2017-2018学年辽宁省大连市高二上学期期末数学理试题(解析版)
2017-2018学年高二数学下学期期末考试试题理(2)
数学试卷(理数)时间:120分钟总分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知为实数,,则的值为A.1B.C.D.2.“”是“直线和直线平行”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件3.下列说法正确的是A.一个命题的逆命题为真,则它的逆否命题一定为真B.“”与“”不等价C.“若,则全为”的逆否命题是“若全不为0,则”D.一个命题的否命题为假,则它的逆命题一定为假4.若,,,,则与的大小关系为A. B. C. D.5.已知命题及其证明:(1)当时,左边,右边,所以等式成立;(2)假设时等式成立,即成立,则当时,,所以时等式也成立.由(1)(2)知,对任意的正整数等式都成立.经判断以上评述A.命题,推理都正确B.命题正确,推理不正确C.命题不正确,推理正确D.命题,推理都不正确6.椭圆的一个焦点是,那么等于A.B.C.D.7.设函数(其中为自然对数的底数),则的值为A. B. C. D.8.直线(为参数)被曲线截得的弦长是A. B. C. D.9.已知函数在上为减函数,则的取值范围是A. B. C. D.10.一机器狗每秒前进或后退一步,程序设计师让机器狗以前进步,然后再后退步的规律移动,如果将此机器狗放在数轴的原点,面向数轴的正方向,以步的距离为个单位长,令表示第秒时机器狗所在位置的坐标.且,那么下列结论中错误的是A. B.C. D.11.已知A、B、C、D四点分别是圆与坐标轴的四个交点,其相对位置如图所示.现将沿轴折起至的位置,使二面角为直二面角,则与所成角的余弦值为A.B.C.D.12.点在双曲线上,、是这条双曲线的两个焦点,,且的三条边长成等差数列,则此双曲线中等于A.3B.4C.5D.6二、填空题(每小5分,满分20分)13.若,则__________.14.在三角形ABC中,若三个顶点坐标分别为,则AB边上的中线CD的长是__________.15.已知F1、F2分别是椭圆的左右焦点,A为椭圆上一点,M为AF1中点,N为AF2中点,O为坐标原点,则的最大值为__________.16.已知函数,过点作函数图象的切线,则切线的方程为。
2017-2018学年辽宁省大连市高二上学期期末考试数学(理)试题WORD版含答案
大连市2017 2018学年度第一学期期末考试试卷高二数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线x y 212=的准线方程为( ) A .81-=x B .41-=x C .21-=x D .1-=x 2.命题:“0,02≥->∀x x x ”的否定是( )A .0,02>-≤∀x x xB .0,02≤->∀x x xC .0,02<->∃x x xD .0,02>-≤∃x x x3.若0>ab ,则ba ab +的最小值是( ) A .1 B .2 C .2 D .224.已知{}n a 是等差数列,28,48721=+=+a a a a ,则该数列前10项和10S 等于( )A .64B .100 C.110 D .1205.命题1:≥x p ,命题11:≤xq ,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C.充要条件 D .既不充分也不必要条件6.已知实数y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+3022y y x y x ,则y x z -=2的最小值是( )A .5B .5- C. 25 D .25- 7.已知ABC ∆的顶点C B ,在椭圆1322=+y x 上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( )A .32B .6 C.34 D .128.平行六面体1111D C B A ABCD -中,向量1,,AA AD AB 两两的夹角均为060,且1=AB ,3,21==AA AD ,则1AC 等于( )A .5B .6 C. 4 D .89.已知直线1+=x y 与曲线()a x y +=ln 相切,则a 的值为( )A . 1B . 2 C. 1- D .2-10.关于x 的不等式0>-b ax 的解集为()1,-∞-,则关于x 的不等式()()02<+-b ax x 的解集为( )A .()2,1-B .()2,1 C.()()+∞-∞-,21, D .()()+∞∞-,21,11.已知双曲线12222=-by a x 的一个焦点与抛物线x y 42=的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为( )A .145522=-y x B .14522=-y x C. 14522=-x y D .154522=-y x 12.若()x f 的定义域为R ,()2<'x f 恒成立,()21=-f ,则()42+>x x f 的解集为( )A .()1,1-B .()1,-∞- C.()+∞-,1 D .()+∞∞-,第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.{}n a 是公比为正数的等比数列,若16,453==a a 则数列{}n a 的前5项和为.14.直线1-=x y 与椭圆12422=+y x 相交于B A ,两点,则=AB . 15.21,F F 为椭圆1:2222=+by a x C 左右焦点,A 为椭圆上一点,2AF 垂直于x 轴,且三角形21F AF 为等腰直角三角形,则椭圆的离心率为.16.点P 是圆()42:22=++y x C 上的动点,定点()0,2F ,线段PF 的垂直平分线与直线CP 的交点为Q ,则点Q 的轨迹方程是.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 过抛物线px y E 2:2=的焦点F 的一条直线与抛物线E 交于()()2211,,,y x Q y x P 两点.求证:.221p y y -=18.已知等差数列{}n a ()*∈N n 的前项和为n S ,且.9,533==S a(1)求数列{}n a 的通项公式;(2)等比数列{}()*∈N n b n ,若5322,a b a b ==,求数列{}n n b a +的前n 项和.n T 19.如图,四边形ABCD 是直角梯形,⊥=∠=∠SA BAD ABC ,900平面ABCD ,.1,2====AD BC AB SA(1)求直线SC 与平面ASD 所成角的余弦;(2)求平面SAB 和平面SCD 所成角的余弦.20.已知函数()c bx ax x x f +++=23在32-=x 与1=x 时都取得极值. (1)求b a ,的值与函数()x f 的单调区间;(2)若对[]2,1-∈x ,不等式()2c x f <恒成立,求c 的取值范围.21.如图,四棱柱1111D C B A ABCD -中,侧棱A A 1⊥底面2,1,,//,1====⊥AB AA CD AD AD AB DC AB ABCD ,E 为棱1AA 的中点.(1)证明:CE C B ⊥11;(2)求二面角11C CE B --的正弦值.22.已知椭圆C 的中心是坐标原点O ,它的短轴长22,焦点()0,c F ,点⎪⎭⎫⎝⎛-0,10c c A ,且.2FA OF = (1)求椭圆C 的标准方程; (2)是否存在过点A 的直线与椭圆C 相交于Q P ,两点,且以线段PQ 为直径的圆过坐标原点O ,若存在,求出直线PQ 的方程;不存在,说明理由.试卷答案一、选择题1-5: ACCBA 6-10: BCABD 11、12:AB二、填空题13. 31 14. 534 15.12- 16.1322=-y x 三、解答题17.解:当过焦点F 的直线垂直于x 轴时,则221p y y -=成立,当直线不与x 轴垂直时,设⎪⎭⎫ ⎝⎛-=2p x k y ⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-=px y p x k y 222 得0222=--p py ky 所以221p y y -= .18.解:(1) 由93=S ,得932=a ,所以.32=a又因为53=a ,所以公差.2=d从而().1222-=-+=n d n a a n(2)由上可得9,35322====a b a b ,所以公比.3=q从而n n n q b b 322=⋅=-, 所以,()13212-+=n n n T . 19.解:(1) 如图建系,()()()()2,2,2,0,0,1,0,2,2,2,0,0-=SC D C S⊥AB 平面SAD ,故平面ASD 的一个法向量为()0,2,0=AB设SC 与平面ASD 所成的角为θ则 故36cos =θ,即SC 与平面ASD 所成的角余弦为36 (2)平面SAB 的一个法向量为()0,0,1=m()()2,0,1,2,2,2-=-=SD SC ,设平面SCD 的一个法向量为()z y x n ,,=, 由⎩⎨⎧=-=-+⇒⎪⎩⎪⎨⎧=⋅=⋅02000z x z y x n SD n SC 令1=z 可得平面SCD 的一个法向量为 ()1,1,2-=n显然,平面SAB 和平面SCD 所成角为锐角,不妨设为α则36cos =⋅⋅=n m nm α 即平面SAB 和平面SCD 所成角的余弦36. 20.解:(1) ()()b ax x x f c bx ax x x f ++='+++=23,223 由()0231,03491232=++='=+-=⎪⎭⎫ ⎝⎛-b a f b a f 得2,21-=-=b a ()()()123232-+=--='x x x x x f ,x 变化时()()x f x f '变化如下表所以函数()x f 的递增区间是⎪⎭⎫ ⎝⎛-∞-32,与()+∞,1,递减区间是⎪⎭⎫ ⎝⎛-1,32; (2)()[]2,1,22123-∈+--=x c x x x x f ,当32-=x 时,c f +=⎪⎭⎫ ⎝⎛-272232 为极大值,而()c f +=22,则()c f +=22为最大值,要使()[]2,1,2-∈<x c x f 恒成立,则只需要()c f c +=>222,得.21>-<c c 或21.解:如图所示,以点A 为原点建立空间直角坐标系,依题意得()()()1,0,1,2,0,0,0,0,0C B A ()()()0,1,0,1,2,1,2,2,011E C B(1)证明:易得()()1,1,1,1,0,111--=-=CE C B ,于是011=⋅CE C B ,所以.11CE C B ⊥(2)()1,2,1:1--C B ,设平面CE B 1的一个法向量()z y x m ,,=, 则⎪⎩⎪⎨⎧=⋅=⋅001CE m C B m ,即⎩⎨⎧=-+-=--002z y x z y x 消去x ,得02=+z y ,不妨令1=z ,所以平面CE B 1的一个法向量为 ()1,2,3--=m由(1)知,,11CE C B ⊥又⊂=⊥11111,,,CC CE C CC CE C B CC 平面1CEC ,所以⊥11C B 平面1CEC ,故()1,0,111-=C B 为平面1CEC 的一个法向量, 于是7722144cos 111111-=⨯-=⋅⋅=⋅C B m C B m C B m , 从而.721sin 11=⋅C B m所以二面角11C CE B --的正弦值为.721 22.解:(1) 由题意知,()⎪⎭⎫ ⎝⎛-=0,10,0,,2c c A c F b ()⎪⎭⎫ ⎝⎛-==0,210,0,c c FA c OF 由FA OF 2=,得c c c 420-=,解得:.2=c ∴=+=∴,6222c b a 椭圆的方程为12622=+y x 离心率为3662= (2)()0,3A ,设直线PQ 的方程为()3-=x k y联立()⎪⎩⎪⎨⎧=+-=126322y x x k y , 得()062718312222=-+-+k x k x k 设()()2211,,,y x Q y x P ,则2221222131627,3118kk x x k k x x +-=+=+ ()[]22222222121221313931543162793k k k k k k k x x x x k y y +=⎥⎦⎤⎢⎣⎡++-+-=++-= 由已知得OQ OP ⊥,得02121=+y y x x ,即03163031331627222222=+-=+++-kk k k k k 解得:55±=k , 符合∴>∆,0直线PQ 的方程为()355-±=x y .。
辽宁省师范大学附属中学2017-2018学年高二上学期期末考试数学(理)试题含解析
