地认为n=11,直接利用古典概型计算公式.例2 在箱子中装有十张卡片,分别写有1到10十个整数,从箱子中任取一张卡片,记下它读数x,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它读数y,试求x+y 是10倍数概率.思路分析:可用逐一列举方法求古典概型根本领件个数.解:先后两次抽取卡片时,每次都有10种结果,故有序实数对〔x ,y 〕共有10×10=100个.x+y 是10倍数,它包含以下数对:(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(10,10)共10个.故x+y是10倍数概率P〔A〕=.误区警示利用古典概型计算公式时应注意两点:〔1〕所有根本领件必须是互斥;〔2〕m为事件A所包含根本领件数,求m值时,要做到不重不漏.问题·探究思想方法探究问题运用古典概型来求解概率问题,可以构建不同古典概型吗?探究过程:可以从不同角度来构建古典概型,求解古典概型概率问题,关键是把什么看作是一个根本领件(即一个试验结果),一般说来,在建概率模型时,把什么看作是一个根本领件(即一个试验结果)是人为规定,我们只要求:每次试验有一个且只有一个根本领件出现,例如:掷一粒均匀骰子时,根据问题需要,可以认为有6个结果(向上点数是1,向上点数是2,…,向上点数是6),也可以认为只有2个结果(向上点数是奇数,向上点数是偶数),只要根本领件个数是有限,并且它们发生是等可能,就是一个古典概型.探究结论:从不同角度去考虑一个实际问题,可以将问题转化为不同古典概型,而所得到古典概型所有可能结果数越少,问题解决就变得越简单.。

高中数学 第三章 概率 3.3 几何概型(1)教案 苏教版必修3(2021年最新整理)

高中数学 第三章 概率 3.3 几何概型(1)教案 苏教版必修3(2021年最新整理)

高中数学第三章概率3.3 几何概型(1)教案苏教版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章概率3.3 几何概型(1)教案苏教版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章概率3.3 几何概型(1)教案苏教版必修3的全部内容。

3.3 几何概型(1)教学目标:1.了解随机数的概念和意义;2.了解用模拟方法估计概率的思想;3.了解几何概型的基本概念、特点和意义 ;4.了解测度的简单含义;5.了解几何概型的概率计算公式.教学重点:几何概型的特点:(1)基本事件有无限多个;(2)基本事件发生是等可能的.教学难点:几何概型的概率计算公式的推导.教学方法:谈话、启发式.教学过程:一、问题情境问题1:取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m 的概率有多大?问题2:射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为3m金色.金色靶心叫“黄心".奥运会的比赛靶面直径为122cm,靶心直径为12.2cm,运动员在70m外射.假设射箭都能中靶,且射中靶面内任意一点都是等可能的,那么射中黄心的概率有多大?能用古典概型描述该事件的概率吗?为什么?(1)能用古典概型描述事件的概率吗?为什么?(2)试验中的基本事件是什么?(3)每个基本事件的发生是等可能的吗?(4)符合古典概型的特点吗?二、学生活动问题1:射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122cm的大圆内的任意一点.问题2:射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122cm的大圆内的任意一点.三、建构数学对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.几何概型的特点:(1)基本事件有无限多个;(2)基本事件发生是等可能的.一般地,在几何区域D中随机地取一点,记“该点落在其内部一个区域d内”为事件A,则事件A发生的概率:.D的测度d的测度P(A)=四、数学运用1.例题.例1 两根相距8m 的木杆上系一根拉直绳子,并在绳子上挂一盏灯,求灯与两端距离都大于3m 的概率.解:记“灯与两端距离都大于3m ”为事件A,由于绳长8m ,当挂灯位置介于中间2m 时,事件A 发生,于是事件A 发生的概率P (A )= 82=41. 例2 取一个边长为2a 的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率.事件A,记“豆子落在圆内”为:解 .a a πππ===22圆的面积P(A)正方形面积44答:豆子落入圆内的概率为4 数学拓展:模拟撒豆子试验估计圆周率.如果向正方形内撒n 颗豆子,其中落在圆内的豆子数为m ,那么当n 很大时,比值n m ,即频率应接近于 P (A ),于是有由此可得4πm n ≈2.练习. (1)在数轴上,设点x ∈[-3,3]中按均匀分布出现,记a ∈(-1,2]为事件A ,则P (A )=( )A .1B .0C .12D .13(2)在1L 高产小麦种子中混入一粒带麦锈病的种子,从中随机取出10mL ,含有麦锈病种子的概2a().m P A n ≈率是多少?(3)在1万平方公里的海域中有40平方公里的大陆贮藏着石油.假如在海域中任意一点钻探,钻到油层面的概率是多少?(4)如右下图,假设你在每个图形上随机撒一粒黄豆,分别计算它落到阴影部分的概率.(5)在正方形ABCD 内随机取一点P,求∠APB > 90°的概率.22)2(21)(a aD d A P π==的测度的测度解:.8π=变式:∠APB =90°?.00)(2===a D d B P 的测度的测度结论:概率为0的事件可能发生!五、要点归纳与方法小结本节课学习了以下内容:1.古典概型与几何概型的对比.相同:两者基本事件的发生都是等可能的;BCD PB C D P不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.2.几何概型的概率公式.积等)的区域长度(面积或体试验的全部结果所构成积等)的区域长度(面积或体构成事件A A P )(3.几何概型问题的概率的求解.(1)古典概型与几何概型的区别在于:几何概型是无限多个等可能事件的情况,而古典概型中的等可能事件只有有限多个;(2)D 的测度不为0,当D 分别是线段、平面图形、立体图形时,相应的“测度”分别是长度、面积和体积.(3)区域应指“开区域",不包含边界点;在区域D 内随机取点是指:该点落在D 内任何一处都是等可能的,落在任何部分的可能性只与该部分的测度成正比而与其性状位置无关.。

高中数学 第三章 概率 3.2 古典概型(1)教案 苏教版必修3(2021年最新整理)

高中数学 第三章 概率 3.2 古典概型(1)教案 苏教版必修3(2021年最新整理)

高中数学第三章概率3.2 古典概型(1)教案苏教版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章概率3.2 古典概型(1)教案苏教版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章概率3.2 古典概型(1)教案苏教版必修3的全部内容。

3.2 古典概型(1)教学目标:1。

掌握基本事件的概念;2。

正确理解古典概型的两大特点:有限性、等可能性;3. 掌握古典概型的概率计算公式,并能计算有关随机事件的概率.教学重点:掌握古典概型这一模型.教学难点:如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.教学方法:问题教学、合作学习、讲解法、多媒体辅助教学.教学过程:一、问题情境1。

有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?2.猜想两个实验的结果:(1)有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,该实验的所有可能结果是什么?(2)抛掷一枚质地均匀的骰子的所有可能结果是什么?二、学生活动1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;2.(1)共有“抽到红心1”“抽到红心2”“抽到红心3”“抽到黑桃4”“抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;(2)6个;即“1点"、“2点"、“3点”、“4点”、“5点”和“6点”,这6种情况的可能性都相等;三、建构数学1.介绍基本事件的概念,等可能基本事件的概念;2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);3.得出随机事件发生的概率公式:四、数学运用1.例题。

高中数学 第3章《概率》几何概型(1) 精品导学案 苏教版必修三

高中数学 第3章《概率》几何概型(1) 精品导学案 苏教版必修三

江苏省响水中学高中数学第3章《概率》几何概型(1)导学案苏教版必修3学习目标:1.了解几何概型的概念及基本特点;2.熟练掌握几何概型中概率的计算公式;3.会进行简单的几何概率计算.重点难点:几何概型中概率的计算公式、简单的几何概率计算.课前预习:1.以下两个问题是古典概型吗?①取一根长度为3m的绳子,拉直后在任意位置剪断.剪得两段的长都不小于1m的概率有多大?②射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫"黄心".奥运会的比赛靶面直径为122cm,靶心直径为12.2cm.运动员在70m外射箭.假设射箭都能射中靶面内任何一点都是等可能的.射中黄心的概率为多少?2.几何概型的概念:3.几何概型的基本特点:4.几何概型的概率计算公式:课堂探究:1.取一个边长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率.2.两根相距8m的木杆上系一根拉直绳子,并在绳子上挂一盏灯,求灯与两端距离都大于3m 的概率.变式:已知地铁列车每10min一班,在车站停1min.求乘客到达站台立即乘上车的概率.3.在1L高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10mL,含有麦锈病种子的概率是多少?变式:有一杯1升的水,其中含有1个大肠杆菌, 用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.技能检测:1.某人上班前,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。

所以在学习上级的精神下,本期个人的研修经历如下:1.自主学习:我积极参加网课和网上直播课程.认真完成网课要求的各项工作.教师根据自己的专业发展阶段和自身面临的专业发展问题,自主选择和确定学习书目和学习内容,认真阅读,记好读书笔记;学校每学期要向教师推荐学习书目或文章,组织教师在自学的基础上开展交流研讨,分享提高。

高中数学 第3章 概率 3.2 古典概型教学案 苏教版必修3(1)

高中数学 第3章 概率 3.2 古典概型教学案 苏教版必修3(1)

