1、T检验与方差分析
t检验和方差分析的前提条件及应用误区
t检验和方差分析的前提条件及应用误区集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#t检验和方差分析的前提条件及应用误区用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。
后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。
无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。
若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。
之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。
值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。
t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。
t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。
简单、熟悉加上外界的要求,促成了t检验的流行。
但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。
将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。
以上两种情况,均不同程度地增加了得出错误结论的风险。
而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。
sas第九章t检验和方差分析
第九章 t 检验和方差分析在科研中,我们往往是根据样本之间的差异,去推断其总体之间是否有差异。
样本差异可能是由抽样误差所致,也可能是由本质的不同所致。
应用统计学方法来处理这类问题,称为“差异的显著性检验”。
若已知总体为正态分布,进行差异的显著性检验,称为“参数性检验”,SAS 中M EANS 、TTEST 、ANOVA 、GLM 等均属此类检验;若未知总体分布,进行差异的显著性检验,称为“非参数性检验”,SAS 中采用NPAR 1WAY 过程。
第一节 t 检验9.1.1 简介t 检验是用于两组数据均值间差异的显著性检验。
它常用于以下场合: 1.样本均值与总体(理论)均值差别的显著性检验检验所测得的一组连续资料是否抽样于均值已知的总体 根据大量调查的结果或以往的经验,可得到某事物的平均数(例如生理生化的正常值),以此作总体均值看待。
SAS 中采用MEAN S 过程,计算出观察与总体均值的差值,再对该差值的均值进行t 检验。
2.同一批对象实验前后差异的显著性检验(自身对照比较)或配对资料差异的显著性检验(配对比较检验)比如,在医学研究中,我们常常对同一批病人治疗前后的某些生理生化指标(如血压、体温等)进行测量,以观察疗效;或对同一批人群进行预防接种,以观察预防效果;或把实验对象配成对进行测定,比较其实验结果。
SAS 中采用MEAN S 过程,计算出两样本观察的差值(如治疗前、后实验数据的差值),再对该差值的均值进行t 检验。
3.两样本均值差异的显著性检验作两样本均值差异比较的两组原始资料各自独立,没有成对关系。
两组样本所包含的个数可以相等,也可以不相等。
每组观测值都是来自正态总体的样本。
设与为两样1X 2X 本的均值,1n 与为两样本2n 数,21s ,22s 为两样本方差,分两种情形,其数学模型为:(1)方差齐(相等)时:)/1/1(21221n n s x x t +-=)2/(])1()1[(212222112-+-+-=n n s n s n s(2)方差不齐时: 22212121//n s n s x x t +-=SAS 中采用TTES T 过程,先作方差齐性检验(F 检验),然后根据方差齐(EQUAL )和方差不齐(UNEQU AL)输出t 值和P 值以及基本统计量。
流行病学中的差异检验与方差分析
流行病学中的差异检验与方差分析在流行病学研究中,差异检验与方差分析是两个被广泛应用的统计方法。