2017-2018学年度上学期期末考试高二试题数学(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. )【答案】A故选:A2. “平面内与两个定点的距离的和等于常数的点的集合叫做椭圆”;“平面内与两个定点的距离的差的绝对值等于常数的点的集合叫做双曲线”.下列命题中正确的是()A. 命题PB.【答案】B故选:B3. )D. 无法确定【答案】C∴最大的数为故选:C4. 对于常数)条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要条件【答案】B的曲线是椭圆可得,所以“考点:椭圆方程及充分条件必要条件视频5. 下列选项错误的是()A. 命题“若B. “C. 若命题D. 在命题的四种形式中,若原命题为真命题,则否命题为假命题【答案】D【解析】对于A,正确;对于B”是“件,正确;对于C,若命题对于D,在命题的四种形式中,原命题与逆否命题同真同假,逆命题与否命题同真同假,原命题与否命题关系不定,故错误;故选:D6. 在各项均为正数的等比数列)D.【答案】D故选:D7. 中,)【答案】A【解析】由题意得:,故选:A8. 是抛物线上一点,值为()【答案】B【解析】设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,∴要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小,当D,P,A三点共线时|PA|+|PD|最小为5﹣(﹣1)=6,故选:B点睛:利用抛物线的定义,实现由点到点的距离与点到直线的距离的转化,由此可解抛物线中的最值问题。
常见的有下列两种情况:(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决.9. 分别为直线,分别为平面)个【答案】D分别为直线,分别为平面的法向量(,垂直同一平面的两直线平行法向量夹角与二面角的平面角相等或互补故选:D10. ,直线与其相交于)【答案】C,整理得:,,则,故选:C点睛:弦中点问题解法一般为设而不求,关键是求出弦AB所在直线方程的斜率k,方法一利用点差法,列出有关弦AB的中点及弦斜率之间关系求解;方法二是直接设出斜率k,利用根与系数的关系及中点坐标公式求得直线方程.11. )或 D.【答案】B【解析】试题分析:根据题中约束条件可画出可行域如下图所示,两直线交点坐标为:,又由题中zz无最小值.故选B考点:线性规划的应用视频12. 的图象也是双曲线,请根据上述信息解决以下问题:若圆没有公共点,则半径的取值范围是()C.【答案】C【解析】圆的圆心为(0,1),半径为r,设圆与曲线y(m,n),可得n,①y的导数为y′=−可得切线的斜率为−,(−−1,即为n−1=m(m−1)2,②由①②可得n4−n3−n−1=0,化为(n2−n−1)(n2+1)=0,即有n2−n−1=0,可得此时圆的半径r=结合图象即可得到圆与曲线没有公共点的时候,r的范围是故选:C.点睛:圆与曲线没有公共点问题转化为找二者的临界位置问题,即圆与曲线相切的情况,明确二者的公切线,利用导数明确曲线的公切线,利用圆半径与切线垂直建立等量关系,利用点在曲线上,建立方程组即可得到切点坐标,从而问题得解.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若椭圆的短轴的一个端点与两个焦点是同一个正三角形的顶点,则这个椭圆的离心率为.【解析】∵椭圆的短轴的一个端点与两个焦点是同一个正三角形的顶点14. 已知四面体.【答案】5∴故答案为:515. __________.【答案】4,根据基本不等式:,不等式转化为:即的最小值为.考点:1.基本不等式;2.一元二次不等式.【方法点晴】本题考查的是基本不等式和解一元二次不等式,属于中档题.首先利用基本不将其代入已知条件,转化为:的一元二次不等式,利用换元法,的一元二次不等式:视频16. ,若,的通项公式为________.【解析】由,得a1=S1=1,,得+2,又a n>0,∴2S n即S n=a n+1,当n⩾2时=a n,两式作差得:a n=a n+1−a n,,又由S1=1, ,求得a2=1,∴当n⩾2时,a n验证n=1时不成立,三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1)求数列(2【答案】(1)...........................(2试题解析:(1)的公差为(2=18. 的棱长为,,,,,,,的中点.(1)求证:(2)求直线.【答案】(1)见解析【解析】试题分析:(1)建立空间直角坐标系,由,即可证明(2. 试题解析:(1由已知条件可得,,,又有平面(2)如(1所以即求直线与所成的角点睛:求空间两条异面直线所成角的大小是立体几何中最为常见的基本题型之一。
20172018学年大连五校高二上期末数学试卷(文科)含答案解析
2021-2021 学年辽宁省大连五校高二〔上〕期末数学试卷〔文科〕一、选择题:本大题共12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的. .〔分〕对于常数、,“>〞是“方程mx 2﹣ny2 的曲线是双曲线的〔〞〕1 5 m n mn 0 =1 A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.〔5 分〕假设 a<b<0,那么以下不等式中错误的选项是〔〕A.B.C.| a| > | b| D. a2>b2 3.〔5 分〕以下函数中,最小值为 4 的是〔〕A.y=log3x+4log x3B. y=e x+4e﹣xC.y=sinx+〔0<x<π〕D. y=x+4.〔 5 分〕实数 x,y 满足,那么目标函数z=x﹣2y的最小值是〔〕A.﹣ 9 B.15 C.0D.﹣ 105.〔5 分〕以下命题中,说法错误的选项是〔〕A.“假设 p,那么 q〞的否命题是“假设?p,那么 ?q〞B.“p∧q 是真命题〞是“p∨ q 是真命题〞的充分不必要条件C.“? x>2,x2﹣2x>0〞的否认是“? x≤2,x2﹣2x≤0〞D.“假设 b=0,那么 f〔x〕=ax2+bx+c 是偶函数〞的逆命题是真命题6.〔5 分〕设 a>0,b> 0,假设是3a与32b的等比中项,那么的最小值为〔〕A.5B.6C.7D.87.〔5 分〕 F1,F2分别是椭圆+=1 的左、右焦点, P 是以 F1F 为直径的圆与该椭圆的一个交点,且∠PF1F2=2∠ PF2F1,那么这个椭圆的离心率是〔〕A.﹣1B.2﹣C.D.8.〔5 分〕设 S n为等比数列 { a n} 的前 n 项和, a2﹣ 8a5=0,那么=〔〕A.B.C.2D.17n}中,S n 是其前n项和,,那么 S11〔〕9.〔5 分〕等差数列 { a =A.﹣ 11B.11 C. 10D.﹣ 1010.〔 5 分〕设 F1, F2分别是双曲线的左右焦点,点M〔 a, b〕.假设∠ MF1F2=30°,那么双曲线 C 的离心率为〔〕A.B.C.2D.11.〔 5 分〕设 { a n} 为等差数列,假设,且它的前n项和S n有最小值,那么当 S n取得最小正值时的n 值为〔〕A.18 B.19 C.20D.2112.〔5 分〕定义在 R 上的奇函数 f〔x〕的导函数为 f'〔 x〕,当 x<0 时,f〔x〕满足, 2f〔 x〕+xf'〔 x〕< xf〔x〕,那么f〔x〕在R 上的零点个数为〔〕A.5 B.3 C.1 或3 D.1二、填空题〔每题 5 分,总分值 20 分,将答案填在答题纸上〕13.〔 5 分〕函数的递增区间为..〔分〕在数列n}中,a2 , 3 n+1}是等比数列,那么a n=.14 5 { a = a = ,且数列 { na15.〔 5 分〕函数,假设函数 f〔 x〕在区间 [ 2,4] 上是单调增函数,那么实数 a 的取值范围是.16.〔 5 分〕抛物线 y2=2px〔p>0〕的焦点为 F,点 A,B 为抛物线上的两个动点,且满足∠ AFB=120°.过弦 AB 的中点 M 作抛物线准线的垂线 MN,垂足为N,那么的最大值为.三、解答题〔本大题共 6 小题,共 70 分.解容许写出文字说明、证明过程或演算步骤 .〕17.〔 10 分〕假设数列 { a n} 满足.〔 1〕求证:数列 { a n﹣1} 是等比数列,并求数列 { a n} 的通项公式;〔 2〕设 b n=log2〔1﹣a n〕,假设数列的前 n 项和为 T n,求证: T n <1.18.〔 12 分〕函数 f 〔x〕=ax2﹣〔 a+1〕x+1〔a≠0〕.(1〕假设 f 〔x〕≤ 2 在 R 上恒成立,求实数 a 的取值范围;(2〕解关于 x 的不等式 f 〔x〕< 0.19.〔 12 分〕过点 A〔﹣ 4,0〕的动直线 l 与抛物线 G:x2=2py〔p>0〕相交于 B、C 两点,当直线的斜率是时,.(1〕求抛物线 G 的方程;(2〕设线段 BC的中垂线在 y 轴上的截距为 b,求 b 的取值范围.20.〔 12 分〕数列 { a n} , { b n} , S n为数列 {a n} 的前 n 项和, a2=4b1,S n =2a n﹣2,.〔 1〕求数列 { a n} 的通项公式;〔 2〕证明为等差数列.〔 3〕假设数列 { c n} 的通项公式为,令p n=c2n﹣1+c2n.T n为{ p n} 的前 n 项的和,求 T n.21.〔 12 分〕椭圆的左顶点为A,右焦点为F,过点F的直线交椭圆于 B,C 两点.〔Ⅰ〕求该椭圆的离心率;〔Ⅱ〕设直线 AB 和 AC 分别与直线 x=4 交于点 M , N,问: x 轴上是否存在定点P 使得 MP⊥NP?假设存在,求出点 P 的坐标;假设不存在,说明理由.22.〔 12 分〕函数 f 〔x〕=blnx,g〔x〕=ax2﹣ x〔a∈R〕〔 1〕假设曲线 f〔 x〕与 g〔x〕在公共点 A〔1,0〕处有相同的切线,求实数a,b 的值;〔 2〕假设 a>0,b=1,且曲线 f〔 x〕与 g〔x〕总存在公共的切线,求正数 a 的最小值.参考答案与试题解析一、选择题:本大题共 12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的 . .〔分〕对于常数、,“>〞是“方程mx 2﹣ny2 的曲线是双曲线的〔〞〕1 5 m n mn 0 =1 A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:假设方程 mx2﹣ ny2 =1 的曲线是双曲线,那么 mn >0,即“mn>0〞是“方程 mx2﹣ ny2=1 的曲线是双曲线〞的充要条件,应选: C2.〔5 分〕假设 a<b<0,那么以下不等式中错误的选项是〔〕A.B..>| b|2>b2 C | a| D. a【解答】解:∵ a<b<0,∴>,| a|>| b|,a2>ab>b2.因此 A,C,D 正确.对于 B:a<b<0 时,可得<,因此 B 不正确.应选: B.3.〔5 分〕以下函数中,最小值为 4 的是〔〕3x x+4e﹣ xA.y=log x+4log 3 B. y=eC.y=sinx+〔0<x<π〕D. y=x+【解答】解:<x<1 时, y< 0,不正确B.∵ e x>0,∴=4,当且仅当 x=ln2 时取等号,正确.C.令 sinx=t∈〔0,1〕,那么 y=f〔 t〕=t+ ,y′ =1﹣<0,因此函数 f〔t 〕在〔0,1〕上单调递减,∴ f〔t 〕> f 〔1〕=5,不正确.D.x<0 时, y< 0,不正确.应选: B.4.〔 5 分〕实数 x,y 满足,那么目标函数z=x﹣2y的最小值是〔〕A.﹣ 9 B.15 C.0D.﹣ 10【解答】解:如图作出阴影局部即为实数x,y 满足的可行域,由 z=x﹣2y,得 y= x﹣z,平移直线 y= x﹣z,由图象可知当直线y= x﹣z 经过点 A,直线 y= x﹣z 的截距最大,此时z 最小,由得点 A〔3,6〕,当 x=3,y=6 时, z=x﹣2y 取最小值为﹣9.应选: A.5.〔5 分〕以下命题中,说法错误的选项是〔〕A.“假设 p,那么 q〞的否命题是“假设?p,那么 ?q〞B.“p∧q 是真命题〞是“p∨ q 是真命题〞的充分不必要条件C.“? x>2,x2﹣2x>0〞的否认是“? x≤2,x2﹣2x≤0〞2D.“假设 b=0,那么 f〔x〕=ax +bx+c 是偶函数〞的逆命题是真命题【解答】解:对于 A,“假设 p,那么 q〞的否命题是“假设 ?p,那么 ?q〞,故 A 正确;对于 B,假设 p∧q 是真命题,那么 P、 q 均为真命题,那么 p∨q 是真命题;反之, p ∨ q 是真命题, p 与 q 不一定都是真命题,那么 p∧q 不一定是真命题,∴“p∧q 是真命题〞是“p∨q 是真命题〞的充分不必要条件,故 B 正确;对于 C,“? x>2,x2﹣2x>0〞的否认是“? x>2,x2﹣2x≤0〞,故 C 错误;对于 D,命题“假设 b=0,那么 f 〔x〕=ax2+bx+c 是偶函数〞的否命题为:“假设b≠0,那么f〔x〕=ax2+bx+c 不是偶函数〞,是真命题,那么“假设 b=0,那么 f〔x〕=ax2+bx+c 是偶函数〞的逆命题是真命题,故D 正确.应选: C.2b 的等比中项,那么的最小值为〔〕.