古典概型[新知初探]1.基本事件与等可能事件(1)基本事件:在一次试验中可能出现的每一个基本结果.(2)等可能事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件.[点睛](1)基本事件是试验中不能再分的简单的随机事件,其他事件可以用它们来表示.(2)任何两个基本事件是不会同时发生的.(3)任何事件都可以表示成基本事件的和.2.古典概型(1)特点:①有限性:所有的基本事件只有有限个;②等可能性:每个基本事件的发生都是等可能的.(2)定义:将满足上述条件的随机试验的概率模型称为古典概型.(3)古典概型概率的计算公式:如果1次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是1n;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为P(A)=m n.即P(A)=事件A包含的基本事件数试验的基本事件总数.[点睛]古典概型的概率公式P (A )=m n 与事件A 发生的频率m n 有本质的区别,其中P (A )=mn 是一个定值,且对同一试验的同一事件m ,n 均为定值,而频率中的m ,n 均随试验次数的变化而变化,但随着试验次数的增加频率总接近于P (A ).[小试身手]1.一个家庭中有两个小孩,则所有等可能的基本事件是________.(列举出来) 答案:(男,男),(男,女),(女,男),(女,女)2.从字母a ,b ,c ,d 中任意取出两个不同字母的试验中,有哪些基本事件?这些基本事件是等可能基本事件吗?解:共有6个基本事件:A ={a ,b },B ={a ,c },C ={a ,d },D ={b ,c },E ={b ,d },F ={c ,d }.每个基本事件取到的概率都为16,属于等可能基本事件.[典例] 下列概率模型是古典概型吗?为什么?(1)从区间[1,10]内任意取出一个实数,求取到实数2的概率; (2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;(3)从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率. [解] (1)不是古典概型,因为区间[1,10]中有无限多个实数,取出的那个实数有无限多种结果,与古典概型定义中“所有可能结果只有有限个”矛盾.(2)不是古典概型,因为硬币不均匀导致“正面向上”与“反面向上”的概率不相等,与古典概型定义中“每一个试验结果出现的可能性相同”矛盾.(3)是古典概型,因为在试验中所有可能出现的结果是有限的,而且每个整数被抽到的可能性相等.下列随机事件:①某射手射击一次,可能命中0环,1环,2环,…,10环; ②一个小组有男生5人,女生3人,从中任选1人进行活动汇报; ③一只使用中的灯泡寿命长短;④抛出一枚质地均匀的硬币,观察其出现正面或反面的情况;古典概型的判定⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.这些事件中,属于古典概型的有________.解析:[典例]从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件,连续取两次.(1)若每次取出后不放回,连续取两次,求取出的产品中恰有一件是次品的概率;(2)若每次取出后又放回,求取出的两件产品中恰有一件是次品的概率.[解](1)每次取一件,取后不放回地连续取两次,其一切可能的结果为(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2),其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.由6个基本事件组成,而且可以认为这些基本事件的出现是等可能的.用A表示“取出的两件中恰好有一件次品”这一事件,则A={(a1,b1),(a2,b1),(b1,a1),(b1,a2)}.事件A由4个基本事件组成.因而P(A)=46=23.(2)有放回地连续取出两件,其一切可能的结果为(a1,a1),(a1,a2),(a1,b1),(a2,a1),(a2,a2),(a2,b1),(b1,a1),(b1,a2),(b1,b1)共9个基本事件.由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B表示“恰有一件次品”这一事件,则B={(a1,b1),(a2,b1),(b1,a1),(b1,a2)}.事件B由4个基本事件组成,因而P(B)=4 9 .放回”与“不放回”问题从1,2,3,4,5五个数字中任意有放回地连续抽取两个数字,求下列事件的概率: (1)两个数字不同;(2)两个数字中不含有1和5; (3)两个数字中恰有一个1.解:所有基本事件为(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25个.(1)设A =“两个数字不同”,则P (A )=2025=45.(2)设B =“两个数字中不含1和5”,则P (B )=925.(3)设C =“两个数字中恰有一个1”,则P (C )=825.[典例] 有A ,B ,C ,D 四位贵宾,应分别坐在a ,b ,c ,d 四个席位上,现在这四人均未留意,在四个席位上随便就座.(1)求这四人恰好都坐在自己的席位上的概率; (2)求这四人恰好都没坐在自己的席位上的概率; (3)求这四人恰有一位坐在自己的席位上的概率.[解] 将A ,B ,C ,D 四位贵宾就座情况用如图所示的图形表示出来. a 席位b 席位c 席位d 席位a 席位b 席位c 席位d 席位建立概率模型解决问题a席位b席位c席位d席位a席位b席位c席位d席位由图可知,所有的等可能基本事件共有24个.(1)设事件A为“这四人恰好都坐在自己的席位上”,则事件A只包含1个基本事件,所以P(A)=1 24.(2)设事件B为“这四人恰好都没坐自己的席位上”,则事件B包含9个基本事件,所以P(B)=924=38.(3)设事件C为“这四人恰有一位坐在自己的席位上”,则事件C包含8个基本事件,所以P(C)=824=13.甲、乙、丙、丁四名学生按任意次序站成一排,试求下列事件的概率:(1)甲在边上;(2)甲和乙都在边上;(3)甲和乙都不在边上.解:利用树状图来列举基本事件,如图所示.由树状图可看出共有24个基本事件.(1)甲在边上有12种情形:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,丙,丁,甲),(乙,丁,丙,甲),(丙,乙,丁,甲), (丙,丁,乙,甲),(丁,乙,丙,甲),(丁,丙,乙,甲). 故甲在边上的概率为P =1224=12.(2)甲和乙都在边上有4种情形: (甲,丙,丁,乙),(甲,丁,丙,乙), (乙,丙,丁,甲),(乙,丁,丙,甲), 故甲和乙都在边上的概率为P =424=16.(3)甲和乙都不在边上有4种情形: (丙,甲,乙,丁),(丙,乙,甲,丁), (丁,甲,乙,丙),(丁,乙,甲,丙), 故甲和乙都不在边上的概率为P =424=16.[典例] 海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.[解] (1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2. 所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为A ;B 1,B 2,B 3;C 1,C 2,则抽取的这2件商品构成的所有基本事件为{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2}共4个.所以P (D )=415. 即这2件商品来自相同地区的概率为415.古典概型的综合应用把一枚骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,试就方程组⎩⎪⎨⎪⎧ax +by =3,x +2y =2解的情况,解答下列各题:(1)求方程组只有一个解的概率; (2)求方程组只有正数解的概率.解:若第一次出现的点数为a ,第二次出现的点数为b 记为有序数值组(a ,b ),则所有可能出现的结果有:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6), (2,1)(2,2)(2,3)(2,4)(2,5)(2,6), (3,1)(3,2)(3,3)(3,4)(3,5)(3,6), (4,1)(4,2)(4,3)(4,4)(4,5)(4,6), (5,1)(5,2)(5,3)(5,4)(5,5)(5,6), (6,1)(6,2)(6,3)(6,4)(6,5)(6,6), 共36种.由方程组⎩⎪⎨⎪⎧ ax +by =3,x +2y =2,可得⎩⎪⎨⎪⎧(2a -b )x =6-2b ,(2a -b )y =2a -3,(1)若方程组只有一个解,则b ≠2a ,满足b =2a 的有(1,2),(2,4),(3,6),故适合b ≠2a 的有36-3=33个. 其概率为:3336=1112.(2)方程组只有正数解,需满足b -2a ≠0且⎩⎪⎨⎪⎧x =6-2b2a -b>0,y =2a -32a -b >0.分两种情况:当2a >b 时,得⎩⎪⎨⎪⎧a >32,b <3,当2a <b 时,得⎩⎪⎨⎪⎧a <32,b >3.易得包含的基本事件有13个:(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(3,2),(4,2),(5,2),(6,2),(1,4),(1,5),(1,6),因此所求的概率p 2=1336.[层级一 学业水平达标]1.一枚硬币连续掷三次,基本事件共有________个. 解析:画树形图:共8种. 答案:82.从甲、乙、丙三人中任选两名代表,甲被选中的概率为________.解析:本题中基本事件有{甲,乙},{甲,丙},{乙,丙}共三个,其中甲被选中包含两个基本事件,故甲被选中的概率为23.答案:233.从标有1,2,3,4,5,6的6张纸片中任取2张,那么这2张纸片数字之积为偶数的概率为________.解析:基本事件为{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6}共15个.其中符合要求的有{1,2},{1,4},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,6},{4,5},{4,6},{5,6}共12个.故P =1215=45. 答案:454.一个口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,从中摸出2个球,则1个是白球,1个是黑球的概率是________.解析:这四个球记为白1,白2,黑1,黑2.则基本事件为{白1,白2},{白1,黑1},{白1,黑2},{白2,黑1},{白2,黑2},{黑1,黑2}共6个.其中符合要求的为{白1,黑1},{白1,黑2},{白2,黑1},{白2,黑2}共4个.故P =46=23. 答案:235.设集合P ={b,1},Q ={c,1,2},P ⊆Q ,若b ,c ∈{2,3,4,5,6,7,8,9}. (1)求b =c 的概率;(2)求方程x 2+bx +c =0有实根的概率.解:(1)因为P ⊆Q ,当b =2时,c =3,4,5,6,7,8,9;当b >2时,b =c =3,4,5,6,7,8,9,基本事件总数为14.其中b =c 的事件数为7种,所以b =c 的概率为:714=12.(2)记“方程有实根”为事件A ,若使方程有实根,则Δ=b 2-4c ≥0,即b =c =4,5,6,7,8,9共6种.所以P (A )=614=37. [层级二 应试能力达标]1.同时掷两枚骰子,点数之和大于9的概率为________. 解析:P =636=16. 答案:162.某班委会由3名男生和2名女生组成,现从中选出2人担任正副班长,其中至少有一个女生当选的概率为________.解析:这五名同学分别表示为男1,男2,男3,女1,女2,用(x ,y )表示基本事件,其中x 是正班长,y 是副班长,则基本事件为(男1,男2),(男2,男1),(男1,男3),(男3,男1),(男1,女1),(女1,男1),(男1,女2),(女2,男1),(男2,男3),(男3,男2),(男2,女1),(女1,男2),(男2,女2),(女2,男2),(男3,女1),(女1,男3),(男3,女2),(女2,男3),(女1,女2),(女2,女1)共20个.其中符合要求的有14个,故P =1420=710.答案:7103.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为________.解析:如图,在正六边形ABCDEF 的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF ,BCDE ,ABCF ,CDEF ,ABCD ,ADEF ,共6种情况,故构成的四边形是梯形的概率P =615=25. 答案:254.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为________.解析:基本事件为(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个.其中勾股数只有(3,4,5),∴P =110. 答案:1105.一个袋子中装有六个形状完全相同的小球,其中一个编号为1,两个编号为2,三个编号为3,现从中任取一球记下编号后放回,再任取一球,则两次取出球的编号之和为4的概率为________.解析:用列表法列出所有基本事件共36个,其中和为4的有10个.故P =1036=518.答案:5186.甲、乙、丙、丁、戊5人站成一排合影,则甲站在乙的左边的概率为________. 解析:我们不考虑丙、丁、戊具体站在什么位置,只考虑甲、乙的相对位置,只有甲站在乙的左边和甲站在乙的右边,共2个等可能发生的结果,因此甲站在乙的左边的概率为12. 答案:127.在5瓶饮料中,有2瓶已过了保质期,从中任取2瓶,取到的全是已过保质期的饮料的概率为________.解析:设过保质期的2瓶记为a ,b ,没过保质期的3瓶用1,2,3表示,试验的结果为: (1,2),(1,3),(1,a ),(1,b ),(2,3),(2,a ),(2,b ),(3,a ),(3,b ),(a ,b )共10种结果,2瓶都过保质期的结果只有1个,∴P =110. 答案:1108.如图所示方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复,则填入A 方格的数字大于B 方格的数字的概率为________. 解析:只考虑A ,B 两个方格的填法,不考虑大小,A ,B 两个方格有16种填法.要使填入A 方格的数字大于B 方格的数字,则从1,2,3,4中选2个数字,大的放入A 格,小的放入B 格,有(4,3),(4,2),(4,1),(3,2),(3,1),(2,1),共6种,故填入A 方格的数字大于B 方格的数字的概率为616=38. 答案:389.一个盒子中装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.解:由题意知(a,b,c)所有可能的结果为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3)共27种.(1)设A=“抽取的卡片上的数字满足a+b=c”,则A包含3个结果.故P(A)=327=19.(2)设B=“抽取的卡片上的数字a,b,c不完全相同”,则事件B包含24种结果.故P(B)=2427=89.10.某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4, 则该产品为一等品.先从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(2)在该样本的一等品中,随机抽取2件产品,①用产品编号列出所有可能的结果;②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B 发生的概率.解:(1)计算10件产品的综合指标S,如下表:其中S≤4的有A1,A2,A4,A5,A7,A9,共6件,故该样本的一等品率为610=0.6,从而可估计该批产品的一等品率为0.6.(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种.②在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},6 15=2 5.共6种.所以P(B)=。

