三菱PID控制实例
三菱PLC控制步进电机实例
三菱PLC控制步进电机实例
1.接线图
上图的接线为控制一台步进电机接线,这次为大家展示控制两台步进同时运动的方法,
IO表为
X0 步进1原点
X1 步进2原点
X2 启动按钮
Y0 步进1脉冲
Y1 步进1方向
Y2 步进2脉冲
Y3 步进2方向
2.控制工艺:按下启动按钮,两台步进电机先复位,复位完成后两台步进电机运动到指定位置,运动结束。
3.程序如下:
按下启动按钮,两台步进电机开始复位,M11控制步进电机1复位,M12控制步进电机2复位。
步进电机1复位,M13为复位完成标志。
步进电机2复位,M14为复位完成标志。
两台步进电机都复位完成后启动步进电机运动到指定目标,M15控制步进电机1,M16控制步进电机2
步进电机1运动,M17为运动完成标志
步进电机2运动,M18为运动完成标志
两台步进电机运动结束后,结束,等待下一次的启动,重复动作。
用三菱PLC实现PID控制变频器
用三菱PLC-FX2N与F940变频器设计一个带PID控制的恒压供水系统控制要求:(1)有两台水泵,按设计要求一台运行,一台备用,自动运行时泵运行累计100小时轮换一次,手动时不切换.(2)两台水泵分别由m1、m2电动机拖动,电动机同步转速为3000转/min,由km1、km2控制. (3)切换后起动和停电后起动须5s报警,运行异常可自动切换到备用泵,并报警。
(4)采用plc的pid调节指令。
(5)变频器(使用三菱fr—a540)采用plc的特殊功能单元fx0n-3a的模拟输出,调节电动机的转速. (6)水压在0~10kg可调,通过触摸屏(使用三菱f940)输入调节。
(7)触摸屏可以显示设定水压、实际水压、水泵的运行时间、转速、报警信号等.(8)变频器的其余参数自行设定。
软件设计:1.fx2n—48mrplc 的i/o分配:根据控制要求及i/o分配,其系统接线图如图所示.plc输入,x1:1号泵水流开关;x2:2号泵水流开关;x3:过压保护。
plc输出,y1:km1;y2:km2;y4:报警器;10:变频器stf.2.触摸屏画面设:根据控制要求及i/o分配,制作触摸屏画面。
触摸屏输入:m500:自动起动。
m100:手动1号泵。
m101:手动2号泵。
m102:停止。
m103:运行时间复位。
m104:清除报警。
d300:水压设定。
触摸屏输出:y0:1号泵运行指示。
y1:2号泵运行指示。
t20:1号泵故障.t21:2号泵故障。
d101:当前水压。
d502:泵累计运行的时间。
d102:电动机的转速。
3。
plc的程序:根据控制要求,画出fx2n-48mr的程序梯形图、plc程序如下图所示.此主题相关图片如下,点击图片看大图:plc的程序简述:plc得电后,通过程序把模块中的摸拟量压力信号转化成压力数字量(d160),将压力的数据寄存器d160的值除以25以校正压力的实际值(由特殊功能模拟模块fx0n—3a的资料可知:因0—10kg对应的是数值是0-250,所以压力与数值的关系是1:25)。
用三菱PLC-FX2N与F940的PID控制恒压供水
一.控制的要求:(1)有两台水泵,按设计要求一台运行,一台备用,自动运行时泵运行累计100H轮换一次,手动时不切换;(2)两台水泵分别由M1、M2电动机拖动,电动机同步转速为3000转/min,由KM1、KM2控制;(3)切换后起动和停电后起动须5s报警,运行异常可自动切换到备用泵,并报警;(4)采用PLC的PID调节指令(5)变频器(使用三菱FR-A540)采用PLC的特殊功能单元FX0N-3A的模拟输出,调节电动机的转速;(6)水压在0~10kg可调,通过触摸屏(使用三菱F940)输入调节;(7)触摸屏可以显示设定水压、实际水压、水泵的运行时间、转速、报警信号等;(8)变频器的其余参数自行设定。
二.软件的设计:1.I/O分配(1)触摸屏输入,M500:自动起动;M100:手动1号泵;M101:手动2号泵;M102:停止;M103:运行时间复位;M104:清除报警;D300:水压设定。
(2)触摸屏输出,Y0:1号泵运行指示;Y1:2号泵运行指示,T20:1号泵故障;T21:2号泵故障;D101:当前水压;D502:泵累计运行的时间;D102:电动机的转速。
(3)PLC输入,X1:1号泵水流开关;X2:2号泵水流开关;X3:过压保护。
(4)PLC输出,Y1:KM1;Y2:KM2;Y4:报警器;10:变频器STF。
