电路邱关源第五版学习笔记
电路 邱关源 第五版 学习笔记
邱关源《电路》笔记及课后习题(电阻电路的一般分析)【圣才出品】
第3章电阻电路的一般分析3.1 复习笔记一、电路图论的基本概念1.图(G)图(G)是具有给定连接关系的结点和支路的集合,其中每条支路的两端都连到相应的结点上,允许孤立结点的存在,没有结点的支路不能称为图。
路径:从G的一个结点出发,依次通过图的支路和结点(每一支路和结点只通过一次),到达另一个结点(或回到原出发点),这种子图称为路径。
连通图:当G的任意两结点都是连通的,称G为连通图。
有向图:赋予支路方向的图称为有向图。
2.树(T)满足下列三个条件的子图,称为G的一棵树:①连通的;②包含G的全部结点;③本身没有回路。
树支与连支:属于树的支路称为树支;不属于树的支路称为连支。
基本回路:对于G的任意一个树,有且只有一条连支回路,这种回路称为单连支回路或基本回路。
树支数:对于有n个结点,b条支路的连通图,树支数=n-1。
推论:连枝数=b-n+1;基本回路数=连支数=b-n+1。
二、KCL和KVL的独立方程数KCL的独立方程数:对一个具有n个结点的电路而言,其中任意的(n-1)个结点的KCL方程是独立的。
KVL的独立方程数:对一个具有n个结点和b条支路的电路而言,其KVL的独立方程数为(b-n+1)。
三、电路的分析方法1.支路电流法(1)支路电流法是以b个支路电流为变量列写b个方程,并直接求解。
其方程的一般形式为(2)支路电流法解题步骤①标出各支路电流的方向;②依据KCL列写(n-1)个独立的结点方程;③选取(b-n+1)个独立回路,标出回路绕行方向,列写KVL方程。
注:①独立结点选择方法:n个结点中去掉一个,其余结点都是独立的;②独立回路选择方法:先确定一个树,再确定单连支回路(基本回路),仅含唯一的连支,其余为树支。
2.网孔电流法(1)网孔是最简单的回路,即不含任何支路的回路。
网孔数=独立回路数=b-n+1。
网孔电流法是以网孔电流为未知量,根据KVL对全部网孔列出方程求解。
(2)网孔电流法解题步骤①局部调整电路,当电路中含有电流源和电阻的并联组合时,可转化为电压源和电阻的串联组合;②选取网孔电流,指定网孔电流的参考方向;③依据KVL列写网孔电流方程,自阻总为正,互阻视流过的网孔电流方向而定,两电路同向取“+”,异向取“-”。
电路(邱关源第五版)第一章
则欧姆定律写为
u
+
i –G u
u –R i
公式和参考方向必须配套使用!
返 回 上 页 下 页
3.功率和能量
功率
i
R
+
i
u
R
+
p u i i2R u2 / R
p u i (–R i) i
–i2 R - u2/ R
-
u
表明 电阻元件在任何时刻总是消耗功率的。
返 回 上 页 下 页
+ u
关联参考方向
i
u
非关联参考方向
+
返 回
上 页
下 页
例
A
+
i
B
u
-
电压电流参考方向如图中所标, 问:对A、B两部分电路电压电 流参考方向关联否? 答:A电压、电流参考方向非关联; B电压、电流参考方向关联。
注意
① 分析电路前必须选定电压和电流的参考方向
② 参考方向一经选定,必须在图中相应位臵标注 (包括方向和符号),在计算过程中不得任意改变。
重点: 1. 电压、电流的参考方向 2. 电阻元件和电源元件的特性
3. *基尔霍夫定律*
返 回
1.1 电路和电路模型
1.实际电路
功能 由电工、电子器件或设备按预期
目的连接构成的电流的通路。
a 电能的传输与转换; (如电力工程) b 信息的传递与处理。 (如信息工程)
返 回
上 页
下 页
发电机
第1章
电路模型和电路定律
本章重点
1.1
电路和电路模型 电流和电压的参考方向 电功率和能量 电路元件
1.5
电路(邱关源第五版学习笔记)
电路.邱关源-第五版-学习笔记邱关源的《电路》一书是电路分析的经典教材,深受广大电子工程师和电学爱好者的喜爱。
本文将对该书的第五版进行学习笔记,主要介绍其内容与思维框架。
一、基础概念与基本定律电路是由电源、电阻、电容、电感等元件组成,其本质是电子运动的场所。
在分析电路之前,需要掌握一些基础概念和基本定律。
1. 电量:电荷的多少,量纲为C(库仑)。
2. 电压:电荷在两点之间的势能差,量纲为V(伏特)。
3. 电流:单位时间内通过导体截面的电荷量,量纲为A(安培)。
4. 电阻:阻碍电流通过的物质特性,单位是欧姆(Ω)。
5. 电功率:电源对电路的能量供给速率,量纲为W(瓦特)。
上述概念可以通过欧姆定律、基尔霍夫定律、毕奥-萨伐尔定律等基本定律来描述,这些定律是电路分析的基本工具。
在学习电路分析时,要灵活应用这些定律,找到问题的本质,解决实际问题。
二、电路简化在具体分析电路之前,通常会先对电路进行简化,以便更好地理解和分析其特性。
1. 串联和并联:将电阻串联和并联,可以得到等效电阻,从而简化电路。