通过对疾病的发生率、死亡率以及相关因素的比较和分析,可以帮助科学家和医疗专业人员更好地理解疾病的风险因素、疾病特征以及对策制定。
一、差异检验差异检验是一种用于比较两个或多个组之间差异是否显著的统计方法。
在流行病学中,差异检验通常用于比较不同人群或地区之间的病例发生率或死亡率。
在进行差异检验之前,我们首先需要明确研究的目的和假设。
例如,我们想要比较两个地区的肺癌发生率是否存在显著差异。
我们可以设立如下假设:- 零假设(H0):两个地区的肺癌发生率无显著差异。
- 备择假设(H1):两个地区的肺癌发生率存在显著差异。
接下来,我们需要收集两个地区的肺癌发生率数据,并进行统计分析。
常用的差异检验方法包括独立样本t检验、配对样本t检验、方差分析等。
根据不同的数据类型和研究设计,选择合适的方法进行分析。
以独立样本t检验为例,我们可以使用以下步骤进行分析:1. 收集两个地区的肺癌发生率数据,并计算平均值和标准差。
2. 检查数据是否满足独立样本t检验的假设前提,如正态分布和方差齐性。
3. 建立零假设和备择假设。
4. 计算独立样本t检验的统计量,如t值和p值。
5. 根据p值与事先设定的显著性水平进行比较,判断是否拒绝零假设。
如果p值小于显著性水平,我们可以拒绝零假设,得出结论:两个地区的肺癌发生率存在显著差异。
反之,如果p值大于显著性水平,我们则不能拒绝零假设,认为两个地区的肺癌发生率无显著差异。
二、方差分析方差分析是一种用于比较多个组之间均值是否存在显著差异的统计方法。
在流行病学研究中,方差分析通常用于比较三个或三个以上不同组别(如不同年龄段、性别、职业等)之间的病例发生率或死亡率。
与差异检验类似,方差分析也需要明确研究的目的和假设。
假设我们想要比较不同年龄段患病率之间的差异,可以设立如下假设:- 零假设(H0):不同年龄段的患病率无显著差异。
t检验和方差分析的前提条件及应用误区
t检验和方差分析的前提条件及应用误区用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。
后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。
无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。
若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。
之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。
值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。
t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。
t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。
简单、熟悉加上外界的要求,促成了t检验的流行。
但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。
将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。
以上两种情况,均不同程度地增加了得出错误结论的风险。
而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。
医学论文中常见的统计方法误用一、等级资料用卡方检验代替秩和检验卡方检验主要用于计数资料的显著性检验。
t检验与方差分析
第六章数值变量资料的统计分析数值变量资料又称计量资料,通常是指每个观察单位某项指标量的大小,一般具有计量单位。
这类资料按分析的内容一般可分为两种:一种是比较几种处理之间的效应,简单地讲就是比较各处理组观察值均数、方差的大小;另一种是寻找指标间的关系,即某个(或某些)指标的取值是否受其它指标的影响。
本章主要介绍不同设计类型的数值变量资料的比较。
§ 样本均数与总体均数比较的 t 检验t检验亦称 student's t 检验,主要用于下列三种情况:(1)样本均数与总体均数比较;(2)配对数值变量资料的比较;(3)两样本均数的比较。
Stata用于样本均数与总体均数比较的 t 检验的命令是:ttest 变量名= #val这里,#val 表示总体均数。