2.触摸屏画面设:根据控制要求及I/O分配,按下图1-1制作触摸屏画面。
(三菱F940触摸屏的画面制作图1-1)3.PLC的程序:(1).根据控制要求,PLC程序如下图2-1,3-1所示。
(PLCFX2N-48MR的程序梯形图图2-1)(PLCFX2N-48MR的程序梯形图图3-1)(2).PLC的关键性程序结构简述:PLC得电后,通过程序把模块中的摸拟量压力信号转化成压力数字量(D160),将压力的数据寄存器D160的值除以25以校正压力的实际值(由特殊功能模拟模块FX0N-3A的资料可知:因0—10kg对应的是数值是0—250,所以压力与数值的关系是1:25)。
用三菱PLC-FX2N与F940的PID控制恒压供水
一.控制的要求:(1)有两台水泵,按设计要求一台运行,一台备用,自动运行时泵运行累计100H轮换一次,手动时不切换;(2)两台水泵分别由M1、M2电动机拖动,电动机同步转速为3000转/min,由KM1、KM2控制;(3)切换后起动和停电后起动须5s报警,运行异常可自动切换到备用泵,并报警;(4)采用PLC的PID调节指令(5)变频器(使用三菱FR-A540)采用PLC的特殊功能单元FX0N-3A的模拟输出,调节电动机的转速;(6)水压在0~10kg可调,通过触摸屏(使用三菱F940)输入调节;(7)触摸屏可以显示设定水压、实际水压、水泵的运行时间、转速、报警信号等;(8)变频器的其余参数自行设定。
二.软件的设计:1.I/O分配(1)触摸屏输入,M500:自动起动;M100:手动1号泵;M101:手动2号泵;M102:停止;M103:运行时间复位;M104:清除报警;D300:水压设定。
(2)触摸屏输出,Y0:1号泵运行指示;Y1:2号泵运行指示,T20:1号泵故障;T21:2号泵故障;D101:当前水压;D502:泵累计运行的时间;D102:电动机的转速。
(3)PLC输入,X1:1号泵水流开关;X2:2号泵水流开关;X3:过压保护。
(4)PLC输出,Y1:KM1;Y2:KM2;Y4:报警器;10:变频器STF。
2.触摸屏画面设:根据控制要求及I/O分配,按下图1-1制作触摸屏画面。
(三菱F940触摸屏的画面制作图1-1)3.PLC的程序:(1).根据控制要求,PLC程序如下图2-1,3-1所示。
(PLCFX2N-48MR的程序梯形图图2-1)(PLCFX2N-48MR的程序梯形图图3-1)(2).PLC的关键性程序结构简述:PLC得电后,通过程序把模块中的摸拟量压力信号转化成压力数字量(D160),将压力的数据寄存器D160的值除以25以校正压力的实际值(由特殊功能模拟模块FX0N-3A的资料可知:因0—10kg对应的是数值是0—250,所以压力与数值的关系是1:25)。
三菱PID控制实例讲课稿
三菱PLC和FX2N-4AD-TC实现温度PID闭环控制系统的学习参考。
风机鼓入的新风经加热交换器、制冷交换器、进入房间。
原理说明:进风不断被受热体加温,欲使进风维持一定的温度,这就需要同时有一加热器以不同加热量给进风加热,这样才能保证进风温度保持恒定。
plc接线图如下,按图接好线。
配线时,应使用带屏蔽的补偿导线和模拟输入电缆配合,屏蔽一切可能产生的干扰。
fx2n-4ad-tc的特殊功能模块编号为0。
输入和输出点分配表这里介绍pid控制改变加热器(热盘管)的加热时间从而实现对温度的闭环控制。
在温度控制系统中,电加热器加热,温度用热电耦检测,与热电耦型温度传感器匹配的模拟量输入模块 fx2n-4ad-tc将温度转换为数字输出,cpu将检测的温度与温度设定值比较,通过plc的pid控制改变加热器的加热时间从而实现对温度的闭环控制。
pid控制时和自动调谐时电加热器的动作情况如上图所示。
其参数设定内容如下表所示。
三菱plc和fx2n-4ad-tc实现温度pid闭环控制系统程序设计:用选择开关置x10作为自动调谐控制后的pid控制,用选择开关置x11作为无自动调谐的pid控制。
当选择开关置x10时,控制用参数的设定值在pid运算前必须预先通过指令写入,见图程序0步开始,m8002为初始化脉冲,用mov指令将目标值、输入滤波常数、微分增益、输出值上限、输出值下限的设定值分别传送给数据寄存器d500、d512、d515、d532、d533。