2. 戴维南定理和诺顿定理:利用戴维南定理和诺顿定理,可以将复杂的电路转化为等效电源和等效电阻,从而更容易进行分析。
3. 负反馈:在电路中引入负反馈,可以使电路的输出对输入更为稳定,减小非线性失真和频率响应不平坦等问题。
三、交流电路分析交流电路是电路分析的重要内容之一,涉及到复数和相角等概念。
1. 复数:复数具有实部和虚部,可以表示电流和电压的振幅和相位差等信息。
在交流电路中,通常使用复数来描述振幅和相位的变化。
2. 相角:相角指电流和电压之间的相位差,表示电路中电流和电压的时序关系。
在交流电路中,需要经常考虑相角对电流和电压的影响。
3. 各种频率响应:交流电路分析涉及到各种频率响应,包括低通滤波器、带通滤波器、高通滤波器等。
这些滤波器可以通过传递函数和频率响应等参数来进行描述。
四、特定电路分析除了基础概念、基本定律和电路简化之外,电路分析还涉及到很多特定的电路分析问题,例如:1. 放大器分析:放大器通常用来放大电压、电流或功率等信号。
电路原理第五版邱关源罗先觉第五版最全包括所有章节及习题解答-资料
进一步计算支路电压和进行其它分析。
支路电流法的特点:
支路法列写的是 KCL和KVL方程,所以方程列 写方便、直观,但方程数较多,宜于在支路数不多 的情况下使用。
例1. 求各支路电流及电压源各自发出的功率。
I1 7
+ 70V
–
a
I2
1 11
+
6V
2
–
b
解:(1) n–1=1个KCL方程:
I3
节点a:–I1–I2+I3=0
7
(2) b–( n–1)=2个KVL方程:
7I1–11I2=70-6=64
11I2+7I3= 6
I112182036A I24062032A
P 70670420W
I3I1I2624A
P62612W
例2.
I1 7
+ 70V
–
解2.
结论:
n个结点、b条支路的电路, 独 立的KCL和KVL方程数为:
(n1 )b(n1 )b
三、支路电流法 (branch current
method )
以各支路电流为未知量列写电路方程分析电路的方法
对于有n个节点、b条支路的电路,要求解 支路电流,未知量共有b个。只要列出b个独立 的电路方程,便可以求解这b个变量。
(1) 先将受控源看作独立源列方程;
(2) 将控制量用未知量表示,并代入(1)中所列的方程,消去 中间变量。
四、网孔电流法(mesh current method)
以网孔电流为未知量列写电路方程分析电路的方法
基本思想
为减少未知量(方程)的个数,假想每个网孔中
《电路原理》第五版,邱关源,罗先觉第五版课件最全包括所有章节及习题解答
i º
R1
º
i1
R2
i2
1 R1 R2i i1 i 1 R1 1 R2 R1 R2
1 R2 R1i i2 i (i i1 ) 1 R1 1 R2 R1 R2
功率
p1=G1u2, p2=G2u2,, pn=Gnu2 p1: p2 : : pn= G1 : G2 : :Gn
=R1i2+R2i2+ +Rni2
=p1+ p2++ pn
表明
电阻串连时,各电阻消耗的功率与电阻大小成正比 等效电阻消耗的功率等于各串连电阻消耗功率的总和
2、电阻并联 (Parallel Connection)
i + 电路特点 u _
R1
i1 R2
i2 Rk
ik Rn
in
各电阻两端分别接在一起,两端为同一电压 (KVL); 总电流等于流过各并联电阻的电流之和 (KCL)。
或
GΔ Y相邻电导乘积 GY
Y变
特例:若三个电阻相等(对称),则有
R12 R1 外大内小 R2 R23 R31 R3
R = 3RY
注意
等效对外部(端钮以外)有效,对内不成立。 等效电路与外部电路无关。 用于简化电路
例
桥 T 电路 1k 1k 1k 1k R
1/3k
1/3k 1/3k
– 3
2 +
u23Y
接: 用电压表示电流 i1 =u12 /R12 – u31 /R31 i2 =u23 /R23 – u12 /R12 i3 =u31 /R31 – u23 /R23 (1)
Y接: 用电流表示电压 u12Y=R1i1Y–R2i2Y u23Y=R2i2Y – R3i3Y u31Y=R3i3Y – R1i1Y i1Y+i2Y+i3Y = 0 (2)
邱关源电路第五版总结复习
例2
解
空气隙的长度l0 =1mm,磁路横截面面积 A=16cm2 ,中 心线长度l=50cm,线圈的匝数N=1250,励磁电流 I=800mA,磁路的材料为铸钢。求磁路中的磁通。
磁路由两段构成,其平均长度
和面积分别为:
空气隙段: A016 1 04m2
A116 1 04m2 铸钢段:l00.1 c1m 0 3m l15c0m 0.5m
解 这是均匀无分支磁路
BΦ A52110044 0.4T
返回 上页 下页
磁势 FmHl30A0 查磁化曲线 H=300 A/m
反问题:已知线圈匝数N=1000,
电流 I = 1A,试求磁通为多少?
