2018一轮北师大版(理)数学训练:第5章 第2节 课时分层训练29 等差数列 Word版含解析
新课标最新北师大版2018-2019学年高中数学必修五《数列》同步习题课及答案解析
北师大版高中数学必修五习题课(1)课时目标 1.熟练掌握等差数列的概念、通项公式、前n 项和公式,并能综合运用这些知识解决一些问题.2.熟练掌握等差数列的性质、等差数列前n 项和的性质,并能综合运用这些性质解决相关问题.1.若S n 是数列{a n }的前n 项和,则S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧n =1,n ≥2.2.若数列{a n }为等差数列,则有: (1)通项公式:a n =__________;(2)前n 项和:S n =______________=_________________________________________. 3.等差数列的常用性质(1)若{a n }为等差数列,且m +n =p +q(m ,n ,p ,q ∈N +),则______________________. (2)若S n 表示等差数列{a n }的前n 项和,则 S k ,S 2k -S k ,____________成等差数列.一、选择题1.在等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值为( ) A .24 B .22 C .20 D .-82.等差数列{a n }的前n 项和为S n ,若a 3+a 7+a 11=6,则S 13等于( ) A .24 B .25 C .26 D .273.设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A .0 B .37 C .100 D .-374.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13等于( )A.120 B.105C.90 D.755.若{a n}为等差数列,S n为其前n项和,若a1>0,d<0,S4=S8,则S n>0成立的最大自然数n为( )A.11 B.12C.13 D.146.在等差数列{a n}中,a1=-2 008,其前n项和为S n,若S2 0082 008-S2 0062 006=2,则S2 012等于( )A.-2 012 B.2 012C.6 033 D.6 036二、填空题7.已知数列{a n}的前n项和S n=n2+n+1,则a6+a7+…+a10的值为________.8.设等差数列{a n}的前n项和为S n,若S p=S q(p,q∈N+且p≠q),则S p+q=________. 9.等差数列{a n}中,|a3|=|a9|,公差d<0,则使前n项和S n取得最大值的自然数n是______.10.已知数列{a n}中,a1=20,a n+1=a n+2n-1,n∈N+,则数列{a n}的通项公式a n=________.三、解答题11.甲、乙两物体分别从相距70 m的两处同时相向运动,甲第1分钟走2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟后第二次相遇?12.已知公差大于零的等差数列{a n}的前n项和为S n,且满足:a3·a4=117,a2+a5=22.(1)求数列{a n}的通项公式a n;(2)若数列{b n}是等差数列,且b n=S nn+c,求非零常数c.能力提升13.在等差数列{a n}中,a10<0,a11>0,且|a10|<a11,S n为{a n}的前n项的和,则下列结论正确的是( )A.S1,S2,…,S10都小于零,S11,S12,…都大于零B.S1,S2,…,S5都小于零,S6,S7,…都大于零C.S1,S2,…,S20都小于零,S21,S22,…都大于零D.S1,S2,…,S19都小于零,S20,S21,…都大于零14.把自然数1,2,3,4,…按下列方式排成一个数阵.12 34 5 67 8 9 1011 12 13 14 15……………………………根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是______________.1.等差数列是最基本、最常见的数列,等差数列的定义是研究解决等差数列的判定和性质,推导通项公式、前n 项和公式的出发点.2.通项公式与前n 项和公式联系着五个基本量:a 1、d 、n 、a n 、S n .掌握好本部分知识的内在联系、结构,以便灵活运用.3.另外用函数观点和方法揭示等差数列的特征,在分析解决数列的综合题中有重要的意义.习题课(1) 答案知识梳理1.S 1 S n -S n -1 2.(1)a 1+(n -1)d (2)na 1+n(n -1)d 2 n(a 1+a n )2 3.(1)a m +a n =a p+a q (2)S 3k -S 2k 作业设计 1.A2.C [∵a 3+a 7+a 11=6,∴a 7=2,∴S 13=13(a 1+a 13)2=13a 7=26.]3.C [设数列{a n },{b n }的公差分别为d ,d ′,则a 2+b 2=(a 1+d)+(b 1+d ′)=(a 1+b 1)+(d +d ′)=100. 又∵a 1+b 1=100,∴d +d ′=0.∴a 37+b 37=(a 1+36d)+(b 1+36d ′)=(a 1+b 1)+36(d +d ′)=100.] 4.B [∵a 1+a 2+a 3=3a 2=15,∴a 2=5. ∵a 1=5-d ,a 3=5+d ,d>0, ∴a 1a 2a 3=(5-d)·5·(5+d)=80, ∴d =3,a 1=2.∴a 11+a 12+a 13=3a 12=3(a 1+11d)=3a 1+33d =3×2+33×3=105.] 5.A [S 4=S 8⇒a 5+a 6+a 7+a 8=0⇒a 6+a 7=0,又a 1>0,d<0,S 12=(a 1+a 12)·122=0,n<12时,S n >0.]6.D [S n n =a 1+(n -1)d2,∴S 2 0082 008-S 2 0062 006=a 1+2 008-12d -a 1-2 006-12d =d =2. ∴S 2 012=2 012×(-2 008)+2 012×2 0112×2=2 012×3=6 036.] 7.80解析 a 6+a 7+…+a 10=S 10-S 5=111-31=80. 8.0解析 设S n =an 2+bn ,由S p =S q . 知ap 2+bp =aq 2+bq ,∴p +q =-b a.∴S p +q =a(p +q)2+b(p +q)=a(-b a )2+b(-b a )=b 2a -b2a=0.9.5或6解析 d<0,|a 3|=|a 9|,∴a 3>0,a 9<0且a 3+a 9=0, ∴a 6=0,∴a 1>a 2>…>a 5>0,a 6=0,0>a 7>a 8>…. ∴当n =5或6时,S n 取到最大值. 10.n 2-2n +21解析 ∵a n +1-a n =2n -1, ∴a 2-a 1=1,a 3-a 2=3,…, a n -a n -1=2n -3,n ≥2.∴a n -a 1=1+3+5+…+(2n -3). ∴a n =20+(n -1)(2n -2)2=n 2-2n +21.11.解 (1)设n 分钟后第1次相遇,依题意, 有2n +n(n -1)2+5n =70,整理得n 2+13n -140=0. 解之得n =7,n =-20(舍去). 第1次相遇是在开始运动后7分钟. (2)设n 分钟后第2次相遇,依题意,有 2n +n(n -1)2+5n =3×70,整理得n 2+13n -420=0. 解之得n =15,n =-28(舍去). 第2次相遇是在开始运动后15分钟.12.解 (1)设等差数列{a n }的公差为d ,且d>0. ∵a 3+a 4=a 2+a 5=22,又a 3·a 4=117, 又公差d>0,∴a 3<a 4,∴a 3=9,a 4=13.∴⎩⎪⎨⎪⎧a 1+2d =9a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1d =4,∴a n =4n -3.(2)由(1)知,S n =n ·1+n(n -1)2·4=2n 2-n ,∴b n =S n n +c =2n 2-nn +c .∴b 1=11+c ,b 2=62+c ,b 3=153+c. ∵{b n }是等差数列,∴2b 2=b 1+b 3, ∴2c 2+c =0,∴c =-12 (c =0舍去).13.D [∵S 19=19(a 1+a 19)2=19a 10<0,S 20=20(a 1+a 20)2.而a 1+a 20=a 10+a 11,∵a 10<0,a 11>0且|a 10|<a 11, ∴a 10+a 11>0,∴S 20=20(a 1+a 20)2=10(a 10+a 11)>0.又∵d =a 11-a 10>0. ∴S n >0 (n ≥20).] 14.n 22-n 2+3解析 该数阵的第1行有1个数,第2行有2个数,…,第n 行有n 个数,则第n -1 (n ≥3)行的最后一个数为(n -1)(1+n -1)2=n 22-n 2,则第n 行从左至右的第3个数为n 22-n2+。
2019一轮北师大版(理)数学训练:第6章 第1节 课时分层训练32 不等式的性质与一元二次不等式 含解析