程序第26步,使m0得电,使用自动调谐功能是为了得到最佳pid控制,自动调谐不能自动设定的参数必须通过指令设定,在第29步~47步之间用mov指令将自动调谐用的参数(自动调谐采用时间、动作方向自动调谐开始、自动调谐用输出值)分别传送给数据寄存器d510、d511、d502。
程序第53步开始,对fx2n-4ad-tc进行确认、模式设定,且在plc运行中读取来自fx2n-4ad-tc的数据送到plc的d501中,103步开始对pid动作进行初始化。
fx2n pid公式
fx2n pid公式摘要:一、前言1.背景介绍2.目的和意义二、fx2n PID 公式概述1.PID 控制器简介2.fx2n PID 公式基本原理3.fx2n PID 公式公式推导三、fx2n PID 公式应用实例1.温度控制系统2.流量控制系统3.压力控制系统四、fx2n PID 公式的优化与调整1.参数调整方法2.系统性能评估3.优化策略五、总结1.fx2n PID 公式在自动化控制领域的贡献2.未来发展趋势和展望正文:一、前言在自动化控制领域,PID 控制器是一种广泛应用的设备,其通过比例、积分、微分三个环节的运算,对系统偏差进行实时调节,实现对被控对象的稳定控制。
fx2n PID 公式是三菱PLC(可编程逻辑控制器)中常用的一种PID 算法,具有较高的控制精度和稳定性。
本文将对fx2n PID 公式进行详细介绍,并探讨其在实际工程中的应用及优化方法。
二、fx2n PID 公式概述1.PID 控制器简介PID 控制器是一种模拟人类调节过程的控制器,具有比例(P)、积分(I)、微分(D)三个调节环节。
比例环节对系统偏差进行实时比例调节,积分环节对系统偏差的积分进行补偿,微分环节预测系统偏差的变化趋势,从而减小系统的超调量和调整时间。
2.fx2n PID 公式基本原理fx2n PID 公式是三菱PLC 中常用的一种PID 算法,基于比例、积分、微分三个环节的运算,实现对被控对象的稳定控制。
公式如下:Kp × (1 + Ki × T + Kd × (T - 1))其中,Kp 为比例增益,Ki 为积分增益,Kd 为微分增益,T 为时间常数。
3.fx2n PID 公式公式推导为了更直观地理解fx2n PID 公式,我们可以对其进行推导。
首先,根据PID 控制器的基本原理,我们有:D(t) = Kd × (T - 1) × e(t)I(t) = Ki × ∫[e(t)]dt其中,e(t) 为系统偏差,t 为时间。
三菱PID控制实例.
三菱PLC和FX2N-4AD-TC实现温度PID闭环控制系统的学习参考。
风机鼓入的新风经加热交换器、制冷交换器、进入房间。
原理说明:进风不断被受热体加温,欲使进风维持一定的温度,这就需要同时有一加热器以不同加热量给进风加热,这样才能保证进风温度保持恒定。
plc接线图如下,按图接好线。
配线时,应使用带屏蔽的补偿导线和模拟输入电缆配合,屏蔽一切可能产生的干扰。
fx2n-4ad-tc的特殊功能模块编号为0。
输入和输出点分配表这里介绍pid控制改变加热器(热盘管)的加热时间从而实现对温度的闭环控制。
在温度控制系统中,电加热器加热,温度用热电耦检测,与热电耦型温度传感器匹配的模拟量输入模块 fx2n-4ad-tc将温度转换为数字输出,cpu将检测的温度与温度设定值比较,通过plc的pid控制改变加热器的加热时间从而实现对温度的闭环控制。
pid控制时和自动调谐时电加热器的动作情况如上图所示。
其参数设定内容如下表所示。
三菱plc和fx2n-4ad-tc实现温度pid闭环控制系统程序设计:用选择开关置x10作为自动调谐控制后的pid控制,用选择开关置x11作为无自动调谐的pid控制。
当选择开关置x10时,控制用参数的设定值在pid运算前必须预先通过指令写入,见图程序0步开始,m8002为初始化脉冲,用mov指令将目标值、输入滤波常数、微分增益、输出值上限、输出值下限的设定值分别传送给数据寄存器d500、d512、d515、d532、d533。
程序第26步,使m0得电,使用自动调谐功能是为了得到最佳pid控制,自动调谐不能自动设定的参数必须通过指令设定,在第29步~47步之间用mov指令将自动调谐用的参数(自动调谐采用时间、动作方向自动调谐开始、自动调谐用输出值)分别传送给数据寄存器d510、d511、d502。
程序第53步开始,对fx2n-4ad-tc进行确认、模式设定,且在plc运行中读取来自fx2n-4ad-tc的数据送到plc的d501中,103步开始对pid动作进行初始化。