高中数学第3章概率3.3几何概型(1)教案苏教版必修3

高中数学第3章概率3.3几何概型(1)教案苏教版必修3

3.3 几何概型 1整体设计教材分析这部分是新增加的内容.几何概型是另一类等可能性概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.随机模拟中的统计思想是用频率估计概率,这一点与古典概型是一致的.本节的教学需要一些实物模型为教具,如教科书中的长度3米的绳子模型、例1中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.随机数的产生与随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.第一个课时主要讲授几何概型的特点及其概率计算公式和运用几何概型解决求某一个事件的概率的例题教学;第二课时主要是通过例题教学及用计算机随机模拟试验(运用Excel软件),以及课堂练习加强学生对几何概型的巩固.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.教材中例1的教学可以分解为如下步骤:(1)把问题抽象成几何概型.随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,则落在某个区域的豆子数只与这个区域的面积大小有关(近似成正比),而与区域的位置和形状无关,这符合几何概型的条件,可以看成几何概型.(2)利用几何概型求概率的公式,得到P(豆子落入圆内)=.(3)启发引导学生探究圆周率π的近似值,用多种方式来模拟.三维目标1.通过解决具体问题的实例去感受几何概型的概念,掌握基本事件等可能性的判断方法.2.理解几何概型的意义、特点,会用公式计算几何概率.3.通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯.4.学会依据具体问题的实际背景分析问题、解决问题的能力.重点难点教学重点:1.体会随机模拟中的统计思想.2.用样本估计总体.3.理解几何概型的定义、特点、会用公式计算几何概率.教学难点:1.等可能性的判断与几何概型和古典概型的区别.2.把求未知量的问题转化为几何概型求概率的问题.课时安排2课时教学过程第1课时导入新课设计思路一:(问题导入)根据下述试验,回答问题:一个实验是这样做的,将一条5米长的绳子随机地切断成两条,事件T表示所切两段绳子都不短于1米的事件,试问事件T发生的概率.设计思路二:(情境导入)根据下列游戏,回答相应问题:游戏规则如下:由边长为1米的四方板构成靶子,并将此板分成四个边长为1/2米的小方块(如图).由游戏者向板中投镖,事件A表示投中阴影部分为成功.试问投中阴影部分即事件A发生的概率.推进新课新知探究我们先来解决“导入”中设计思路一中的问题.分析:类似于古典概型,我们希望先找到基本事件组,即找到其中每一个基本事件.注意到每一个基本事件都与唯一一个断点一一对应,故设计思路一中的实验所对应的基本事件组中的基本事件就与线段AB上的点一一对应.若把离绳AB首尾两端1的点记作M、N,则显然事件T所对应的基本事件所对应的点在线段MN上.由于在古典概型中事件T的概率为T包含的基本事件个数/总的基本事件个数,但这两个数字(T包含的基本事件个数、总的基本事件个数)在引例1中是无法找到的,不过用线段MN的长除以线段AB的长表示事件T的概率似乎也是合理的.线段AB长5,线段AM、BN长为1,则线段MN长为3解:P(T)=3/5.此结果用第一节的统计的方法来验证是正确的.从上面的分析可以看到,对于一个随机试验,如果我们将每个基本事件理解为从某个特定的几何区域内随机地抽取一点,而该区域内每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域内的点.这样就可以把随机事件与几何区域联系在一起.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型(geometric probability model)一般地,在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A发生的概率P(A)=.这里要求D的测度不为0,其中“测度”的意义依D确定,当D分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等.类似于设计思路一的解释,完全可以把设计思路二中的实验所对应的基本事件组与大的正方形区域联系在一起,即事件组中的每一个基本事件与大正方形区域中的每一个点一一对应,则事件A所包含的基本事件就与阴影正方形中的点一一对应,这样我们用阴影正方形的面积除以大正方形的面积表示事件A的概率是合理的.这一点我们完全可以用设计思路一的方法验证其正确性.解:P(A)=(1/2)2/12=1/4.在某些情况中,可把实验中基本事件组中的每一个基本实验与某一个几何区域D中的点一一对应起来,这个区域可以是一段曲线(一维区域),或一个平面区域(二维区域).这样在实验中某一事件A,就可与几何区域D中的子区域d表示了,如下图:试验:从D中随机地取一点;事件发生:所取的点属于d;事件未发生:所取的点不属于 d.这样事件A的概率如何计算呢?在设计思路一中,P(A)=子区域d的长度/区域D的长度=3/5.在设计思路二中,P(A)=子区域d的面积/区域D的面积=1/4.从上面的分析可以看到,对于一个随机试验,如果我们将每个基本事件理解为从某个特定的几何区域内随机地抽取一点,而该区域内每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域内的点.这样就可以把随机事件与几何区域联系在一起.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型(geometric probability model)一般地,在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A发生的概率P(A)= .这里要求D的测度不为0,其中“测度”的意义依D确定,当D分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等.通过对以上两个设计思路的分析,我们看到事件A的概率用子区域d的大小与几何区域D大小的比值来表示是合理的.当子区域d和几何区域D是一维区域时,它们的大小用它们的长度来表示;当子区域d和几何区域D是二维区域时,它们的大小用它们的面积来表示;当子区域d和几何区域D是三维区域时,它们的大小用它们的体积来表示.为定义统一,若几何区域的大小我们称为这个区域的“测度”,则P(A)=子区域d的测度/区域D的测度.由于几何区域d是几何区域D的子集,于是我们有0≤d的测度≤D的测度,在不等式两侧同时除以D的测度(一般假定其为正数)则有,即0≤P≤1,这个不等式表明几何概型的概率在0和1之间. 注意到当p(A)=0时,d 的测度一定为0(一个点的长度是0,一条曲线的面积是0),且当p(A)=1时,d的测度必须等于D的测度.几何概型的基本特点是:(1)在每一次随机试验中,不同的试验结果有无穷多个,即基本事件有无限个;(2)在这个随机试验中,每个试验结果出现的可能性相等,即基本事件的发生是等可能的.从几何概型具有的特点来看,几何概型与古典概型的区别在于,几何概型是无限多个等可能事件的情形,而古典概型中的等可能事件只是有限个.应用示例思路1例1 判断下列试验中事件A发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率.分析:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:区别某一个问题是属于古典概型还是属于几何概型,要注意抓住它们的特点:几何概型是无限多个等可能事件的情形,而古典概型中的等可能事件只是有限个.例 2 在一个量杯中装有1升的水,其中含有一个细菌,现在用一个小杯子从中取出0.1升的水,求这个小杯子所取出的水中含有这个细菌的概率.分析:细菌在量杯的水中的分布可以看成是随机的,因此符合几何概型的特点,所以可以运用几何概型概率的解法来求解.解:细菌在水中的分布看成是随机的,符合几何概型的特点,从这个量杯中取出的0.1升水看成区域d,所有的1升水看成区域D,记事件A为“小杯子所取出的水中含有这个细菌”,则P(A)==0.1.答:这个小杯子所取出的水中含有这个细菌的概率为0.1.点评:在本题中,“测度”是体积;基本事件(这个细菌可以生存在这1升水的任何区域)有无限多个,同时因为是随机分布的,即基本事件是等可能的,所以符合几何概型的特点,因此,选择几何概型的计算方法计算概率.例 3 将正方形ABCD等分成九个小正方形,并用红、黄、蓝三种颜色涂成如图所示的图案,向正方形ABCD内随机投点,分别求下列事件的概率.(1)点落在红色区域;(2)点落在红色或蓝色区域;(3)点落在黄色或蓝色区域.分析:因为投点时是随机的,而且点落在正方形是随机分布的,因此,符合几何概型的特点,所以,用几何概型计算概率的方法来解.解: (1)记事件A为“点落在红色区域”,假设正方形ABCD的面积为9个单位,则P(A)=.(2)记事件B为“点落在红色或蓝色区域”,同样假设正方形ABCD的面积为9个单位,则P(B)=.(3)记事件C为“点落在黄色或蓝色区域”,同样假设正方形ABCD的面积为9个单位,则P(C)=.点评:在本题中,计算概率时所涉及的“测度”是正方形的面积,因此,准确判断几何图形的面积是解决“测度”是几何图形的面积的几何概型问题的关键.例 4 甲、乙两人相约在上午9:00至10:00之间在某地见面,可是两人都只能在那里停留5分钟.问两人能够见面的概率有多大?分析:由于甲、乙两人是随机出现在约会地点,而且在每一时刻出现是等可能的,因此用几何概型来解.解:为(9+x)小时,乙到的时间为(9+y)小时,则0≤x≤1,0≤y≤1.点(x,y)形成直角坐标系中的一个边长为1的正方形,以(0,0),(1,0),(0,1),(1,1)为顶点(如图).由于两人都只能停留5分钟即小时,所以在|x-y|≤时,两人才能会面.由于|x-y|≤是两条平行直线x-y=,y-x=之间的带状区域,正方形在这两个带状区域是两个三角形,其面积之和为(1-)×(1-)=()2,从而带形区域在这个正方形内的面积为1-()2=,因此所求的概率为.点评:本题将时间看成是“测度”,因此,建立适当的“测度”是解决本题的关键.思路2例 1 有一段长为10米的木棍,现要将其截成两段,要求每一段都不小于3米,则符合要求的截法的概率是多大?分析:由于要求每一段都不小于3米,也就是说只能在距两端都为3米的中间的4米中截,这是一道非常典型的与长度有关的几何概型问题.解:记两段木棍都不小于3米为事件A,则P(A)=.点评:本题中“测度”为长度.例 2 飞镖随机地投掷在如图所示的靶子上,(1)在每一个靶子中,飞镖投到区域A、B、C的概率分别为多少?(2)在靶子1中,分别投中区域A或B的概率是多少?(3)在靶子2中,飞镖没有投中区域C的概率是多少?(假设每一次投掷都没有脱靶)(靶子1是正三角形,三角形内的三条线段是三角形的顶点与重心的连线;靶子2中水平线是圆的直径,竖直的线段是垂直于直径的半径)分析:由于飞镖投中的位置是随机的,因此,投中的结果有无数个,而飞镖投中任何位置的可能性相等,因此,本题符合几何概型的特点,所以运用几何概型的概率计算方法来求解.解:(1)在靶子1中分别记“飞镖投到区域A、B、C”为事件A、B、C,设正三角形的面积为S,则三个小三角形的面积(也就是区域A、B、C的面积)都是正三角形面积的,即每个小三角形的面积都是,所以,P(A)=P(B)=P(C)=.在靶子2中分别记“飞镖投到区域A、B、C”为事件A1、B1、C1,设圆的面积为S1,则区域A的面积为,区域B、C的面积为,因此,P(A1)=,P(B1)=P(C1)= .(2)记事件D为“在靶子1中,分别投中区域A或B”,所以,P(D)=.(3)记事件E为“在靶子2中,飞镖没有投中区域C”,则有P(E)=.点评:在本题的飞镖的投掷中,因为是随机投掷,且没有脱靶,因此,符合几何概型的特点,所以用几何概型来计算有关的概率.在本题中的“测度”是面积.例 3 如图,正方形ABCD内接于半圆,现向半圆内随机投一点,求该点落在正方形内的概率.分析:由于点是随机投入半圆中,因此,符合几何概型的特点,考虑用几何概型的概率计算方法来求解.解:设半圆的半径为R,正方形ABCD的边长为x,由平面几何知识可知:x2=(R-)(R+),得x2=R2.记该点“落入正方形内”为事件A,则P(A)=≈0.51.点评:根据实际问题的背景,本题符合几何概型的特点,本题的“测度”是面积.例 4 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:记事件A“等待的时间不多于10分钟”,我们所关心的事件A恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)= ,即此人等车时间不多于10分钟的概率为.点评:在本题中,到站等车的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,因此符合几何概型的特点,所以用几何概型概率的计算方法来求解.知能训练1.在500 mL的水中有一个草履虫,现从中随机取出 2 mL水样放到显微镜下观察,则发现草履虫的概率是()A.0.5B.0.4C.0.004D.不能确定2.平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.3.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止时,指针正好对准红、黄或绿的区域,顾客就可以获得100元、50元、20元的购物券(转盘等分成20份).甲顾客购物120元,他获得购物券的概率是多少?他得到100元、50元、20元的购物券的概率分别是多少?4.(丈夫与妻子相遇问题)一位丈夫和他的妻子要上街购物,他们决定在下午4:00到5:00之间在某一街角相会,他们约好当其中一个先到后一定要等另一人15分钟.若另一人仍不到则离去.试问这对夫妇能够相遇的概率为多大?假定他们到达约定地点的时间是随机的且都在约定的一小时之内.解答:1.C(提示:由于取水样的随机性,所求事件A:“在取出 2 mL的水样中有草履虫”的概率等于水样的体积与总体积之比2500=0.004)2.把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O向靠得最近的平行线引垂线OM,垂足为M,如图所示,这样线段OM长度(记作OM)的取值范围就是[o,a],只有当r<OM≤a时硬币不与平行线相碰,所以所求事件A的概率就是P(A)=.3.甲顾客购物的钱数在100元到200元之间,可以获得一次转动转盘的机会,转盘一共等分了20份,其中1份红色、2份黄色、4份绿色,这符合几何概型的条件,因此对于顾客来说:P(获得购物券)=;P(获得100元购物券)=;P(获得50元购物券)=;P(获得20元购物券)=.4. 设x和y为下午4:00以后丈夫和妻子分别到达约定地点的时间(以分钟计数),则他们所有可能的到达时间都可由有序数对(x,y)来表示,这里0<x<60,0<y<60,基本事件组所对应的几何区域即为边长为60的正方形区域(如下图),为使得两夫妇相遇,他们的到达时间必须在相距15分钟的间隔之内,用数学符号表示即为绝对值不等式|x-y|<15(例如当妻子比丈夫晚到14分钟时,他们是可以相遇的,这时,只需注意到x-y =-14,即给出|x-y|=14,不等式满足),而基本事件组所对应的几何区域中|x-y|<15的图形构成事件r发生的区域,事件r的阴影部分和R的区域如图所示.因此P(r)=.点评:依据实际问题,建立相应的数学模型,将问题转化为几何概型问题是关键所在.课堂小结通过这几节课的学习,已经有三种方法来求随机事件发生的概率了.这三种方法分别是一、通过做试验的方法得到随机事件发生的频率,以此来近似估计随机事件的概率;二、用古典概型的公式来计算随机事件发生的概率;三、用几何概型的公式来计算随机事件发生的概率.用古典概型的公式或几何概型的公式来计算事件发生的概率时,首先应该判断该试验是否符合古典概型或几何概型的特征,然后再解题.具体地说,如果一个试验满足:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件在每一次试验中出现的可能性相等,那么我们就可以用古典概型的公式来计算事件发生的概率.如果一个试验满足:(1)试验中所有可能出现的基本事件有无数个;(2)每个基本事件在每一次试验中出现的可能性相等,那么我们就可以用几何概型的公式来计算事件发生的概率.第一种方法通过做试验的方法得到事件发生的频率,以此来近似估计概率.这种方法对计算任何随机事件发生的概率的题型都适用.但是,这种方法求出来的是随机事件发生的频率,而不是概率,只是用频率来估计概率.几何概型(1)设线段l是线段L的一部分,向L上任意投一点,若投中线段l上的点的数目与该段的长度成比例,而与线段l在线段L上的相对位置无关,则点投中线段l的概率为P=;(2)设平面图形s是平面图形S的一部分,向图形S上任意投一点,若投中图形s上的数目与该图形的面积成比例,而与图形s在图形S上的相对位置无关,则点投中图形s 的概率为P=;(3)设空间几何体v是空间几何体V的一部分,向几何体V上任意投一点,若投中几何体v上的数目与该几何体的体积成比例,而与几何体v在几何体V上的相对位置无关,则点投中几何体v的概率为P=.作业课本习题 3.3 1、2、3.设计感想由于几何概型是在学习了古典概型之后,将等可能事件的概念从有限向无限的延伸,因此,在引出几何概型之后,将几何概型的特点与古典概型的特点进行比较,总结它们的相同地方和不同的地方.两者都是等可能事件,所不同的是,古典概型的基本事件的个数是有限的,而几何概型的基本事件的个数是无限的,两者的区别必须讲清楚.另外,在几何概型的概率计算公式中的“测度”,可以是线段的长度,图形的面积,几何体的体积等等,还有一些是可以转化为上述量的具体问题,要会转化.。

高中数学 第三章 概率 3.2 古典概型学案 苏教版必修3-苏教版高一必修3数学学案

高中数学 第三章 概率 3.2 古典概型学案 苏教版必修3-苏教版高一必修3数学学案
(2)有放回的抽取,基本事件共有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9个.
探究2 “有放回”与“无放回”的区别是什么?探究1中的两种试验是否是古典概型?
【提示】“有放回”与“无放回”取法的区别在于基本事件总数不同.“有放回”地取元素时,被取元素个数不变;“无放回”地取元素时,被取元素的个数取一次少一次.但两种取法都满足古典概型的两个特点,故都是古典概型.
1.判断一个概率类型是否为古典概型的关键是看试验的结果是否满足有限性和等可能性.
2.求古典概型概率的步骤:
(1)求出基本事件总数n.
(2)求出事件A包含的基本事件的个数m.
(3)利用公式P(A)=
= 求出事件A的概率.
[再练一题]
2.甲、乙两人做出拳游戏(锤子、剪子、布),则平局的概率是________;甲赢的概率是________;乙赢的概率是________.
①请写出所有的基本事件;
②求满足条件“ 为整数”的事件的概率;
③求满足条件“x-y<2”的事件的概率.
【精彩点拨】先列举出所有基本事件,判断事件包含的基本事件个数,然后利用公式求解.
【自主解答】①先后抛掷两次正四面体的所有基本事件为:
(1,1),(1,2),(1,3),(1,4),
(2,1),(2,2),(2,3),(2,4),
从含有两件正品a1,a2和两件次品b1,b2的4件产品中每任取1件,连续取2次.
(1)若取后不放回,求取出的2件产品中恰有一件次品的概率;
(2)若取后放回,求取出的2件产品中恰有一件次品的概率.
【精彩点拨】 → → →
【自主解答】(1)取后不放回地取两次,所有基本事件为:(a1,a2),(a1,b1),(a1,b2),(a2,a1),(a2,b1),(a2,b2),(b1,a1),(b1,a2),(b1,b2),(b2,a1),(b2,a2),(b2,b1)共有12个.