课时分层训练(三十二) 不等式的性质与一元二次不等式A 组 基础达标 (建议用时:30分钟)一、选择题1.已知a >b ,c >d ,且c ,d 不为0,那么下列不等式成立的是( ) A .a d>bc B .ac >b d C .a -c >b -dD .a +c >b +dD [由不等式的同向可加性得a +c >b +d.] 2.已知函数f (x )=⎩⎨⎧x +2, x ≤0,-x +2, x >0,则不等式f (x )≥x 2的解集为( )【导学号:57962271】A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]A [法一:当x ≤0时,x +2≥x 2, ∴-1≤x ≤0;①当x >0时,-x +2≥x 2,∴0<x ≤1.② 由①②得原不等式的解集为{x |-1≤x ≤1}. 法二:作出函数y =f (x )和函数y =x 2的图像,如图,由图知f (x )≥x 2的解集为[-1,1].]3.设a ,b 是实数,则“a >b >1”是“a +1a >b +1b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件A [因为a +1a -⎝ ⎛⎭⎪⎫b +1b =(a -b )(ab -1)ab ,若a >b >1,显然a +1a -⎝ ⎛⎭⎪⎫b +1b =(a -b )(ab -1)ab >0,则充分性成立,当a =12,b =23时,显然不等式a +1a >b +1b 成立,但a >b >1不成立,所以必要性不成立.]4.(2016·吉林一模)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x | x <-1或x >13,则f (e x )>0的解集为( )A .{x |x <-1或x >-ln 3}B .{x |-1<x <-ln 3}C .{x |x >-ln 3}D .{x |x <-ln 3}D [设-1和13是方程x 2+ax +b =0的两个实数根, ∴a =-⎝ ⎛⎭⎪⎫-1+13=23, b =-1×13=-13,∵一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x | x <-1或x >13,∴f (x )=-⎝ ⎛⎭⎪⎫x 2+23x -13=-x 2-23x +13,∴f (x )>0的解集为x ∈⎝ ⎛⎭⎪⎫-1,13. 不等式f (e x )>0可化为-1<e x <13. 解得x <ln 13, ∴x <-ln 3,即f (e x )>0的解集为{x |x <-ln 3}.]5.若集合A ={}x |ax 2-ax +1<0=∅,则实数a 的值的集合是( )【导学号:57962272】A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}D [由题意知a =0时,满足条件,a ≠0时,由⎩⎨⎧a >0,Δ=a 2-4a ≤0, 得0<a ≤4,所以0≤a ≤4.] 二、填空题6.(2016·辽宁抚顺一模)不等式-2x 2+x +1>0的解集为__________.【导学号:57962273】⎝ ⎛⎭⎪⎫-12,1 [-2x 2+x +1>0,即2x 2-x -1<0,(2x +1)(x -1)<0,解得-12<x <1,∴不等式-2x 2+x +1>0的解集为⎝ ⎛⎭⎪⎫-12,1.]7.(2017·南京、盐城二模)已知函数f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,则不等式f (x )≥-1的解集是__________.[-4,2] [不等式f (x )≥-1⇔⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎨⎧x >0,-(x -1)2≥-1,解得-4≤x ≤0或0<x ≤2,故不等式f (x )≥-1的解集是[-4,2].]8.(2016·西安质检)在R 上定义运算:⎪⎪⎪⎪⎪⎪ab cd =a d -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为__________.32 [原不等式等价于x (x -1)-(a -2)(a +1)≥1, 即x 2-x -1≥(a +1)(a -2)对任意x 恒成立, x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,解得-12≤a ≤32.] 三、解答题9.设x <y <0,试比较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的大小.【导学号:57962274】[解] (x 2+y 2)(x -y )-(x 2-y 2)(x +y ) =(x -y )[(x 2+y 2)-(x +y )2]=-2xy (x -y ).5分∵x <y <0,∴xy >0,x -y <0,∴-2xy (x -y )>0,8分 ∴(x 2+y 2)(x -y )>(x 2-y 2)(x +y ). 12分 10.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. [解] (1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6=-a 2+6a +3, 2分 ∴原不等式可化为a 2-6a -3<0, 解得3-23<a <3+23,∴原不等式的解集为{a |3-23<a <3+23}.5分 (2)f (x )>b 的解集为(-1,3)等价于方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,8分等价于⎩⎪⎨⎪⎧-1+3=a (6-a )3,-1×3=-6-b3,解得⎩⎨⎧a =3±3,b =-3.12分B 组 能力提升 (建议用时:15分钟)1.(2016·九江一模)若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-2)B .(-2,+∞)C .(-6,+∞)D .(-∞,-6)A [不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)ma x ,令g (x )=x 2-4x -2,x ∈(1,4),∴g (x )<g (4)=-2,∴a <-2.]2.在R 上定义运算:x *y =x (1-y ),若不等式(x -y )*(x +y )<1对一切实数x 恒成立,则实数y 的取值范围是__________.【导学号:57962275】⎝ ⎛⎭⎪⎫-12,32 [由题意知(x -y )*(x +y )=(x -y )·[1-(x +y )]<1对一切实数x 恒成立,所以-x 2+x +y 2-y -1<0对于x ∈R 恒成立.故Δ=12-4×(-1)×(y 2-y -1)<0, 所以4y 2-4y -3<0,解得-12<y <32.]3.(2016·北京朝阳统一考试)已知函数f (x )=x 2-2ax -1+a ,a ∈R . (1)若a =2,试求函数y =f (x )x (x >0)的最小值;(2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围.【导学号:57962276】[解] (1)依题意得y =f (x )x =x 2-4x +1x =x +1x -4.因为x >0,所以x +1x ≥2,2分当且仅当x =1x 时,即x =1时,等号成立, 所以y ≥-2.所以当x =1时,y =f (x )x 的最小值为-2. 5分(2)因为f (x )-a =x 2-2ax -1,所以要使得“任意x ∈[0,2],不等式f (x )≤a 成立”只要“x 2-2ax -1≤0在[0,2]上恒成立”.7分不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可, 所以⎩⎨⎧g (0)≤0,g (2)≤0,即⎩⎨⎧0-0-1≤0,4-4a -1≤0,10分 解得a ≥34,则a 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞.12分。
2018届一轮复习北师大版(理) 等差数列及其前n项和 课件(66张)
跟踪训练1
(1)设Sn是等差数列{an} 的前n项和,已知 a2=3,a6=11,
解析
则S7等于 答案A.Βιβλιοθήκη 3B.35C.49
∵a1+a7=a2+a6=3+11=14,
7a1+a7 ∴S7= = 49. 2
D.63
(2)(2016· 江苏)已知{an}是等差数列,Sn是其前n项和.若a1+a2 2 =-3,S5
出an+2-an+1=an+1-an=an-an-1=an-1-an-2=…=a2-a1 ,根据定
义得出数列{an}为等差数列.
(3)通项公式法:得出an=pn+q后,得an+1-an=p对任意正整数n恒成立,
根据定义判定数列{an}为等差数列.
(4)前n项和公式法:得出 Sn =An2+Bn后,根据Sn,an的关系,得出an,
解析
A.31
C.33
B.32
D.34
a =26, 1 3 a1+5d=2, 由已知可得 解得 4 5a1+10d=30, d=-3,
8 ×7 ∴S8=8a1+ 2 d=32.
3.(2016· 全国乙卷)已知等差数列{an}前9项的和为27,a10=8,则a100等
考点自测
1.在等差数列{an}中,若a2=4,a4=2,则a6等于 答案 A.-1 B.0 C.1 D.6
解析
由等差数列的性质,得a6=2a4-a2=2×2-4=0,故选B.
2.( 教材改编 ) 设数列 {an} 是等差数列,其前 n 项和为 Sn ,若 a6 =2 且 S5 =
30,则S8等于 答案
再使用定义法证明数列{an}为等差数列.