〔分〕设>,>,假设 a 与 36 5 a 0 b 0 是 3A.5B.6C.7D.8【解答】解: a>0,b>0,是 3a与 32b的等比中项,∴ 3a 2b .?3 = =3∴a+2b=1.那么=〔a+2b〕=4+ +≥4+2=8,当且仅当 a=2b=时取等号.应选: D.7.〔5 分〕 F1,F2分别是椭圆+=1 的左、右焦点, P 是以 F1F 为直径的圆与该椭圆的一个交点,且∠PF1F2=2∠ PF2F1,那么这个椭圆的离心率是〔〕A.﹣1B.2﹣C.D.【解答】解:∵ P是以 F1F2为直径的圆与该椭圆的一个交点,∴△ PF1F2为直角三角形,且∠ P=90°,∵∠ PF1F2=2∠PF2F1,∴∠ PF °,,1F2=60 F1F2=2c∴PF1=c,PF2 = c,由椭圆的定义知, PF+PF =c+c=2a,1 2即==﹣1∴离心率为﹣ 1.应选: A8.〔5 分〕设 S n为等比数列 { a n} 的前 n 项和, a2﹣ 8a5=0,那么=〔〕A.B.C.2D.17【解答】解:根据题意,等比数列 { a n } 中 a2﹣8a5=0,即a2=8a5,那么有 a1q=8a1q4,即有 q3 = ,解可得 q=,那么 = ==1+q4 〔〕4= ;=1+ 应选: A.9.〔5 分〕等差数列n}中,S n 是其前n项和,,那么 S11〔〕{ a =A.﹣ 11 B.11 C. 10 D.﹣ 10【解答】解:,得,由,得,d=2,,∴S11=﹣11,应选 A10.〔 5 分〕设 F1, F2分别是双曲线的左右焦点,点M〔 a, b〕.假设∠ MF1F2=30°,那么双曲线 C 的离心率为〔〕A.B.C.2 D.【解答】解:由题意可得 F1〔﹣ c, 0〕,M 〔 a, b〕,直线 MF1的斜率为 tan30 °= ,即有=,即 a+c= b,平方可得〔 a+c〕2=3b2=3〔 c2﹣ a2〕=3〔c+a〕〔c﹣a〕,化简可得 a+c=3〔c﹣a〕,即为 c=2a,可得 e= =2.应选: C.11.〔 5 分〕设 { a n} 为等差数列,假设,且它的前n 项和S n有最小值,那么当 S n取得最小正值时的n 值为〔〕A.18 B.19 C.20D.21【解答】解:∵ S n有最小值,∴ d> 0,故可得 a10< a11,又:S20=10〔a1+a20〕 =10〔a10+a11〕> 0,S19=19a10< 0∴S20为最小正值应选 C12.〔5 分〕定义在 R 上的奇函数 f〔x〕的导函数为 f'〔 x〕,当 x<0 时,f〔x〕f〔x〕在R 上的零点个数为〔〕满足, 2f〔 x〕+xf'〔 x〕< xf〔x〕,那么A.5 B.3 C.1 或3 D.1【解答】解:构造函数F〔 x〕 = 〔x<0〕,所以 F〔′x〕==[ 2f〔x〕+xf'〔 x〕﹣ xf〔 x〕] ,因为 2f〔 x〕 +xf 〔′x〕< xf〔x〕, x< 0,所以 F′〔x〕> 0,所以函数 F〔 x〕在 x< 0 时是增函数,又 F〔0〕 =0 所以当 x< 0, F〔x〕< F〔 0〕 =0 成立,因为对任意 x<0,>0,所以 f〔 x〕< 0,由于 f 〔x〕是奇函数,所以x>0 时 f〔 x〕> 0,即 f〔 x〕=0 只有一个根就是0.应选: D.二、填空题〔每题 5 分,总分值 20 分,将答案填在答题纸上〕13.〔 5 分〕函数的递增区间为.【解答】解:函数,f 〔′x〕=﹣2x2+3x﹣1,令 f ′〔x〕≥ 0,即﹣ 2x2+3x﹣ 1≥ 0,解得:x≤ 1,故函数在递增,故答案为:.14.〔 5 分〕在数列 { a n} 中, a2=,a3=,且数列{ na n+1}是等比数列,那么a n= .【解答】解:∵数列 { a n } 中, a2=,a3=,且数列{ na n+1}是等比数列,2a2+1=3+1=4, 3a3+1=7+1=8,∴数列 { na n+1} 是首项为 2,公比为 2 的等比数列,∴,解得 a n .=故答案为:.15.〔 5 分〕函数,假设函数f〔x〕在区间[ 2,4]上是单调增函数,那么实数 a 的取值范围是[ ﹣e2,+∞〕.【解答】解∵函数 f 〔x〕在区间 [ 2,4] 上是单调递增函数,∴ f ′〔 x〕≥ 0 在区间 [ 2,4] 上恒成立,即〔 x﹣ 1〕 e x+a≥0 在区间 [ 2,4] 上恒成立,记 g〔x〕 =〔 x﹣ 1〕 e x+a,那么 g〔 x〕min≥0,g′〔 x〕=xe x,∵ x∈[ 2, 4] ,∴ g′〔x〕> 0,故 g〔x〕在 [ 2, 4] 递增,故 g〔x〕min=g〔 2〕 =e2+a≥0,解得: a≥﹣ e2,故实数 a 的范围是: a≥﹣ e2.故答案为: [ ﹣e2,+∞〕.16.〔 5 分〕抛物线 y2=2px〔p>0〕的焦点为 F,点 A,B 为抛物线上的两个动点,且满足∠ AFB=120°.过弦 AB 的中点 M 作抛物线准线的垂线 MN,垂足为N,那么的最大值为.【解答】解:设 | AF| =a, | BF| =b,连接 AF、 BF,由抛物线定义,得 |AF|=|AQ| , |BF|=|BP| ,在梯形ABPQ 中,2| MN| =| AQ|+| BP| =a+b.由余弦定理得,| AB| 2=a2+b2﹣2abcos120°=a2+b2+ab,配方得, | AB| 2=〔 a+b〕2﹣ ab,又∵ ab≤〔〕2,∴〔 a+b〕2﹣ab≥〔 a+b〕2﹣〔a+b〕2=〔a+b〕2得到 | AB| ≥〔a+b〕.∴≤=,即的最大值为.故答案为:.三、解答题〔本大题共 6 小题,共 70 分.解容许写出文字说明、证明过程或演算步骤 .〕17.〔 10 分〕假设数列 { a n} 满足.〔 1〕求证:数列 { a n﹣1} 是等比数列,并求数列 { a n} 的通项公式;〔 2〕设 b n=log2〔1﹣a n〕,假设数列的前 n 项和为 T n,求证: T n < 1.【解答】证明:〔1〕∵ a n =2a n﹣1﹣1∴a n﹣1=2〔a n﹣1﹣1〕,又∵ a1=﹣1,∴ a1﹣ 1=﹣2∴数列 { a n﹣1} 是首项为﹣ 2,公比为 2 的等比数列∴,∴.〔 2〕由〔 1〕知:∴,∴,所以.18.〔 12 分〕函数 f 〔x〕=ax2﹣〔 a+1〕x+1〔a≠0〕.(1〕假设 f 〔x〕≤ 2 在 R 上恒成立,求实数 a 的取值范围;(2〕解关于 x 的不等式 f 〔x〕< 0.【解答】解:〔1〕∵ f〔 x〕≤ 2 在 R 上恒成立,即 ax2﹣〔 a+1〕 x﹣1≤ 0 在 R 上恒成立,所以;(2〕 f〔x〕< 0? ax2﹣〔 a+1〕x+1<0? 〔ax﹣1〕〔 x﹣1〕< 0〔 * 〕当 0<a<1 时,〔* 〕式等价于;当 a=1 时,〔* 〕式等价于〔 x﹣1〕2< 0? x∈?;当 a>1 时,〔* 〕式等价于;当 a<0 时,〔* 〕式等价于或 x>1综上,当 0<a< 1 时,f 〔x〕< 0 的解集为;当 a=1 时, f〔 x〕< 0 的解集为 ?;当 a>1 时, f 〔x〕< 0 的解集为;当 a<0 时, f 〔x〕< 0 的解集为.19.〔 12 分〕过点 A〔﹣ 4,0〕的动直线 l 与抛物线 G:x2=2py〔p>0〕相交于 B、C 两点,当直线的斜率是时,.(1〕求抛物线 G 的方程;(2〕设线段 BC的中垂线在 y 轴上的截距为 b,求 b 的取值范围.【解答】解:〔1〕设 B〔x1, y1〕, C〔 x2,y2〕,当直线 l 的斜率是时,l的方程为,即x=2y﹣4,由得 2y2﹣〔 8+p〕y+8=0,∴,又∵,∴ y2=4y1,由这三个表达式及p>0 得 y1=1,y2=4,p=2,那么抛物线的方程为 x2=4y〔5 分〕〔 2〕设 l: y=k〔x+4〕,BC的中点坐标为〔 x0,y0〕由得 x2﹣ 4kx﹣16k=0∴,线段的中垂线方程为,∴线段 BC的中垂线在 y 轴上的截距为: b=2k2+4k+2=2〔k+1〕2,由△ =16k2+64k>0 得 k>0 或 k<﹣ 4,∴ b∈〔 2,+∞〕〔7 分〕20.〔 12 分〕数列 { a n} , { b n} , S n为数列 {a n} 的前 n 项和, a2=4b1,S n =2a n﹣2,.〔 1〕求数列 { a n} 的通项公式;〔 2〕证明为等差数列.〔 3〕假设数列 { c n} 的通项公式为,令 p n 2n﹣1+c2n.T n为{ p n}=c的前 n 项的和,求 T n.【解答】解:〔1〕当 n>1 时,? a n=2a n﹣1当 n=1 时, S1=2a1﹣ 2? a1=2,综上, { a n} 是公比为 2,首项为 2 的等比数列,那么:.(2〕证明:∵ a2=4b1,∴ b1=1,∵,∴综上,是公差为 1,首项为 1 的等差数列.〔 3〕由〔 2〕知:∴ p n 2n ﹣ 1+c2n ,=c =∴,两式相减得:,∴∴.21.〔 12 分〕椭圆的左顶点为A,右焦点为F,过点F的直线交椭圆于 B,C 两点.〔Ⅰ〕求该椭圆的离心率;〔Ⅱ〕设直线 AB 和 AC 分别与直线 x=4 交于点 M , N,问: x 轴上是否存在定点P 使得 MP⊥NP?假设存在,求出点P 的坐标;假设不存在,说明理由.【解答】解:〔Ⅰ〕由椭圆方程可得, a=2,b=,从而椭圆的半焦距.∴椭圆的离心率为;〔Ⅱ〕解:依题意,直线BC的斜率不为 0,设其方程为 x=ty+1.将其代入,整理得〔 4+3t2〕y2+6ty ﹣9=0.设 B〔x1,y1〕,C〔x2, y2〕,∴,.直线 AB 的方程是,从而可得M〔4,〕,同理可得.假设 x 轴上存在定点 P〔p,0〕使得 MP⊥NP,那么有.∴.将 x1=ty1+1, x2=ty2 +1 代入上式,整理得.∴,即〔 p﹣4〕2﹣9=0,解得 p=1,或 p=7.∴ x 轴上存在定点 P〔 1, 0〕或 P〔7,0〕,使得 MP⊥NP 成立.22.〔 12 分〕函数 f 〔x〕=blnx,g〔x〕=ax2﹣ x〔a∈R〕〔 1〕假设曲线 f〔 x〕与 g〔x〕在公共点 A〔1,0〕处有相同的切线,求实数a,b 的值;〔 2〕假设 a>0,b=1,且曲线 f〔 x〕与 g〔x〕总存在公共的切线,求正数 a 的最小值.【解答】解:〔1〕函数 f〔x〕=blnx, g〔x〕=ax2﹣x〔a∈ R〕,f 〔x〕=,g〔x〕=2ax﹣1;曲线 f 〔x〕与 g〔x〕在公共点 A〔1,0〕处有相同的切线,依据题意:〔 2〕当 a>0,b=1 时, f〔 x〕=lnx,在点〔t,lnt〕处的切线方程为:,即由得:①∵ f〔x〕,g〔 x〕总存在公切线,∴①的,即关于 t 的方程②总有解.∵左边> 0,a>0,∴ 1﹣ lnt>0? 0<t <e,于是,②式令,那么当 t∈〔 0,1〕时, h'〔 t 〕< 0;当 t ∈〔1,e〕时, h'〔t〕> 0,∴h〔t 〕在〔0,1〕递减,〔1,e〕递增.∴h〔 t〕min =h〔1〕=4,∴要使②有解,须 4a≥4,即 a≥1,故 a min=1.。
大连五校高二上期末数学试卷理科有答案-新课标人教版-精编
2017-2018学年辽宁省大连五校高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∀x>0,x﹣lnx>0,则¬p为()A.∀x>0,x﹣lnx≤0 B.∀x>0,x﹣lnx<0C.∃x0>0,x﹣lnx>0 D.∃x>0,x﹣lnx≤02.(5分)设等差数列{an }的前n项和为Sn,已知2a1+a13=﹣9,则S9=()A.﹣27 B.27 C.﹣54 D.543.(5分)若a,b∈R,则“<”是“>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线方程为x﹣2y=0,则该双曲线的离心率是()A. B.C. D.5.(5分)直三棱锥ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A. B.C.D.6.(5分)已知等比数列{an }中,a2=2,则其前三项和S3的取值范围是()A.(﹣∞,﹣2] B.(﹣∞,0)∪(1,+∞)C.[6,+∞)D.(﹣∞,﹣2]∪[6,+∞)7.(5分)已知变量x,y满足约束条件,若目标函数z=x+2y的最小值为2,则m=()A.2 B.1 C.D.﹣28.(5分)60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则CD的长为()A.B.C.D.9.(5分)已知不等式xy≤ax2+2y2对任意x∈[1,2],y∈[4,5]恒成立,则实数a的取值范围是()A.[﹣1,+∞)B.[﹣6,+∞)C.[﹣28,+∞)D.[﹣45,+∞)10.(5分)设椭圆与函数y=x3的图象相交于A,B两点,点P为椭圆C上异于A,B的动点,若直线PA的斜率取值范围是[﹣3,﹣1],则直线PB的斜率取值范围是()A.[﹣6,﹣2] B.[2,6] C. D.11.(5分)设数列{an }的前n项和Sn,若+++…+=4n﹣4,且an≥0,则S100等于()A.5048 B.5050 C.10098 D.1010012.