高中数学 复习课(三)概率教学案 苏教版必修3-苏教版高一必修3数学教学案

高中数学 复习课(三)概率教学案 苏教版必修3-苏教版高一必修3数学教学案

复习课(三) 概率古典概型是学习及高考考查的重点,考查形式以填空题为主,试题难度属容易或中等,处理的关键在于用枚举法找出试验的所有可能的基本事件及所求事件所包含的基本事件.还要注意理解事件间关系,准确判断两事件是否互斥,是否对立,合理利用概率加法公式及对立事件概率公式.[考点精要]1.事件(1)基本事件在一次试验中可能出现的每一个可能结果.(2)等可能事件假设在一次试验中,每个基本事件发生的可能性都相同,那么称这些基本事件为等可能基本事件.(3)互斥事件①定义:不能同时发生的两个事件称为互斥事件.如果事件A1,A2,…,A n中的任何两个都是互斥事件,就说事件A1,A2,…,A n彼此互斥.②规定:设A,B为互斥事件,假设事件A,B至少有一个发生,我们把这个事件记作A+B.(4)对立事件两个互斥事件必有一个发生,那么称这两个事件为对立事件,事件A的对立事件记作A.2.概率的计算公式(1)古典概型①特点:有限性,等可能性.②计算公式:P(A)=事件A包含的基本事件数试验的基本事件总数.(2)互斥事件的概率加法公式①假设事件A,B互斥,那么事件A+B发生的概率等于事件A,B分别发生的概率的和即P(A+B)=P(A)+P(B).②假设事件A1,A2,…,A n两两互斥.那么古典概型P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ). (3)对立事件计算公式:P (A )=1-P (A ).[典例](1)5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为________.(2)将2本不同的数学书和1本语文书在书架上随机排成一行,那么2本数学书相邻的概率为________.(3)随机掷两枚骰子,它们向上的点数之和不超过5的概率记为p 1 ,点数之和大于5的概率记为p 2 ,点数之和为偶数的概率记为p 3 ,那么p 1,p 2,p 3从小到大依次为________.(4)(某某高考)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.①应从这三个协会中分别抽取的运动员的人数为________.②将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.从这6名运动员中随机抽取2人参加双打比赛.那么编号为A 5和A 6的两名运动员中至少有1人被抽到概率为________.[解](1)记3件合格品为a 1,a 2,a 3,2件次品为b 1,b 2,那么任取2件构成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)},共10个基本事件.记“恰有1件次品〞为事件A ,那么A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2)},共6个基本事件.故其概率为P (A )=610=0.6.(2)设2本数学书分别为A ,B ,语文书为C ,那么所有的排放顺序有ABC ,ACB ,BAC ,BCA ,CAB ,CBA ,共6种情况,其中数学书相邻的有ABC ,BAC ,CAB ,CBA ,共4种情况,故2本数学书相邻的概率P =46=23.(3)总的基本事件个数为36,向上的点数之和不超过5的有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1),共10个,那么向上的点数之和不超过5的概率p 1=1036=518;向上的点数之和大于5的概率p 2=1-518=1318;向上的点数之和为偶数与向上的点数之和为奇数的个数相等,故向上的点数之和为偶数的概率p 3=12.即p 1<p 3<p 2.(4)①应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.②从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35.[答案](1)0.6 (2)23 (3)p 1<p 3<p 2 (4)①3,1,2 ②35[类题通法]解决与古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算[题组训练]1.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,那么这2只球颜色不同的概率为________.解析:利用列举法可求出基本事件总数为6种,其中符合要求的有5种,故P =56.答案:562.假设某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,那么甲或乙被录用的概率为________.解析:所有基本事件为(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中符合“甲与乙均未被录用〞的结果只有(丙,丁,戊).故所求概率P =1-110=910.答案:9103.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,那么他们选择相同颜色运动服的概率为________.解析:甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为P =39=13.答案:13几何概型是各类考查的重点,考查形式以填空题为主,试题难度比古典概型稍大.[考点精要]1.几何概型的特征(1)无限性:即试验结果有无限多个. (2)等可能性:即每个结果出现是等可能的. 2.几何概型的概率公式在几何概型中,事件A 的概率的计算公式如下: P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)[典例](1)在区间[0,5]上随机选择一个数p ,那么方程x 2+2px +3p -2=0有两个负根的概率为________.(2)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.(3)事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB 〞发生的概几何概型率为12,那么AD AB =________.[解析](1)设方程x 2+2px +3p -2=0有两个负根分别为x 1,x 2,∴⎩⎪⎨⎪⎧Δ=4p 2-4(3p -2)≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝⎛⎭⎫1-23+(5-2)5=23.(2)依题意,得S 阴影S 正方形=1801 000,所以S 阴影1×1=1801 000,解得S 阴影=0.18.(3)由,点P 的分界点恰好是边CD 的四等分点,由勾股定理可得 AB 2=⎝⎛⎭⎫34AB 2+AD 2,解得⎝⎛⎭⎫AD AB 2=716, 即AD AB =74. [答案](1)23 (2)0.18 (3)74[类题通法](1)几何概型概率的大小与随机事件所在区域的形状位置无关,只和该区域的大小有关. (2)在解题时要准确把握,要把实际问题作合理的转化;要注意古典概型和几何概型的区别,正确地选用几何概型的类型解题.[题组训练]1.(某某高考)在区间[0,2]上随机地取一个数x ,那么事件“-1≤log 12⎝⎛⎭⎫x +12≤1〞发生的概率为________.解析:不等式-1≤log 12⎝⎛⎭⎫x +12≤1可化为log 122≤log 12⎝⎛⎭⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.42.(某某高考)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上. 假设在矩形ABCD 内随机取一点,那么此点取自阴影部分的概率等于________.解析:因为f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0,B 点坐标为(1,0),所以C 点坐标为(1,2),D 点坐标为(-2,2),A 点坐标为(-2,0),故矩形ABCD 的面积为2×3=6,阴影部分的面积为12×3×1=32, 故P =326=14.答案:143.在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,那么三棱锥S -APC 的体积大于V3的概率是________. 解析:由题意可知V S -APCV S -ABC >13,三棱锥S -ABC 的高与三棱锥S -APC 的高相同.作PM ⊥AC 交于点M ,BN ⊥AC 交于点N , 那么PM ,BN 分别为△APC 与△ABC 的高, 所以V S -APCV S -ABC =S △APC S △ABC =PM BN >13,又PM BN =APAB , 所以AP AB >13,故所求的概率为23(即为长度之比).3概率和统计综合应用[考点精要]对于给定的随机事件A.由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此各类考试常常结合统计的知识考查概率.考查形式一般以解答题为主,难度中等.解决此类考题要注意:①正确利用数形结合的思想.②充分利用概率是频率的稳定值,用频率估计概率.③准确地处理所给数据.[典例]某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.图①B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100] 频数281410 6(1)在图②中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.[解](1)如下图.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意〞;C B表示事件:“B地区用户的满意度等级为不满意〞.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.[类题通法]解决概率和统计综合题,首先要明确频率、概率、频率分布表、频率分布直方图、概率的计算方法等基本知识,要充分利用频率估计概率及数形结合等基本思想,正确处理各种数据.[题组训练]1.随机抽取某中学高三年级甲、乙两班各10名同学,测量出他们的身高(单位:cm),获得身高数据的茎叶图如图,其中甲班有一个数据被污损.(1)假设甲班同学身高的平均数为170 cm ,求污损处的数据;(2)现从乙班这10名同学中随机抽取2名身高不低于173 cm 的同学,求身高176 cm 的同学被抽中的概率.解:(1)设被污损的数字为a ,由题意知,甲班同学身高的平均数为x =158+162+163+168+168+170+171+179+170+a +18210=170,解得 a =9.(2)设“身高176 cm 的同学被抽中〞的事件为A ,从乙班10名同学中抽取2名身高不低于173 cm 的同学有:{181,173},{181,176},{181,178},{181,179},{179,173},{179,176},{179,178},{178,173},{178,176},{176,173},共10个基本事件,而事件A 含有4个基本事件,所以P (A )=410=25.2.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如下图),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率. 解:(1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A 1,A 2,A 3;受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B 1,B 2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为110.[对应配套卷P105]1.从1,2,3,4这四个数中一次随机地取两个数,那么其中一个数是另一个数的两倍的概率是________.解析:基本事件的总数为6,满足条件的有{1,2},{2,4},2个,故P =26=13.答案:132.盒子里共有大小相同的3只白球,1只黑球.假设从中随机摸出两只球,那么它们颜色不同的概率是________.解析:基本事件总数有6个,满足条件的有3个,故P =12.答案:123.如下图,阴影部分是一个等腰三角形ABC ,其中一边过圆心O ,现在向圆面上随机撒一粒豆子,那么这粒豆子落到阴影部分的概率是________.解析:向圆面上随机撒一粒豆子,其结果有无限个,属于几何概型.设圆的半径为r ,全部结果构成的区域面积是圆面积πr 2,阴影部分的面积是等腰直角三角形ABC 的面积r 2,那么这粒豆子落到阴影部分的概率是r 2πr 2=1π. 答案:1π4.在区间[0,3]上任取一点,那么此点落在区间[2,3]上的概率是________. 解析:设这个事件为A ,所考查的区域D 为一线段,S D =3,又S A =1,∴P (A )=13.答案:135.现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,那么m ,n 都取到奇数的概率为________.解析:基本事件总数为N =7×9=63,其中m ,n 都为奇数的事件个数为M =4×5=20,所以所求概率P =M N =2063.答案:20636.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,假设此点到圆心的距离大于12,那么周末去看电影;假设此点到圆心的距离小于14,那么去打篮球;否那么,在家看书.那么小波周末不在家看书的概率为________.解析:去看电影的概率P 1=π×12-π×⎝⎛⎭⎫122π×12=34,去打篮球的概率P 2=π×⎝⎛⎭⎫142π×12=116, 故不在家看书的概率为P =34+116=1316.答案:13167.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.解析:从五个数中任意取出两个数的可能结果有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,其中“和为5〞的结果有(1,4),(2,3),故所求概率为210=15. 答案:158.假设a ,b ∈{-1,0,1,2},那么使关于x 的方程ax 2+2x +b =0有实数解的概率为________.解析:要使方程有实数解,那么a =0或ab ≤1,所有可能的结果为(-1,-1),(-1,0),(-1,1),(-1,2),(0,-1),(0,0),(0,1),(0,2),(1,-1),(1,0),(1,1),(1,2),(2,-1),(2,0),(2,1),(2,2),共16个,其中符合要求的有13个, 故所求概率P =1316.答案:13169.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,假设选到男教师的概率为920,那么参加联欢会的教师共有________人.解析:设男教师为x 人,那么女教师为(x +12)人. 依题意有: x2x +12=920.∴x =54. ∴共有教师2×54+12=120(人). 答案:12010.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12〞的概率,p 2为事件“xy ≤12〞的概率,那么p 1,p 2,12按从小到大排列为________.解析:如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12〞对应的图形为阴影△ODE ,其面积为12×12×12=18,故p 1=18<12;事件“xy ≤12〞对应的图形为斜线表示部分,其面积显然大于12,故p 2>12,那么p 1<12<p 2.答案:p 1<12<p 211.(某某高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团 8 5 未参加演讲社团230(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.解:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人, 故至少参加上述一个社团的共有45-30=15(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3},共15个.根据题意,这些基本事件的出现是等可能的.事件“A 1被选中且B 1未被选中〞所包含的基本事件有: {A 1,B 2},{A 1,B 3},共2个.因此A 1被选中且B 1未被选中的概率为P =215.12.编号分别为A 1,A 2,…,A 16的16名篮球运动员在某次训练比赛中的得分记录如下:(1)将得分在对应区间内的人数填入相应的空格:(2)从得分在区间[20,30)内的运动员中随机抽取2人,①用运动员编号列出所有可能的抽取结果; ②求这2人得分之和大于50的概率. 