用三菱PLC实现PID控制变频器
用三菱PLC-FX2N与F940变频器设计一个带PID控制的恒压供水系统控制要求:(1)有两台水泵,按设计要求一台运行,一台备用,自动运行时泵运行累计100小时轮换一次,手动时不切换。
(2)两台水泵分别由m1、m2电动机拖动,电动机同步转速为3000转/min,由km1、km2控制。
(3)切换后起动和停电后起动须5s报警,运行异常可自动切换到备用泵,并报警。
(4)采取plc的pid调节指令。
(5)变频器(使用三菱fr-a540)采取plc的特殊功能单元fx0n-3a的模拟输出,调节电动机的转速。
(6)水压在0~10kg可调,通过触摸屏(使用三菱f940)输入调节。
(7)触摸屏可以显示设定水压、实际水压、水泵的运行时间、转速、报警信号等。
(8)变频器的其余参数自行设定。
软件设计:1.fx2n-48mrplc 的i/o分配:根据控制要求及i/o分配,其系统接线图如图所示。
plc输入,x1:1号泵水流开关;x2:2号泵水流开关;x3:过压呵护。
plc输出,y1:km1;y2:km2;y4:报警器;10:变频器stf。
2.触摸屏画面设:根据控制要求及i/o分配,制作触摸屏画面。
触摸屏输入:m500:自动起动。
m100:手动1号泵。
m101:手动2号泵。
m102:停止。
m103:运行时间复位。
m104:清除报警。
d300:水压设定。
触摸屏输出:y0:1号泵运行指示。
y1:2号泵运行指示。
t20:1号泵故障。
t21:2号泵故障。
d101:当前水压。
d502:泵累计运行的时间。
d102:电动机的转速。
3. plc的程序:根据控制要求,画出fx2n-48mr的程序梯形图、plc程序如下图所示。
此主题相关图片如下,点击图片看大图:plc的程序简述:plc得电后,通过程序把模块中的摸拟量压力信号转化成压力数字量(d160),将压力的数据寄存器d160的值除以25以校正压力的实际值(由特殊功能模拟模块fx0n-3a的资料可知:因0-10kg对应的是数值是0-250,所以压力与数值的关系是1:25)。
用三菱PLC实现PID控制变频器
用三菱PLC-FX2N与F940变频器设计一个带PID控制的恒压供水系统控制要求:(1)有两台水泵,按设计要求一台运行,一台备用,自动运行时泵运行累计100小时轮换一次,手动时不切换。
(2)两台水泵分别由m1、m2电动机拖动,电动机同步转速为3000转/min,由km1、km2控制。
(3)切换后起动和停电后起动须5s报警,运行异常可自动切换到备用泵,并报警.(4)采用plc的pid调节指令。
(5)变频器(使用三菱fr—a540)采用plc的特殊功能单元fx0n-3a的模拟输出,调节电动机的转速。
(6)水压在0~10kg可调,通过触摸屏(使用三菱f940)输入调节.(7)触摸屏可以显示设定水压、实际水压、水泵的运行时间、转速、报警信号等.(8)变频器的其余参数自行设定。
软件设计:1.fx2n-48mrplc 的i/o分配:根据控制要求及i/o分配,其系统接线图如图所示.plc输入,x1:1号泵水流开关;x2:2号泵水流开关;x3:过压保护。
plc输出,y1:km1;y2:km2;y4:报警器;10:变频器stf。
2.触摸屏画面设:根据控制要求及i/o分配,制作触摸屏画面。
触摸屏输入:m500:自动起动。
m100:手动1号泵。
m101:手动2号泵。
m102:停止.m103:运行时间复位。
m104:清除报警.d300:水压设定。
触摸屏输出:y0:1号泵运行指示。
y1:2号泵运行指示。
t20:1号泵故障。
t21:2号泵故障。
d101:当前水压。
d502:泵累计运行的时间。
d102:电动机的转速。
3. plc的程序:根据控制要求,画出fx2n-48mr的程序梯形图、plc程序如下图所示。
此主题相关图片如下,点击图片看大图:plc的程序简述:plc得电后,通过程序把模块中的摸拟量压力信号转化成压力数字量(d160),将压力的数据寄存器d160的值除以25以校正压力的实际值(由特殊功能模拟模块fx0n-3a的资料可知:因0—10kg 对应的是数值是0—250,所以压力与数值的关系是1:25)。
用三菱PLC实现PID控制变频器之欧阳法创编
用三菱PLC-FX2N与F940变频器设计一个带PID控制的恒压供水系统控制要求:(1)有两台水泵,按设计要求一台运行,一台备用,自动运行时泵运行累计100小时轮换一次,手动时不切换。