解 FmHlNI10A 00
HN/lI10A 0/m 0
查磁化曲线, B=1.05T
Φ B 1 .0 A 5 5 1 4 0 5 .2 1 5 4W0 b
侧柱磁通 Φ 1 N /R (m I1 2 R m ) 0 .5 1 40Wb
返回 上页 下页
例 已知气隙中的磁通为0,线圈匝数为N,铁芯材料磁导
率为, 截面积分别为S2 和S1 ,试求电流I。
解 设磁通方向,求各磁路磁阻
R m 0l0(0S1) R m 12l1/(S1)
Rm2l2/(S2) Rm3l3/(S2)
返回 上页 下页
空心线圈磁场分布
铁心线圈磁场分布
返回 上页 下页
半封闭铁心线圈磁场分布 全封闭铁心线圈磁场分布
返回 上页 下页
全封闭铁心线圈空间的少量漏磁
返回 上页 下页
(a) 变压器
几种常见的磁路
(b) 接触器
(c) 继电器
(e) 永磁式电磁仪表
邱关源第五版《电路》考研串讲笔记(非常实用)
幻灯片2
幻灯片3
幻灯片4
幻灯片5
幻灯片6
幻灯片7
幻灯片8
幻灯片9
幻灯片10
幻灯片11
幻灯片12
幻灯片13
幻灯片14
幻灯片15
幻灯片16
幻灯片17
幻灯片18
幻灯片19
幻灯片20
幻灯片21
幻灯片25
幻灯片26
幻灯片27
幻灯片28
幻灯片29
幻灯片30
幻灯片31
幻灯片32
幻灯片33
幻灯片34
幻灯片35
幻灯片36
幻灯片37
幻灯片38
幻灯片39
幻灯片40
幻灯片41
幻灯片42
幻灯片43
幻灯片44
幻灯片45
幻灯片46
幻灯片47
幻灯片48
幻灯片49
幻灯片50
幻灯片51
幻灯片52
幻灯片53
幻灯片54
幻灯片55
幻灯片56
幻灯片57
幻灯片58
幻灯片59
幻灯片60
幻灯片61
幻灯片62
幻灯片63
幻灯片64
幻灯片65
幻灯片66
幻灯片67
幻灯片68
幻灯片69
幻灯片70
幻灯片71
幻灯片72
幻灯片73
幻灯片74
幻灯片75
幻灯片76
幻灯片77
幻灯片78
幻灯片79
幻灯片80
幻灯片81
幻灯片82
幻灯片83
幻灯片84
幻灯片85
幻灯片86
幻灯片87
幻灯片88
幻灯片89
幻灯片90
幻灯片91
幻灯片92
电路理论学习笔记
u=
dw dq
(7)电流参考方向的表示方法 ①用箭头表示: 用箭头表示:箭头的指向为电流的参考方向 箭头的指向为电流的参考方向。 电流的参考方向。
i>0
i<0
11
或
12
2
电路理论学习笔记
复杂电路或交变电路中, 复杂电路或交变电路中,两点间电压的实际方向往往不 易判别, 易判别,给实际电路问题的分析计算带来困难。 给实际电路问题的分析计算带来困难。 (5)电压( 电压(电位降) 电位降)参考方向 假设高电位指向低电位的方向。 假设高电位指向低电位的方向。 或 电压是矢量, 电压是矢量,既有大小又有方向。 既有大小又有方向。 (6)电压的参考方向与实际方向的关系
学习方法
课前预习, 课前预习,课堂理解, 课堂理解,课后练习, 课后练习,温故知新 把握重点, 把握重点,突破难点, 突破难点,注重特点, 注重特点,融会贯通 重视实践, 重视实践,勤思多练, 勤思多练,善于归纳, 善于归纳,勇于创新
课程相关信息
课程编号: 课程编号:21050105 课程学时: 课程学时 :64学时 课程学分: 课程学分:4学分 课程实验: 学时、 课程实验 :24学时 、1学分、 学分、独立设课
8
②具有相同的主要电磁性能的实际电路部件, 具有相同的主要电磁性能的实际电路部件, 在一定条件下可用 同一电路模型表示; 同一电路模型表示; ③同一实际电路部件在不同的应用条件下, 同一实际电路部件在不同的应用条件下,其电路模型可以有不 同的形式。 同的形式。 例:电感线圈的电路模型 (1)在直流情况下 (2)在低频交流情况下 (3)在高频交流情况下 4、实际电路与电路模型实例 电 路 模 型 实 际 电 路 电感线圈
电路理论学习笔记
邱关源《电路》第五版 第一章 电路模型和电路定律
i
u
0
i
§1-6 电压源和电流源
2. 电流源(Current Sources)
1)电流源的定义 元件的电流与电压无关,电流保持为某给定
的时间函数,这样一个二端元件称为电流源。
电流源是一个理想二端元件。
§1-6 电压源和电流源
is
+
电流源符号:
u
-
电流源的伏安特性曲线: u
u
is(t1) is=Is
4. 短路(Short Circuit)和开路(Open Circuit) isc i=0 i u
R
u=0 R=0
uoc R=
短路:R = 0 (G )
开路:G = 0 ( R )
u = 0,电流为任意值isc。 i = 0, 电压为任意值uoc。 u u
0
i
0
i
§1-6电压源和电流源
电压源和电流源是有源元件。 1. 电压源(Voltage Sources)
1) 电压源的定义
电压源是一个二端元件,元件的电压与通过 它的电流无关,电压保持为某给定的时间函数。
§1-6 电压源和电流源
电压源符号: I
+
i us
-
U
电压源的伏安特性曲线:
u
U
u
us(t1)
0
i
0
i
§1-6 电压源和电流源
gu1
2
+
u
-
§1-8 基尔霍夫定律
Introduction
20
40
40
120 V
I
160 V
5
§1-8 基尔霍夫定律 Gustav Robert Kirchhoff (1824-1887) He is famous among chemists, physicists , and engineers. Kirchhoff’s two laws is stated in 1847 when he studied in the University of Konigsberg .