命令中可以选用 if 语句和 in 语句对要分析的内容加一些条件限制。
对已知样本含量、均数和标准差的资料,欲将其与某总体均数进行比较,Stata 还提供了更为简洁的命令是:ttesti #obs #mean #sd #val这里,#obs 表示样本含量,#mean 表示样本均数,#sd 表示样本标准差,#val 表示总体均数。
§两样本均数比较的t检验一、配对设计t检验医学研究中常将受试对象配成对子,对每对中的两个受试对象分别给予两种不同的处理,观察两种处理的结果是否一致,称为配对(设计)研究。
有时以同一个受试对象先后给予两种不同的处理,观察两种处理的结果是否相同,这种配对称为自身配对。
配对设计的优点是能消除或部分消除个体间的差异,使比较的结果更能真实地反映处理的效应。
配对t检验首先计算每对结果之差值,再将差值均数与0作比较。
如两种处理的效应相同,则差值与0没有显著性差异。
检验假设 H0为:两种处理的效应是相同,或总体差值均数为 0。
stata用于配对样本t检验的命令是:Ttest 变量1 = 变量2这里,这里“变量 1”和“变量 2”是成对输入的配对样本。
SPSS中的卡方检验、t检验和方差分析
SPSS中的卡⽅检验、t检验和⽅差分析
⾸先要明⽩两个概念:
计数资料和计量资料
(1)计数资料⼜称为定性资料:是分类型的,统计每个类型有多少数量。
(2)计量资料⼜称为定量资料:⽐如年龄,是有具体的数值。
根据数据的类型,使⽤不同的⽅法:
(1)对于计量资料。
秩和检验在国内的⽂章中很少见到。
当数据只有两组进⾏对⽐的时候,使⽤t检验和⽅差分析都可以。
但是有两组或者两组以上的时候,使⽤⽅差检验。
(2)对于计数资料,使⽤卡⽅分析,卡⽅分析⽤于⽐较,不同组之间,不同数量是否有差异。
⽐如,⽐较两组,男⽣⼈数和⼥⽣⼈数是否有差距。
独⽴样本t检验:两独⽴样本t检验就是根据样本数据对两个样本来⾃的两独⽴总体的均值是否有显著差异进⾏推断;进⾏两独⽴样本t检验的条件是,两样本的总体相互独⽴且符合正态分布;
⽐如:A组和B组,⽐较A组⼈的⾝⾼和B组⼈的⾝⾼是否有差异。
配对样本t检验-:配对样本是指对同⼀样本进⾏两次测试所获得的两组数据,或对两个完全的样本在不同条件下进⾏测试所得到的两组数据;两独⽴样本t检验就是根据样本数据对两个配对样本来⾃的两配对总体的均值是否有显著差异进⾏推断;两配对样本t检验的前提条件:两样本是配对的(数量⼀样,顺序不能变),服从正态分布。
⽐如:实验组A组中,实验前后,变化的对⽐。
t检验与方差分析
• 注意
• 主效应显著,而交互作用不显著。交互作用显著, 而主效应不显著都是正常的。
• 避免只有统计的显著性而没有实用的显著性
– 解释量或效应量effect size, ajusted R2
• 因变量由自变量解释的百分比,6%,16%
几种方差分析的区别
• 组间,被试间
– ANOVA
• 单因素方差分析,如只有两个水平也可以做t检验
-Univariate
• 单因素或多因素方差分析 • 如交互作用显著,做简单效应比较
• 组内(被试内)混合实验设计
– Repeated measures
Post hoc
• 当某个因素的水平多于2个时,做事后多重 比较
– 季节对植物生长率的影响
• Test of sphericity(球形检验)
– Assumed: tests of within-subjects effects
– Not assumed: tests of within-subjects effects greenhouse or mutivariate(多元分析)
结果描述
• 对射击成绩进行2(枪支类型,手枪与步枪)*2 (靶子类型,移动靶与固定靶)两因素重复测量 方差分析。
• 结果发现:枪支类型主效应显著, F(1,29)=592.173, p= <0.001,步枪射击成绩显著 高于手枪射击成绩。靶子类型主效应显著, F(1,29)=69.781, p <0.001 ,移动靶的成绩显著 高于固定靶的成绩。两因素交互作用不显著, F(1,29)=1.384,p=0.249。
3步
医学统计学-t检验
单样本t检验概述
1
定义和用途
单样本t检验是将一个样本的平均值与一个已知的总体平均值进行比较。该方法可用于检测某 一群体的平均数是否与已知平均数有显著差异。
2
计算公式
计算t值的公式为 (样本平均值-总体平均值) / 标准误差。