(2)两台水泵分别由m1、m2电动机拖动,电动机同步转速为3000转/min,由km1、km2控制。
(3)切换后起动和停电后起动须5s报警,运行异常可自动切换到备用泵,并报警。
(4)采用plc的pid调节指令。
(5)变频器(使用三菱fr-a540)采用plc的特殊功能单元fx0n-3a的模拟输出,调节电动机的转速。
(6)水压在0~10kg可调,通过触摸屏(使用三菱f940)输入调节。
(7)触摸屏可以显示设定水压、实际水压、水泵的运行时间、转速、报警信号等。
(8)变频器的其余参数自行设定。
软件设计:1.fx2n-48mrplc 的i/o分配:根据控制要求及i/o分配,其系统接线图如图所示。
plc输入,x1:1号泵水流开关;x2:2号泵水流开关;x3:过压保护。
plc输出,y1:km1;y2:km2;y4:报警器;10:变频器stf。
2.触摸屏画面设:根据控制要求及i/o分配,制作触摸屏画面。
触摸屏输入:m500:自动起动。
m100:手动1号泵。
m101:手动2号泵。
m102:停止。
m103:运行时间复位。
m104:清除报警。
d300:水压设定。
触摸屏输出:y0:1号泵运行指示。
y1:2号泵运行指示。
t20:1号泵故障。
t21:2号泵故障。
d101:当前水压。
d502:泵累计运行的时间。
d102:电动机的转速。
3. plc的程序:根据控制要求,画出fx2n-48mr的程序梯形图、plc程序如下图所示。
此主题相关图片如下,点击图片看大图:plc的程序简述:plc得电后,通过程序把模块中的摸拟量压力信号转化成压力数字量(d160),将压力的数据寄存器d160的值除以25以校正压力的实际值(由特殊功能模拟模块fx0n-3a的资料可知:因0-10kg对应的是数值是0-250,所以压力与数值的关系是1:25)。
用三菱PLC-FX2N与F940的PID控制恒压供水
一.控制的要求:〔1〕有两台水泵,按设计要求一台运行,一台备用,自动运行时泵运行累计100H轮换一次,手动时不切换;〔2〕两台水泵分别由M1、M2电动机拖动,电动机同步转速为3000转/min,由KM1、KM2控制;〔3〕切换后起动和停电后起动须5s报警,运行异常可自动切换到备用泵,并报警;〔4〕采用PLC的PID调节指令〔5〕变频器〔使用三菱FR-A540〕采用PLC的特殊功能单元FX0N-3A的模拟输出,调节电动机的转速;〔6〕水压在0~10kg可调,通过触摸屏〔使用三菱F940〕输入调节;〔7〕触摸屏可以显示设定水压、实际水压、水泵的运行时间、转速、报警信号等;〔8〕变频器的其余参数自行设定。
二.软件的设计:1.I/O分配〔1〕触摸屏输入,M500:自动起动;M100:手动1号泵;M101:手动2号泵;M102:停顿;M103:运行时间复位;M104:去除报警;D300:水压设定。
〔2〕触摸屏输出,Y0:1号泵运行指示;Y1:2号泵运行指示,T20:1号泵故障;T21:2号泵故障;D101:当前水压;D502:泵累计运行的时间;D102:电动机的转速。
〔3〕PLC输入,X1:1号泵水流开关;X2:2号泵水流开关;X3:过压保护。
〔4〕PLC输出,Y1:KM1;Y2:KM2;Y4:报警器;10:变频器STF。
2.触摸屏画面设:根据控制要求及I/O分配,按下列图1-1制作触摸屏画面。
〔三菱F940触摸屏的画面制作图1-1〕3.PLC的程序:(1).根据控制要求,PLC程序如下列图2-1,3-1所示。
〔PLCFX2N-48MR的程序梯形图图2-1〕〔PLCFX2N-48MR的程序梯形图图3-1〕(2).PLC的关键性程序构造简述:PLC得电后,通过程序把模块中的摸拟量压力信号转化成压力数字量(D160),将压力的数据存放器D160的值除以25以校正压力的实际值(由特殊功能模拟模块FX0N-3A的资料可知:因0—10kg对应的是数值是0—250,所以压力与数值的关系是1:25)。
用三菱PLC-FX2N与F940的PID控制恒压供水