解:(1)4,6,6.(2)①得分在区间[20,30)内的运动员编号为A 3,A 4,A 5,A 10,A 11,A 13,从中随机抽取2人,所有可能的抽取结果有:{A 3,A 4},{A 3,A 5},{A 3,A 10},{A 3,A 11},{A 3,A 13},{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 4,A 13},{A 5,A 10},{A 5,A 11},{A 5,A 13},{A 10,A 11},{A 10,A 13},{A 11,A 13}共15种.②“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50〞(记为事件B )的所有可能结果有{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 5,A 10},{A 10,A 11}共5种.所以P (B )=515=13.13.在某次测验中,有6位同学的平均成绩为75分.用x n 表示编号为n (n =1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:(1)求第6位同学的成绩x 6,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. 解:(1)∵这6位同学的平均成绩为75分, ∴16(70+76+72+70+72+x 6)=75,解得x 6=90. 这6位同学成绩的方差s 2=16×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49,∴标准差s =7.(2)从前5位同学中,随机地选出2位同学的选法有:(70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70,72),共10种,恰有1位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4种,10514.设f (x )和 g (x )都是定义在同一区间上的两个函数,假设对任意x ∈[1,2],都有|f (x )+g (x )|≤8,那么称f (x )和g (x )是“友好函数〞,设f (x )=ax ,g (x )=bx.(1)假设a ∈{1,4},b ∈{-1,1,4},求f (x )和g (x )是“友好函数〞的概率; (2)假设a ∈[1,4],b ∈[1,4],求f (x )和g (x )是“友好函数〞的概率. 解:(1)设事件A 表示f (x )和g (x )是“友好函数〞, 那么|f (x )+g (x )|(x ∈[1,2])所有的情况有: x -1x ,x +1x ,x +4x ,4x -1x ,4x +1x ,4x +4x , 共6种且每种情况被取到的可能性相同. 又当a >0,b >0时,ax +b x 在⎝⎛⎭⎫0,b a 上递减,在⎝⎛⎭⎫b a ,+∞上递增;x -1x 和4x -1x 在(0,+∞)上递增,所以对x ∈[1,2]可使|f (x )+g (x )|≤8恒成立的有x -1x ,x +1x ,x +4x ,4x -1x , 故事件A 包含的基本事件有4种, 所以P (A )=46=23,故所求概率是23.(2)设事件B 表示f (x )和g (x )是“友好函数〞,因为a 是从区间[1,4]中任取的数,b 是从区间[1,4]中任取的数,所以点(a ,b )所在区域是长为3,宽为3的矩形区域.要使x ∈[1,2]时,|f (x )+g (x )|≤8恒成立, 需f (1)+g (1)=a +b ≤8且f (2)+g (2)=2a +b2≤8,所以事件B 表示的点的区域是如下图的阴影部分.所以P (B )=12×⎝⎛⎭⎫2+114×33×3=1924,24(时间120分钟 总分值160分)一、填空题(本大题共14小题,每题5分,共70分,请把答案填写在题中横线上) 1.从一箱产品中随机抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且P (A )=0.65,P (B )=0.2,P (C )=0.1.那么事件“抽到的不是一等品〞的概率为________.解析:设事件“抽到的不是一等品〞为D ,那么A 与D 对立, ∴P (D )=1-P (A )=0.35. 答案:0.352.甲、乙、丙三人在3天节日中值班,每人值班1天,那么甲紧接着排在乙前面值班的概率是________.解析:甲、乙、丙三人在3天中值班的情况为:甲、乙、丙;甲、丙、乙;丙、甲、乙;丙、乙、甲;乙、甲、丙;乙、丙、甲共6种,其中符合题意的有2种,故所求概率为13.答案:133.根据以下算法语句,当输入x 为60时,输出y 的值为________. Read xIf x ≤50 Then y ←0.5 x Else y ←25+0.6×(x -50)End If Print y解析:由题意知,该算法语句的功能是求分段函数y =⎩⎪⎨⎪⎧0.5x ,x ≤50,25+0.6(x -50),x >50的值,所以当x =60时,输出y 的值为25+0.6×(60-50)=31.答案:314.从1,2,3,6这4个数中一次随机地取2个数,那么所取2个数的乘积为6的概率是________.解析:取两个数的所有情况有:(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),共6种情况.乘积为6的有:(1,6),(2,3)共2种情况.所求事件概率为26=13.答案:135.执行如下图的程序框图,那么输出S 的值为________.解析:由程序框图与循环结束的条件“k >4〞可知,最后输出的S =log 255=12.答案:126.(某某高考)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,那么应抽取的男生人数为________.解析:设男生抽取x 人,那么有45900=x 900-400,解得x =25.答案:257.(某某高考)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如下图.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.解析:(1)由(1.5+2.5+a +2.0+0.8+0.2)×0.1=1, 解得a =3.(2)区间[0.3,0.5]内频率为0.1×(1.5+2.5)=0.4, 故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000. 答案:(1)3 (2)6 0008.(某某高考)某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10 ,其均值和方差分别为x 和s 2,假设从下月起每位员工的月工资增加100元,那么这10位员工下月工资的均值和方差分别为________.解析:对平均数和方差的意义深入理解可巧解.因为每个数据都加上了100,故平均数也增加100,而离散程度应保持不变.答案:100+x s 29.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,且a ,b ∈{1,2,3,4},假设|a -b |≤1,那么称甲、乙“心有灵犀〞.现任意找两人玩这个游戏,得出他们“心有灵犀〞的概率为________.解析:甲、乙所猜数字的基本事件有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个,其中满足|a -b |≤1的基本事件有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10个,故所求概率为1016=58.答案:5810.正方形ABCD 面积为S ,在正方形内任取一点M ,△AMB 面积大于或等于13S 的概率为________.解析:如图,设正方形ABCD 的边长为a ,那么S =a 2,△ABM 的高为h ,由题知,12h ·a ≥13S =13a 2,∴h ≥23a ,∴P =13.答案:1311.如以下图是CBA 篮球联赛中,甲、乙两名运动员某赛季一些场次得分的茎叶图,那么平均得分高的运动员是________.解析:x 甲=44+30+100+3010=20.4,x 乙=63+50+8010=19.3,∴x甲>x 乙.答案:甲12.如图,A 是圆O 上固定的一点,在圆上其他位置任取一点A ′,连接AA ′,它是一条弦,它的长度小于或等于半径长度的概率为________.解析:如图,当AA ′的长度等于半径长度时,∠AOA ′=60°,由圆的对称性及几何概型得P =120360=13.答案:1313.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.样本平均数为7,样本方差为4,且样本数据互不相同,那么样本数据中的最大值为________.解析:设5个班级的数据分别为0<a <b <c <d <e .由平均数及方差的公式得a +b +c +d +e 5=7,(a -7)2+(b -7)2+(c -7)2+(d -7)2+(e -7)25=4.设a -7,b -7,c -7,d -7,e -7分别为p ,q ,r ,s ,t ,那么p ,q ,r ,s ,t 均为整数,那么⎩⎪⎨⎪⎧p +q +r +s +t =0,p 2+q 2+r 2+s 2+t 2=20.设f (x )=(x -p )2+(x -q )2+(x -r )2+(x -s )2=4x 2-2(p +q +r +s )x +(p 2+q 2+r 2+s 2)=4x 2+2tx +20-t 2,由(x -p )2,(x -q )2,(x -r )2,(x -s )2不能完全相同知f (x )>0,那么判别式Δ<0,解得-4<t <4,所以-3≤t ≤3,所以最大值为10. 答案:1014.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上〞为事件(2≤n ≤5,n ∈N),假设事件的概率最大,那么n 的所有可能值为________.解析:事件的总事件数为6.只要求出当n =2,3,4,5时的基本事件个数即可. 当n =2时,落在直线x +y =2上的点为(1,1); 当n =3时,落在直线x +y =3上的点为(1,2),(2,1); 当n =4时,落在直线x +y =4上的点为(1,3),(2,2); 当n =5时,落在直线x +y =5上的点为(2,3); 显然当n =3或4时,事件的概率最大为13.答案:3或4二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题总分值14分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)解:(1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为:x =8+8+9+104=354;方差为:s 2=14×⎝⎛⎭⎫8-3542+⎝⎛⎭⎫8-3542+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4), (A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4), (A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4), (A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),用C 表示“选出的两名同学的植树总棵数为19〞这一事件,那么C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2).故所求概率为P (C )=416=14.16.(本小题总分值14分)(某某高考)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.解:(1)由题意知苹果的样本总数n=50,在[90,95)的频数是20,∴苹果的重量在[90,95)频率是2050=0.4.(2)设从重量在[80,85)的苹果中抽取x个,那么从重量在[95,100)的苹果中抽取(4-x)个.∵表格中[80,85),[95,100)的频数分别是5,15,∴5∶15=x∶(4-x),解得x=1.即重量在[80,85)的有1个.(3)在(2)中抽出的4个苹果中,重量在[80,85)的有1个,记为a,重量在[95,100)的有3个,记为b1,b2,b3,任取2个,有ab1,ab2,ab3,b1b2,b1b3,b2b3共6种不同方法.记基本事件总数为n,那么n=6,其中重量在[80,85)和[95,100)中各有1个的事件记为A,事件A包含的基本事件为ab1,ab2,ab3,共3个,由古典概型的概率计算公式得P(A)=36=1 2.17.(本小题总分值14分)为庆祝国庆,某中学团委组织了“歌颂祖国,爱我中华〞知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(成绩均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图的部分频率分布直方图,观察图形的信息,回答以下问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分.解:(1)设第i组的频率为f i(i=1,2,3,4,5,6),因为各组的频率和等于1,故第四组的频率:f4=1-(0.025+0.015×2+0.01+0.005)×10=0.3.频率分布直方图如下图.(2)由题意知,及格以上的分数所在的第三、四、五、六组的频率之和为(0.015+0.03+0.025+0.005)×10=0.75,抽样学生成绩的合格率是75%.故估计这次考试的及格率为75%.利用组中值估算抽样学生的平均分:45·f1+55·f2+65·f3+75·f4+85·f5+95·f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.从而估计这次考试的平均分是71分.18.(本小题总分值16分)某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:学历35岁以下35~50岁50岁以上本科803020研究生x 20y(1)5的样本,将该样本看成一个总体,从中任取2人,求至少有1人的学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x,y的值.解:(1)用分层抽样的方法在35~50岁的人中抽取一个容量为5的样本,设抽取学历为本科的人数为m,∴30 50=m5,解得m=3.∴抽取了学历为研究生的有2人,学历为本科的有3人,分别记作S1,S2;B1,B2,B3. 从中任取2人的所有基本事件共10个:(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 2,B 3),(B 1,B 3).其中至少有1人的学历为研究生的基本事件有7个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2).∴从中任取2人,至少有1人的学历为研究生的概率为710.(2)依题意,得10N =539,解得N =78.∴35~50岁中被抽取的人数为78-48-10=20. ∴4880+x =2050=1020+y .解得x =40,y =5. ∴x =40,y =5.19.(本小题总分值16分)某商场为吸引顾客消费推出一项优惠活动.活动规那么如下:消费每满100元可以转动如下图的圆盘一次,其中O 为圆心,且标有20元、10元、0元的三部分区域面积相等.指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券(例如:某顾客消费了218元,第一次转动获得了20元,第二次获得了10元,那么其共获得了30元优惠券).顾客甲和乙都到该商场进行了消费,并按照规那么参与了活动.(1)假设顾客甲消费了128元,求他获得优惠券金额大于0元的概率; (2)假设顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率. 解:(1)设“甲获得优惠券〞为事件A .因为指针停在任一位置都是等可能的,而题中所给的三部分的面积相等,所以指针停在20元、10元、0元区域内的概率都是13.顾客甲获得优惠券,是指指针停在20元或10元区域,且由题意知顾客甲只能转动一次圆盘.根据互斥事件的概率公式,有P (A )=13+13=23,所以顾客甲获得优惠券金额大于0元的概率是23.(2)设“乙获得优惠券金额不低于20元〞为事件B ,因为顾客乙转动了圆盘两次,设乙第一次转动圆盘获得优惠券金额为x 元,第二次获得优惠券金额为y 元,用(x ,y )表示乙两次转动圆盘获得优惠券金额的情况,那么有(20,20),(20,10),(20,0),(10,20),(10,10),(10,0),。