(5分)已知双曲线Γ:﹣=1(a>0,b>0)的上焦点F(0,c)(c>0),M是双曲线下支上的一点,线段MF与圆x2+y2﹣y+=0相切于点D,且|MF|=3|DF|,则双曲线Γ的渐近线方程为()A.4x±y=0 B.x±4y=0 C.2x±y=0 D.x±2y=0二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知命题p:x2+2x﹣3>0,命题q:x>a,若¬p是¬q的充分不必要条件,则实数a的取值范围是.14.(5分)已知正项等比数列{an}的公比为2,若,则的最小值等于.15.(5分)已知M是抛物线x2=4y上一点,F为其焦点,点A在圆C:(x+1)2+(y﹣6)2=1上,则|MA|+|MF|的最小值是.16.(5分)如图,在直三棱柱A1B1C1﹣ABC中,,已知G与E分别是棱A1B1和CC1的中点,D与F分别是线段AC与AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{an }是等比数列,首项a1=1,公比q>0,其前n项和为Sn,且S1+a1,S 3+a3,S2+a2成等差数列.(1)求数列{an}的通项公式;(2)若数列{bn }满足,求数列{bn}的前n项和Tn.18.(12分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(1)证明:AC⊥D1E;(2)求DE与平面AD1E所成角的正弦值.19.(12分)已知数列{{an}满足,.(1)求证:数列是等比数列;(2)若数列{bn}是单调递增数列,求实数λ的取值范围.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且平面PAD⊥平面ABCD,E为PD中点,AD=2.(Ⅰ)求证:平面AEC⊥平面PCD.(Ⅱ)若二面角A﹣PC﹣E的平面角大小θ满足cosθ=,求四棱锥P﹣ABCD的体积.21.(12分)已知过抛物线E:y2=2px(p>0)的焦点F,斜率为的直线交抛物线于A(x1,y 1),B(x2,y2)(x1<x2)两点,且|AB|=6.(1)求该抛物线E的方程;(2)过点F任意作互相垂直的两条直线l1,l2,分别交曲线E于点C,D和M,N.设线段CD,MN的中点分别为P,Q,求证:直线PQ恒过一个定点.22.(12分)如图,在平面直角坐标系xoy中,已知圆C:(x+1)2+y2=16,点A(1,0),点B(a,0)(|a|>3),以B为圆心,|BA|的半径作圆,交圆C于点P,且的∠PBA的平分线次线段CP于点Q.(I)当a变化时,点Q始终在某圆锥曲线τ是运动,求曲线τ的方程;(II)已知直线l过点C,且与曲线τ交于M、N两点,记△OCM面积为S1,△OCN面积为S2,求的取值范围.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∀x>0,x﹣lnx>0,则¬p为()A.∀x>0,x﹣lnx≤0 B.∀x>0,x﹣lnx<0C.∃x0>0,x﹣lnx>0 D.∃x>0,x﹣lnx≤0【解答】解:因为全称命题的否定是特称命题,所以命题“∀x>0,x﹣lnx>0”的否定是∃x>0,x﹣lnx≤0.故选:D.2.(5分)设等差数列{an }的前n项和为Sn,已知2a1+a13=﹣9,则S9=()A.﹣27 B.27 C.﹣54 D.54【解答】解:∵等差数列{an }的前n项和为Sn,2a1+a13=﹣9,∴3a1+12d=﹣9,∴a1+4d=﹣3,∴S9==9(a1+4d)=﹣27.故选:A.3.(5分)若a,b∈R,则“<”是“>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∀a,b∈R,a2+ab+b2=+b2≥0,当且仅当a=b=0时取等号.∴>0⇔(a﹣b)ab>0,⇔“<”.∴“<”是“>0”的充要条件.故选:C.4.(5分)已知双曲线﹣=1(a >0,b >0)的一条渐近线方程为x ﹣2y=0,则该双曲线的离心率是( ) A .B .C .D .【解答】解:∵双曲线﹣=1(a >0,b >0)的一条渐近线方程为x ﹣2y=0,∴a=2b , ∴c=b ,∴双曲线的离心率是e==.故选:D .5.(5分)直三棱锥ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( ) A .B .C .D .【解答】解:根据已知条件,分别以C 1A 1,C 1B 1,C 1C 所在直线为x ,y ,z 轴,建立如图所示空间直角坐标系,设CA=2,则:A (2,0,2),N (1,0,0),B (0,2,2),A 1(2,0,0),B 1(0,2,0),M (1,1,0); ∴;∴; ∴BM 与AN 所成角的余弦值为.故选:D .6.(5分)已知等比数列{an }中,a2=2,则其前三项和S3的取值范围是()A.(﹣∞,﹣2] B.(﹣∞,0)∪(1,+∞)C.[6,+∞)D.(﹣∞,﹣2]∪[6,+∞)【解答】解:∵等比数列{an }中,a2=2,∴其前三项和S3=,当q>0时,S3=≥2+2=6;当q<0时,S3=≤2﹣2=2﹣4=﹣2.∴其前三项和S3的取值范围是(﹣∞,﹣2]∪[6,+∞).故选:D.7.(5分)已知变量x,y满足约束条件,若目标函数z=x+2y的最小值为2,则m=()A.2 B.1 C.D.﹣2【解答】解:由变量x,y满足约束条件,作出可行域如图,化目标函数z=x+2y为y=﹣+,由图可知,当直线y=﹣+过A时,直线在y轴上的截距最小,z有最小值为2.由,解得A(m,m),A代入z=x+2y,可得m+2m=2,解得m=.故选:C.8.(5分)60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则CD的长为()A.B.C.D.【解答】解:∵60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,∴=,∵AB=4,AC=6,BD=8,∴2=()2=+2=36+16+64+2×6×8×cos120°=68.∴CD的长为||=2.故选:B.9.(5分)已知不等式xy≤ax2+2y2对任意x∈[1,2],y∈[4,5]恒成立,则实数a的取值范围是()A.[﹣1,+∞)B.[﹣6,+∞)C.[﹣28,+∞)D.[﹣45,+∞)【解答】解:由题意可知:不等式xy≤ax2+2y2对于x∈[1,2],y∈[4,5]恒成立,即:a≥﹣2()2,对于x∈[1,2],y∈[4,5]恒成立,令 t=,则2≤t≤5,∴a≥t﹣2t2在[2,5]上恒成立,∵y=﹣2t2+t的对称轴为t=,且开口向下,∴y=﹣2t2+t在[2,5]单调递减,=﹣2×22+2=﹣6,∴ymax∴a≥﹣6,故选B.10.(5分)设椭圆与函数y=x3的图象相交于A,B两点,点P为椭圆C上异于A,B的动点,若直线PA的斜率取值范围是[﹣3,﹣1],则直线PB的斜率取值范围是()A.[﹣6,﹣2] B.[2,6] C. D.【解答】解:∵椭圆C:与函数y=x3的图象相交于A,B两点,∴A,B两点关于原点对称,设A(x1,y1),(﹣x1,﹣y1),则,即.设P(x0,y),则,可得:.∴.∵直线PA的斜率k1的取值范围[﹣3,﹣1],∴﹣3≤≤﹣1,得,∴直线PB的斜率取值范围是[].故选:D.11.(5分)设数列{an }的前n项和Sn,若+++…+=4n﹣4,且an≥0,则S100等于()A.5048 B.5050 C.10098 D.10100【解答】解:当n=1时,=0,则a1=0.当n≥2时,+++…++=4n﹣4,①+++…+=4n﹣8,②+++…++=4n,③由①﹣②得到:=4,∵an≥0,∴an=2n,由③﹣①得到:=4,∴an+1=2n+2,∴an+1﹣an=2,∴数列{an}是等差数列,公差是2,综上所述,an=,∴S100=S1+S2+S3++…+S100=0+×(100﹣1)=10098.故选:C.12.(5分)已知双曲线Γ:﹣=1(a>0,b>0)的上焦点F(0,c)(c>0),M是双曲线下支上的一点,线段MF与圆x2+y2﹣y+=0相切于点D,且|MF|=3|DF|,则双曲线Γ的渐近线方程为()A.4x±y=0 B.x±4y=0 C.2x±y=0 D.x±2y=0【解答】解:由x2+y2﹣y+=0,得x2+(y﹣)2=,则该圆的圆心坐标为(0,),半径为.设切点D(x0,y)(y>0),则由x2+y2﹣y+=0与(x0,y﹣c)•(x,y﹣)=0,解得:x0=,y=.∴D(,),由|MF|=3|DF|,得=3,得M(,﹣),代入双曲线Γ:﹣=1(a>0,b>0)整理得b=2a,∴双曲线Г的渐近线方程为y=±x.故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知命题p:x2+2x﹣3>0,命题q:x>a,若¬p是¬q的充分不必要条件,则实数a的取值范围是[1,+∞).【解答】解:由x2+2x﹣3>0得x>1或x<﹣3,若¬p是¬q的充分不必要条件,则q是p的充分不必要条件,∵q:x>a,∴a≥1,即实数a的取值范围是[1,+∞),故答案为:[1,+∞).14.(5分)已知正项等比数列{an}的公比为2,若,则的最小值等于.【解答】解:正项等比数列{an}的公比为2,若,可得(a1•2m﹣1)(a1•2n﹣1)=4(2a1)2,即有m﹣1+n﹣1=4,则m+n=6,可得=(m+n)()=(2+++)≥(+2)=×=.当且仅当m=2n=4,都不是取得等号,则的最小值为.故答案为:.15.(5分)已知M是抛物线x2=4y上一点,F为其焦点,点A在圆C:(x+1)2+(y﹣6)2=1上,则|MA|+|MF|的最小值是 6 .【解答】解:抛物线x2=4y的焦点F(0,1),准线方程为y=﹣1,如图所示:利用抛物线的定义知:|MP|=|MF|,当A,M,P三点共线时,|MA|+|MF|的值最小.即CM⊥x轴,此时|MA|+|MF|=|AP|=|CP|﹣1=7﹣1=6,故答案为:6.16.(5分)如图,在直三棱柱A1B1C1﹣ABC中,,已知G与E分别是棱A1B1和CC1的中点,D与F分别是线段AC与AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围是.【解答】解:以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立如图所示的空间直角坐标系,则A(0,0,0),E(0,1,),G(,0,1),F(x,0,0),D(0,y,0),=(﹣,y,﹣1),=(x,﹣1,﹣),∵GD⊥EF,∴=﹣=0,即x+2y﹣1=0∴DF===,∵0<x<1,0<y<1,∴0<y<,当y=时,线段DF长度的最小值=,当y=0时,线段DF长度的最大值是1,而不包括端点,故y=0不能取1.∴线段DF的长度的取值范围是[,1).故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{an }是等比数列,首项a1=1,公比q>0,其前n项和为Sn,且S1+a1,S 3+a3,S2+a2成等差数列.(1)求数列{an}的通项公式;(2)若数列{bn }满足,求数列{bn}的前n项和Tn.【解答】解:(1)因为S1+a1,S3+a3,S2+a2成等差数列,所以2(S3+a3)=(S1+a1)+(S2+a2),所以(S3﹣S1)+(S3﹣S2)+2a3=a1+a2,所以4a3=a1,因为数列{an}是等比数列,所以,又q>0,所以,所以数列{an}的通项公式.(2)由(1)知,,,所以,=20+21+22+…+2n﹣1﹣n•2n,=.故.18.(12分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(1)证明:AC⊥D1E;(2)求DE与平面AD1E所成角的正弦值.【解答】(1)证明:连接BD,∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,又AC ⊂平面ABCD ,∴D 1D ⊥AC , 在长方形ABCD 中,AB=BC ,∴BD ⊥AC , 又BD ∩D 1D=D ,∴AC ⊥平面BB 1D 1D , 而D 1E ⊂平面BB 1D 1D ,∴AC ⊥D 1E ; (2)如图,以D 为坐标原点,以DA ,DC ,DD 1所在的直线为x ,y ,z 轴建立空间直角坐标系, 则A (1,0,0),D 1(0,0,2),E (1,1,1),B (1,1,0),,设平面AD 1E 的法向量为,则,令z=1,则,∴,所以DE 与平面AD 1E 所成角的正弦值为.19.(12分)已知数列{{a n }满足,.(1)求证:数列是等比数列;(2)若数列{b n }是单调递增数列,求实数λ的取值范围. 【解答】解:(1)因为数列{a n }满足,所以,即,又a1=1,所以,所以数列是以2为首项,公比为2的等比数列.(2)由(1)可得,所以,因为b1=﹣λ符合,所以.