3
实例分析
例如,医生想检查其患者的平均血压是否与总体平均血压相同。医生可以采取一些患者的随 机抽样,进行平均血压值的估计。利用单样本t检验,医生可以比较患者平均血压和已知的总 体平均数的数量差异。
t检验在药物研发中的应用
1 疗效检验
t检验在药物研发中被广泛用于检验不同药物、不同剂量和不同给药方式的疗效。
2 药物毒性检测
t检验可用于检测药物给药对器官功能和生理指标的影响和损伤。
3 剂量选定
t检验可用于评估药物的安全性和有效性,并确定剂量的选择。
t检验在生物医学研究中的应用
基础研究
t检验在生物医学基础研究中应用 广泛,可用于比较不同基因型、 不同表观遗传信息和不同环境因 素对生物体的影响。
t检验和方差分析
方差分析
方差分析是一种用于比较三个或 更多群体之间差异的方法。它可 以用于比较顺序数据、类别数据 和等间隔数据。
t检验和方差分析的不同
t检验是用于比较两个群体之间差 异的方法,适用于均值分布差异 较小、样本较小的数据。而方差 分析适合适用于比较多个群体之 间差异的情况、以及数据间的交 互作用。
配对t检验概述
1 定义和用途
配对t检验是用于比较同一组受试者在两个不同时间点或两种不同条件下的差异。
2 计算公式
计算配对t值需用到每个块对的平均值和标准差。平均值差值除以标准误差的公式表示 t值。
t检验、u检验、卡方检验、F检验、方差分析
从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同, 即方差齐性。若两总体方差相等,则直接用 t 检验,若不等,可采用 t'检验或变量变换或秩和检验 等方法。 其中要判断两总体方差是否相等,就可以用 F 检验。 简单的说就是检验两个样本的方差是否有显着性差异这是选择何种 T 检验(等方差双样本检验, 异方差双样本检验)的前提条件。 在 t 检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。 卡方检验 是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别 是临床科研中许多资料是记数资料,就需要用到卡方检验。 方差分析 用方差分析比较多个样本均数,可有效地控制第一类错误。方差分析(analysisofvariance,ANOVA)由 英国统计学家首先提出,以 F 命名其统计量,故方差分析又称 F 检验。 其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学 意义。我们要学习的主要内容包括 单因素方差分析即完全随机设计或成组设计的方差分析(one-wayANOVA): 用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数 是否相等。完全随机设计(completelyrandomdesign)不考虑个体差异的影响,仅涉及一个处理因 素,但可以有两个或多个水平,所以亦称单因素实验设计。在实验研究中按随机化原则将受试对象 随机分配到一个处理因素的多个水平中去,然后观察各组的试验效应;在观察研究(调查)中按某 个研究因素的不同水平分组,比较该因素的效应。 两因素方差分析即配伍组设计的方差分析(two-wayANOVA): 用途:用于随机区组设计的多个样本均数比较,其统计推断是推断各样本所代表的各总体均数是否 相等。随机区组设计考虑了个体差异的影响,可分析处理因素和个体差异对实验效应的影响,所以 又称两因素实验设计,比完全随机设计的检验效率高。该设计是将受试对象先按配比条件配成配伍 组(如动物实验时,可按同窝别、同性别、体重相近进行配伍),每个配伍组有三个或三个以上受 试对象,再按随机化原则分别将各配伍组中的受试对象分配到各个处理组。值得注意的是,同一受 试对象不同时间(或部位)重复多次测量所得到的资料称为重复测量数据
t检验与单方差分析PPT资料
事实上,小概率事件在随机抽样中还是可能发生的,
如果该P值太小,成为了我们所定义的小概率事件(小于等于α水准),则我们怀疑所做的假设不成立,从而拒绝H0。
察在假设条件下随机样本的特征信息是否属小概率事
• 二是与H0相对立的备择假设 (alternative hypothesis),记为H1。
统计方法应当注意其适用条件
近,不存在差别)考试后的成绩是否存在差异?