高中数学必修3 第三章概率教案 苏教版 教案

高中数学必修3 第三章概率教案 苏教版 教案

某某大学附属中学高中数学必修3 第三章概率教案3.1随机事件及其概率教学目标:1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率与事件A发生的概率的区别与联系;(4)利用概率知识正确理解现实生活中的实际问题.2、过程与方法:(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”,“游戏的公平性”,“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.教学重点:事件的分类;概率的定义以及和频率的区别与联系教学难点:用概率的知识解释现实生活中的具体问题.教学过程:一、问题情境1.足球比赛用抛掷硬币的方式决定场地,这是否公平?2.某班的50名学生中,有两名学生的生日相同的可能性有多大?3.路口有一红绿灯,东西方向的红灯时间为45s,绿灯时间为60s.从东向西行驶的一辆汽车通过该路口,遇到红灯的可能性有多大?日常生活中,与此相关的问题还有很多。

例如:(1)在标准大气压下水加热到100℃,沸腾;(2)导体通电,发热;(3)同性电荷,互相吸引;(4)实心铁块丢入水中,铁块浮起;(5)买一X福利彩票,中奖;(6)掷一枚硬币,正面向上.二、建构数学在一定条件下,事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.对于某个现象,如果能让其条件实现一次,就是进行了一次试验.而试验的每一种可能的结果,都是一个事件.在一定的条件下,必然会发生的事件叫做必然事件.在一定条件下,肯定不会发生的事件叫做不可能事件.在一定条件下,可能发生也可能不发生的事件叫做随机事件.必然事件与不可能事件反映的就是在一定条件下的确定性现象,而随机事件反映的则是随机现象.以后我们用A,B,C等大写英文字母表示随机事件,简称为事件.我们已经学习了用概率表示一个事件在一次试验或观测中发生的可能性的大小,它是0~1之间的一个数.将这个事件记为A,用P(A)表示事件A发生的概率.对于任意一个随机事件A,P(A)必须满足如下基本要求:0≤P(A)≤1.1.奥地利遗传学家孟德尔用豌豆进行杂交试验,通过进一步研究,他发现了生物遗传的基本规律;2.抛掷硬币的模拟试验;3. 的前n位小数中数字6出现的频率统计;4.鞋厂某种成品鞋质量检验结果优等品频率的统计.从以上几个实例可以看出:在相同条件下,随着试验的次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画该随机事件发生的可能性大小,而将频率作为其近似值.一般地,如果随机事件A在n次试验中发生了m次,当试验的次数n很大时,我们可以将事件A发生的频率mn作为事件A发生的概率的近似值,即:()mP An.三、数学运用1.例题例1 试判断下列事件是随机事件、必然事件还是不可能事件:(1)我国东南沿海某地明年将3次受到热带气旋的侵袭;(2)若a为实数,则|a|≥0;(3)某人开车通过10个路口都将遇到绿灯;(4)抛一石块,下落;(5)一个正六面体的六个面分别写有数字1,2,3,4,5,6,将它抛掷两次,向上的面的数字之和大于12.例2 某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:(1)试计算男婴各年出生频率(精确到0.001);(2)该市男婴出生的概率约是多少?例3 某射手在同一条件下进行射击,结果如下表所示:(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?2.练习课本第88页练习 1,2,3课本第91页练习 1,2,3课本第92页习题 1,2备用:1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()A.必然事件 B.随机事件C.不可能事件 D.无法确定2.下列说法正确的是()A.任一事件的概率总在(0.1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1 D.以上均不对3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。

高中数学 3.2古典概型(1)导学案 苏教版必修3

高中数学 3.2古典概型(1)导学案 苏教版必修3
C.(男男),(男女),(女男),(女女)D.(男男),(女女)
4.从分别写有A、B、C、D、E的五张卡片中任取两张,这两张卡片上的字母顺序
恰好相邻的概率为__________.
5.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.
(1)写出这个试验的所有基本事件;
(2)求这个试验的基本事件的总数;
A.一定不会淋雨B.淋雨机会是
C.淋雨机会是 D.淋雨机会是
3.口袋中有形状、大小都相同的1只白球和1只黑球,先摸出1只球,记下颜色后
放回口袋,然后再摸出1只球.
(1)一共可能出现多少种不同的结果?
(2)出现“1只白球、1只黑球”的结果有多少种?
(3)出现“1只白球、1只黑球”的概率是多少?
7.三位同学A、B、C到电影院看电影,他们的三张票的座位号分别为2,4,6号.
课题:3.2 古典概型(一)
班,会把事件分解成等可能基本事件;
2、理解古典概型的特点,掌握用枚举法求等可能事件的概率方法.
【课前预习】
1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意
抽取一张,那么抽到的牌为红心的概率有多大?
(1)列出他们三人所有的坐法;
(2)求A不坐在2号位的概率.
【课后巩固】
1.下列命题中,正确的命题的序号是_______________________.
①.某袋中装有大小均匀的三个红球,两个黑球、一个白球,任取一球,那么每种颜色的球被摸到的可能性相同;
②.从-4,-3,-2,-1,0,1,2中任取一数,取到数小于0与不小于0的可能性相同;
③.分别从3名男同学,4名女同学中各选一名代表,每一个男女同学当选的可能性相同;
④.5人抽签,甲先抽,乙后抽,那么乙与甲抽到某号中奖签的可能性肯定不同.

高中数学第3章概率3.2古典概型1教案苏教版必修3201710314124

高中数学第3章概率3.2古典概型1教案苏教版必修3201710314124

3.2 古典概型 1整体设计教材分析本节课是必修(数学3)第3章概率第二大节内容——3.2古典概型.我们可以把它分为2个课时.第一课时主要学习古典概型的概念;第二课时主要是古典概型的运用,通过利用古典概型来解题进一步加深对概念及公式的理解,同时也激发学生对概率的热爱.第一个课时通过创设问题情境“现有方块J 、Q 、K 和梅花A 、2共5张扑克牌,将这些牌正面向下摆放在桌面上,现从中任意抽取一张,试问抽到的牌为方块的概率为多少?”引导学生发现求此事件的概率,如果再进行大量重复试验来求的话,既耗时又不精确.从而激发学生勇于探索的精神,引入古典概型(全称为:古典概率模型)的概念及特点.并围绕创设的问题情境,由学生通过自主探究来得到古典概型的概率计算公式:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是n 1.如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为:P(A)=nm . 得出古典概型的概率计算公式之后,我们通过例题教学与课堂练习进一步理解古典概型的概念及特点,同时也进一步巩固古典概型的概率计算公式.在每个例题的讲解过程中,步步为营,注重学生的参与性.讲解完每个例题之后,由学生自己谈感受,总结得失.课堂练习主要由学生完成,教师适时作出适当的点拨.最后的课堂小结也让学生来参与,由他们自己来总结,更利于学生对知识、技能的掌握与提高.三维目标1.通过创设问题情境引出古典概型的概念及特点,采用启发式、探究式教学.2.理解古典概型的概念及特点,会判断一个随机事件是否符合古典概型.3.通过进行大量重复试验来求问题情境中概率,既耗时又不精确,所以必须找到方法来解决,从而探究出古典概型的概率计算公式.4.掌握古典概型的概率计算公式.会用列举法列举出随机事件所含的基本事件数.5.会利用古典概型的概率计算公式来解决一些简单的概率问题,培养学生实事求是的科学态度,激发学生勇于探索、坚持不懈的精神.重点难点教学重点:1.理解古典概型的概念及特点.2.古典概型的概率计算公式的运用.教学难点:1.会判断一个随机事件是否符合古典概型.2.会运用古典概型的概率计算公式来解题.课时安排2课时教学过程第1课时导入新课设计思路一:(问题导入)请同学们思考并回答下面的问题:现有方块J 、Q 、K 和梅花A 、2共5张扑克牌,将这些牌正面向下摆放在桌面上,现从中任意抽取一张,试问抽到的牌为方块的概率为多少?设计思路二:(实验感知)在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后汇总起来;试验二:抛掷一枚质地均匀的骰子,分别记录“1点”“2点”“3点”“4点”“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后汇总起来.推进新课新知探究对于导入思路一:倘若进行大量重复试验,用“出现方块”这一事件的频率估计概率,不仅工作量大而且还不准确.因此我们不妨这样来解决:把“抽到方块”记为事件A ,那么事件A 相当于“抽到方块J”、“抽到方块Q”、“抽到方块K”这3种情况,而“抽到梅花”相当于“抽到梅花A”、“抽到梅花2” 这2种情况,由于是任意抽取的,因此,认为出现这5种情况的可能性都相等.当出现方块J 、Q 、K 这3种情形之一时,事件A 就发生,因而有P(A)=53. 在一次试验中可能出现的每一个基本结果称为基本事件(elementary event ).如在上面的问题中“抽到方块”即为一个基本事件.如果在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件.上面的问题有这样两个特点:(1)试验中所有可能出现的基本事件只有有限个,即具有有限性;(2)每个基本事件出现的可能性相等即具有等可能性.我们将满足上述条件的概率模型称为古典概型(classical probability model )倘若一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是n 1.如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P(A)= nm . 对于导入思路二:在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受.教师最后汇总方法、结果和感受,并提出问题.1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?(不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率.)2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?(在试验一中随机事件只有两个,即“正面朝上”和“反面朝上”,并且它们都是互斥的,由于硬币质地是均匀的,因此出现两种随机事件的可能性相等,即它们的概率都是21; 在试验二中随机事件有六个,即“1点”“2点”“3点”“4点”“5点”和“6点”,并且它们都是互斥的,由于骰子质地是均匀的,因此出现六种随机事件的可能性相等,即它们的概率都是61.) 我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果.基本事件有如下的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.特点(2)的理解:在试验一中,必然事件由基本事件“正面朝上”和“反面朝上”组成;在试验二中,随机事件“出现偶数点”可以由基本事件“2点”“4点”和“6点”共同组成.因此有:(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等.(等可能性)我们将满足上述条件的概率模型称为古典概型(classical probability model ) 在实验一中,出现正面朝上的概率与反面朝上的概率相等,即P (“正面朝上”)=P (“反面朝上”),P (“出现正面朝上”)=基本事件的总数数所包含的基本事件的个出现正面朝上”“21=. 在试验二中,出现各个点的概率相等,即P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”),所以P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”)=61. 进一步地,还可以计算这个试验中任何一个事件的概率,例如, P (“出现偶数点”)=P (“2点”)+P (“4点”)+P (“6点”)=2163616161==++, 即P (“出现偶数点”)=基本事件的总数数所包含的基本事件的个出现偶数点”“63=. 根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为 P (A )=基本事件的总数所包含基本事件个数A . 因此有:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是n 1.如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P(A)= nm . 应用示例思路1例1 为了考查玉米种子的发芽情况,在1号、2号、3号培养皿中各种一粒玉米种子,(1)列举全体等可能基本事件;(2)下列随机事件由哪些等可能基本事件组成.事件A :三粒都发芽;事件B :恰有两粒发芽;事件C :至少有一粒发芽.分析:根据实际问题,在正确理解等可能事件的含义的基础上来列举等可能事件,再根据所列举的等可能事件来确定某一个随机事件由哪些等可能事件组成.解:(1)按1号、2号、3号培养皿的顺序,玉米种子发芽的情况可能出现的结果有(发芽,发芽,发芽),(发芽,发芽,不发芽),(发芽,不发芽,发芽),(不发芽,发芽,发芽),(发芽,不发芽,不发芽),(不发芽,发芽,不发芽),(不发芽,不发芽,发芽),(不发芽,不发芽,不发芽),即1号培养皿有两种可能结果,对于1号培养皿的每种可能结果2号培养皿又有两种可能结果,对于1号、2号培养皿的每种可能结果,3号培养皿又有两种可能结果,所以共有2×2×2=8种不同的结果.因此全体等可能基本事件是:(发芽,发芽,发芽),(发芽,发芽,不发芽),(发芽,不发芽,发芽),(不发芽,发芽,发芽),(发芽,不发芽,不发芽),(不发芽,发芽,不发芽),(不发芽,不发芽,发芽),(不发芽,不发芽,不发芽).(2)事件A 由一个基本事件组成即(发芽,发芽,发芽),事件B 由3个基本事件组成即(发芽,发芽,不发芽),(发芽,不发芽,发芽),(不发芽,发芽,发芽),事件C 由7个基本事件组成即(发芽,发芽,发芽),(发芽,发芽,不发芽),(发芽,不发芽,发芽),(不发芽,发芽,发芽),(发芽,不发芽,不发芽),(不发芽,发芽,不发芽),(不发芽,不发芽,发芽).点评:(1)枚举法是一种重要的计数方法,在用枚举法计数时特别需要注意的是不重复不遗漏;(2)正确理解等可能事件的意义,能够正确地将某一个事件分解成等可能基本事件是解决古典概型问题的关键.例2 一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两只球.(1)共有多少个基本事件?(2)摸出的两只球都是白球的概率是多少?分析:可以用枚举法找出所有的等可能基本事件.解:(1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下基本事件〔摸到1,2号球用有序实数对(1,2)表示〕:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),因此,共有10个基本事件.(2)记事件A=“摸出的两只球都是白球”,(1)中的10个基本事件发生的可能性相同,事件A 包含了3个基本事件,即(1,2),(1,3),(2,3),如下图所示,根据古典概型的概率计算公式可得:P(A)=103.答:(1)共有10个基本事件;(2)摸出的两只球都是白球的概率是103. 点评:运用枚举法列举构成各个事件的基本事件是直接有效的方法,我们必须掌握这种方法,在运用枚举法时要做到不重复不遗漏.例3 豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D ,决定矮的基因记为d ,则杂交所得第一子代的一对基因为Dd.若第二子代的D ,d 基因的遗传是等可能的,求第二子代为高茎的概率(只要有基因D 则其就是高茎,只有两个基因全是d 时,才显现矮茎).分析:由于第二子代的D ,d 基因的遗传是等可能的,所以可以将各种可能的遗传情形都枚举出来:解:Dd 与Dd 的搭配方式有4种:DD ,Dd , dD ,dd ,即总共有4个等可能基本事件;其中只有第四种“dd”1种表现为矮茎,即事件“第二子代为高茎”共包含了3个等可能基本事件,故事件“第二子代为高茎”的概率为43=75%. 答:第二子代为高茎的概率为75%.点评:应用枚举法时也可以用树形图来列举出所有的基本事件.例4 单选题是标准化考试中常用的题型,一般是从A ,B ,C ,D 四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?分析:解决这个问题的关键,即讨论这个问题什么情况下可以看成古典概型.如果考生掌握或者掌握了部分考查内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才可以化为古典概型.解:这是一个古典概型,因为试验的可能结果只有4个:选择A 、选择B 、选择C 、选择D ,即基本事件共有4个,考生随机地选择一个答案是选择A ,B ,C ,D 的可能性是相等的.从而由古典概型的概率计算公式得: P(“答对”)=基本事件的总数数所包含的基本事件的个答对”“=41=0.25. 点评:解答本题的关键是判断随机事件是否适合古典概型,如果是古典概型则运用古典概型概率计算公式进行计算.例5 现有一批产品共有10件,其中8件为正品,2件为次品.(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.分析:(1)为返回抽样;(2)为不返回抽样.解:(1)有放回地抽取3次,按抽取顺序(x,y,z )记录结果,则x,y,z 都有10种可能,所以试验结果有10×10×10=103种;设事件A 为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P(A)= 33108=0.512. (2)可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z ),则x 有10种可能,y 有9种可能,z 有8种可能,所以试验的所有结果为10×9×8=720种.设事件B 为“3件都是正品”,则事件B 包含的基本事件总数为8×7×6=336, 所以P(B)= 720336≈0.467. 点评:关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.对于问题(2)还可以有如下解法:看作不放回3次无顺序抽样,先按抽取顺序(x,y,z )记录结果,则x 有10种可能,y 有9种可能,z 有8种可能,但(x,y,z ),(x,z,y ),(y,x,z ),(y,z,x ),(z,x,y ),(z,y,x ),是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B 包含的基本事件个数为8×7×6÷6=56,因此P(B)= 12056≈0.467. 思路2例1 有5段线段,它们的长度分别为2,4,6,8,10,从中任取三段,能构成三角形的概率是( )103.51.52.203.D C B A 分析:用枚举法将从5段线段中任取三段的等可能基本事件列举出来,再根据三角形的三边必须满足两边之和大于第三边来确定事件“任取三段线段能构成三角形”的等可能基本事件数.从5段长度分别为2,4,6,8,10的线段任取三段共有(2,4,6),(2,4,8),(2,4,10),(2,6,8),(2,6,10),(2,8,10),(4,6,8),(4,6,10),(4,8,10)(6,8,10)等10种情况,即共有10个等可能基本事件,能够构成三角形必须满足“两边之和大于第三边”,因此能够作为三角形三边的线段长为(4,6,8),(4,8,10),(6,8,10)三种,即事件A“能够构成三角形”含有3个等可能基本事件,所以有P(A)=103. 答案:D点评:根据概率的计算公式P(A)=nm ,必须要解决m,n 的值是多少的问题,这可以运用枚举法来解决;对于本题运用枚举法时还可以有如下方法:因为任取三个数后剩下两个数,因此取三个数与取两个数的情况是相同的,因此只要列举取两个数的情况,如下:(2,4),(2,6),(2,8),(2,10),(4,6),(4,8),(4,10),(6,8),(6,10),(8,10),共10种情况,共有10个等可能基本事件,能够构成三角形必须满足“两边之和大于第三边”,因此能够作为三角形三边的线段长为(4,6,8),(4,8,10),(6,8,10)三种,即事件A“能够构成三角形”含有3个等可能基本事件,所以有P(A)= 103. 例2 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率.分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型.解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……(出现6点),所以基本事件数n=6,事件A=(掷得奇数点)=(出现1点,出现3点,出现5点),其包含的基本事件数m=3.所以,P (A )=5.02163===n m . 点评:利用古典概型的计算公式时应注意两点:(1)所有的基本事件必须是互斥的;(2)m 为事件A 所包含的基本事件数,求m 值时,要做到不重复不遗漏.例3 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.分析:将符合“每次任取一件,每次取出后不放回,连续取两次”的所有结果一一列举出来,就得到等可能基本事件的总数,用同样的方法得到符合“取出的两件产品中恰有一件次品”所包含的基本事件总数,就可以得到本题的解答.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2),(a 1,b 2),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 2,a 2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品用A 表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)].事件A 由4个基本事件组成,因而,P (A )=3264=. 点评:本题是不放回问题,注意与有放回问题的区别.例4 袋中有红、白色球各一个,有放回地抽三次,写出所有基本事件的全集,并计算下列事件的概率:(1)三次颜色恰有两次同色;(2)三次颜色全相同;(3)三次抽取的红球多于白球.分析:运用枚举法列出基本事件总数,然后再计算某个事件包含的基本事件总数.解:每个基本事件为(x,y,z),其中x,y,z 分别取红、白球,全集U={(红,红,红),(红,红,白),(红,白,红),(白,红,红),(白,白,红),(白,红,白),(红,白,白),(白,白,白)},从而n=8.(1)记事件A 为“三次颜色恰有两次同色”,因为A 中含有基本事件的个数m=6, 所以P(A)=75.086==n m ; (2)记事件B 为“三次颜色全相同”,因为B 中含有基本事件的个数m=2, 所以P(B)=25.082==n m ; (3)记事件C 为“三次抽取的红球多于白球”,因为C 中含有基本事件的个数m=4, 所以P(C)=5.084==n m . 点评:对于第(3)小题,因为三次取球,红、白色球的个数必定不相等,故红球多于白球与白球多于红球的概率相等,都是0.5.例5 在一个口袋中装有10个标有1到10这十个整数的小球,从口袋中任意取出一个小球,记下它的标号x ,然后第二次再从口袋中任意取出一个小球,记下它的标号y ,试求:(1)x+y 是10的倍数的概率;(2)xy 是3的倍数的概率.分析:运用枚举法列出基本事件总数以及某一个事件包含的基本事件数.解:先后两次取出小球,第一次取出的小球有10种不同的结果,第二次取出的小球也有10种不同的结果,而且对于第一次的每一个结果第二次有10种结果与它对应,所以先后两次取出小球共有10×10=100个不同的结果,故基本事件个数是100个.(1)因为x+y 是10的倍数,它包含下列情况:(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(10,10)共10种基本事件,因此所求事件“x+y 是10的倍数”的概率P=10010=0.1. (2)因为xy 是3的倍数,所以x 是3的倍数或y 是3的倍数,又1到10这十个数可以分为是3的倍数和不是3的倍数两类,记A={3,6,9},B={1,2,4,5,7,8,10},当x∈A,y∈B 时,xy 是3的倍数共有3×7=21种,当y∈A,x∈B 时,xy 是3的倍数也有3×7=21种,当x∈A,y∈A 时,xy 是3的倍数共有3×3=9种,因此所求事件“xy 是3的倍数”的概率P=1005110092121=++=0.51. 答:(1)x+y 是10的倍数的概率为0.1;(2)xy 是3的倍数的概率为0.51.点评:运用等可能事件的概率公式时,一定要将基本事件总数和满足条件的事件总数求正确,枚举法和分类讨论是解决这类问题行之有效的常用方法.知能训练1.先后抛掷两枚均匀的硬币,出现一枚正面、一枚反面的概率是( )1.21.31.41.D C B A2.在所有的两位数中,任取一个数,则这个数能被2或3整除的概率为( ) 21.54.32.65.D C B A 3.从甲、乙、丙、丁四人中选3人作代表参加某个会议,则甲一定当选的概率为________________ .4.有4个房间安排3个人住宿,每个人可以住进任一房间,且住进房间是等可能的,求:(1)事件“指定的3个房间各有1人”的概率;(2)事件“第1号房间有1人,第2号房间有2人”的概率.(每个房间最多可以住3人)解答:1.C2.B3.从四人中选出3人共有4种等可能结果(甲,乙,丙),(甲,乙,丁) ,(甲,丙,丁) ,(乙,丙,丁),其中甲一定当选的有3种,故甲一定当选的概率为P=43=0.75. 4.(1)运用枚举法可得基本事件总数是43,记“指定的3个房间各有1人”为事件A ,则A 中包含的基本事件数为3×2=6个,所以P(A)= 323463=. (2) 记“第1号房间有1人,第2号房间有2人”为事件B ,则B 中包含的基本事件数为3个,所以P(B)= 643433=. 课堂小结数学是一门严谨的科学,而用进行大量重复试验来估计事件的概率,既麻烦又不准确,因此在一些特殊的情况下,我们可以构造出计算事件概率的通用方法,从而直接得到概率的准确值.就是运用古典概型的概率计算公式来计算相应事件的概率,比较简单.运用古典概型的概率计算公式计算事件的概率时,一定要验证该试验中所构造的基本事件是否满足古典概型的第二个条件,即每个结果出现是等可能的,否则计算出的概率将是错误的.利用“数形结合”的方法即画树形图的方法来得到基本事件的个数,可以帮助我们大大简化计算量,而且还很直观.尤其是树形图可以帮助我们来枚举随机试验包含的所有基本事件,不容易遗漏.作业课本习题3.2 1~5.设计感想根据本课时教学内容的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来.使学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现学生的主体地位,培养学生由具体到抽象,由特殊到一般的数学思维能力,形成实事求是的科学态度,增强锲而不舍的求学精神.本节课的教学通过提出问题,引导学生发现问题,经历思考交流概括归纳后得出古典概型的概念,由两个问题的提出进一步加深对古典概型的两个特点的理解;再通过学生观察类比推导出古典概型的概率计算公式.这一过程能够培养学生发现问题、分析问题、解决问题的能力.在解决概率的计算上,鼓励学生尝试枚举和画出树形图,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑.。