跟踪训练 2
1 2 1 1 (1)在数列{an}中, 若 a1=1, a2=2, =a + (n∈N+), an+1 an+2 n
高考数学一轮复习(北师大版理科):课时分层训练31等差数列及其前n项和理北师大版
课时分层训练(三十一) 等差数列及其前n 项和A 组 基础达标一、选择题1.已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d 等于( )A .-1B .-2C .-3D .-4C [法一:由题意可得⎩⎪⎨⎪⎧a 1+(a 1+6d )=-8,a 1+d =2,解得a 1=5,d =-3.法二:a 1+a 7=2a 4=-8,∴a 4=-4, ∴a 4-a 2=-4-2=2d ,∴d =-3.]2.(·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97 C [法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. 法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.故选C.]3.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( )A .5B .6C .7D .8D [由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.] 4.(·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A .-24 B .-3 C .3D .8A [由已知条件可得a 1=1,d ≠0,由a 23=a 2a 6可得(1+2d )2=(1+d )(1+5d ), 解得d =-2.所以S 6=6×1+6×5×(-2)2=-24.故选A.]5.(·云南二检)已知等差数列{a n }中,a 1=11,a 5=-1,则{a n }的前n 项和S n 的最大值是( )【导学号:79140173】A .15B .20C .26D .30C [设数列{a n }的公差为d ,则d =14(a 5-a 1)=-3,所以a n =11-3(n -1)=14-3n ,令a n =14-3n ≥0,解得n ≤143,所以S n 的最大值为S 4=4×11+4×32×(-3)=26,故选C.] 二、填空题6.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.10 [S 100=1002(a 1+a 100)=45,a 1+a 100=0.9a 1+a 99=a 1+a 100-d =0.4,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×0.4=10.]7.《九章算术》是我国第一部数学专著,下面有源自其中的一个问题:“今有金箠(chuí),长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问金箠重几何?”意思是:“现有一根金箠,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问金箠重多少斤?”根据上面的已知条件,若金箠由粗到细的重量是均匀变化的,则答案是________.15斤 [由题意可知金箠由粗到细各尺的重量成等差数列,且a 1=4,a 5=2,则S 5=5(a 1+a 5)2=15,故金箠重15斤.] 8.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.【导学号:79140174】⎝ ⎛⎭⎪⎫-1,-78 [由题意,当且仅当n =8时S n有最大值,可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.]三、解答题9.在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. [解] (1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3, 解得d =-2.从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N +,故k =7.10.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n,证明:数列{b n }是等差数列,并求其前n 项和T n . [解] (1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1),则b n =S n n=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2.B 组 能力提升11.(·呼和浩特一调)等差数列{a n }中,a 2=8,前6项的和S 6=66,设b n =2(n +1)a n,T n =b 1+b 2+…+b n ,则T n =( )A .1-1n +1B .1-1n +2C.12-1n +1D .12-1n +2D [由题意得⎩⎪⎨⎪⎧6a 1+15d =66,a 1+d =8,解得⎩⎪⎨⎪⎧a 1=6,d =2,所以a n =2n +4,因此b n =2(n +1)(2n +4)=1(n +1)(n +2)=1n +1-1n +2,所以T n =12-13+13-14+…+1n +1-1n +2=12-1n +2,故选D.] 12.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( ) A .b n =n -1 B .b n =2n -1 C .b n =n +1D .b n =2n +1B [设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n (2n -1)d , 即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意的正整数n 上式均成立, 所以(4k -1)d =0,(2k -1)(2-d )=0, 解得d =2,k =14,所以数列{b n }的通项公式为b n =2n -1.]13.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则正整数m 的值为________.5 [因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5,即2a 1+2m -1=5,所以a 1=3-m .由S m =(3-m )m +m (m -1)2×1=0,解得正整数m 的值为5.]14.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.【导学号:79140175】(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.[解] (1)证明:由题设知a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1, 由于a n +1≠0,所以a n +2-a n =λ. (2)由题设知a 1=1,a 1a 2=λS 1-1, 可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2,因此存在λ=4,使得数列{a n }为等差数列.。
2018高考数学一轮复习第5章数列课件文北师大版
[五年考情]
[重点关注] 1.从近五年全国卷高考试题来看:数列一般有两道客观题或一道解答题, 其中解答题与解三角形交替考查,中低档难度. 2.从知识上看:主要考查等差数列、等比数列、an与Sn的关系、递推公式以 及数列求和,注重数列与函数、方程、不等式的交汇命题. 3.从能力上看:突出对函数与方程、转化与化归、分类讨论等数学思想的 考查,加大对探究、创新能力的考查力度.
同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。 • 作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。 • 二、听文科课要注重在理解中记忆 • 文科多以记忆为主,比如政治,要注意哪些是观点,哪些是事例,哪些是用观点解释社会现象。听历史课时,首先要弄清楚本节教材的主要观点,然 后,弄清教材为了说明这一观点引用了哪些史实,这些史料涉及的时间、地点、人物、事件。最后,也是关键的一环,看你是否真正弄懂观点与史料间 的关系。最好还能进一步思索:这些史料能不能充分说明观点?是否还可以补充新的史料?有无相反的史料证明原观点不正确。 • 三、听英语课要注重实践 • 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。
[导学心语] 1.重视等差、等比数列的复习,正确理解等差、等比数列的概念,掌握等 差、等比数列的通项公式、前n项和公式,灵活运用公式进行等差、等比数列基 本量的计算. 2.重视an与Sn关系、递推关系的理解与应用,加强由Sn求an,由递推关系求 通项,由递推关系证明等差、等比数列的练习.
【北师大版】高三数学一轮课时作业【29】(含答案)
Sn,若 a3= 6, S3= 12,则公差 d 等于 ( )
5
A.1
B.3
C. 2
D.3
解析:
∵ a3=6, S3= 12,∴
3 S3= 12=
a1+a3 2
3 =
a1+ 6 2
,解得
a1=2,∴ a3=6= a1+2d=2+2d,解得 d=2. 答案: C
7.(2014 ·长春一模 )已知等差数列 { an} 的前 n 项和为 Sn,满足 a2 013
A . 24
B. 48
C. 60
D. 84
解析: 由 a1>0,a10·a11<0 可知 d<0,a10>0,a11<0,∴ T18= a1+…
+ a10- a11- … -a18=S10- (S18- S10)=60,故选 C.
答案: C
6.(2014 ·北京东城区模拟 )已知 { an} 为等差数列,其前 n 项和为
= S2 013=2 013,则 a1 等于 ( )
A.- 2 014
B.- 2 013
C.- 2 012
D.- 2 011
解析:S2 013= 2
013a1 007= 2
013,∴ a1
007=1,则
2 d=
013-a1 1 006
007=
2,a1=a2 013- 2 012d=- 2 011 答案: D
+ 3d,于是有
4a1+ 12
6d -
3a1
+3d 9=
1,由此解得
d= 6,即公差为
6.
答案: 6
10.(2014 ·玉溪一中模拟 )已知等差数列 { an} 的公差为 2,项数是
2018一轮北师大版理数学教案:第5章 第2节 等差数列 含解析 精品