电路复习——总复习——公式总结——邱关源《电路》第五版
第1章 电路模型和电路定律
输入:激励↔电源(电能或电信号发生器) (激励源:电压源、电流源) 输出:响应(电源作用下产生的电压、电流) 负载:用电设备 端子数:元件对外端子的数目
3
i1 + _
二端子
i2 + _
四端子
+ u2 _
u、i参考方向一致→关联 p>0,吸收功率 p<0,释放功率 u、i参考方向相反→非关联 p>0,吸收功率 p<0,释放功率
R1R2 + R2R3 + R3R1 △形电阻= Y形电阻两两乘积之和 R23 = Y形不相邻电阻 R1
i3 Δ R31 =
R1R2 + R2R3 + R3R1 R2
R1 = R2 = R3 =
R 12 R 12 R 12
R 12 R 31 + R 23 + R 31
△相邻电阻的乘积 R 23 R 12 Y形电阻= △形电阻之和 + R 23 + R 31
Ri Ro
∞
0
∞
理想运算放大器规则:
+ ① i1 = i2 = 0 ② u- = u+ 虚断 虚短 -
i1 u-
+
∞
+ + uo -
u+ ui
i2 -
原因: Ri→ ∞
电压跟随器
21
第6章
电容:
储能元件
q:电荷,单位库伦c, u:电压,单位伏特V, C:电容,单位法拉F Ψ:磁通链, Φ:磁通, N:匝数 L :电感或自感系数
流出结点为+ 流入结点为-
• KVL :(回路) ∑ u = 0 (回路电压代数和为0)
邱关源《电路》第五版-第1章电路的基本定律与分析方法
第3节
一、 电功率( p )
电功率和能量
1、定义:单位时间内电场力所做的功。 2、大小: p
dw dw dq ui dt dq dt
单位:W
3、电路吸收或发出功率的判断 (1)u, i 取关联参考方向:
i
u
p 0 吸收正功率
p ui 表示元件吸收的功率
(实际吸收)
p0
(2)u, i 取非关联参考方向:
1、在集总电路中,任何时刻,沿任一回路,所有支路电压的代数和等于零。 即:
u 0
关键: u 前“+” “-”的选取:若支路电压的参考方向与回路的绕行方向一致, u 前取“+” ; 若支路电压的参考方向与回路的绕行方向相反, u 前取“-” 。 例:
图3 对该回路,则有: u3 u4 u2 0
(1)
i1 i2 i3 0
2、在集总参数电路中,任意时刻,通过任一结点的电流的代数和等于零。 即:
i 0
关键: “+” 、 “-”号的选取:若流出结点的电流前面取“+”号; 则流入结点的电流前面取“-”号。 例:
i1 i4
i5 i4 i3 i1 i2
i6
i2 i3
i5
i1 i2 i3 i4 i5 0
例 4:电路如图 8 所示,已知: E1 10V , E2 2V , E3 1 V , R1 R2 1 ,求 U。 解:对左回路由 KVL 知: R1I1 R2 I 2 E 且 I1 I 2 解得: I 2 I1 5 A
图4
图5
US 2 U2 写 KVL 方程时,应先: (1)标定各元件电压参考方向 (2)选定回路绕行方向,顺时针或逆时针.
邱关源《电路》(第5版)笔记和课后习题(含考研真题)详解
解: (1)图1-14(a)所示 电压源u、i参考方向非关联,发出功率:
电阻元件吸收功率:
电流源u、i参考方向关联,吸收功率:
图1-14
(2)图1-14(b)所示
电阻元件吸收功率:
电流源u、i参考方向非关联,发出功率: 电压源u、i参考方向非关联,发出功率:
目 录
8.2 课后习题详解 8.3 名校考研真题详解 第9章 正弦稳态电路的分析 9.1 复习笔记 9.2 课后习题详解 9.3 名校考研真题详解 第10章 含有耦合电感的电路 10.1 复习笔记 10.2 课后习题详解 10.3 名校考研真题详解 第11章 电路的频率响应 11.1 复习笔记 11.2 课后习题详解 11.3 名校考研真题详解 第12章 三相电路 12.1 复习笔记 12.2 课后习题详解 12.3 名校考研真题详解 第13章 非正弦周期电流电路和信号的频谱 13.1 复习笔记 13.2 课后习题详解 13.3 名校考研真题详解 第14章 线性动态电路的复频域分析 14.1 复习笔记 14.2 课后习题详解 14.3 名校考研真题详解 第15章 电路方程的矩阵形式 15.1 复习笔记 15.2 课后习题详解 15.3 名校考研真题详解 第16章 二端口网络 16.1 复习笔记
图1-11
解: 根据关联参考方向、功率吸收和发出的相关概念可得:
图1-11(a),对于NA ,u、i的参考方向非关联,乘积ui对NA 意味着发出功率;对于NB ,u,i的参考方向关 联,乘积ui对NB 意味着吸收功率。
图1-11(b),对于NA ,u、i的参考方向关联,乘积ui对NA 意味着吸收功率;对于NB ,u,i的参考方向关 联,乘积ui对NB 意味着发出功率。
1电路-第五版-邱关源著-第一章CAO改资料
通断。
5种基本的理想电路元件: 电阻元件:表示消耗电能的元件。 电感元件:表示产生磁场,储存磁场能量的元件。 电容元件:表示产生电场,储存电场能量的元件。 电压源和电流源:表示将其他形式的能量转变成
电能的元件。
注意
①5种基本理想电路元件有三个特征: (a)只有两个端子; (b)可以用电压或电流按数学方式描述; (c)不能被分解为其他元件。
返回
1-1 电路和电路模型
一、电路
电路是电流的通路。实际电路是由电气器件相 互联接而构成的。由电源、负载和中间环节组成。
二、电路的作用
(1) 实现电能的传输、分配与转换
发电机
升压 输电线 降压
变压器
变压器
电灯 电动机
电炉
...