因为数列{bn }是单调递增数列,所以bn+1>bn,即(n﹣λ)•2n>(n﹣1﹣λ)•2n﹣1,化为λ<n+1,所以λ<2.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且平面PAD⊥平面ABCD,E为PD中点,AD=2.(Ⅰ)求证:平面AEC⊥平面PCD.(Ⅱ)若二面角A﹣PC﹣E的平面角大小θ满足cosθ=,求四棱锥P﹣ABCD的体积.【解答】(Ⅰ)证明:取AD中点为O,BC中点为F,由侧面PAD为正三角形,且平面PAD⊥平面ABCD,得PO⊥平面ABCD,故FO⊥PO,又FO⊥AD,则FO⊥平面PAD,∴FO⊥AE,又CD∥FO,则CD⊥AE,又E是PD中点,则AE⊥PD,由线面垂直的判定定理知AE⊥平面PCD,又AE⊂平面AEC,故平面AEC⊥平面PCD;(Ⅱ)解:如图所示,建立空间直角坐标系O﹣xyz,令AB=a,则P(0,0,),A(1,0,0),C(﹣1,a,0).由(Ⅰ)知=()为平面PCE的法向量,令=(1,y,z)为平面PAC的法向量,由于=(1,0,﹣),=(2,﹣a,0)均与垂直,∴,解得,则,由cos θ=||=,解得a=.故四棱锥P﹣ABCD的体积V=SABCD•PO=•2••=2.21.(12分)已知过抛物线E:y2=2px(p>0)的焦点F,斜率为的直线交抛物线于A(x1,y 1),B(x2,y2)(x1<x2)两点,且|AB|=6.(1)求该抛物线E的方程;(2)过点F任意作互相垂直的两条直线l1,l2,分别交曲线E于点C,D和M,N.设线段CD,MN的中点分别为P,Q,求证:直线PQ恒过一个定点.【解答】解:(1)抛物线的焦点,∴直线AB的方程为:联立方程组,消元得:,∴∴,解得p=±2.∵p>0,∴抛物线E的方程为:y2=4x.(2)证明:设C,D两点坐标分别为(x1,y1),(x2,y2),则点P的坐标为.由题意可设直线l1的方程为y=k(x﹣1)(k≠0).由,得k2x2﹣(2k2+4)x+k2=0.△=(2k2+4)﹣4k4=16k2+16>0因为直线l1与曲线E于C,D两点,所以.所以点P的坐标为.由题知,直线l2的斜率为,同理可得点Q的坐标为(1+2k2,﹣2k).当k≠±1时,有,此时直线PQ的斜率.所以,直线PQ的方程为,整理得yk2+(x﹣3)k﹣y=0.于是,直线PQ恒过定点(3,0);当k=±1时,直线PQ的方程为x=3,也过点(3,0).综上所述,直线PQ恒过定点(3,0).22.(12分)如图,在平面直角坐标系xoy中,已知圆C:(x+1)2+y2=16,点A(1,0),点B(a,0)(|a|>3),以B为圆心,|BA|的半径作圆,交圆C于点P,且的∠PBA的平分线次线段CP于点Q.(I)当a变化时,点Q始终在某圆锥曲线τ是运动,求曲线τ的方程;(II)已知直线l过点C,且与曲线τ交于M、N两点,记△OCM面积为S1,△OCN面积为S2,求的取值范围.【解答】解:(I)如图,∵BA=BP,BQ=BQ,∠PBQ=∠ABQ,∴△QAB≌△QPB,∴QA=QP,∵CP=CQ+QP=QC+QA,QC+QA=4,由椭圆的定义可知,Q点的轨迹是以C,A为焦点,2a=4的椭圆,故点Q的轨迹方程为(II)由题可知,设直线l:x=my﹣1,不妨设M(x1,y1),N(x2,y2)∵,,∵,∴(3m2+4)y2﹣6my﹣9=0,△=144m2+144>0,∴,∵,即∈(﹣,0],∈(﹣3,﹣),∴=﹣∈(,3).。
2018届高三上学期期末联考数学(理)试题有答案-精品
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
辽宁省大连市2016-2017学年高二上学期期末考试数学(理)试题
辽宁省大连市2016-2017学年高二上学期期末考试数学(理)试题2016-2017学年度第一学期期末考试试卷高二数学(理科)第I卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)21.设命题p:x R,x x1≥4,则p为()A.x R,x x11<4B.x R,x2x11<4C.x R,x x1≤4D.x R,x2x1<422.已知椭圆k5x2y2+4=1的一个焦点坐标为(2,0),则k的值为()A.1.B.3.C.9.D.8123.已知a,b,c均为实数,则“b=ac”是“a,b,c构成等比数列”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件24.抛物线y=x2的准线方程是()A.x=2.B.x=-2.C.y=1.D.y=-1/425.在等差数列an中,a1=1,a3+a4+a5+a6=20,则a8=()A.7.B.8.C.9.D.1026.已知ABC的两个顶点A(5,0),B(-5,0),周长为22,则顶点C的轨迹方程是()A.x2+y2=36B.x2/25+y2/9=1(y≠0)C.x2/9+y2/25=1(y≠0)D.x2/16+y2/9=1(y≠0)27.函数f(x)=lnx,则()A.x=e为函数f(x)的极大值点B.x=e为函数f(x)的极小值点C.x=1/e为函数f(x)的极大值点D.x=1/e为函数f(x)的极小值点28.如图所示,在正方体ABCD-A1B1C1D1中,已知M,N分别是BD和AD的中点,则角BNM的余弦值为(第8题图)29.已知数列an,a1=1,an+1=2an+2,则a10的值为()A。
5B。
11C。
12D。
5130.若函数f(x)=x3+x2+mx+1是R上的单调函数,则实数m的取值范围是()A。
(。
+∞)B。
(-∞。
)C。
[。
+∞)D。
(-∞,]11.已知$x,y\in(0,+\infty)$,且满足$\frac{x^2}{3}+\frac{y^2}{2}=1$,求$x+4y$的最小值。
2017-2018学年辽宁省大连市高二下学期期末考试理科数学试题(word版)
大连市2017~2018学年度第二学期期末考试试卷高二数学(理科)第I卷选择题(共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数A.2+iB.1-iC.1+iD.2-i2.设x为随机变量,x~B(n,),若随机变量x的数学期望E(x)=2,则P(X=2)=( )A.B.C. D3.某单位为了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作日用电量与当天平均气温,并制作了对照表:由表中数据得到线性回归方程,当气温为-4℃时,预测用电量为( )A. 68度B.52度C.12度D.28度4.六位同学排成一排,其中甲和乙两位同学相邻的排法有( )A. 60种B.120种C.240种D.480种5.设a,b,c都为正数,那么,用反证法证明“三个数至少有一个不小于2”时,做出与命题结论相矛盾的假设是( )A.这三个数都不大于2 B.这三个数都不小于2C.这三个数至少有一个不大于2 D.这三个数都小于26.将两枚骰子各掷一次,设事件A={两个点数都不相同),B={至少出现一个3点},则P(B|A)= ( )A.B.C.D.7.若展开式中各项系数之和为32,则展开式中含x3项的系数为( ) A. 5 B.5 C.405 D.4058.(x-1)3 =a o+a1x+a2x2+a3x3,则(a o+a2)2- (a1+a3)2的值为( )A.2 B. 2 C.8 D.89.已知某次数学考试的成绩服从正态分布N (102,42),则114分以上的成绩所占的百分比为( )A.0.3%B.0.23%C.0.13%D.1.3%10.将7个座位连成一排,安排4个人就座,恰有两个空位相邻的不同坐法总数为( )A. 240种B.480种C.720种D.960种11.某班数学课代表给全班同学出了一道证明题.甲说:“丙会证明.”乙说:“我不会证明.”丙说:“丁会证明.”丁说:“我不会证明.”以上四人中只有一人说了真话,只有一人会证明此题.根据以上条件,可以判定会证明此题的人是( )A.甲B.乙C.丙D.丁12.如图所示的五个区域中,中心区E域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择,要求每个区域只涂一种颜色且相邻区域所涂颜色不同,则不同的涂色方法种数为( )A.56 B.72 C.64 D.84第Ⅱ卷非选择题(共90分)二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.在产品质量检验时,常从产品中抽出一部分进行检查.现从98件正品和2件次品共100件产品中,任选3件检查,恰有一件次品的抽法有种.14.若复数z= (x2—2x-3)+(x+1)i为纯虚数,则实数x的值为15.观察以下各等式:,分析上述各式的共同特点,写出能反映一般规律的等式为.16.某一部件由四个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3或元件4正常工作,则部件正常工作.设四个电子元件的使用寿命(单位:小时)均服从正态分布N (1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为三、解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)求证:mn m n m n C C C 11+-=+18.(本小题满分12分)从1,2,3,4,5,6,7,8,9这九个数字中任意取出三个不同的数字. (I)求取出的这三个数字中最大数字是8的概率;(Ⅱ)记取出的这三个数字中奇数的个数为ξ,求随机变量ξ的分布列与数学期望. 19.(本小题满分12分)某中学将100名高二文科生分成水平相同的甲、乙两个“平行班”,每班50人,采用A , B 两种不同的学习方式分别在甲、乙两个班进行实验,为了解实验效果,期末考试后,对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.(I)根据频率分布直方图填写下面2×2列联表;(Ⅱ)判断能否在犯错误的概率不超过0. 05的前提下认为:“成绩优秀”与学习方式有关?20.(本小题满分12分)数列{a n}满足S n=2n-a n(n∈N*).(I)计算a1,a2,a3,并由此猜想通项公式a n;(Ⅱ)用数学归纳法证明(I)中的猜想.21.(本小题满分12分)甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为p,乙每次投篮命中的概率均为,甲投篮3次均未命中的概率为,甲、乙每次投篮是否命中相互之间没有影响.(I)若甲投篮3次,求至少命中2次的概率;(Ⅱ)若甲、乙各投篮2次,设两人命中的总次数为X,求X的分布列和数学期望,请考生在22、23二题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.(本小题满分10分)选修4-4:坐标系与参数方程直角坐标系中,以原点为极点,z轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2(sinθ+cosθ),直线Z的参数方程为.(t为参数).(I)写出圆C和直线l的普通方程;(Ⅱ)点P为圆C上动点,求点P到直线Z的距离的最小值.23.(本小题满分10分)选修4-5:不等式选讲已知关于x的不等式|x-3|+|x-2|<a.(I)当a=3时,解不等式;(Ⅱ)如果不等式的解集为空集,求实数a的取值范围.2017~2018学年第二学期期末考试答案高二数学(理)一.选择题1.C . 2.A 3.A. 4.C.5.D. 6.A 7.C 8.D 9. C 10.B 11.B 12.D 二.填空题 13.9506 . 14.315.()()223sin cos 30cos 304n n sinn n ︒+︒+︒+︒︒+︒=16.169 . 三.解答题17..(本小题满分12分)(法一))!1()!1(!)!(!!1+--+-=+-m n m n m n m n C C m n m n ----------(4分)=)!1(!!)1(!+-++-m n m mn m n n ---------(6分)=)!1(!)1(!+-+m n m n n ------------------(8分)=]!)1[(!)!1(m n m n -++------------------(10分)=mn C 1+ ------------------(12分)(法二)一般地,从(n+1)个不同元素中任取m 个元素的组合,可以分为两类:第一类取出的m 个元素中不含某个元素a 的组合,只需在除去元素a 的其余n 个元素中任取m 个,有mn C 个;-----------------(5分)第二类取出的m 个元素中含有某个元素a 的组合,只需在除去元素a 的其余n 个元素中任取(m-1)个后再取出元素a,有1-m nC 个-----------------(10分)根据分类加法计数原理可得mn m n m n C C C 11+-=+-----------------(12分)18.