之迟辟智美创作一.控制的要求:(1)有两台水泵,按设计要求一台运行,一台备用,自动运行时泵运行累计100H轮换一次,手动时不切换;(2)两台水泵分别由M1、M2电念头拖动,电念头同步转速为3000转/min,由KM1、KM2控制;(3)切换后起动和停电后起动须5s报警,运行异常可自动切换到备用泵,并报警;(4)采纳PLC的PID调节指令(5)变频器(使用三菱FR-A540)采纳PLC的特殊功能单位FX0N-3A的模拟输出,调节电念头的转速;(6)水压在0~10kg可调,通过触摸屏(使用三菱F940)输入调节;(7)触摸屏可以显示设定水压、实际水压、水泵的运行时间、转速、报警信号等;(8)变频器的其余参数自行设定.的设计:1.I/O分配(1)触摸屏输入,M500:自动起动;M100:手动1号泵;M101:手动2号泵;M102:停止;M103:运行时间复位;M104:清除报警;D300:水压设定.(2)触摸屏输出,Y0:1号泵运行指示;Y1:2号泵运行指示,T20:1号泵故障;T21:2号泵故障;D101:以后水压;D502:泵累计运行的时间;D102:电念头的转速. (3)PLC输入,X1:1号泵水流开关;X2:2号泵水流开关;X3:过压呵护.(4)PLC输出,Y1:KM1;Y2:KM2;Y4:报警器;10:变频器STF.2.触摸屏画面设:根据控制要求及I/O分配,按下图1-1制作触摸屏画面.(三菱F940触摸屏的画面制作图1-1)3.PLC的法式:(1).根据控制要求,PLC法式如下图2-1,3-1所示.(PLCFX2N-48MR的法式梯形图图2-1)(PLCFX2N-48MR的法式梯形图图3-1)(2).PLC的关键性法式结构简述:PLC得电后,通过法式把模块中的摸拟量压力信号转化成压力数字量(D160),将压力的数据寄存器D160的值除以25以校正压力的实际值(由特殊功能模拟模块FX0N-3A的资料可知:因0—10kg对应的是数值是0—250,所以压力与数值的关系是1:25).在该系统中我们规定了电念头同步转速为3000转/min,所以同步转速的设定低于3000转/min对机电的呵护是有好处的,这里我们把转速设定为不能超越1250转/min,则数值与通过PID法式运算的MV(输出)值D150(即电念头转速量)的关系为1:5(由特殊功能模拟模块FX0N-3A的资料可知: 因数值是0—250对应的是0—1250转/min,则数值与转速的关系是1:5),所以电念头的转速实际值校正数D102=D150×5÷10(其中除以10是因为所有实数介入PID的SV<设定值>D500,PV<以后值>D160,运算都是以1000%加入的.所以要获得MV<输出值>D150的实际数值需要除以10).因该系统中机电的转速是与压力成正比的,转速加年夜;压力也加年夜!(这里要注意:举措方向【S3】+1,以后值PV,D500<设定值SV,D160;即bit=1,选择逆举措)所以将压力数字量寄存器D160用于PID法式的PV(以后)数字量做为时刻检查管内的以后压力状况.4.变频器设置:(1)上限频率Pr1=50Hz;(2)下限频率Pr2=30Hz;(3)基底频率Pr3=50Hz;(4)加速时间Pr7=3s;(5)减速时间Pr8=3s;(6)电子过电流呵护Pr9=电念头的额定电流;(7)起动频率Pr13=10Hz;(8)DU面板的第三监视功能为变频繁器的输出功率Pr5=14;(9)智能模式选择为节能模式Pr60=4;(10)设定端子2~5间的频率设定为电压信号0~10V Pr73=0;(11)允许所有参数的读/写Pr160=0;(12)把持模式选择(外部运行)Pr79=2;(13)其他设置为默认值.三、系统接线:根据控制要求及I/O分配,其系统接线图如图4-1所示.(PLCFX2N-48MR系统接线图如图4-1)四、系统调试:(1)将触摸屏RS232接口与计算机连接,将触摸屏RS422接口与PLC编程接口连接,编写好FX0N-3A偏移/增益调整法式,连接好FX0N-3A I/O电路,通过GAIN和OFFSET 调整偏移/增益.(2)按图1-1设计好触摸屏画面,并设置好各控件的属性,按图2-1,3-1所示编写好PLC法式,并传送到触摸屏和PLC.(3)将PLC运行开关坚持OFF,法式设定为监视状态,按触摸屏上的按钮,观察法式触点举措情况,如举措不正确,检查触摸屏属性设置和法式是否对应.(4)系统时间应正确显示.(5)改变触摸屏输入寄存器值,观察法式对应寄存器的值变动.(6)按(图4-1)连接好PLC的I/O线路和变频器的控制电路及主电路.(7)将PLC运行开关坚持ON,设定水压调整为3kg.(8)按手动起动,设备应正常起动,观察各设备运行是否正常,变频器输出频率是否相对平稳,实际水压与设定的偏差.(9)如果水压在设定值上下有剧烈的颤动,则应该调节PID指令的微分参数,将值设定小一些,同时适当增加积分参数值.如果调整过于缓慢,水压的上下偏差很年夜,则系统比例常数太年夜,应适当减小.(10)测试其他功能,是否跟控制要求相符.。