第二节 等差数列[考纲传真] 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫作等差数列.用符号表示为a n +1-a n =d(n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫作a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d.(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d(n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d. (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为m d 的等差数列.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.()(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) [答案] (1)× (2)√ (3)√ (4)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=0,则公差d 等于( ) A .-1 B .1 C .2D .-2D [依题意得S 3=3a 2=6,即a 2=2,故d =a 3-a 2=-2,故选D.] 3.(2015·全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11A [a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5(a 1+a 5)2=5a 3=5.]4.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97C [法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎨⎧ a 1+4d =3,a 1+9d =8,∴⎩⎨⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. 法二:∵{a n }是等差数列, ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d′=a 10-a 5=8-3=5.故a 100=a 5+(20-1)×5=98.故选C.]5.(教材改编)在100以内的正整数中有__________个能被6整除的数.【导学号:57962239】16 [由题意知,能被6整除的数构成一个等差数列{a n }, 则a 1=6,d =6,得a n =6+(n -1)6=6n . 由a n =6n ≤100,即n ≤1646=1623, 则在100以内有16个能被6整除的数.]n n n }的前n项和,若S 8=4S 4,则a 10=( )A.172B.192 C .10D .12(2)(2017·云南省二次统一检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( )【导学号:57962240】A .9B .10C .11D .15(1)B (2)B [(1)∵公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12, ∴a 10=a 1+9d =12+9=192.(2)设等差数列{a n }的公差为d ,依题意⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎨⎧a 1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.][规律方法] 1.等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知三求二,体现了方程思想的应用.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法,称为基本量法.[变式训练1] (1)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12 B .1 C .2D .3(2)设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=__________.【导学号:57962241】(1)C (2)-72 [(1)∵S n =n (a 1+a n )2,∴S n n =a 1+a n 2,又S 33-S 22=1, 得a 1+a 32-a 1+a 22=1,即a 3-a 2=2, ∴数列{a n }的公差为2.(2)设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9d ×82=-9,解得⎩⎨⎧a 1=3,d =-1.∴S 16=16×3+16×152×(-1)=-72.]已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列. (2)求数列{a n }中的通项公式a n . [解] (1)证明:因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1.所以n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1. 5分又b 1=1a 1-1=-52,所以数列{b n }是以-52为首项,1为公差的等差数列. 7分 (2)由(1)知,b n =n -72, 9分 则a n =1+1b n=1+22n -7.12分[规律方法] 1.判断等差数列的解答题,常用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断.2.用定义证明等差数列时,常采用两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义.[变式训练2] (1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )【导学号:57962242】A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列(2)已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n 满足S n S n -1-S n -1S n =2S n S n -1(n ∈N *且n ≥2),则a 61=__________.(1)C (2)480 [(1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2) =(a 2n -1-a 2n -3)+2(a 2n -a 2n -2) =2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列.(2)由已知S n S n -1-S n -1S n =2S n S n -1可得,S n -S n -1=2,所以{S n }是以1为首项,2为公差的等差数列,故S n =2n -1,S n =(2n -1)2,所以a 61=S 61-S 60=1212-1192=480.]的三个数均成等差数列,如果数阵中所有数之和等于63,那么a 52=( )【导学号:57962243】⎝ ⎛⎭⎪⎫a 41a 42 a 43a 51 a 52 a 53a 61a 62a 63 图5-2-1 A .2 B .8 C .7D .4(2)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 取得最大值.(1)C [法一:第一行三数成等差数列,由等差中项的性质有a 41+a 42+a 43=3a 42,同理第二行也有a 51+a 52+a 53=3a 52,第三行也有a 61+a 62+a 63=3a 62,又每列也成等差数列,所以对于第二列,有a 42+a 52+a 62=3a 52,所以a 41+a 42+a 43+a 51+a 52+a 53+a 61+a 62+a 63=3a 42+3a 52+3a 62=3×3a 52=63,所以a 52=7,故选C.法二:由于每行每列都成等差数列,不妨取特殊情况,即这9个数均相同,显然满足题意,所以有63÷9=7,即a 52=7,故选C.](2)法一:由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d , 4分即d =-213a 1.7分从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,因为a 1>0,所以-a 113<0. 9分 故当n =7时,S n 最大.12分法二:由法一可知,d =-213a 1. 要使S n 最大,则有⎩⎨⎧a n ≥0,a n +1≤0,5分即⎩⎪⎨⎪⎧a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0, 9分解得6.5≤n ≤7.5,故当n =7时,S n 最大. 12分法三:由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d)+(a 1+7d)=0,5分 故a 7+a 8=0,又由a 1>0,S 3=S 11可知d<0, 9分 所以a 7>0,a 8<0,所以当n =7时,S n 最大. 12分[规律方法] 1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d(m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的两种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图像求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d<0时,满足⎩⎨⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d>0时,满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[变式训练3] (1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( )【导学号:57962244】A .18B .99C .198D .297(2)已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=__________.(1)B (2)20 [(1)因为a 3+a 9=27-a 6,2a 6=a 3+a 9,所以3a 6=27,所以a 6=9,所以S 11=112(a 1+a 11)=11a 6=99.(2)法一:设数列{a n }的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D.所以5+2D =10, 所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20.][思想与方法]1.等差数列的通项公式,前n 项和公式涉及“五个量”,“知三求二”,需运用方程思想求解,特别是求a 1和d.(1)若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,….(2)若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,….2.等差数列{a n }中,a n =an +b (a ,b 为常数),S n =An 2+Bn (A ,B 为常数),均是关于“n”的函数,充分运用函数思想,借助函数的图像、性质简化解题过程.3.等差数列的四种判断方法:(1)定义法:a n+1-a n=d(d是常数)⇔{a n}是等差数列.(2)等差中项法:2a n+1=a n+a n+2(n∈N*)⇔{a n}是等差数列.(3)通项公式:a n=pn+q(p,q为常数)⇔{a n}是等差数列.(4)前n项和公式:S n=An2+Bn(A,B为常数)⇔{a n}是等差数列.[易错与防范]1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.注意区分等差数列定义中同一个常数与常数的区别.3.求等差数列的前n项和S n的最值时,需要注意“自变量n为正整数”这一隐含条件.。
2020高考数学一轮复习课时规范练29等差数列及其前n项和理北师大版.doc