(本小题满分12分)27391.4C P C ==Ⅰ取出的这三个数字中最大数字是8的概率解(); ------------------(6分)(Ⅱ)随机变量ξ的分布列ξ1 2 3P121514 1021542---------------------------------------------------------------------(10分)ξ的数学期望53E ξ=. ------------------------------- (12分)19(本小题满分12分)解:(Ⅰ)由频率分布直方图可得,甲班成绩优秀、成绩不优秀的人数分别为12,38,乙班成绩优秀、成绩不优秀的人数分别为4,46. 甲班(A 方式) 乙班(B 方式) 总计 成绩优秀 12 4 16 成绩不优秀 38 46 84 总计5050100---------(6分)(Ⅱ)能判定,根据列联表中数据,计算()221001246438 4.76216845050K ⨯⨯-⨯=≈⨯⨯⨯---(10分)由于4.762>3.841,所以在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关.---------(12分) 20.(本小题满分12分)解:(1)123371,,.24a a a ===,由此猜想1212n n n a --=; ------------------------------- (5分)(2)证明:当1n =时,11a =,结论成立; ------------------------------- (6分)假设n k =(1k ≥,且k N +∈),结论成立,即1212k k k a --= -------------------- (7分)当+1n k =(1k ≥,且k N +∈)时,()11112122k k k k k k k a S S k a k a a a ++++=-=+--+=+-,即122k k a a +=+,所以111(+1)12122212222k k k k k k a a +-+--++-===,这就是说,当1n k =+时,结论成立,------------------------------- (11分)根据(1)和(2)可知对任意正整数结论都成立,即1212n n n a --=()n N +∈-------------------------------(12分)21.(本小题满分12分)解:(Ⅰ)由题意,()31127p -=,解得23p =.----- (2分) 设“甲投篮3次,至少2次命中”为事件A ,则()22322133P A C ⎛⎫⎛⎫=⨯⨯- ⎪ ⎪⎝⎭⎝⎭333220327C ⎛⎫+⨯=⎪⎝⎭.------------------ (6分) (Ⅱ)由题意X 的取值为0,1,2,3,4.()22211013236P X ⎛⎫⎛⎫==-⨯= ⎪ ⎪⎝⎭⎝⎭; ()1112221133P X C ⎡⎤⎛⎫⎛⎫==⨯⨯-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦220212123C ⎡⎤⎛⎫⎛⎫⨯⨯+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦2121126C ⎡⎤⎛⎫⨯⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;()2211122122213233P X C ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯⨯-⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦221212123C ⎡⎤⎛⎫⎛⎫⨯⨯+-⨯⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦222113236C ⎡⎤⎛⎫⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;()221221332P X C ⎡⎤⎛⎫⎛⎫==⨯⨯⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦11212221113323C ⎡⎤⎛⎫⎛⎫⎛⎫+⨯⨯-⨯=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()222114329P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭.故X 的分布列为---------------- (10分)()111301236636E X =⨯+⨯+⨯11734393+⨯+⨯=.---------------- (12分) (22)(本小题满分10分)请考生在第(22)、(23)二题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本题满分10分)选修4-4:坐标系与参数方程解:(Ⅰ)由已知ρ=2(sin θ+cos θ)得 ρ2=2(ρsin θ+ρcos θ),所以x 2+y 2=2y +2x ,即圆C 的普通方程为:(x -1)2+(y -1)2=2.由得y =-1+(x -2),所以直线l 的普通方程为x -y -3=0.---------5分(Ⅱ)由圆的几何性质知点P 到直线l 的距离的最小值为圆心C 到直线l 的距离减去圆的半径, 令圆心C 到直线l 的距离为d ,则d ==>,所以点p 到直线l 的距离的最小值为-=22.-----------------10分 23. (本题满分10分)选修4-5:不等式选讲 解:(Ⅰ)原不等式变为233x x -+-<.当2x <时,原不等式化为523x -<,解得1x >,∴12x << 当23x ≤≤时,原不等式化为13<,∴23x ≤≤.当3x >时,原不等式化为253x -<,解得4x <,∴34x <<. 综上,原不等式解集为}{|14 x x <<.--------------------5分(Ⅱ)解法一:作出23y x x =-+-与y a =的图象-----------------7分 若使23x x a -+-<解集为空集,只须23y x x =-+-的图象在y a =的图象的上方,或y a =与1y =重合,∴1a ≤,所以a 的范围为(],1-∞.-----------------10分解法二:23y x x =-+-=()()()253123522x x x x x -≥⎧⎪≤≤⎨⎪-<⎩-----------------7分当3x ≥时,1y ≥, 当23x ≤<时,1y =, 当2x <时,1y >,综上1y ≥,原问题等价于()min23a x x ≤-+-,∴1a ≤.-----------------10分解法三:∵23231x x x x -+-≥--+=-----------------7分 ,当且仅当()()230x x --≤时,上式取等号,∴1a ≤.-----------------10分。
2017-2018学年大连五校高二上期末数学试卷(文科)含答案解析
2017-2018学年辽宁省大连五校高二(上)期末数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)对于常数m、n,“mn>0”是“方程mx2﹣ny2=1的曲线是双曲线的”()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)若a<b<0,则下列不等式中错误的是()A.B.C.|a|>|b|D.a2>b23.(5分)下列函数中,最小值为4的是()A.y=log3x+4log x3 B.y=e x+4e﹣xC.y=sinx+(0<x<π)D.y=x+4.(5分)已知实数x,y满足,则目标函数z=x﹣2y的最小值是()A.﹣9 B.15 C.0 D.﹣105.(5分)下列命题中,说法错误的是()A.“若p,则q”的否命题是“若¬p,则¬q”B.“p∧q是真命题”是“p∨q是真命题”的充分不必要条件C.“∀x>2,x2﹣2x>0”的否定是“∃x≤2,x2﹣2x≤0”D.“若b=0,则f(x)=ax2+bx+c是偶函数”的逆命题是真命题6.(5分)设a>0,b>0,若是3a与32b的等比中项,则的最小值为()A.5 B.6 C.7 D.87.(5分)已知F1,F2分别是椭圆+=1的左、右焦点,P是以F1F为直径的圆与该椭圆的一个交点,且∠PF1F2=2∠PF2F1,则这个椭圆的离心率是()A.﹣1 B.2﹣C.D.8.(5分)设S n为等比数列{a n}的前n项和,a2﹣8a5=0,则=()A.B.C.2 D.179.(5分)等差数列{a n}中,S n是其前n项和,,则S11=()A.﹣11 B.11 C.10 D.﹣1010.(5分)设F1,F2分别是双曲线的左右焦点,点M(a,b).若∠MF1F2=30°,则双曲线C的离心率为()A.B.C.2 D.11.(5分)设{a n}为等差数列,若,且它的前n项和S n有最小值,那么当S n取得最小正值时的n值为()A.18 B.19 C.20 D.2112.(5分)已知定义在R上的奇函数f(x)的导函数为f'(x),当x<0时,f(x)满足,2f(x)+xf'(x)<xf(x),则f(x)在R上的零点个数为()A.5 B.3 C.1或3 D.1二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)函数的递增区间为.14.(5分)在数列{a n}中,a2=,a3=,且数列{na n+1}是等比数列,则a n=.15.(5分)已知函数,若函数f(x)在区间[2,4]上是单调增函数,则实数a的取值范围是.16.(5分)抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)若数列{a n}满足.(1)求证:数列{a n﹣1}是等比数列,并求数列{a n}的通项公式;(2)设b n=log2(1﹣a n),若数列的前n项和为T n,求证:T n <1.18.(12分)已知函数f(x)=ax2﹣(a+1)x+1(a≠0).(1)若f(x)≤2在R上恒成立,求实数a的取值范围;(2)解关于x的不等式f(x)<0.19.(12分)已知过点A(﹣4,0)的动直线l与抛物线G:x2=2py(p>0)相交于B、C两点,当直线的斜率是时,.(1)求抛物线G的方程;(2)设线段BC的中垂线在y轴上的截距为b,求b的取值范围.20.(12分)已知数列{a n},{b n},S n为数列{a n}的前n项和,a2=4b1,S n=2a n﹣2,.(1)求数列{a n}的通项公式;(2)证明为等差数列.(3)若数列{c n}的通项公式为,令p n=c2n﹣1+c2n.T n为{p n}的前n项的和,求T n.21.(12分)已知椭圆的左顶点为A,右焦点为F,过点F的直线交椭圆于B,C两点.(Ⅰ)求该椭圆的离心率;(Ⅱ)设直线AB和AC分别与直线x=4交于点M,N,问:x轴上是否存在定点P使得MP⊥NP?若存在,求出点P的坐标;若不存在,说明理由.22.(12分)已知函数f(x)=blnx,g(x)=ax2﹣x(a∈R)(1)若曲线f(x)与g(x)在公共点A(1,0)处有相同的切线,求实数a,b 的值;(2)若a>0,b=1,且曲线f(x)与g(x)总存在公共的切线,求正数a的最小值.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)对于常数m、n,“mn>0”是“方程mx2﹣ny2=1的曲线是双曲线的”()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:若方程mx2﹣ny2=1的曲线是双曲线,则mn>0,即“mn>0”是“方程mx2﹣ny2=1的曲线是双曲线”的充要条件,故选:C2.(5分)若a<b<0,则下列不等式中错误的是()A.B.C.|a|>|b|D.a2>b2【解答】解:∵a<b<0,∴>,|a|>|b|,a2>ab>b2.因此A,C,D正确.对于B:a<b<0时,可得<,因此B不正确.故选:B.3.(5分)下列函数中,最小值为4的是()A.y=log3x+4log x3 B.y=e x+4e﹣xC.y=sinx+(0<x<π)D.y=x+【解答】解:A.0<x<1时,y<0,不正确。
2017-2018学年高二年级数学期末试卷(理数)含答案
2.若 x 2m2 3 是 1 x 4 的必要不充分条件,则实数 m 的取值范围是( )
10.已知函数 f x 1 x3 1 mx2 4x 3 在区间 1,2上是增函数,则实数 m 的取值范围是(
32
A . 3,3
B . ,3 3, C . ,1 1,
,则满足
11.已知函数
f
x
3|x1| , x2 2x
x 1,
0, x
0
若关于
x
的方程 f
x2
a
1f
x
a
0有
7
个不
等实根,则实数 a 的取值范围是(
)
A . 2,1
B .2,4
C . 2,1
D . ,4
12.