用三菱PLC实现PID控制变频器之欧阳美创编
用三菱PLC-FX2N与F940变频器设计一个带PID控制的恒压供水系统控制要求:(1)有两台水泵,按设计要求一台运行,一台备用,自动运行时泵运行累计100小时轮换一次,手动时不切换。
(2)两台水泵分别由m1、m2电动机拖动,电动机同步转速为3000转/min,由km1、km2控制。
(3)切换后起动和停电后起动须5s报警,运行异常可自动切换到备用泵,并报警。
(4)采用plc的pid调节指令。
(5)变频器(使用三菱fr-a540)采用plc的特殊功能单元fx0n-3a 的模拟输出,调节电动机的转速。
(6)水压在0~10kg可调,通过触摸屏(使用三菱f940)输入调节。
(7)触摸屏可以显示设定水压、实际水压、水泵的运行时间、转速、报警信号等。
(8)变频器的其余参数自行设定。
软件设计:1.fx2n-48mrplc 的i/o分配:根据控制要求及i/o分配,其系统接线图如图所示。
plc输入,x1:1号泵水流开关;x2:2号泵水流开关;x3:过压保护。
plc输出,y1:km1;y2:km2;y4:报警器;10:变频器stf。
2.触摸屏画面设:根据控制要求及i/o分配,制作触摸屏画面。
触摸屏输入:m500:自动起动。
m100:手动1号泵。
m101:手动2号泵。
m102:停止。
m103:运行时间复位。
m104:清除报警。
d300:水压设定。
触摸屏输出:y0:1号泵运行指示。
y1:2号泵运行指示。
t20:1号泵故障。
t21:2号泵故障。
d101:当前水压。
d502:泵累计运行的时间。
d102:电动机的转速。
3. plc的程序:根据控制要求,画出fx2n-48mr的程序梯形图、plc 程序如下图所示。
此主题相关图片如下,点击图片看大图:plc的程序简述:plc得电后,通过程序把模块中的摸拟量压力信号转化成压力数字量(d160),将压力的数据寄存器d160的值除以25以校正压力的实际值(由特殊功能模拟模块fx0n-3a的资料可知:因0-10kg 对应的是数值是0-250,所以压力与数值的关系是1:25)。
三菱变频器PID控制实现恒压力、恒流量之控制
注意事项:
1. 送电时,注意电源不要接错
2. 确定参数都有设定
3. 外部接线没有接错
4. 送电前检查一下线路再送电
11 PID 正动作 Pr128(PID 动作选择) 20 PID 负动作
21 PID 正动作
负动作:偏差 = (目标值 - 测量值)为正时,输出频率;若偏差为负时,减少输出频率。 正动作:偏差 = (目标值 - 测量值)为负时,输出频率;若偏差为正时,减少输出频率。
Pr133 (PU 运转时 PID 动作目标值)
三菱变频器 PID 控制实现恒压力、恒流量之控制
现今工业控制中,往往需要利用PID来达成控制上的需求,若是用 PLC 撰写 PID 的话需要写程序,
有鉴于此,变频器就提供了此项功能,只需作简单的设定就可以达成控制上的 PID 控制。
需求:利用压力 SENSOR (0~10Kg 输入对应 DC 4 ~ 20mA 电流输出),利用变频器达成恒压力控制。
目标:
1. 接线方式
2. 参数设定
3. 原理介绍
4. 注意事项
接线方式:
(1) 首先把更改参数,改成 DC4 ~ 20mA 电流输入(把 RL 接点改成 A U接点);之后接线接对就可以了。
(2) 更改 Pr180 改成(把 RL 接点改成 AU 接点),把 AU 跟 SD 短接,STL 与 SD 短接即可。 (3) 电流输入端 DC24V(4+、5-)。
设定值 端子名 设定值 端子名
0 RL (低速运转接点) 6 MRS
1 RM (中速运转) 7 OH
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三菱PLC和FX2N-4AD-TC实现温度PID闭环控制系统的学习参考。
风机鼓入的新风经加热交换器、制冷交换器、进入房间。
原理说明:进风不断被受热体加温,欲使进风维持一定的温度,这就需要同时有一加热器以不同加热量给进风加热,这样才能保证进风温度保持恒定。
plc接线图如下,按图接好线。
配线时,应使用带屏蔽的补偿导线和模拟输入电缆配合,屏蔽一切可能产生的干扰。