课时规范练29 等差数列及其前n项和基础巩固组1.由a1=1,d=3确定的等差数列{a n},当a n=298时,序号n等于()A.99B.100C.96D.1012.(2018湖南长郡中学仿真,6)已知等差数列{a n}满足a n+1+a n=4n,则a1=()A.-1B.1C.2D.33.(2018河南商丘二模,3)已知等差数列{a n}的公差为d,且a8+a9+a10=24,则a1·d的最大值为()A. B. C.2 D.44.在等差数列{a n}中,a3+a6=11,a5+a8=39,则公差d为()A.-14B.-7C.7D.145.已知等差数列{a n}的前n项和为S n,且3a3=a6+4,若S5<10,则a2的取值范围是()A.(-∞,2)B.(-∞,0)C.(1,+∞)D.(0,2)6.已知S n是等差数列{a n}的前n项和,则2(a1+a3+a5)+3(a8+a10)=36,则S11=()A.66B.55C.44D.337.(2018湖南衡阳一模,15)已知数列{a n}前n项和为S n,若S n=2a n-2n,则S n= .8.设数列{a n}{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5= .9.若数列{a n}的前n项和为S n,且满足a n+2S n S n-1=0(n≥2),a1=.(1)求证;成等差数列;(2)求数列{a n}的通项公式.10.设数列{a n}的前n项和为S n,且S n=2n-1.数列{b n}满足b1=2,b n+1-2b n=8a n.(1)求数列{a n}的通项公式;(2)证明;数列为等差数列,并求{b n}的通项公式.综合提升组11.(2018河北衡水中学考前押题二,10)已知数列a1=1,a2=2,且a n+2-a n=2-2(-1)n,n∈N+,则S2 017的值为()A.2 016×1 010-1B.1 009×2 017C.2 017×1 010-1D.1 009×2 01612.若数列{a n}满足;a1=19,a n+1=a n-3(n∈N+),则数列{a n}的前n项和数值最大时,n的值为()A.6B.7C.8D.913.已知等差数列{a n}的前n项和为S n,若S m-1=-4,S m=0,S m+2=14(m≥2,且m∈N+),则m的值为.14.已知公差大于零的等差数列{a n}的前n项和为S n,且满足a3·a4=117,a2+a5=22.(1)求通项公式a n;(2)求S n的最小值;(3)若数列{b n}是等差数列,且b n=,求非零常数c.创新应用组15.(2018湖南长郡中学仿真,15)若数列{a n }是正项数列,且+…+=n 2+3n ,则+…+= . 16.等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为多少?参考答案课时规范练29 等差数列及其前n 项和1.B 根据等差数列通项公式a n =a 1+(n-1)d ,有298=1+(n-1)×3,解得n=100,故选B .2.B 由题意,当n 分别取1,2时,a 1+a 2=4,a 3+a 2=8,解得公差d=2,故a 1=1.故选B .3.C ∵a 8+a 9+a 10=24,∴a 9=8,即a 1+8d=8,∴a 1=8-8d ,a 1·d=(8-8d )d=-8d-2+2≤2,当d=时,a 1·d 的最大值为2,故选C .4.C ∵a 3+a 6=11,a 5+a 8=39,则4d=28,解得d=7.故选C .5.A 设公差为d ,由3a 3=a 6+4得3(a 2+d )=a 2+4d+4,即d=2a 2-4,由S 5<10得,===5(3a 2-4)<10,解得a 2<2,故选A .6.D 由等差数列的性质可得2(a 1+a 3+a 5)+3(a 8+a 10)=6a 3+6a 9=36,即a 1+a 11=6.则S 11==11×3=33.故选D .7.n ·2n ∵S n =2a n -2n =2(S n -S n-1)-2n ,整理得S n -2S n-1=2n ,等式两边同时除以2n ,则-=1.又S 1=2a 1-2=a 1,可得a 1=S 1=2,∴数列是以1为首项,公差为1的等差数列,∴=n ,∴S n =n ·2n .8.35 ∵数列{a n },{b n }都是等差数列,设数列{a n }的公差为d 1,数列{b n }的公差为d 2,∴a 3+b 3=a 1+b 1+2(d 1+d 2)=21,而a 1+b 1=7,可得2(d 1+d 2)=21-7=14.∴a 5+b 5=a 3+b 3+2(d 1+d 2)=21+14=35.9.(1)证明 当n ≥2时,由a n +2S n S n-1=0,得S n -S n-1=-2S n S n-1,∴-=2.又==2,故是首项为2,公差为2的等差数列.(2)解 由(1)可得=2n ,∴S n =.当n ≥2时,a n =S n -S n-1=-==-.当n=1时,a 1=不适合上式.故a n =10.(1)解 当n=1时,a 1=S 1=21-1=1;当n ≥2时,a n =S n -S n-1=(2n -1)-(2n-1-1)=2n-1.∵a 1=1适合通项公式a n =2n-1,∴a n =2n-1.(2)证明 ∵b n+1-2b n =8a n ,∴b n+1-2b n =2n+2,即-=2.又=1,∴是首项为1,公差为2的等差数列.∴=1+2(n-1)=2n-1.∴b n =(2n-1)×2n .11.C 由题意,当n 为奇数时,a n+2-a n =4,数列{a 2n-1}是首项为1,公差为4的等差数列,当n 为偶数时,a n+2-a n =0,数列{a 2n-1}是首项为2,公差为0的等差数列,S 2 017=(a 1+a 3+…+a 2 017)+(a 2+a 4+…+a 2 016)=1 009+×1 009×1 008×4+1 008×2=2 017×1 010-1,故选C .12.B ∵a 1=19,a n+1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列.∴a n =19+(n-1)×(-3)=22-3n.设数列{a n }的前项和数值最大,则有∈N +. ∴∴≤≤.∵∈N +,∴=7.∴满足条件的n 的值为7.13.5 ∵S m-1=-4,S m =0,S m+2=14,∴a m =S m -S m-1=4,a m+1+a m+2=S m+2-S m =14. 设数列{a n }的公差为d ,则2a m +3d=14,∴d=2. ∵S m =×m=0,∴a 1=-a m =-4.∴a m =a 1+(m-1)d=-4+2(m-1)=4,∴m=5. 14.解 (1)∵数列{a n }为等差数列,∴a 3+a 4=a 2+a 5=22.又a 3·a 4=117,∴a 3,a 4是方程2-22+117=0的两实根. 又公差d>0,∴a 3<a 4,∴a 3=9,a 4=13, ∴∴∴通项公式a n =4n-3.(2)由(1)知a 1=1,d=4,∴S n =na 1+d=2n 2-n=2-.∴当n=1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,∴b n ==,∴b 1=,b 2=,b 3=.∵数列{b n }是等差数列,∴2b 2=b 1+b 3,即×2=+,∴2c 2+c=0, ∴c=-(c=0舍去),故c=-.15.2n 2+6n 由++…+=n 2+3n ,则++…+=(n-1)2+3(n-1),两式相减,可得=2n+2,当n=1时也成立,则a n =(2n+2)2,有==4n+4,为公差为4的等差数列,其前n 项和为++…+===2n 2+6n. 16.解 设数列{a n }的首项为a 1,公差为d ,则S 10=10a 1+d=10a 1+45d=0, ①S 15=15a 1+d=15a 1+105d=25. ② 联立①②,得a 1=-3,d=,∴S n =-3n+×=n 2-n.令f (n )=nS n ,则f (n )=n 3-n 2,f'(n )=n 2-n. 令f'(n )=0,得n=0或n=.当n>时,f'(n )>0,当0<n<时,f'(n )<0, ∴当n=时,f (n )取最小值,又∵n ∈N +,f (6)=-48,f (7)=-49,∴当n=7时,f (n )取最小值-49.。
高三北师大版理科数学一轮复习课时作业(28)等差数列A.pdf
课时作业(二十八)A [第28讲 等差数列] [时间:35分钟 分值:80分] 1.[2011·江门调研] 在等差数列{an}中,已知a1=1,a2+a4=10,an=39,则n=( ) A.19 B.20 C.21 D.22 2.[2011·武汉模拟] 已知数列{an}是等差数列,若a1+a5+a9=2π,则cos(a2+a8)=( ) A.- B.- C. D. 3.[2011·太原一模] 已知等差数列{an}的前n项和为Sn,a1+a5=16,且a9=12,则S11=( ) A.260 B.220 C.130 D.110 4.[2011·湖南卷] 设Sn是等差数列{an}(nN*)的前n项和,且a1=1,a4=7,则S5=________. 5.[2011·三明二中二模] 数列{an}满足3+an=an+1(nN*),且a2+a4+a6=9,则log(a5+a7+a9)的值是( ) A.-2 B.- C.2 D. 6.[2011·邯郸二模] 在等差数列{an}中,a4+a6+a8+a10+a12=120,则a9-a11=( ) A.14 B.15 C.16 D.17 7.[2011·潍坊质检] 设Sn是等差数列{an}的前n项和,若S8=30,S4=7,则a4的值等于( ) A. B. C. D. 8.[2011·郑州质检] 已知等差数列{an}的前n项和为Sn,且=,则=( ) A. B. C. D. 9.[2011·广州一模] 已知数列{an}是等差数列,若a4+2a6+a8=12,则该数列前11项的和为________. 10.[2011·惠州二模] 已知等差数列{an}中,a2=6,a5=15,若bn=a3n,则数列{bn}的前9项和等于________. 11.[2011·南通、扬州、泰州调研] 设等差数列{an}的公差为正数,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=________. 12.(13分)[2012·吉林摸底] 已知数列{an}的前n项和Sn=10n-n2,(nN*). (1)求a1和an; (2)记bn=|an|,求数列{bn}的前n项和. 13.(12分)[2011·南昌一模] 在数列{an}中,an+1+an=2n-44(nN*),a1=-23. (1)求an; (2)设Sn为{an}的前n项和,求Sn的最小值.课时作业(二十八)A 【基础热身】 1.B [解析] 设等差数列{an}的公差为d,由a2+a4=10,得a1+d+a1+3d=10,即d=(10-2a1)=2, 由an=39,得1+2(n-1)=39,n=20. 2.A [解析] 由已知得a5=,而a2+a8=2a5=,则cos(a2+a8)=-. 3.D [解析] 方法一:由a1+a5=16,且a9=12,得解得 则S11=11×+×=110. 方法二:由已知a1+a5=16,得2a3=16,即a3=8,则S11==110. 4.25 [解析] 设数列{an}的公差为d,因为a1=1,a4=7,所以a4=a1+3dd=2,故S5=5a1+10d=25. 【能力提升】 5.A [解析] 由已知得{an}是等差数列,公差为d=3,则 a5+a7+a9=a2+a4+a6+9d=36,所以log(a5+a7+a9)=-2. 6.C [解析] 由a4+a6+a8+a10+a12=120得a8=24,设公差为d,则a9-a11=a8+d-(a8+3d)=a8=16. 7.C [解析] 由已知,得,即解得 则a4=a1+3d=. 