(2)传递和处理信号
话筒 放 大 器
扬声器
2. 电路的组成部分
电源: 提供 电能的装置
电 池
导线
电路图
Rs
ቤተ መጻሕፍቲ ባይዱ
RL
Us
电路模型
反映实际电路部件的主要电磁 性质的理想电路元件及其组合。
理想电路元件
有某种确定的电磁性能的理想 元件。
返回 上页 下页
(1)理想电阻元件: 只消耗电能 (既不贮藏电能,也不贮藏磁能);
(2)理想电容元件: 只贮藏电能 (既不消耗电能,也不贮藏磁能);
(3)理想电感元件: 只贮藏磁能 (既不消耗电能,也不贮 藏电能)。
实际方向
A
B
实际方向
A
B
问题 对于复杂电路或电路中的电流随时间变化
时,电流的实际方向往往很难事先判断。 2、参考方向:
任意指定一个方向作为电流的方向。把电流看成代 数量:
邱关源 《电路》第五版 学习总结讲课讲稿
邱关源《电路》第五版学习总结第一章1、KCL 、KVL 基尔霍夫定律2、受控电源 CCCS 、CCVS 、VCVS 、VCCS第二章1、电阻电路的等效变换电阻的Y 行联接与△形联接的等效变换R1、R2、R3为星形联接的三个电阻,R12、R13、R23为△形联接的三个电阻 公式: 形电阻之和形相邻电阻的乘积形电阻∆∆=Y 形不相邻电阻形电阻两两乘积之和形电阻Y Y =∆ 如: 31231231121R R R R R R ++⨯= 331322112R R R R R R R R ++= 2、电压源、电流源的串并联电压源串联,电流源并联可以合成为一个激励为其加和的电压源或电流源;只有激励电压相等且极性一致的电压源才允许并联,否则违背KVL ;只有激励电流相等且方向一致的电流源才允许串联,否则违背KCL 。
第三章1、KCL 独立方程数:n-1 ;KVL 独立方程数: b-n+1其中,(n 为节点数,b 为分支数)2、支路分流法,网孔电流法,回路电流法;节点电压法3、电压源电阻很小,电导很大;电流源电阻很大,电导很小;第四章1、叠加定理:在线性电阻电路中,某处电压或电流都是电路中各个独立电源单独作用时,在该处分别产生的电压或电流的叠加2、齐性定理:线性电路中,当所有的激励(电压源或电流源)都同时增大或缩小K 倍时,响应(电压或电流)也将同样增大或缩小K 倍3、替代定理:4、戴维宁定理:一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电压源和电阻的串联组合等效替代,此电压源的激励电压等于一端口的开路电压,电阻等于一端口内全部独立电源置零后的输入电阻; 诺顿定理:一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电流源和电阻的并联组合等效置换,电流源的激励电流等于一端口的短路电流,电阻等于一端口中全部独立源置零后的输入电阻。
5、最大功率传输定理:eq24R U P OC LMAX, 负载电阻RL=含源一端口的输入电阻Req 第五章。
邱关源《电路》(第5版)笔记和课后习题考研真题详解
邱关源《电路》(第5版)笔记和课后习题(含考研真题)详解完整版>精研学习wang>无偿试用20%资料全国547所院校视频及题库资料考研全套>视频资料>课后答案>往年真题>职称考试第1章电路模型和电路定律1.1复习笔记1.2课后习题详解1.3名校考研真题详解第2章电阻电路的等效变换2.1复习笔记2.2课后习题详解2.3名校考研真题详解第3章电阻电路的一般分析3.1复习笔记3.2课后习题详解3.3名校考研真题详解第4章电路定理4.1复习笔记4.2课后习题详解4.3名校考研真题详解第5章含有运算放大器的电阻电路5.1复习笔记5.2课后习题详解5.3名校考研真题详解第6章储能元件6.1复习笔记6.2课后习题详解6.3名校考研真题详解第7章一阶电路和二阶电路的时域分析7.1复习笔记7.2课后习题详解7.3名校考研真题详解第8章相量法8.1复习笔记8.2课后习题详解8.3名校考研真题详解第9章正弦稳态电路的分析9.1复习笔记9.2课后习题详解9.3名校考研真题详解第10章含有耦合电感的电路10.1复习笔记10.2课后习题详解10.3名校考研真题详解第11章电路的频率响应11.1复习笔记11.2课后习题详解11.3名校考研真题详解第12章三相电路12.1复习笔记12.2课后习题详解12.3名校考研真题详解第13章非正弦周期电流电路和信号的频谱13.1复习笔记13.2课后习题详解13.3名校考研真题详解第14章线性动态电路的复频域分析14.1复习笔记14.2课后习题详解14.3名校考研真题详解第15章电路方程的矩阵形式15.1复习笔记15.2课后习题详解15.3名校考研真题详解第16章二端口网络16.1复习笔记16.2课后习题详解16.3名校考研真题详解第17章非线性电路17.1复习笔记17.2课后习题详解17.3名校考研真题详解第18章均匀传输线18.1复习笔记18.2课后习题详解18.3名校考研真题详解。
(完整word版)邱关源电路笔记1-7章
第一章电路模型和电路定律1.实际电路:有电工设备和电气器件按预期目的连接构成的电流的通路。