均数为正,因此可推断出是使得病人血压下
三、计算检验统计量和P值
三、完全随机的两样本t检验
完全随机的两样本t检验
目的:
推断两个样本是否来自相同的总体,更具体地说,
是要检验两样本所代表的总体均数是否相等。
检验假设
无效假设H0:μ1=μ2
检验结果
多个子集,利用studentized
range分布来进行
件,若为小概率事件,则怀疑假设成立有悖于该样本
基本思想:先建立一个关于样本所属总体的假设,考
D=X- u0
所提供特征信息,因此拒绝假设
•因此,认为两者的差别无统计学意义,但是这并不意味着可以接受H0
• 二是与H0相对立的备择假设 (alternative hypothesis),记为H1。
检验假设H0本来是成立的,而根据样本信息拒
绝H0的可能性大小的度量,换言之,α是拒绝
了实际上成立的H0的概率。
常用的检验水准为α = 0.05,其意义是:在所设
H0的总体中随机抽得一个样本,其均数比手头
样本均数更偏离总体均数的概率不超过5%
假设检验的基本步骤
三、计算检验统计量和P值
检验统计量的特点:
基本思想:先建立一个关于样本所属总体的假设,考
统计分析方法(t检验、单因素方差分析和多因素方差分析)
两组独立样本的比较:独立样本t检验 在变量视图中填入变量:这里的X为需分析数据,G代表分组
在数据视图中录入数据: G下方的数据1、2为分组 X下方的数据为相应的分组 对应的需要分析的数据
在工具栏里选择分析——描述统计——探索
将X选入因变量列表,G选入因子列表, 然后单击绘制
勾选带检验的正态图,其余的 可按照默认值 单击继续
在输出页面中找到上述表格,如果sig即P值,大于0.05,说明该 组数据属于正态性数据,可以继续进行独立样本的t检验;如果 有任何一组P值小于0.05,则需改用非参数检验
数据符合正态时,在工具栏中选 择分析,在下拉菜单中选择比较 均值,再选择独立样本T检验
将X选入检验变量,G选入分组变 量,然后点击定义组,组1后填 入1,组2后填入2,继续——确定
在输出页面中找到上述表格,如果sig即P值,大于0.05,说明两组数据方差齐,则 看第一行数据,如果小于0.05,说明两组数据方差不齐,则看第二行数据;sig的 值即为最终所需P值。
单因素方差分析
数据录入后,进行正态性检验,方法 见4、5、6页PPT。检验结果需要全部 正态才能进行单因素方差分析,否则 需要用非参数检验,但非参数检验没 有两两比较。
分析——比较均值——单因素ANOVA 将X选入因变量列表,G选入因子列表 中,单击两两比较,选择LSD,继续, 单击选项,选择方差同质性检验,继 续——确定
方差齐性检验结果显著性大于0.05, 说明方差齐,可以进行单因素方差分 析,如果显著性小于0.05,则说明方 差不齐,则不能进行单因素方差分析
该表为总体的显著性
该表为两两比较的结果 1 2 为1组与2组比较
T检验及其与方差分析的区别
T检验及其与方差分析的区别Company number:【0089WT-8898YT-W8CCB-BUUT-202108】T检验及其与方差分析的区别假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。
t 检验:1.单因素设计的小样本(n<50)计量资料2.样本来自正态分布总体3.总体标准差未知4.两样本均数比较时,要求两样本相应的总体方差相等•根据研究设计t检验可由三种形式:–单个样本的t检验–配对样本均数t检验(非独立两样本均数t检验)–两个独立样本均数t检验(1)单个样本t检验•又称单样本均数t检验(one sample t test),适用于样本均数与已知总体均数μ0的比较,其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差别。
•已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。
•单样t检验的应用条件是总体标准未知的小样本资料( 如n<50),且服从正态分布。
(2)配对样本均数t检验•配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。
•配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。
•应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。
•配对设计处理分配方式主要有三种情况:①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对;②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例资料;③自身对比(self-contrast)。
即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。
t检验和单因素方差分析
参数估计
参数估计
参数:统计学中总体的指标称为参数
如总体均数 μ、总体标准差 σ、总体率 π
统计量:样本的指标称为统计量
如样本均数x、样本标准差 S、样本率 p
参数估计:是指由样本统计量估计总体参数。包括点估计(point
estimation)和区间估计(interval estimation)。
2.用肝素封管留置针的平均使用时间是3.1天,用生理盐水封管平均使用时间是2.9天
问:肝素封管相对生理盐水封管是否可以延长留置针留置时长?
3.采用坐位测量100人的血压得平均收缩压为120±20mmHg,再采用卧位测量这100人得
平均收缩压为118±21mmHg
问:坐位测得的血压要比卧位测得的血压高吗?