8.D [解析] 由等差数列的性质,有S4,S8-S4,S12-S8,S16-S12成等差数列,则 2(S8-S4)=S4+(S12-S8), 因为=,即S8=3S4,代入上式,得S12=6S4, 又2(S12-S8)=(S8-S4)+(S16-S12),将S8=3S4,S12=6S4代入得S16=10S4,则=. 9.33 [解析] 由已知得4a6=12,a6=3, S11===11a6=33. 10.405 [解析] 由 ∴an=3+3(n-1)=3n,bn=a3n=9n, 数列{bn}的前9项和为S9=×9=405. 11.105 [解析] 由已知,得 即消去d,得 a-10a1+16=0,解得a1=2或a1=8. 当a1=2时,d=3,a11+a12+a13=a1+10d+a1+11d+a1+12d=3a1+33d=105; 当a1=8时,d=-3,不符合题意,舍去. 12.[解答] (1)Sn=10n-n2,a1=S1=10-1=9. Sn=10n-n2,当n≥2,nN*时, Sn-1=10(n-1)-(n-1)2=10n-n2+2n-11, an=Sn-Sn-1=(10n-n2)-(10n-n2+2n-11) =-2n+11. 又n=1时,a1=9=-2×1+11,符合上式. 则数列{an}的通项公式为an=-2n+11(nN*). (2)an=-2n+11,bn=|an|= 设数列{bn}的前n项和为Tn, n≤5时,Tn==10n-n2; n>5时Tn=T5+=25+=25+(n-5)2=n2-10n+50, 数列{bn}的前n项和Tn= 【难点突破】 13.[解答] (1)由an+1+an=2n-44(n≥1),an+2+an+1=2(n+1)-44, 得an+2-an=2. 又a1+a2=2-44,a1=-23a2=-19, 同理得a3=-21,a4=-17, 故a1,a3,a5,…是以a1为首项,2为公差的等差数列; a2,a4,a6,…是以a2为首项,2为公差的等差数列. 从而an= (2)当n为偶数时, Sn=(a1+a2)+(a3+a4)+(an-1+an) =(2×1-44)+(2×3-44)+…+[2×(n-1)-44] =2[1+3+…+(n-1)]-·44=-22n, 故n=22时,Sn取最小值-242. 当n为奇数时, Sn=a1+(a2+a3)+(a4+a5)+…+(an-1+an) =a1+(2×2-44)+…+[2×(n-1)-44], =a1+2[2+4+…+(n-1)]+·(-44) =-22n-. 故n=21或23时,Sn取最小值-243, 综上所述,Sn的最小值为-243.。
近年高考数学复习 第2章 函数、导数及其应用 第5节 指数与指数函数课时分层训练 文 北师大版(2
2018高考数学一轮复习第2章函数、导数及其应用第5节指数与指数函数课时分层训练文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学一轮复习第2章函数、导数及其应用第5节指数与指数函数课时分层训练文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学一轮复习第2章函数、导数及其应用第5节指数与指数函数课时分层训练文北师大版的全部内容。
课时分层训练(八) 指数与指数函数A组基础达标(建议用时:30分钟)一、选择题1.函数f (x)=2|x-1|的大致图像是( )A B C DB[f (x)=错误!所以f (x)的图像在[1,+∞)上为增函数,在(-∞,1)上为减函数.]A.a<b<c B.c<b<aC.c<a<b D.b<c<aD[∵y=错误!x为减函数,错误!>错误!,∴b<c。
又∵y=x错误!在(0,+∞)上为增函数,错误!>错误!,∴a>c,∴b<c<a,故选D。
]3.(2016·河南安阳模拟)已知函数f (x)=a x,其中a>0,且a≠1,如果以P(x1,f (x1)),Q (x2,f (x2))为端点的线段的中点在y轴上,那么f (x1)·f (x2)等于( ) A.1 B.aC.2 D.a2A[∵以P(x1,f (x1)),Q(x2,f (x2))为端点的线段的中点在y轴上,∴x1+x2=0.又∵f (x)=a x,∴f (x1)·f (x2)=ax1·ax2=ax1+x2=a0=1,故选A。
]4.函数y=错误!2x-x2的值域为( )A。
近年高考数学一轮复习 第5章 数列 第3节 等比数列课时分层训练 文 北师大版(2021年整理)
2018高考数学一轮复习第5章数列第3节等比数列课时分层训练文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学一轮复习第5章数列第3节等比数列课时分层训练文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学一轮复习第5章数列第3节等比数列课时分层训练文北师大版的全部内容。
课时分层训练(二十九) 等比数列A组基础达标(建议用时:30分钟)一、选择题1.对任意等比数列{a n},下列说法一定正确的是( )A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列D[由等比数列的性质得,a3·a9=a错误!≠0,因此a3,a6,a9一定成等比数列,选D.] 2.(2016·重庆巴蜀中学3月模拟)我国古代有用一首诗歌形式提出的数列问题:远望巍巍塔七层,红灯向下成倍增.共灯三百八十一,请问塔顶几盏灯?( )A.5 B.4C.3 D.2C[设塔顶有x盏灯,则由题意知错误!=381,解得x=3。
故选C.]3.(2016·广东肇庆三模)在等比数列{a n}中,S n表示前n项和,若a3=2S2+1,a4=2S3+1,则公比q等于( )A.-3 B.-1C.1 D.3D[两式相减得a4-a3=2a3,从而求得a4a3=3,即q=3。
]4.(2015·全国卷Ⅱ)已知等比数列{a n}满足a1=错误!,a3a5=4(a4-1),则a2=( ) A.2 B.1C.错误!D.错误!C[法一:∵a3a5=a错误!,a3a5=4(a4-1),∴a错误!=4(a4-1),∴a错误!-4a4+4=0,∴a4=2.又∵q3=错误!=错误!=8,∴q=2,∴a2=a1q=错误!×2=错误!,故选C.法二:∵a3a5=4(a4-1),∴a1q2·a1q4=4(a1q3-1),将a1=错误!代入上式并整理,得q6-16q3+64=0,解得q=2,∴a 2=a 1q =错误!,故选C 。
近年高考数学一轮复习 第5章 数列 第4节 数列求和课时分层训练 文 北师大版(2021年整理)
2018高考数学一轮复习第5章数列第4节数列求和课时分层训练文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学一轮复习第5章数列第4节数列求和课时分层训练文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学一轮复习第5章数列第4节数列求和课时分层训练文北师大版的全部内容。
课时分层训练(三十)数列求和A组基础达标(建议用时:30分钟)一、选择题1.数列1错误!,3错误!,5错误!,7错误!,…,(2n-1)+错误!,…的前n项和S n的值等于( )A.n2+1-错误!B.2n2-n+1-错误!C.n2+1-错误!D.n2-n+1-错误!A[该数列的通项公式为a n=(2n-1)+错误!,则S n=[1+3+5+…+(2n-1)]+错误!=n2+1-错误!。
]2.(2016·安徽江南十校3月联考)在数列{a n}中,a n+1-a n=2,S n为{a n}的前n项和.若S10=50,则数列{a n+a n+1}的前10项和为( )【导学号:66482261】A.100 B.110C.120 D.130C[{a n+a n+1}的前10项和为a1+a2+a2+a3+…+a10+a11=2(a1+a2+…+a10)+a11-a1=2S10+10×2=120.故选C.]3.(2016·湖北七校2月联考)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A.192里B.96里C.48里D.24里B[由题意,知每天所走路程形成以a1为首项,公比为12的等比数列,则错误!=378,解得a1=192,则a2=96,即第二天走了96里.故选B。
2018年高二数学北师大版必修5同步精练:1.2.1等差数列 Word版含答案
第一课时基础巩固1下列说法中正确的是( )A .一个数列的每一项与它的前一项的差都等于常数,这个数列就叫等差数列B .一个数列的每一项与它的前一项的差都等于同一个常数,这个数列就叫等差数列C .一个数列从第2项起,每一项与它的前一项的和都等于常数,这个数列就叫等差数列D .一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,这个数列就叫等差数列2已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为( )A .2B .3C .-2D .-33已知等差数列{a n }中,首项a 1=4,公差d =-2,则通项公式a n 等于( )A .4-2n B .2n -4C .6-2nD .2n -64已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( )A .-1B .1C .3D .75在数列{a n }中,a 1=1,a n +1=a n +1,则a 2 009等于( )A .2 007B .2 008C .2 009D .不确定6已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d 等于( )A .-2B .-C.D .212127已知数列{a n }的通项公式是a n =7n +2,求证:数列{lg a n }是等差数列.8夏季高山上的温度从山脚起,每升高100米,降低0.7 ℃,已知山顶处的温度是14.8 ℃,山脚处的温度为26 ℃,问此山相对于山脚处的高度是多少米?综合过关9已知关于x 的方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为的等差数列,14则|m -n |等于 ( )A .1B.C.D.34123810有一正四棱台形楼顶,其中一个侧面中最上面一行铺瓦30块,总共需要铺瓦15行,并且下一行比其上一行多铺3块瓦,求该侧面最下面一行铺瓦多少块?11已知函数f (x )=,数列{x n }的通项由x n =f (x n -1)(n ≥2且n ∈N +)确定.3xx +3(1)求证:{}是等差数列;1xn (2)当x 1=时,求x 100.1212一个等差数列首项为,公差d >0,从第10项起每一项都比1大,求公差d 的范125围.能力提升13某小朋友用手指按如图所示的规则练习数数,数到2009时对应的指头是______.(填出指头名称:各指头对应依次为大拇指、食指、中指、无名指、小拇指)14设{a n }为a 1=4的递增数列,且满足a +a +16=8(a n +1+a n )+2a n +1a n ,则2n +12n a n =__________.参考答案1解析:仅有D 是等差数列的定义.答案:D2解析:可得a n +1-a n =-2或a 2-a 1=(3-4)-(3-2)=-2.答案:C3解析:通项公式a n =a 1+(n -1)d =4+(n -1)×(-2)=6-2n .答案:C4解析:设公差为d ,则Error!解得a 1=39,d =-2,∴a 20=a 1+(20-1)×d =1.答案:B5解析:由于a n +1-a n =1,则数列{a n }是等差数列,则a n =a 1+(n -1)d =n ,∴a 2009=2 009.答案:C6解析:由题意得Error!解得d =-.12答案:B7分析:转化为证明lg a n +1-lg a n 是一个与n 无关的常数.证明:设b n =lg a n ,则b n +1-b n =lg a n +1-lg a n =(n +3)lg7-(n +2)lg7=lg7=常数.