功能:a.能量的传输、分配与转换b.信息的传递、控制与处理共性:建立在同一电路理论基础上2.电路模型:反应实际电路部件的主要电磁性质的理想元件5种基本的理想电路元件:电阻元件:表示消耗电能的元件电感元件:表示产生磁场,储存磁场能量的元件电容元件:表示产生的电场,储存电场能量的元件电压源和电流源:表示将其他形式的能量转变成电能的元件3.u, i 关联参考方向p = ui 表示元件吸收的功率P>0 吸收正功率(吸收)P<0 吸收负功率(发出)4.u, i 非关联参考方向p = ui 表示元件发出的功率P>0 发出正功率(发出)P<0 发出负功率(吸收)注:对一完整的电路,发出的功率=消耗的功率a.分析电路前必须选定电压和点流的参考方向b.参考方向一经选定,必须在图中相应位置标注(包括方向和符号)c.参考方向不同时,其表达式相差一负号,但电压、电流的实际方向不变5.理想电压源和理想电流源理想电压源:其两端电压总能保持定值或一定的时间函数,其值与流过它的电流i无关的元件叫理想电压源。
理想电压源的电压、电流关系:a.电源两端电压由电源本身决定,与外电路无关;与流经它的电流方向、大小无关b.通过电压源的电流由电源及外电路共同决定理想电流源:其输出电流总能保持定值或一定的时间函数,其值与它的两端电压u无关的元件叫理想电流源。
理想电流源的电压、电流关系:a.电流源的输出电流由电源本身决定,与外电路无关;与它的两端电压的方向、大小无关b.电流源两端的电压由电源及外电路共同决定6.受控电源(非独立电源):电压或电流大小和方向不是给定的时间函数,而是受电路中某处的电压或电流控制的电源称为受控电源7.基尔霍夫定律基尔霍夫电压定律(KCL):在集总参数电路中,任意时刻,对任一结点流出(或流入)该节点电流的代数和为零基尔霍夫电压定律(KVL):在集总参数电路中,任意时刻,沿任一回路,所有支路电压的代数和恒等于零注:a.kcl是对支路电流的线性约束,kvl是对回路电压的线性约束。
考研复习邱关源第五版电路浓缩版绝对好用
式
其中
G(n-1)1un1+G(n-1)2un2+…+G(n-1)nun(n-1)=iSn(n-1)
Gii —自电导,等于接在结点i上所有支路的电导之和(包括电压
源与电阻串联支路)。总为正。
Gij = Gji—互电导,等于接在结点i与结点j之间的所支路的
电导之和,总为负。
iSni — 流入结点i的所有电流源电流的代数和(流入结点取
I2
②
U s3
R3
-I1+I2-I3=0 I1 ×R1-US1+ I2 ×R2=0 I2 ×R2+I3×R3-US3=0
代入数据得:
- I1 + I2 - I3 =0
I1 -10+3× I2 =0 3×I2 +2× I3 -13=0
解得: I1 =1A, I2 =3A, I3 =2A
电压源US1的功率:PUS1=-US1× I1 =-10×1=-10W (发出)
I3 = 1 A
I2 = IS1-I3 = 0.5 A
IS1
R2
I3
rI3
R2 R3
I2
输入电阻
1. 定义
无 源
i
+ u
-
输入电阻
Rin
u i
2. 计算方法
(1)如果一端口内部仅含电阻,则应用电阻的串、 并联和 —Y变换等方法求它的等效电阻;
(2)对含有受控源和电阻的两端电路,用电压、电流法求输
入电阻,即在端口加电压源,求得电流,或在端口加电流 源,求得电压,得其比值。
R6 R3
列回路电压方程如下
IL1 = IS2 IL2 = gU6
I5
g U6
2
I4
R1
邱关源电路第五版课堂笔记
1先把受控源当作独立源列方程;
29、列写电路的结点电压方程
32、求电压U和电流I
解:应用结点法
33、求电压源的电流及功率
解:画出分电路图
34、计算电压u
解:
35、计算电压u、电流i。
解:画出分电路图
36(必考题)、封装好的电路如图,已知下列实验数据:
37、RL=2R1=1R2=1us=51V,求电流i
解:
38、求图示电路的支路电压和电流
解:
39、
40、已知:uab=0,求电阻R
解 :
41、计算Rx分别为1.2、5.2时的电流I
解:断开Rx支路,将剩余一端口网络化为戴维宁等效电路:
42、求电压Uo
解:
43、求负载RL消耗的功率
解:
1求开路电压Uoc
44
解:
45、求电流I
46、RL为何值时能获得最大功率,并求最大功率(受控电压源电压为UR/20)
51、t=0时,打开开关S,求uv。电压表量程:50V.(RL一阶零状态问题)
51、t=0时,开关S由1→2,求电感电压和电流及开关两端电压u12。
52、t=0时,开关S闭合,已知uC(0-)=0,求(1)电容电压和电流,(2)uC=80V时的充电时间t。
53、t=0时,开关S打开,求t>0后iL、uL的变化规律。
解:
21、写支路电流方程.(电路中含有理想电流源)
解:
22、写支路电流方程.(电路中含有受控源)
解:
23、网孔电流法求解电流i
解:选网孔为独立回路:
24、用回路电流法求解电流i.