已知函数
A . loga c logb c B . logc a logc b C . a c bc
D . ca cb
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是 9.已知函数 f x 2 xm 1 为偶函数,记 a f log0.5 3 , b f log2 5 , c f 2m,则
由题设知
,
则
解得 的横坐标分别是 则 有 又
,又 于是
, ,
,
,即 l 与直线 平行, 一定相交,分别联立方
设
是平面
的法向量,则
,即
。
对任意
,要使
与
的面积之比是常数,只需 t 满足
可取
,故,所以 与平面
20. (1)依题意可得
所成角的正弦值为 ---------12 分 ,
辽宁省大连市2017-2018学年高二上学期期末数学试卷(文科)Word版含解析
辽宁省大连市2017-2018学年高二上学期期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.椭圆的左右焦点分别为F 1,F 2,且点M 在椭圆上,|MF 1|=2,则|MF 2|为( ) A .3B .7C .8D .42.与曲线=1共焦点,而与曲线=1共渐近线的双曲线方程为( )A . =1B . =1C . =1D . =13.下列抽样中,最适宜用系统抽样法的是( )A .某市的4个区共有2000名学生,且4个区的学生人数之比为3:2:8:2,从中抽取200人做样本B .从某厂生产的2000个电子元件中随机抽取5个做样本C .从某厂生产的2000个电子元件中随机抽取200个做样本D .从某厂生产的20个电子元件中随机抽取5个做样本 4.抛物线y=ax 2的准线方程是y=2,则a 的值为( )A .B .C .8D .﹣85.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )A.B.C.D.6.阅读如图的算法程序,此程序的功能是()A.计算3×10的值B.计算310的值C.计算39的值D.计算1×2×3×…×10的值7.某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作量由表中数据得到线性回归方程=)A.68度B.52度C.12度D.28度8.如图,样本数为9的四组数据,它们的平均数都是5,频率条形图如下,则标准差最大的一组是()A.第一组B.第二组C.第三组D.第四组9.执行如图所示的程序框图,如果输入的t=0.01,则输出的n=( )A .5B .6C .7D .1210.已知抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,过点A 作准线l 的垂线,垂足为E ,当A 点的坐标为(3,y 1)时,△AEF 为正三角形,则p 为( )A .2B .4C .6D .811.某单位抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x ,y ,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,则该代表中奖的概率为( )A .B .C .D .12.已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F 1,F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 2﹣e 1的取值范围是( )A .(,+∞)B .(,+∞)C .(0,)D .(,)二、填空题(每题5分,共20分,把答案填在答题纸的横线上)13.已知菱形ABCD 的边长为4,∠ABC=120°,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率______.14.某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量的中位数为______,平均数为______.15.下列说法正确的是______(填上所有正确说法的序号)①残差平方和越大的模型,拟合效果越好;②用相关指数R 2来刻画回归效果时,R 2越小,说明模型的拟合效果越好;③在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高.④一个样本的方差,则这组数据等总和等于60;⑤数据a 1,a 2,a 3,…,a n 的方差为σ2,则数据2a 1+1,2a 2+1,…2a n +1的方差为4σ2.16.设F 1、F 2分别为双曲线C :=1(a ,b >0)的左右焦点,A 为双曲线的左顶点,以F 1F 2为直径的圆交双曲线某条渐近线于M 、N 两点,且满足∠MAN=120°,则该双曲线的离心率为______.三、解答题:17.直线l 过点P (﹣2,0)且倾斜角为1500,以直角坐标系的原点为极点,x 轴正方向为极轴建立极坐标系,曲线C 的极坐标方程为ρ2﹣2ρcos θ=15. (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)直线l 交曲线C 于A ,B 两点,求|PA|+|PB|的值. 18.已知圆的参数方程为(θ∈[0,2π],θ为参数),将圆上所有点的横坐标伸长到原来的倍,纵坐标不变得到曲线C 1;以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为.(Ⅰ)求曲线C 1的普通方程与曲线C 2的直角坐标方程(Ⅱ)设P 为曲线C 1上的动点,求点 P 与曲线C 2上点的距离的最小值,并求此时P 点的坐标. 19.微信是现代生活进行信息交流的重要工具,距据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余每天使用微信在一小时以上,若将员工年龄分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,使用微信的人中75%是青年人,若规定:每天使用微信时间在一小时以上为经常使用微信,经常使用微信的员工中是青年人.(Ⅰ)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出2×2列联表.(Ⅲ)采用分层抽样的方法从“经常使用微信”中抽取6人,从这6人中任选2人,求事件A“选出的2人均是青年人”的概率.K 2=.20.极坐标系与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知曲线C 1的极坐标方程为ρ=2sin (θ+),曲线C 2的参数方程为,t 为参数,0≤α<π;射线θ=φ,θ=φ+,θ=φ﹣,θ=φ+与曲线C 1分别交异于极点O的四点A ,B ,C ,D .(1)若曲线C 1关于曲线C 2对称,求α的值,并把曲线C 1和C 2化成直角坐标方程; (2)求|OA|•|OC|+|OB|•|OD|的值.21.点F 1(0,﹣),F 2(0,),动点M 到点F 2的距离是4,线段MF 1的中垂线交MF 2于点P . (1)当点M 变化时,求动点P 的轨迹G 的方程;(2)若斜率为的动直线l 与轨迹G 相交于A 、B 两点,Q (1,)为定点,求△QAB 面积的最大值.22.已知椭圆C : =1的离心率为,直线y=x+1被以椭圆的短轴为直径的圆截得弦长为,抛物线D 以原点为顶点,椭圆的右焦点为焦点. (Ⅰ)求椭圆C 与抛物线D 的方程;(Ⅱ)已知A ,B 是椭圆C 上两个不同点,且OA ⊥OB ,判定原点O 到直线AB 的距离是否为定值,若为定值求出定值,否则,说明理由.辽宁省大连市2017-2018学年高二上学期期末试卷文科数学参考答案与试题解析一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.椭圆的左右焦点分别为F 1,F 2,且点M 在椭圆上,|MF 1|=2,则|MF 2|为( )A .3B .7C .8D .4 【考点】椭圆的简单性质.【分析】利用椭圆的标准方程及其定义即可得出.【解答】解:由椭圆,可得a=5.∵点M在椭圆上,∴|MF1|+|MF2|=2a=10,∴|MF2|=10﹣|MF1|=8.故选:C.2.与曲线=1共焦点,而与曲线=1共渐近线的双曲线方程为()A. =1 B. =1 C. =1 D. =1【考点】双曲线的标准方程.【分析】根据椭圆方程先求出焦点坐标,再由渐近线相同设出双曲线方程为,根据c值列出方程求出λ的值即可.【解答】解:由题意得,曲线=1是焦点在y轴上的椭圆,且c===5,所以双曲线焦点的坐标是(0、5)、(0,﹣5),因为双曲线与曲线=1共渐近线,所以设双曲线方程为,即,则﹣64λ﹣36λ=25,解得λ=,所以双曲线方程为,故选:A.3.下列抽样中,最适宜用系统抽样法的是()A.某市的4个区共有2000名学生,且4个区的学生人数之比为3:2:8:2,从中抽取200人做样本B.从某厂生产的2000个电子元件中随机抽取5个做样本C.从某厂生产的2000个电子元件中随机抽取200个做样本D.从某厂生产的20个电子元件中随机抽取5个做样本【考点】收集数据的方法.【分析】根据系统抽样的特点,样本是在总体个数比较多的情况下,遵循一定的规则,具有相同的间隔,得到的一系列样本.【解答】解:系统抽样的特点是从比较多比较均衡的个体中抽取一定的样本,并且抽取的样本具有一定的规律性,在所给的四个抽样中,从某厂生产的2000个电子元件中随机抽取5个做样本或从某厂生产的20个电子元件中随机抽取5个做样本,它们都是一个简单随机抽样;对于某市的4个区共有2000名学生,且4个区的学生人数之比为3:2:8:2,从中抽取200人做样本,由于个体是由差别明显的几部分组成,故采用分层抽样,只有在从某厂生产的2000个电子元件中随机抽取200个做样本,这是一个最适宜用系统抽样法的.故选C.4.抛物线y=ax2的准线方程是y=2,则a的值为()A.B.C.8 D.﹣8【考点】抛物线的定义.【分析】首先把抛物线方程转化为标准方程x2=my的形式,再根据其准线方程为y=﹣即可求之.【解答】解:抛物线y=ax2的标准方程是x2=y,则其准线方程为y=﹣=2,所以a=﹣.故选B.5.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()A.B.C.D.【考点】频率分布直方图;茎叶图.【分析】根据题意,由频率与频数的关系,计算可得各组的频率,进而可以做出频率分布表,结合分布表,进而可以做出频率分布直方图.故选:A.6.阅读如图的算法程序,此程序的功能是()A.计算3×10的值B.计算310的值C.计算39的值D.计算1×2×3×…×10的值【考点】伪代码.【分析】逐步分析框图中的各框语句的功能,可知程序的功能.【解答】解:逐步分析框图中的各框语句的功能,变量从1到10,共10个数相乘,输出其结果,即程序的功能是计算1×2×3×…×10的值.故选D.7.某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作量由表中数据得到线性回归方程=)A.68度B.52度C.12度D.28度【考点】线性回归方程.【分析】根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a的值,可得线性回归方程,根据所给的x的值,代入线性回归方程,预报要销售的件数.【解答】解:由表格得==10,=40.∴(,)为:(10,40),又(,)在回归方程=bx+a中的b=﹣2,∴40=10×(﹣2)+a,解得:a=60,∴=﹣2x+60,当x=﹣4时, =﹣2×(﹣4)+60=68.故选:A.8.如图,样本数为9的四组数据,它们的平均数都是5,频率条形图如下,则标准差最大的一组是()A.第一组B.第二组C.第三组D.第四组【考点】极差、方差与标准差.【分析】由频率分布条形图可知,A的9个数据都是5,方差为0,B和C数据分布比较均匀,前者的方差较小,后者的方差较大,D数据主要分布在2和8处,距离平均数是最远的一组,得到最后一个频率分步直方图对应的数据的方差最大,即标准差最大.【解答】解:由所给的几个选项观察数据的波动情况,得到方差之间的大小关系,A的9个数据都是5,方差为0,B和C数据分布比较均匀,前者的方差较小,后者的方差较大,D数据主要分布在2和8处,距离平均数是最远的一组,∴最后一个频率分步直方图对应的数据的方差最大,则标准差最大,故选:D.9.执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.12【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n 值为7, 故选:C10.