4.调查某医院住院100名男患者和100名女患者,男患者的平均焦虑得分是8±2.5,女患者
的平均焦虑得分是7.9±2.4分
问:男患者是否比女患者更容易产生住院焦虑情绪?
t检验
单样本 t 检验 已知样本均数与已知总体均数的比较
• 两受试对象分别接受两种不同的处理后的数据
配对样本 t 检验
• 同一样品用两种不同的方法检验出的结果
选择检验方法,计算检验统计量
根据资料类型、研究设计方案和统计推断的目的,选择适当的检验方法和计算公式。
T检验、z检验、F检验、 2 检验、
根据P 值做出统计推断
P≤α,按照α检验水准则拒绝H0,接受H1
P>α,则不能拒绝H0
结论:
①P≤0.05,拒绝H0 ,差异有统计学意义,认为联合组和对照组对心脏收缩功能的影响不同。
差异关系
使用新药和未使用新药的两组患者
统计学中的方差分析与t检验的比较
统计学中的方差分析与t检验的比较统计学是研究收集、整理、分析和解释数据的一门学科。
在统计学中,方差分析和t检验是两种常见的统计方法,用于比较不同样本或处理之间的差异。
本文将对方差分析和t检验进行比较,包括原理、适用场景和统计结果的解释。
一、方差分析方差分析(Analysis of Variance,简称ANOVA)是一种用于比较两个或多个样本均值是否存在显著性差异的方法。
它将总体方差拆解为组内方差和组间方差,然后通过比较组间方差与组内方差的大小来判断样本均值是否存在显著性差异。
方差分析适用于多个组之间的比较。
例如,一个实验研究了三种不同肥料对植物生长的影响,将植物分为三组分别使用不同的肥料,然后通过比较植物生长的指标来确定肥料是否有显著影响。
方差分析的统计结果通常包括F值、P值和自由度。
F值表示组间方差与组内方差的比值,P值则用于判断差异是否显著。
如果P值小于设定的显著性水平(通常是0.05),则可以拒绝原假设,即认为样本均值之间存在显著性差异。
二、t检验t检验(t-test)是一种用于比较两个样本均值是否存在显著性差异的方法。
它通过计算两个样本的均值差异与其标准误差的比值,来判断样本均值之间是否存在统计学上的显著性差异。
t检验适用于两个组之间的比较。
例如,一个实验想要比较男性和女性在某种认知任务上的得分是否存在显著差异,可以使用t检验来进行分析。
与方差分析不同,t检验的统计结果通常包括t值、P值和自由度。
t 值表示样本均值差异与标准误差的比值,P值用于判断差异是否显著。
同样地,如果P值小于设定的显著性水平(通常是0.05),则可以拒绝原假设,认为样本均值之间存在显著性差异。
三、方差分析与t检验的比较方差分析和t检验都是用于比较不同样本或处理之间差异的统计方法,但适用场景和分析过程略有不同。
首先,方差分析适用于多个组之间的比较,而t检验适用于两个组之间的比较。
当只有两个组时,可以选择使用方差分析或t检验,但一般情况下,t检验更常见。
方差分析和T检验在统计学中的差异
方差分析和T检验在统计学中的差异统计学是一门研究数据收集、整理、分析和解释的学科。
在实际应用中,方差分析和T检验是常用的两种统计技术,它们被广泛运用于数据的比较和推断。
尽管它们都属于参数假设检验的方法,但方差分析和T检验在统计学中有着一些差异。
一、概念和应用领域差异方差分析是一种用于比较两个或多个样本均值是否存在显著差异的统计方法。
通常情况下,方差分析用于比较不同处理组之间的均值差异,例如比较不同药物对疾病的治疗效果或者不同肥料对植物生长的影响等。
方差分析可以通过计算组间方差和组内方差之比来进行推断。
T检验是一种用于比较两个样本均值是否存在显著差异的统计方法。