高中数学古典概型 1苏教版必修3 教案

高中数学古典概型 1苏教版必修3 教案

古典概型教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A (3)了解随机数的概念;2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.教学重点:正确理解掌握古典概型及其概率公式;教学难点:正确理解随机数的概念,并能应用计算机产生随机数.教学过程:一、问题情境1.有红心1,2,3和黑桃4,5这5X扑克牌,将其牌点向下置于桌上,现从中任意抽取一X,那么抽到的牌为红心的概率有多大?2.除了进行大量重复试验外,还有更好地解决问题的方法吗?二、建构数学在一次试验中可能出现的每一个基本结果称为基本事件.若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件.上面的问题具有以下两个特点:(1)所有的基本事件只有有限个;(2)每个基本事件的发生都是等可能的.我们将满足上述条件的随机试验的概率模型称为古典概型。

如果一次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是1n.如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为:P(A)=mn.三、数学运用1.例题例1 一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两只球.(1)共有多少个基本事件?(2)摸出的两只球都是白球的概率是多少?例2 豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D,决定矮的基因记为d,则杂交所得第一子代的一对基因为Dd.若第二子代的D,d基因的遗传是等可能的,求第二子代为高茎的概率(只要有基因D则其就是高茎,只有两个基因全是d时,才显现矮茎).思考:你能求出上述第二子代的种子经自花传粉得到的第三子代为高茎的概率吗?例3 将一颗骰子先后抛掷2次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两数之和是3的倍数的结果有多少种?(3)两数之和是3的倍数的概率是多少?例4 用三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率.例5 从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。