选网孔为独立回路:
解:只让一个回路电流经过R5支路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电路(第五版)邱关源目录绪论 (1)第一章 电路模型和电路定律 (1)§1-1电路和电路模型 (1)§1-2电流和电压和参考方向 (1)§1-3电功率和能量 (1)§1-4电路元件 (2)§1-5电阻元件 (2)§1-6电压源和电流源 (3)§1-7受控电源 (3)§1-8基尔霍夫定律 (4)第二章 电阻电路的等效变换 (5)§2-1引言 (5)§2-2电路的等效变换 (5)§2-3电阻的串联和并联 (5)§2-4电阻的Y形连接和△形联结的等效变换 (6)§2-5电压源、电流源的串联和并联 (8)§2-6实际电源的两种模型及其等效变换 (8)§2-7输入电阻 (8)第三章 电阻电路的一般分析 (10)§3-1电路的图 (10)§3-2KCL和KVL的独立方程数 (10)§3-3支路电流法 (11)§3-4网孔电流法 (11)§3-5回路电流法 (12)§3-6结点电压法 (13)总结 (13)第四章 电路定理 (14)§4-1叠加定理 (14)§4-2替代定理 (14)§4-3戴维宁定理和诺顿定理 (15)§4-4最大功率传输定理 (16)§4-5*特勒根定理 (16)§4-6*互易定理 (17)§4-7*对偶原理 (18)第五章 含有运算放大器的电阻电路 (19)§5-1运算放大器的电路模型 (19)§5-2比例电路的分析 (21)§5-3含有理想运算放大器的电路的分析 (22)第六章 储能元件 (24)§6-1电容元件 (24)§6-2电感元件 (25)§6-3电容、电感元件的串联与并联 (26)第七章 一阶电路和二阶电路的时域分析 (28)§7-1动态电路的方程及其初始条件 (28)§7-2一阶电路的零输入响应 (30)§7-3一阶电路的零状态响应 (31)§7-4一阶电路的全响应 (37)§7-5二阶电路的零输入响应 (38)§7-6二阶电路的零状态响应和全响应 (42)§7-7一阶电路和二阶电路的阶跃响应 (42)§7-8一阶电路和二阶电路的冲激响应 (43)§7-9*卷积积分 (45)§7-10*状态方程 (46)§7-11*动态电路时域分析中的几个问题 (47)第八章 相量法 (48)§8-1复数 (48)§8-2正弦量 (49)§8-3相量法的基础 (49)§8-4电路定律的相量形式 (51)第九章 正弦稳态电路的分析 (52)§9-1阻抗和导纳 (52)§9-2电路的向量图 (54)§9-3正弦稳态电路的分析 (54)§9-4正弦稳态电路的功率 (55)§9-5复功率 (58)§9-6最大功率传输 (59)第十章 含有耦合电感的电路 (60)§10-1互感 (60)§10-2含有耦合电感电路的计算 (61)§10-3耦合电感的功率 (63)§10-4变压器原理 (63)§10-5理想变压器 (65)第十一章 电路的频率响应 (68)§11-1网络函数 (68)§11-2RLC串联电路的谐振 (69)§11-3RLC串联电路的频率响应 (71)§11-4RLC并联谐振电路 (76)§11-5波特图 (77)§11-6滤波器简介 (77)第十二章 三相电路 (78)§12-1三相电路 (78)§12-2线电压(电流)与相电压(电流)的关系 (78)§12-3对称三相电路的计算 (80)§12-4不对称三相电路的概念 (81)§12-5三相电路的功率 (82)第十三章 非正弦周期电流电路和信号的频谱 (84)§13-1非正弦周期信号 (84)§13-2非正弦周期函数分解为傅里叶级数 (84)§13-3有效值、平均值和平均功率 (86)§13-4非正弦周期电流电路的计算 (87)§13-5*对称三相电路中的高效谐波 (87)§13-6*傅里叶级数的指数形式 (88)§13-7*傅里叶积分简介 (88)第十四章 线性动态电路的复频域分析 (89)§14-1拉普拉斯变换的定义 (89)§14-2拉普拉斯变换的基本性质 (89)§14-3拉普拉斯反变换的部分分式展开 (90)§14-4运算电路 (92)§14-5应用拉普拉斯变换法分析线性电路 (94)§14-6网络函数的定义 (94)§14-7网络函数的极点和零点 (95)§14-8极点、零点与冲激响应 (96)§14-9极点、零点与频率响应 (97)附一 常见一阶、二阶微分方程及其解 (100)1、一阶齐次线性微分方程 (100)2、一阶非齐次线性微分方程 (101)2.1、直流激励下的零状态响应与全响应 (101)2.2、正弦激励下的零状态响应与全响应 (102)3、二阶常系数齐次线性微分方程 (103)3.1、特征方程为两个不相等的实根 (104)3.2、特征方程有一对共轭复根 (105)3.3、特征方程有两个相等的实根 (105)4、二阶常系数非齐次线性微分方程 (106)绪论第一章 电路模型和电路定律§1-1 电路和电路模型激励(输入)、响应(输出)。