相对于方差分析,T检验通常用于比较两个处理组之间的均值差异,例如比较不同性别、不同学历或不同药物剂量对某个指标的影响等。
T检验可以通过计算T值,并与设定的显著性水平进行比较,来进行推断。
二、假设和前提条件差异方差分析的主要假设是各组之间的方差相等和服从正态分布。
在使用方差分析前需要检验这些假设是否成立。
同时,在进行方差分析时,还需要注意样本之间的独立性以及误差项的独立性。
T检验的主要假设是样本来自两个独立的总体,且总体满足正态分布。
在使用T检验前需要检验这些假设是否成立。
同时,在进行T检验时,还需要注意两个样本之间的独立性以及误差项的独立性。
三、分析结果和解释方法差异方差分析的分析结果主要包括F值和P值。
F值用于判断组间的平均差异是否显著,P值则表示这种差异的概率。
当P值小于设定的显著性水平时,我们可以拒绝原假设,认为组间存在显著差异。
T检验的分析结果主要包括T值和P值。
T值用于判断两个样本均值之间的差异是否显著,P值则表示这种差异的概率。
当P值小于设定的显著性水平时,我们可以拒绝原假设,认为两个样本均值存在显著差异。
四、数据类型和样本容量差异方差分析适用于连续型变量,并且要求样本容量相等或相近。
同时,方差分析也可以处理多个分类因素的情况,通过拆分方差和互作用效应来分析各因素对均值差异的贡献。
T检验及单因素方差分析
T检验及单因素方差分析T检验是一种用于比较两个样本均值是否具有统计学意义的方法,而单因素方差分析则是一种用于比较三个或更多个样本均值是否具有统计学意义的方法。
本文将详细介绍T检验和单因素方差分析的基本原理、假设条件、计算公式以及实际应用。
一、T检验的基本原理T检验是由英国统计学家威廉·塞吉威德·高斯特及学生威廉·赖斯·格斯特发展而来的。
T检验基于样本均值与总体均值的比较,通过计算差异的标准误差来判断这种差异是否具有统计学意义。
T检验的基本原理是假设样本的均值服从正态分布,通过计算样本均值与总体均值之间的标准差来估计差异的大小。
二、T检验的假设条件T检验的假设条件包括正态分布假设、独立性假设和方差齐性假设。
1.正态分布假设:样本来自正态分布总体或样本容量足够大时,可以近似看作来自正态分布总体。
2.独立性假设:样本之间是相互独立的,即一个样本的观察值与另一个样本的观察值之间没有关联。
3.方差齐性假设:不同样本的方差相等,即总体的方差是相同的。
三、T检验的计算公式T检验的计算公式包括两种情况:独立样本T检验和配对样本T检验。
1.独立样本T检验:适用于两个独立的样本均值比较。
计算公式为:t = (X1 - X2) / se其中,X1和X2分别为两个样本的均值,se为标准误差,t为检验统计量。
2.配对样本T检验:适用于两个相关的样本均值比较。
计算公式为:t=(X1-X2)/(s/√n)其中,X1和X2分别为两个样本的均值,s为差异的标准差,n为样本容量,t为检验统计量。
四、单因素方差分析的基本原理单因素方差分析是用于比较三个或更多个样本均值是否具有统计学意义的方法。
它基于样本之间的差异和样本内的差异,通过计算组间方差和组内方差的比值来判断这种差异是否显著。
单因素方差分析的基本原理是假设总体均值相等,通过计算组间方差和组内方差的比值来检验这一假设。
五、单因素方差分析的假设条件单因素方差分析的假设条件包括正态分布假设、独立性假设和方差齐性假设。
t检验与单因素方差分析
• 两独立样本t检验的计算公式:
【例4】为观察中成药青黛明矾片对急性黄疸 肝炎的退黄效果,以单用输液保肝的患者作 为对照进行了完全随机设计观察,受试对象 为黄疸指数在 30~50 之间的成年患者,观测 结果为退黄天数,数据见下表。 试比较中药组与对照组退黄天数有无差别?