高中数学 第3章 概率 3.2 古典概型讲义 苏教版必修3-苏教版高一必修3数学教案

高中数学 第3章 概率 3.2 古典概型讲义 苏教版必修3-苏教版高一必修3数学教案

3.2 古典概型.在一次试验中可能出现的每一个基本结果称为基本事件,若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件.2.我们把具有:(1)所有的基本事件只有有限个;(2)每个基本事件的发生都是等可能的,两个特点的概率模型称为古典概率模型,简称古典概型.3.基本事件总数为n 的古典概型中,每个基本事件发生的概率为1n.4.在古典概型中,任何事件的概率P (A )=m n,其中n 为基本事件的总数,m 为随机事件A 包含的基本事件数.1.下列对古典概型的说法不正确的是( ) A .试验中所有可能出现的基本事件只有有限个 B .每个事件出现的可能性相等 C .每个基本事件出现的可能性相等D .基本事件总数为n ,随机事件A 若包含k 个基本事件,则P (A )=k nB [正确理解古典概型的特点,即基本事件的有限性与等可能性.]2.从1,2,3,4中任意取两个不同的数字组成两位数,则基本事件共有________个. 12 [基本事件为12,21,13,31,14,41,23,32,24,42,34,43,共12个.]3.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.56[分别以1,2,3,4表示1只白球,1只红球,2只黄球,则随机摸出2只球的所有基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个基本事件,2只球颜色不同的基本事件有5个,故所求的概率P =56.]4.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是________.15[由题意,b >a 时,b =2,a =1;b =3,a =1或2,即共有3种情况.又从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b共有5×3=15种情况,故所求概率为315=15.]基本事件的计数问题(1)写出这个试验的基本事件;(2)求这个试验的基本事件的总数;(3)“恰有2枚正面朝上”这一事件包含哪些基本事件?思路点拨:由于本试验所包含基本事件不多,可以利用列举法.[解] (1)这个试验的基本事件有:(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反).(2)这个试验的基本事件的总数是8.(3)“恰有2枚正面朝上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).求基本事件的个数常用列举法、列表法、画树形图法,解题时要注意以下几个方面:(1)列举法适用于基本事件个数不多的概率问题,用列举法时要注意不重不漏;(2)列表法适用于基本事件个数不是太多的情况,通常把问题归结为“有序实数对”,用列表法时要注意顺序问题;(3)画树形图法适合基本事件个数较多的情况,若是有顺序的问题,可以只画一个树形图,然后乘元素的个数即可.1.一只口袋内装有大小相同的5个球,其中3个白球,2个黑球,从中一次摸出两个球.(1)共有多少个基本事件?(2)两个都是白球包含几个基本事件?思路点拨:解答本题可先列出摸出两球的所有基本事件,再数出均为白色的基本事件数.[解] (1)法一:采用列举法分别记白球为1,2,3号,黑球为4,5号,有以下基本事件:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10个(其中(1,2)表示摸到1号,2号球).法二:(采用列表法)设5个球的编号为a,b,c,d,e,其中a,b,c为白球,d,e为黑球.列表如下:a b c d ea (a,b)(a,c)(a,d)(a,e)b (b,a)(b,c)(b,d)(b,e)c (c ,a ) (c ,b )(c ,d ) (c ,e ) d (d ,a ) (d ,b ) (d ,c )(d ,e ) e(e ,a )(e ,b )(e ,c )(e ,d )由于每次取两个球,每次所取两个球不相同,而摸(b ,a )与(a ,b )是相同的事件,故共有10个基本事件.(2)解法一中“两个都是白球”包括(1,2),(1,3),(2,3)三种.解法二中,包括(a ,b ),(b ,c ),(c ,a )三种.2.做投掷2颗骰子的试验,用(x ,y )表示结果,其中x 表示第一颗骰子出现的点数,y 表示第2颗骰子出现的点数.写出:(1)事件“出现点数之和大于8”; (2)事件“出现点数相等”; (3)事件“出现点数之和等于7”.思路点拨:用列举法将所有结果一一列举出来,同时应把握列举的原则,不要出现重复和遗漏.[解] (1)“出现点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).(2)“出现点数相等”包含以下6个基本事件:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).(3)“出现点数之和等于7”包含以下6个基本事件:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1).利用古典概型公式求解概率【例2】 先后掷两枚均匀的骰子. (1)一共有多少种不同的结果?(2)向上的点数之和是5的结果有多少种? (3)向上的点数之和是5的概率是多少? (4)出现两个4点的概率是多少?思路点拨:基本事件个数有限→每个基本事件发生是等可能的→古典概型→利用P (A )=mn求解[解] (1)用一个“有序实数对”表示先后掷两枚骰子得到的结果,如用(1,3)表示掷第一枚骰子得到的点数是1,掷第二枚骰子得到的点数是3,则下表列出了所有可能的结果.掷第二枚得到的点123456由于掷骰子是随机的,因此这36种结果的出现是等可能的,该试验的概率模型为古典概型. (2)在所有的结果中,向上的点数之和为5的结果有(1,4),(2,3),(3,2),(4,1)共4种. (3)记“向上点数之和为5”为事件A , 由古典概型的概率计算公式可得P (A )=436=19.(4)记“出现两个4点”为事件B . 因为事件B 出现的可能结果只有1种, 所以事件B 发生的概率P (B )=136.古典概型的解题步骤 (1)阅读题目,搜集信息; (2)判断是否是古典概型;(3)求出基本事件总数n 和事件A 所包含的结果数m ; (4)用公式P (A )=mn求出概率并下结论.3.甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一道题.甲抽到选择题,乙抽到判断题的概率是多少?思路点拨:由题意知本题是一个等可能事件的概率.甲、乙两人从10道题中不放回地各抽一道题,共有90种抽法,即基本事件总数是90.[解] 甲、乙两人从10道题中不放回地各抽一道题,先抽的有10种抽法,后抽的有9种抽法,故所有可能的抽法是10×9=90(种),即基本事件总数是90.记“甲抽到选择题,乙抽到判断题”为事件A ,下面求事件A 包含的基本事件数: 甲抽到选择题有6种抽法,乙抽到判断题有4种抽法,所以事件A 的基本事件数为6×4=24.P (A )=2490=415.4.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球、2个白球;乙袋装有2个红球、3个白球.现从甲、乙两袋中各任取2个球,求取到的4个球全是红球的概率.思路点拨:本题求解基本事件的总数是关键,对于(甲,甲)的每一种结果,都有(乙,乙)的10种结果配对,所以{(甲,甲),(乙,乙)}共有6×10=60(个)基本事件.[解] 试验的所有结果可以表示{(甲,甲),(乙,乙)}.其中(甲,甲)表示从甲袋中取出的球,(乙,乙)表示从乙袋中取出的球,则从甲袋中取出的球有(红1,白1),(红1,白2),(红2,白1),(红2,白2),(红1,红2),(白1,白2),共6种不同的结果;从乙袋中取出的球有(红1,白1),(红1,白2),(红1,白3),(红2,白1),(红2,白2),(红2,白3),(红1,红2),(白1,白2),(白1,白3),(白2,白3),共10种不同的结果.相对于(甲,甲),(乙,乙)而言,就有60个基本事件.记“取到的4个球为红球”为事件A ,则事件A 包含的基本事件只有1种,所以P (A )=160.概率与统计的综合问题据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.思路点拨:(1)利用频率分布直方图中的信息,所有矩形的面积和为1,求A .(2)对该部门评分不低于80的即为[80,90)和[90,100],求出频率,估计概率.(3)求出评分在[40,60)的受访职工和评分在[40,50)的人数,随机抽取2人,列举法求出所有可能情况,利用古典概型公式解答.[解] (1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006. (2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A 1,A 2,A 3; 受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B 1,B 2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为110. 有关古典概型与统计结合的题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用频率分布表、分布直方图、茎叶图等给出信息,只要能够从题中提炼出需要的信息,则此类问题即可解决.5.某校高三学生体检后,为了解高三学生的视力情况,该校从高三六个班的300名学生中以班为单位(每班学生50人),每班按随机抽样方法抽取了8名学生的视力数据.其中高三(1)班抽取的8名学生的视力数据与人数见下表:(2)已知其余五个班学生视力的平均值分别为 4.3,4.4,4.5,4.6,4.8.若从这六个班中任意抽取两个班学生视力的平均值作比较,求抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率.思路点拨:(1)把高三(1)班这8个学生的视力值相加,再除以8,即得平均值.(2)用列举法求得抽取的两个班学生视力的平均值之差的绝对值不小于0.2的取法,进而可求概率.[解] (1)高三(1)班学生视力的平均值为 4.4×2+4.6×2+4.8×2+4.9+5.18=4.7,故用上述样本数据估计高三(1)班学生视力的平均值为4.7.(2)从这六个班中任意抽取两个班学生视力的平均值作比较,所有的取法共有15种,而满足抽取的两个班学生视力的平均值之差的绝对值不小于0.2的取法有:(4.3,4.5),(4.3,4.6),(4.3,4.7),(4.3,4.8),(4.4,4.6),(4.4,4.7),(4.4,4.8),(4.5,4.7),(4.5,4.8),(4.6,4.8),共有10种,故抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率为P =1015=23.6.某冷饮店只出售一种饮品,该饮品每一杯的成本价为3元,售价为8元,每天售出的第20杯及之后的饮品半价出售,该店统计了近10天的饮品销量,如图所示,设x 为每天饮品的销量,y 为该店每天的利润.(1)求y 关于x 的表达式;(2)从日利润不少于96元的几天里任选2天,求选出的这2天日利润都是97元的概率.[解] (1)由题意,得y =⎩⎪⎨⎪⎧(8-3)x ,0≤x ≤19,x ∈Z ,(8-3)×19+(4-3)×(x -19),x >19,x ∈Z ,即y =⎩⎪⎨⎪⎧5x ,0≤x ≤19,x ∈Z ,x +76,x >19,x ∈Z .(2)由(1)可知,日销售量不小于20杯时,日利润不少于96元.日销售量为20杯时,日利润为96元;日销售量为21杯时,日利润为97元.从条形统计图可以看出,日销售量为20杯的有3天,日销售量为21杯的有2天. 日销售量为20杯的3天,记为a ,b ,c ,日销售量为21杯的2天,记为A ,B ,从这5天中任取2天,包括(a ,b ),(a ,c ),(a ,A ),(a ,B ),(b ,c ),(b ,A ),(b ,B ),(c ,A ),(c ,B ),(A ,B ),共10种情况.其中选出的2天日销售量都为21杯的情况只有1种,故所求概率为110.1.本节课的重点是了解基本事件的特点,能写出一次试验所出现的基本事件,会用列举法求古典概型的概率.难点是理解古典概型及其概率计算公式,会判断古典概型.2.本节课要掌握以下几类问题 (1)基本事件的两种探求方法.(2)求古典概型的步骤及使用古典概型概率公式的注意点. (3)利用事件的关系结合古典概型求概率. 3.本节课的易错点有两个 (1)列举基本事件时易漏掉或重复. (2)判断一个事件是否是古典概型易出错. 1.下列试验中,是古典概型的是( ) A .种下一粒种子观察它是否发芽B .从规格直径为250 m±0.6 mm 的一批合格产品中任意抽取一件,测得直径C .抛掷一枚质地均匀的硬币,观察其出现正面或反面D .某人射击中靶或不中靶C [A 中,一粒种子发芽和不发芽的可能性不相等,所以A 不是;B 中,每一件的直径不相同,即可能性不相等,所以B 不是;D 中,中靶和不中靶的可能性不相等,所以D 不是;C 中,出现正面和反面的可能性相等,且结果仅有两个,故选C .]2.一个口袋内装有2个白球和3个黑球,则在先摸出1个白球后放回的条件下,再摸出1个白球的概率是________.25[由于袋子中有2个白球和3个黑球,有放回地摸球,每次摸到白球的概率都是相等的,所以再摸出白球的概率为22+3=25.] 3.书架上有3本数学书,2本物理书,从中任意取出2本,则取出的两本书都是数学书的概率为________.310[利用列举法求出基本事件总数10个.求出取出的两本书都是数学书包含的基本事件个数3个,故所求概率P =310.]4.先后抛掷两枚大小相同的骰子. (1)求点数之和出现7点的概率; (2)求点数之和能被3整除的概率.思路点拨:分析题意,不难得知总的基本事件的个数为36个;记“点数之和出现7点”为事件A ,则事件A 中含有(6,1),(5,2),(4,3),(3,4),(2,5),(1,6)共6个基本事件,即可求出对应的概率;同理,列举出点数之和能被3整除所包含的基本事件数,由概率公式可得答案.[解] 如图所示,从图中容易看出基本事件与所描点一一对应,共36种. (1)记“点数之和出现7点”为事件A ,从图中可以看出,事件A 包含的基本事件共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6).故P (A )=636=16.(2)记“点数之和能被3整除”为事件C ,则事件C 包含的基本事件共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P (C )=1236=13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省响水中学高中数学第3章《概率》古典概型(1)导学案苏
教版必修3
【学习目标】
1.能说出基本事件的特点,会用列举法把一次试验的所有基本事件列举出来.
2.能运用古典概型的概念及其特点,判断一个试验是否为古典概型.
3.能应用古典概型的概率公式计算随机事件的概率.
【重点难点】
重点:利用古典概型求随机事件的概率.
难点:判断一个实验是否是古典概型,分清基本事件的个数与实验中基本事件的总数.【课前预习】
问题1:在上面的情境中,抽到的牌的可能结果总共有54种,每张牌抽到的可能性是相等的,大王只有1张,红心牌有13张,所以抽到大王的概率为,抽到红心牌的概率为,这种概率的求法其实就是我们这节课所学的古典概型.
问题2:古典概型与基本事件
(1)在一次试验中可能出现的每一个基本结果称为基本事件.
(2)古典概型的定义:
①有限性:试验中所有可能出现的基本事件只有有限个;
②:每个基本事件出现的可能性相等.
我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.
问题3:古典概型的计算
古典概型的概率计算公式:对于古典概型,如果实验的所有可能的结果(基本事件)的个数为n,那么每一个基本事件的概率都是,若随机事件A包含的基本事件数为m(m≤n),则随机事件A的概率为.
问题4:古典概型的计算步骤
(1)求出基本事件的总个数n,基本个数较少时,通常用列举法把所有的基本事件列举出.
(2)求出事件A包含的基本事件个数m(m≤n).
(3)求出事件A的概率:P(A)= = .
【课堂探究】
探究一
古典概型的判断
1、下列试验中,是古典概型的有.
(1)种下一粒种子观察它是否发芽;
(2)从直径为250 mm±0.6 mm的一批合格产品中任意抽一根,测量其直径d;
(3)抛一枚硬币,观察其出现正面或反面;
(4)某人射击中靶或不中靶;
(5)两个奥运会志愿者相约在中午12点到1点之间在志愿服务地点交接班.
探究二
A、B、C共3人排成一排.
(1)写出所有的基本事件;(2)求A不排在中间这个事件的概率.
探究三
一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,
从中一次摸出两只球.
(1)共有多少基本事件?
(2)摸出的两只球都是白球的概率是多少?
探究四
豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D,决定矮的基因记为d,则杂交所得第一子代的一对基因为Dd,若第二子代的D、d基因的遗传是等可能的,求第二子代为高茎的概率(只要有基因D则其就是高茎,只有两个基因全是d时,才显现矮茎).
4.从分别写有A、B、C、D、E的五张卡片中任取两张,这两张卡片上的字母顺序恰好相邻的概率为__________.
5.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.
(1)写出这个试验的所有基本事件;
(2)求这个试验的基本事件的总数;
(3)“恰有两枚正面向上”这一事件包含哪几个基本事件?它的概率是多少?
6.口袋中有形状、大小都相同的1只白球和1只黑球,先摸出1只球,记下颜色后放回口袋,然后再摸出1只球.
(1)一共可能出现多少种不同的结果?
(2)出现“1只白球、1只黑球”的结果有多少种?
(3)出现“1只白球、1只黑球”的概率是多少?。

相关文档
最新文档