所以数列{b n }是等差数列,即数列{lg a n }是等差数列.8解:∵每升高100米温度降低0.7 ℃,∴该处温度的变化是一个等差数列问题.山脚温度为首项a 1=26,山顶温度为末项a n =14.8,∴26+(n -1)×(-0.7)=14.8,解之可得n =17,故此山相对于山脚处的高度为(17-1)×100=1 600(米).9解析:设这四个根组成的等差数列为{a n },则a 1=,设公差为d ,方程14x 2-2x +m =0的两根之和为2,方程x 2-2x +n =0的两根之和也为2,则a 1+a 2+a 3+a 4=a 1+a 1+d +a 1+2d +a 1+3d =4a 1+6d =4,则1+6d =4,所以d =.则这12四个根是,,,.又+=2,+=2,则m =×=,n =×=或1434547414743454147471634541516n =×=,m =×=,则|m -n |=|-|=.147471634541516716151612答案:C10分析:转化为求等差数列的第15项.解:设从上面开始第n 行铺瓦a n 块,则数列{a n }是首项为30,公差为3的等差数列.则a 15=a 1+14d =30+14×3=72(块),即该侧面最下面一行铺瓦72块.11(1)证明:x n =f (x n -1)=(n ≥2且n ∈N +),3xn -1xn -1+3∴==+,1xn xn -1+33xn -1131xn -1-=(n ≥2且n ∈N +),1xn 1xn -113∴{}是等差数列.1xn (2)解:=+(n -1)×1xn 1x 113=2+=.n -13n +53∴==35.1x 100100+53∴x 100=.13512分析:转化为解不等式组.解:∵d >0,设等差数列为{a n },则a 1<a 2<…<a 9<a 10<a 11…,依题意有Error!即Error!⇔Error!解得<d ≤.87532513解析:把这些数分成“层”,则第1层有5个数,其他层都是有4个数,奇数层小拇指对应的数最大,偶数层大拇指对应的数最大,则2 009=5+2 004=5+4×501,则2 009在第502层,并且是该层最大的数,所以2 009位于大拇指的位置上.答案:大拇指14解析:a +a +16=8(a n +1+a n )+2a n +1a n 2n +12n ⇔(a n +1+a n )2-8(a n +1+a n )+16=4a n +1a n⇔(a n +1+a n -4)2=4a n +1a n⇔a n +1+a n -4=2(由题意可知取正号)an +1an ⇔(-)2=4an +1an ⇔-=2,an +1an 因此,{}是公差为2的等差数列.an 则=+(n -1)×2=2n ,an a 1从而可得a n =4n 2.答案:4n 2第二课时基础巩固1a =,b =,则a 、b 的等差中项为( )13+213-2A. B. C. D.3233222等差数列{a n }的公差为d ,则数列{ca n }(c 为常数,且c ≠0)是( )A .公差为d 的等差数列 B .公差为cd 的等差数列C .不是等差数列D .以上都不对3在a 和b (a ≠b )两个数之间插入n 个数,使它们与a 、b 组成等差数列,则该数列的公差为______.4等差数列{a n }中,a 5=10,a 20=7,则a 2+a 23=______.5已知a ,b ,c 成等差数列,请问b +c ,c +a ,a +b 是否构成等差数列,为什么?6在-1与7之间顺次插入三个数a ,b ,c ,使这5个数成等差数列,求这5个数.7四个数成等差数列,其四个数的平方和为94,第一个数与第四个数的积比第二个数与第三个数的积少18,求此四个数.综合过关8已知、、成等差数列,并且a +c 、a -c 、a +c -2b 均为正数,试证:lg(a +c ),1a 1b 1c lg(a -c ),lg(a +c -2b )也成等差数列.9在数列{a n }中,相邻两项a n 和a n +1是相应的二次方程x 2+3nx +b n =0(n ∈N +)的两根.若a 1=2,试求b 100的值.能力提升10在等差数列{a n }中,已知a 1=83,a 4=98,则这个数列有多少项在300到500之间?参考答案1答案:A2解析:设b n =ca n ,则b n +1-b n =ca n +1-ca n =c (a n +1-a n )=cd .答案:B3解析:b =a +(n +2-1)d ,则d =.b -an +1答案:b -a n +14答案:175分析:要证明三个数成等差数列,可用等差中项的性质去说明.解:b +c ,c +a ,a +b 构成等差数列.∵a ,b ,c 成等差数列,∴2b =a +c .又∵(b +c )+(a +b )=(a +c )+2b =2(a +c ),∴b +c ,c +a ,a +b 成等差数列.6分析:此题可求出公差后,再逐项求解,也可以利用等差数列的性质求解.解法一:设这5个数构成的等差数列为{a n },公差是d ,由已知,有a 1=-1,a 5=7,则7=-1+(5-1)d .解得d =2.∴所求数列为-1,1,3,5,7.解法二:∵-1,a ,b ,c,7成等差数列,∴b 是-1与7的等差中项,a 是-1与b 的等差中项,c 是b 与7的等差中项,即b ==3,a ==1,c ==5.-1+72-1+b 2b +72∴所求数列为-1,1,3,5,7.7解:设四个数为a -3d ,a -d ,a +d ,a +3d ,据题意得(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=94,即4a 2+20d 2=94. ①又(a -3d )(a +3d )=(a -d )(a +d )-18,即8d 2=18,∴d =±.32代入①得a =±,72∴所求四个数为8,5,2,-1或1,-2,-5,-8或-1,2,5,8或-8,-5,-2,1.8分析:转化为证明2lg(a -c )=lg(a +c )+lg(a +c -2b ).证明:∵、、成等差数列,1a 1b 1c ∴=+.2b 1a 1c ∴=.2b a +c ac ∴2ac =ab +bc .∴-2ac =2ac -2b (a +c ).∴-2ac +a 2+c 2=2ac -2b (a +c )+a 2+c 2.∴(a -c )2=(a +c )(a +c -2b ).又a -c ,a +c ,a +c -2b 都是正数,∴2lg(a -c )=lg(a +c )+lg(a +c -2b ).∴lg(a +c ),lg(a -c ),lg(a +c -2b )成等差数列.9分析:依题意有:a n +a n +1=-3n 且a n ·a n +1=b n ,欲求b 100,需求a 100和a 101的值,可由递推或a n +a n +1=-3n ,找到a n 的通项公式,进而求出a 100和a 101.解:依题意得:a n +a n +1=-3n , ①a n ·a n +1=b n (n ∈N +), ②由②知:b 100=a 100·a 101.∵a n +a n +1=-3n , ①∴a n +1+a n +2=-3(n +1), ③③-①得:a n +2-a n =-3.∴a 1,a 3,a 5,…,a 99,a 101构成公差为-3的等差数列.∴a 101=a 2×51-1=a 1+(51-1)d =2+50×(-3)=-148,代入a 100+a 101=-3×100得a 100=-152.∴b 100=a 100·a 101=(-152)×(-148)=22 496.10分析:可先利用a 1=83,a 4=98求出首项和公差,确定通项公式后再求解.解:公差d ===5,a 4-a 1398-833∴a n =a 1+(n -1)d =83+5(n -1)=5n +78.令300<a n <500得300<5n +78<500,解得44.4<n <84.4.∴从第45项到第84项,共有40项在300到500之间.。
2018一轮北师大版(理)数学训练:第5章 第1节 课时分层训练28 数列的概念与简单表示法
课时分层训练(二十八) 数列的概念与简单表示法A 组 基础达标 (建议用时:30分钟)一、选择题1.在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5=( )A.32 B .53 C.85D .23D [a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=1+-12=12,a 4=1+1a 3=3,a 5=1+(-1)a 4=23.]2.下列数列中,既是递增数列又是无穷数列的是( ) A .1,12,13,14,… B .-1,-2,-3,-4,… C .-1,-12,-14,-18,… D .1,2,3,…,nC [根据定义,属于无穷数列的是选项A ,B ,C ,属于递增数列的是选项C ,D ,故同时满足要求的是选项C.]3.(2017·海淀期末)数列{a n }的首项a 1=2,且(n +1)a n =na n +1,则a 3的值为( )【导学号:57962234】A .5B .6C .7D .8B [由(n +1)a n =na n +1得a n +1n +1=a n n ,所以数列⎩⎨⎧⎭⎬⎫a n n 为常数列,则a n n =a 11=2,即a n =2n ,所以a 3=2×3=6.]4.(2016·广东3月测试)设S n 为数列{a n }的前n 项和,且S n =32(a n -1)(n ∈N *),则a n =( )【导学号:57962235】A .3(3n -2n )B .3n +2C .3nD .3·2n -1C [当n ≥2时,a n =S n -S n -1=32(a n -1)-32(a n -1-1),整理,得a n =3a n -1,由a 1=32(a 1-1),得a 1=3,∴a na n -1=3,∴数列{a n }是以3为首项,3为公比的等比数列,∴a n =3n ,故选C.]5.数列{a n }满足a 1=2,a n =a n +1-1a n +1+1,其前n 项积为T n ,则T 2 017=( )【导学号:57962236】A.12 B .-12 C .2D .-2C [由a n =a n +1-1a n +1+1,得a n +1=1+a n1-a n ,而a 1=2,则有a 2=-3,a 3=-12,a 4=13,a 5=2,故数列{a n }是以4为周期的周期数列,且a 1a 2a 3a 4=1, 所以T 2 017=(a 1a 2a 3a 4)504a 1=1504×2=2.] 二、填空题6.(2016·辽宁大连双基检测)已知数列{a n }的前n 项和S n =2n ,则a 3+a 4=__________.12 [当n ≥2时,a n =2n -2n -1=2n -1,所以a 3+a 4=22+23=12.] 7.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第______项. 10 [令n -2n 2=0.08,得2n 2-25n +50=0,则(2n -5)(n -10)=0,解得n =10或n =52(舍去). ∴a 10=0.08.]8.已知数列{a n }满足a 1=1,a n -an +1=na n a n +1(n ∈N *),则a n =__________.【导学号:57962237】2n 2-n +2 [由已知得,1a n +1-1a n =n ,所以1a n -1a n -1=n -1,1a n -1-1a n -2=n -2,…,1a 2-1a 1=1,所以1a n -1a 1=n (n -1)2,a 1=1,所以1a n =n 2-n +22, 所以a n =2n 2-n +2.]三、解答题9.