表 组别 中药组 对照组 人数 7 8 5 18 急性黄疽性肝炎患者的退黄天数 退黄天数(天) 10 14 21 17 8 21 30 23 22 22
季聪华 2012.10.18
假设检验步骤
• 1.建立假设、确定检验水准 (1)零假设或无效假设: H0:μ=μ0,即两 总体均数相同。 (2)备择假设或有统计学意义假设H1: μ≠μ0,即两总体均数不同。根据专业知 识及数据特征,备择假设H1 也有单侧形式: μ<μ0 ,μ>μ0 。 选择双侧检验,还是单侧检验需依据数据 特征和专业知识进行确定。
0.9 0.8 0.7 0.6
σ=1
f(X)
0.5 0.4 0.3 0.2 0.1 0 -6 -5 -4 -3 -2 -1 0 1 2 3 4
σ=1.5
σ=2
5 6
X
正态分布形态随参数σ变换示意图
t分布
2.58 1.96
应用条件: t 检验:1.单因素设计的小样本(n<50)计 量资料 2.样本来自正态(近似正态)分布总体 3.总体标准差未知 4.两样本均数比较时,要求两样本相 应的总体方差相等(方差齐性) u 检验:1.大样本 2.样本小,但总体标准差已知
两样本 比较
两组资料的秩和检验
中位数检验
完全随机设计资 料 多组均 数比较 配伍组设计资料 拉丁方设计资料 正交设计
单因素方差分析
T检验和方差分析的差别
T检验和方差分析的差别用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。
后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。
无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。
若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。
之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。
值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。
t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。
t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。
简单、熟悉加上外界的要求,促成了t检验的流行。
但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。
将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。
以上两种情况,均不同程度地增加了得出错误结论的风险。
而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。
t检验和方差分析的前提条件及应用误区选摘自《医学统计应用错误的诊断与释疑》,军事医学科学出版社,主编:胡良平用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学实验报告:t 检验、方差分析
姓名 赵亚平 班级 数学132学号 201312020106 日期6月 1 日
一、实验目的和要求
1. 掌握t 检验的基本原理及方法;
2. 掌握几种不同的方差分析方法;
二、实验内容
1.均值比较的T 检验分几种类型?各自检验的假设是什么? (1)单一样本t 检验,检验假设a H =μ:0,a H ≠μ:1
(2)独立样本t 检验,检验假设100:μμ=H ,101:μμ≠H
(3)配对样本t 检验,检验假设100:μμ=H 101:μμ≠H
2.一种面饼的标准重量为80g ,现随机抽取一批面饼,数据在data1,问:面饼重量是否符合要求。
One-Sample Test
Test Value = 80
t df
Sig. (2-tailed) Mean Difference
95% Confidence Interval of the
Difference
Lower
Upper
面饼重量
-.432
29
.669
-.12667
-.7262
.4729
构造原假设:80:0=μH ,备择假设80:1≠μH
取05.0=α,因为计算结果p=0.669.α>p 接受原假设,故面饼质量符合要求
3.在有小麦丛矮病的麦田里,调查了13株病株和11株健株的植株高度,分析健株高度与病株高度是否有显著性差异?(数据见:data2.sav )
构造原假设100:μμ=H ,备择假设101:μμ≠H 05.0=α
关于方差是否相等的假设2
221322212:;:σσσσ≠=H H
847.01=p ,因为α>1p ,所以接受原假 22
212:σσ=H
019.02=p ,因为α<2p ,所以拒绝原假设
所以健株高度与病株高度有显著差异。
4.某学校有四个平行小班进行生物统测,结果如下:问四个小班平均成绩是否有显著差异?
2
2
21σσ= 5.某公司想知道产品销售量与销售方式及销售地点是否有关,随机抽样得表1资料,以0.05的显著性水平进行检验。
表1 某公司产品销售方式及销售地点所对应的销售量
地点一 地点二 地点三 地点四 地点五 方式一 77 86 81 88 83 方式二 95 92 78 96 89 方式三 71 76 68 81 74 方式四
80
84
79
70
82
6.电池的板极材料与使用的环境温度对电池的输出电压均有影响。
今材料类型与环境温度都
取了三个水平,测得输出电压数据如表2,问不同材料、不同温度及它们的交互作用对输出电压有无显著影响(α=0.05)。
表2 材料与环境温度的输出电压影响的测试表
材料类型
环境温度
15℃ 25℃ 35℃ 1 130 155 174
180
34 40 80 75 20 70 82 58 2 150 188 159 126 136 122 106 115 25 70 58 45 3
138 110 168 160
174 120 150 139
96 104 82 60。