用理想电路元件或它们的组合模拟实际器件就是建立其模型,简称建模。
建模时必须考虑工作条件,并按不同准确度的要求把给定工作情况下的主要物理现象和功能反映出来。
§1-2 电流和电压和参考方向指定电流(电压)参考方向的用意在于把电流(电压)看作代数量,另外,只有规定了参考方向后,才能写出随时间变化的电流(电压)的函数式。
AB i 表示电流的参考方向为由A 指向B 。
AB u 表示A 与B 之间的电压,假定A 点电位(正极)比B 点电位(负)高,参考方向由A 指向B 。
一个元件的电流或电压的参考方向可以独立地任意指定。
如果指定流过元件的电流的参考方向是从标以电压正极性的一端指向负极性的一端,即两者的参考方向一致,则把电流和电压的这种参考方向称为关联参考方向;当两者不一致时,称为非关联参考方向。
§1-3 电功率和能量如果在时间()内,有电荷自元件上电压的正极经历电压u (V ,伏)到达电压和负极,电场力作功,也即元件吸收的能量(,焦)为:dt s dq J dW udq uidt ==。
功率(,W瓦)为能量对时间的导数,即/p dW dt ui ==()()。
在到t 的时间内,元件吸收的能量为:0t ()()()00tt W udq u i d q t q t t dW ==∫∫ξξξ=∫ 如果电压和电流的参考方向为关联参考方向时,当,元件确实吸收功率与能量;当时,元件实际释放电能或发出功率。
当两者参考方向为非关联参考方向时,分别为发出功率和吸收功率。
0,0p W >>0,0p W <<§1-4 电路元件元件的特性通过与端子有关的电路物理描述。
每种元件通过端子的两种物理量反映一种确定的电磁性质。
元件的两个端子的电路物理量之间的代数函数关系称为元件的端子特性(元件特性)。
集总参数(Lumped Parameter )元件是指有关电、磁物理现象都由元件来“集总”表征。
在元件的外部不存在任何电场与磁场。
如果元件外部有电场,进、出端子的电流就有可能不同;如果元件外部有磁场,两个端子之间的电压就可能不是单值的。
集总(参数)元件假定:在任何时刻,流入二端元件的一个端子的电流一定等于另一端子流出的电流,且两个端子之间的电压为单值量。
电阻元件的元件特性是电压与电流的代数关系:(),0f u i =;电容元件的元件特性是电荷与电压的代数关系:(),0f q u =;电感元件的元件特性是磁通链与电流的代数关系:(),0fi ψ=。
§1-5 电阻元件线性电阻元件在电压和电流取关系参考方向时,在任何时刻其两端的电压和电流服从欧姆电律:u ,电阻Ri =R 为正实常数(电导1/G R =)。
电阻元件消耗的功率为:2222//p ui u R i ===R Gu i G ==。
电阻元件从在到t 的时间内吸收的电能为:0t ()02tt W Ri d ξξ=∫。
非线性电阻电压和电流关系式:()u f i =,或()i h u =。
线性时变电阻电压和电流关系式:()()()u t R t i t =,或()()()i t G t u t =。
§1-6 电压源和电流源电压源是一个理想电路元件,它的端电压为:()()S u t u t =,与通过元件的电流无关,总保持给定的时间函数,电流的大小由外电路决定。
一般电压源的电压和通过的电流的参考方向取为非关联参考方向,其发出的功率为:()()()u t i t =p t 。
把0S u ≠的电压源短路是没有意义的,因为短路时端电压为0,这与电压源的特性不相容。
电流源发出的电流为:()()S i t i t =0S i ,与元件的端电压无关,总保持为给定的时间函数,电流源的端电压由外电路决定。
把≠的电流源开路是没有意义的,因为开路时的电流必须为零,这与电流源的特性不相容。
正弦电压源:()()()2cos cos 2cos S m m m u t U t T U ft U t πφπφωφ⎛⎞=+⎜⎟⎝⎠=+=+§1-7 受控电源受控电源又称“非独立”电源,如双极晶体管的集电极电流受基极电流控制,运算放大器的输出电压受输入电压控制,所以这类器件的电路模型中要用到受控源。
受控电源分四种:电压控制电压源(VCVS:Voltage Controlled Voltage Source )、电压控制电流源(VCCS )、电流控制电压源(CCVS )、电流控制电流源(CCCS ),控制系数分别习惯使用μ、(电阻量纲)、(电导量纲)、r g β表示。
§1-8 基尔霍夫定律基尔霍夫定律是集总电路的基本定律。