fx2n-4ad-tc的特殊功能模块编号为0。
输入和输出点分配表
这里介绍pid控制改变加热器(热盘管)的加热时间从而实现对温度的闭环控制。
在温度控制系统中,电加热器加热,温度用热电耦检测,与热电耦型温度传感器匹配的模拟量输入模块 fx2n-4ad-tc将温度转换为数字输出,cpu将检测的温度与温度设定值比较,通过plc的pid控制改变加热器的加热时间从而实现对温度的闭环控制。
pid控制时和自动调谐时电加热器的动作情况如上图所示。
其参数设定内容如下表所示。
三菱plc和fx2n-4ad-tc实现温度pid闭环控制系统程序设计:
用选择开关置x10作为自动调谐控制后的pid控制,用选择开关置x11作为无自动调谐的pid控制。
当选择开关置x10时,控制用参数的设定值在pid运算前必须预先通过指令写入,见图程序0步开始,m8002为初始化脉冲,用mov指令将目标值、输入滤波常数、微分增益、输出值上限、输出值下限的设定值分别传送给数据寄存器d500、d512、d515、d532、d533。
程序第26步,使m0得电,使用自动调谐功能是为了得到最佳pid控制,自动调谐不能自动设定的参数必须通过指令设定,在第29步~47步之间用mov指令将自动调谐用的参数(自动调谐采用时间、动作方向自动调谐开始、自动调谐用输出值)分别传送给数据寄存器d510、d511、d502。
程序第53步开始,对fx2n-4ad-tc进行确认、模式设定,且在plc运行中读取来自fx2n-4ad-tc的数据送到plc的d501中,103步开始对pid动作进行初始化。
第116步开始,x10闭合,在自动调谐后实行pid控制,当自动调谐开始时的测定值达到目标值的变化量变化1/3以上,则自动调谐结束,程序第128步~140步,自动调谐
结束,转移到通常动作,m1复位。
第47步,将通常动作的采样时间设定值500ms用脉冲执行型mov(p)指令送给d510,进行pid控制。
用选择开关置x11作为无自动调谐的pid控制(当选择开关置断开位置时,将pid动作初始化,即d502清零)。
程序116步,执行pid指令。
加热器动作周期t246设为2秒,当加热器动作周期2秒钟到,通过复位指令将t246清零,因为m3动作,t246重新计时。
通过触点比较指令,控制加热器是否工作,由于pid调节获得需要的加热时间的数据置于d502中,d502不是固定值,靠pid来调节,在pid调节过程中,m3动合触点始终是闭合的,当加热时间通过t246记录的数据小于pid传送的数据d502时,加热器加热,否则停止加热,等待加热器动作周期2秒到,t246清零并重新计时,此时加热器又加热,周而复始。
通过pid控制不断调节加热器的加热时间,从而实现了恒温控制。
当控制参数的设定值或pid运算中的数据发生错误时,则运算错误标志辅助继电器m8067变为on状态,通过y0输出给故障指示灯显示。
«什么是反馈控制以及为什么要使用反馈?
三菱Q系列PLC编程手册-PID控制指令篇»
三菱FXPLC的PID控制指令
FX2N的PID指令的编号为FNC88,如图所示源操作数[S1]、[S2]、[S3]和目标操作数[D]均为数据寄存器D,16位指令,占9个程序步。
[S1]和[S2]分别用来存放给定值SV和当前测量到的反馈值PV,[S3]~[S3]+6用来存放控制参数的值,运算结果MV存放在[D]中。
源操作数[S3]占用从[S3]开始的25个数据寄存器
PID指令是用来调用PID运算程序,在PID运算开始之前,应使用MOV指令将参数设定值预先写入对应的数据寄存器中。
如果使用有断电保持功能的数据寄存器,不需要重复写入。
如果目标操作数[D]有断电保持功能,应使用初始化脉冲M8002的常开触点将其复位。
PID指令可以同时多次使用,但是用于运算的[S3]、[D]的数据寄存器元件号不能重复。
PID指令可以在定时中断、子程序、步进指令和转移指令内使用,但是应将[S3]+7清零(采用脉冲执行的MOV指令)之后才能使用。
控制参数的设定和 PID运算中的数据出现错误时,“运算错误”标志M8067为 ON,错误代码存放在D8067中。
PID指令采用增量式PID算法,控制算法中还综合使用了反馈量一阶惯性数字滤波、不完全微分和反馈量微分等措施,使该指令比普通的PID算法具有更好的控制效果。
PID控制是根据“动作方向”([S3]+1)的设定内容,进行正作用或反作用的PID运算。