数列{a n }的通项公式是a n =n 2-7n +6. (1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? [解] (1)当n =4时,a 4=42-4×7+6=-6. 3分(2)令a n =150,即n 2-7n +6=150, 解得n =16或n =-9(舍去), 即150是这个数列的第16项.8分 (3)令a n =n 2-7n +6>0,解得n >6或n <1(舍去). 所以从第7项起各项都是正数.12分 10.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n . (1)求a 2,a 3; (2)求{a n }的通项公式.[解] (1)由S 2=43a 2得3(a 1+a 2)=4a 2, 解得a 2=3a 1=3.2分 由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6. 5分(2)由题设知a 1=1.当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 7分于是a 1=1, a 2=31a 1, a 3=42a 2, ……a n -1=nn -2a n -2,a n =n +1n -1a n -1.10分将以上n 个等式两端分别相乘, 整理得a n =n (n +1)2.显然,当n =1时也满足上式. 综上可知,{a n }的通项公式a n =n (n +1)2.12分 B 组 能力提升 (建议用时:15分钟)1.(2017·郑州二次质量预测)设数列{a n }满足:a 1=1,a 2=3,且2na n =(n -1)a n -1+(n +1)a n +1,则a 20的值是( )【导学号:57962238】A.215B.225C.235D .245D [由2na n =(n -1)a n -1+(n +1)a n +1得na n -(n -1)a n -1=(n +1)a n +1-na n ,又因为1×a 1=1,2×a 2-1×a 1=5,所以数列{na n }是首项为1,公差为5的等差数列,则20a 20=1+19×5,解得a 20=245,故选D.]2.(2016·甘肃白银会宁一中月考)已知数列{a n }的前n 项和为S n ,a 1=1,a n+1=3S n ,则a n =__________.⎩⎨⎧1,n =1,3×4n -2,n ≥2[由a n +1=3S n ,得a n =3S n -1(n ≥2), 两式相减可得a n +1-a n =3S n -3S n -1=3a n (n ≥2), ∴a n +1=4a n (n ≥2). ∵a 1=1,a 2=3S 1=3≠4a 1,∴数列{a n }是从第二项开始的等比数列, ∴a n =a 2q n -2=3×4n -2(n ≥2). 故a n =⎩⎨⎧1,n =1,3×4n -2,n ≥2.] 3.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值;(2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. [解] (1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 2分因为a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.5分(2)由a n +1>a n 知该数列是一个递增数列,7分又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时分层训练(二十九) 等差数列A 组 基础达标 (建议用时:30分钟)一、选择题1.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( )A .37B .36C .20D .19A [a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37.]2.(2017·深圳二次调研)在等差数列{a n }中,若前10项的和S 10=60,且a 7=7,则a 4=( )A .4B .-4C .5D .-5C [法一:由题意得⎩⎨⎧10a 1+45d =60,a 1+6d =7,解得⎩⎪⎨⎪⎧a 1=3,d =23,∴a 4=a 1+3d =5.法二:由等差数列的性质有a 1+a 10=a 7+a 4,∵S 10=10(a 1+a 10)2=60,∴a 1+a 10=12.又∵a 7=7,∴a 4=5.]3.(2017·福州质检)已知数列{a n }是等差数列,且a 7-2a 4=6,a 3=2,则公差d =( )【导学号:57962245】A .2 2B .4C .8D .16B [法一:由题意得a 3=2,a 7-2a 4=a 3+4d -2(a 3+d)=6,解得d =4,故选B.法二:由题意得⎩⎨⎧ a 7-2a 4=a 1+6d -2(a 1+3d )=6,a 3=a 1+2d =2,解得⎩⎨⎧a 1=-6,d =4,故选B.]4.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )【导学号:57962246】A .S 7B .S 6C .S 5D .S 4C [∵⎩⎨⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎨⎧a 5>0,a 6<0,∴S n 的最大值为S 5.]5.(2017·湖北七市4月联考)在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:几日相逢?( )A .9日B .8日C .16日D .12日A [根据题意,显然良马每日行程构成一个首项a 1=103,公差d 1=13的等差数列,前n 天共跑的里程为S =na 1+n (n -1)2d 1=103n +132n (n -1)=6.5n 2+96.5n ;驽马每日行程也构成一个首项b 1=97,公差d 2=-0.5的等差数列,前n 天共跑的里程为S =nb 1+n (n -1)2d 2=97n -0.52n (n -1)=-0.25n 2+97.25n .两马相逢时,共跑了一个来回.设其第n 天相逢,则有6.5n 2+96.5n -0.25n 2+97.25n =1 125×2,解得n =9,即它们第9天相遇,故选A.]二、填空题6.(2017·郑州二次质量预测)已知{a n }为等差数列,公差为1,且a 5是a 3与a 11的等比中项,则a 1=__________.-1 [因为a 5是a 3与a 11的等比中项,所以a 25=a 3·a 11,即(a 1+4d)2=(a 1+2d)(a 1+10d),解得a 1=-1.]7.(2016·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.6 [∵a 3+a 5=2a 4,∴a 4=0.∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6.]8.(2016·江苏高考)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.20 [法一:设等差数列{a n }的公差为d ,由S 5=10,知S 5=5a 1+5×42d =10,得a 1+2d =2,即a 1=2-2d ,所以a 2=a 1+d =2-d ,代入a 1+a 22=-3,化简得d 2-6d +9=0,所以d =3,a 1=-4.故a 9=a 1+8d =-4+24=20.法二:设等差数列{a n }的公差为d ,由S 5=10,知5(a 1+a 5)2=5a 3=10,所以a 3=2.由a 1+a 3=2a 2,得a 1=2a 2-2,代入a 1+a 22=-3,化简得a 22+2a 2+1=0,所以a 2=-1.公差d =a 3-a 2=2+1=3,故a 9=a 3+6d =2+18=20.] 三、解答题9.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn ,证明:数列{b n }是等差数列,并求其前n 项和T n .【导学号:57962247】[解] (1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k . 3分由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. 5分 (2)证明:由(1)得S n =n (2+2n )2=n (n +1),则b n =S nn =n +1,故b n +1-b n =(n +2)-(n +1)=1,8分即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2.12分10.(2017·合肥三次质检)等差数列{a n }的首项a 1=1,公差d ≠0,且a 3·a 4=a 12.(1)求数列{a n }的通项公式;(2)设b n =a n ·2n ,求数列{b n }的前n 项和T n .[解] (1)由a 3·a 4=a 12得(1+2d)·(1+3d)=1+11d ⇒d =1或d =0(不合题意舍去),∴数列{a n }的通项公式为a n =n .5分(2)依题意b n =a n ·2n =n ·2n ,T n =1×21+2×22+3×23+…+n ×2n , 2T n =1×22+2×23+…+(n -1)×2n +n ×2n +1, 9分两式相减得-T n =21+22+23+…+2n -n ×2n +1 =2(1-2n )1-2-n ×2n +1=(1-n )2n +1-2, ∴T n =(n -1)2n +1+2.12分B 组 能力提升 (建议用时:15分钟)1.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1B [设等差数列{b n }的公差为d(d ≠0),S n S 2n=k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n (2n -1)d , 即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)d n +(2k -1)(2-d)=0. 因为对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d)=0, 解得d =2,k =14,所以数列{b n }的通项公式为b n =2n -1.]2.已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为__________.【导学号:57962248】110 [因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得, S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.] 3.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.[解] (1)证明:由题设知a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 2分两式相减得a n +1(a n +2-a n )=λa n +1, 由于a n +1≠0,所以a n +2-a n =λ. 5分(2)由题设知a 1=1,a 1a 2=λS 1-1, 可得a 2=λ-1. 由(1)知,a 3=λ+1. 7分令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;9分{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2,因此存在λ=4,使得数列{a n }为等差数列. 12分。