已知抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,过点A 作准线l 的垂线,垂足为E ,当A 点的坐标为(3,y 1)时,△AEF 为正三角形,则p 为( )A .2B .4C .6D .8 【考点】抛物线的简单性质.【分析】过F 作AE 的垂线,垂足为H ,则H 为AE 的中点,利用A 点坐标为 (3,y 1),可求p . 【解答】解:如图所示,过F 作AE 的垂线,垂足为H ,则H 为AE 的中点, 因为A 点坐标为 (3,y 1),所以AE=3+,EH=p ,所以2p=3+, 所以p=2. 故选:A .11.某单位抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x ,y ,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,则该代表中奖的概率为( )A .B .C .D . 【考点】程序框图.【分析】确定满足0≤x ≤1,0≤y ≤1点的区域,由条件得到的区域为图中的阴影部分,计算面积,可求该代表中奖的概率.【解答】解:由已知0≤x ≤1,0≤y ≤1,点(x ,y )在如图所示的正方形OABC 内,由条件得到的区域为图中的阴影部分由2x ﹣y ﹣1=0,令y=0可得x=,令y=1可得x=1∴在x ,y ∈[0,1]时满足2x ﹣y ﹣1≤0的区域的面积为S 阴=×(1+)×1=,∴该代表中奖的概率为: =.故选:C .12.已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F 1,F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 2﹣e 1的取值范围是( )A .(,+∞)B .(,+∞)C .(0,)D .(,)【考点】椭圆的简单性质.【分析】设椭圆与双曲线的半焦距为c ,PF 1=r 1,PF 2=r 2.利用三角形中边之间的关系得出c 的取值范围,再根据椭圆或双曲线的性质求出各自的离心率,最后依据c 的范围即可求出e 2﹣e 1的取值范围.【解答】解:设椭圆与双曲线的半焦距为c ,|PF 1|=r 1,|PF 2|=r 2. 由题意知r 1=10,r 2=2c ,且r 1>r 2,2r 2>r 1, ∴2c <10,2c+2c >10, ∴2.5<c <5,∴e 1==;e 2==.∴e 2﹣e 1=﹣==>,故选:A .二、填空题(每题5分,共20分,把答案填在答题纸的横线上)13.已知菱形ABCD 的边长为4,∠ABC=120°,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率.【考点】几何概型.【分析】以菱形ABCD 的各个顶点为圆心、半径为1作圆如图所示,可得当该点位于图中阴影部分区域时,它到四个顶点的距离均大于1.因此算出菱形ABCD 的面积和阴影部分区域的面积,利用几何概型计算公式加以计算,即可得到所求的概率.【解答】解:分别以菱形ABCD 的各个顶点为圆心,作半径为1的圆,如图所示. 在菱形ABCD 内任取一点P ,则点P 位于四个圆的外部时, 满足点P 到四个顶点的距离均大于1,即图中的阴影部分区域∵S 菱形ABCD =AB•BCsin120°=4×4×=8,∴S 阴影=S 菱形ABCD ﹣S 空白=8﹣π×12=8﹣π.因此,该点到四个顶点的距离大于1的概率P==,故答案为:.14.某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量的中位数为 155 ,平均数为 156.8 .【考点】众数、中位数、平均数.【分析】根据频率分布直方图中的数据,求出该组数据的中位数与平均数即可. 【解答】解:根据频率分布直方图,得; (0.005+0.015)×20=0.4<0.5, 0.4+0.020×20=0.8>0.5, ∴中位数落在[150,170), 设中位数为x ,则0.4+(x ﹣150)×0.020=0.5, 解得x=155;该组数据的平均数为=0.005×20×120+0.015×20×140+0.020×20×160+0.005×20×180+0.003×20×200+0.002×20×220=156.8. 故答案为:155、156.8.15.下列说法正确的是 ③④⑤ (填上所有正确说法的序号)①残差平方和越大的模型,拟合效果越好;②用相关指数R 2来刻画回归效果时,R 2越小,说明模型的拟合效果越好;③在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高.④一个样本的方差,则这组数据等总和等于60;⑤数据a 1,a 2,a 3,…,a n 的方差为σ2,则数据2a 1+1,2a 2+1,…2a n +1的方差为4σ2.【考点】命题的真假判断与应用.【分析】①②③④直接利用定义可直接判断;⑤设出数据的平均数,根据表达式得出数据2a 1+1,2a 2+1,…2a n +1的平均数为2m+1,分别计算方差可得.【解答】解:①残差平方和越小的模型,拟合效果越好,故错误;②用相关指数R 2来刻画回归效果时,R 2越接近1,说明模型的拟合效果越好,故错误;③在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高,正确.④一个样本的方差,可知平均数为3,故这组数据等总和等于60,故正确;⑤数据a 1,a 2,a 3,…,a n 的方差为σ2, 设平均数为m ,偏差为a n ﹣m则数据2a 1+1,2a 2+1,…2a n +1的平均数为2m+1,偏差为2a n +1﹣2m ﹣1=2(a n ﹣m ), 故方差为4σ2.故正确. 故答案为③④⑤16.设F 1、F 2分别为双曲线C :=1(a ,b >0)的左右焦点,A 为双曲线的左顶点,以F 1F 2为直径的圆交双曲线某条渐近线于M 、N 两点,且满足∠MAN=120°,则该双曲线的离心率为.【考点】双曲线的简单性质.【分析】先求出M ,N 的坐标,再利用余弦定理,求出a ,c 之间的关系,即可得出双曲线的离心率.【解答】解:设以F 1F 2为直径的圆与渐近线y=x 相交与点M 的坐标为(x 0,y 0)(x 0>0), 根据对称性得N 点的坐标为(﹣x 0,﹣y 0),∴;解得M (a ,b ),N (﹣a ,﹣b ); 又∵A (﹣a ,0),且∠MAN=120°,∴由余弦定理得4c 2=(a+a )2+b 2+b 2﹣2•bcos 120°,化简得7a 2=3c 2,∴e==.故答案为:.三、解答题:17.直线l 过点P (﹣2,0)且倾斜角为1500,以直角坐标系的原点为极点,x 轴正方向为极轴建立极坐标系,曲线C 的极坐标方程为ρ2﹣2ρcos θ=15. (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)直线l 交曲线C 于A ,B 两点,求|PA|+|PB|的值. 【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)直线l 过点P (﹣2,0)且倾斜角为150°,利用斜率计算公式及其同角三角函数基本关系式即可得出可得l 的参数方程.由曲线C 的极坐标方程为ρ2﹣2ρcos θ=15,利用即可得出直角坐标方程.(2)把l 的参数方程代入C 得:,设A ,B 对应参数t 1,t 2,利用|PA|+|PB|=|t 1|+|t 2|=|t 1﹣t 2|=,即可得出.【解答】解:(1)直线l 过点P (﹣2,0)且倾斜角为150°,即斜率为tan150°==,可得l 的参数方程为:为参数).∵曲线C 的极坐标方程为ρ2﹣2ρcos θ=15, ∴直角坐标方程C 为:x 2+y 2﹣2x ﹣15=0.(2)把l 的参数方程代入C 得:,设A ,B 对应参数t 1,t 2,则,∴|PA|+|PB|=|t 1|+|t 2|=|t 1﹣t 2|===.18.已知圆的参数方程为(θ∈[0,2π],θ为参数),将圆上所有点的横坐标伸长到原来的倍,纵坐标不变得到曲线C 1;以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为.(Ⅰ)求曲线C 1的普通方程与曲线C 2的直角坐标方程(Ⅱ)设P 为曲线C 1上的动点,求点 P 与曲线C 2上点的距离的最小值,并求此时P 点的坐标. 【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)由已知可得曲线C 1的参数方程为,消去参数θ可得,由三角函数公式可化极坐标方程为ρcos θ+ρsin θ=8,可得x+y=8;(Ⅱ)由题意可得距离d==,由三角函数的最值可得.【解答】解:(Ⅰ)由已知可得曲线C 1的参数方程为,消去参数θ可得+y2=1,的极坐标方程为,∵曲线C2∴ρcosθ+ρsinθ=8,即x+y=8;上的动点,(Ⅱ)设P(cosθ,sinθ)为曲线C1:x+y=8上点的距离d==,则点P与曲线C2当sin(θ+)=1即θ=时,d取最小值3,此时P(,)19.微信是现代生活进行信息交流的重要工具,距据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余每天使用微信在一小时以上,若将员工年龄分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,使用微信的人中75%是青年人,若规定:每天使用微信时间在一小时以上为经常使用微信,经常使用微信的员工中是青年人.(Ⅰ)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出2×2列联表.(Ⅲ)采用分层抽样的方法从“经常使用微信”中抽取6人,从这6人中任选2人,求事件A“选出的2人均是青年人”的概率.K2=.【考点】独立性检验的应用;分层抽样方法.【分析】(Ⅰ)由已知可得2×2列联表;(Ⅱ)将列联表中数据代入公式可得:K2=≈13.333,与临界值比较,即可得出结论;(III)利用列举法确定基本事件,即可求出事件A“选出的2人均是青年人”的概率.【解答】解:(Ⅰ)由已知可得,该公司员工中使用微信的共:200×0.9=180人经常使用微信的有180﹣60=120人,其中青年人:120×=80人所以可列下面2×2列联表:(Ⅱ)将列联表中数据代入公式可得:K 2=≈13.333>10.828 …所以有99.9%的把握认为“经常使用微信与年龄有关”.…(Ⅲ)从“经常使用微信”的人中抽取6人中,青年人有=4人,中年人有2人设4名青年人编号分别1,2,3,4,2名中年人编号分别为5,6, 则“从这6人中任选2人”的基本事件为: (1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6)共15个 … 其中事件A“选出的2人均是青年人”的基本事件为:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6个 …故P (A )=. …20.极坐标系与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知曲线C 1的极坐标方程为ρ=2sin (θ+),曲线C 2的参数方程为,t 为参数,0≤α<π;射线θ=φ,θ=φ+,θ=φ﹣,θ=φ+与曲线C 1分别交异于极点O的四点A ,B ,C ,D .(1)若曲线C 1关于曲线C 2对称,求α的值,并把曲线C 1和C 2化成直角坐标方程; (2)求|OA|•|OC|+|OB|•|OD|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)利用即可把曲线C 1的极坐标方程化为直角坐标方程,由于曲线C 1关于曲线C 2对称,可得圆心在C 2上,即可解出.(2)由已知可得|OA|=2sin (φ+),|OB|=2sin (φ+),|OC|=2sin φ,|OD|=2sin(φ+),化简整理即可得出.【解答】解:(1)曲线C 1的极坐标方程为ρ=2sin (θ+),展开为(ρsin θ+ρcos θ),可得直角坐标方程:x 2+y 2=2x+2y ,化为(x ﹣1)2+(y ﹣1)2=2,∵曲线C 1关于曲线C 2对称,∴圆心(1,1)在C 2上,∴,化为tan α=﹣1,解得α=.∴C 2:为y ﹣3=﹣1(x+1),化为x+y ﹣2=0.(2)|OA|=2sin (φ+),|OB|=2sin (φ+),|OC|=2sin φ,|OD|=2sin (φ+),∴|OA|•|OC|+|OB|•|OD|=8sin φsin (φ+)+8cos φsin (φ+)=8sin φsin (φ+)+8cos φcos (φ+)=8cos=4.21.点F 1(0,﹣),F 2(0,),动点M 到点F 2的距离是4,线段MF 1的中垂线交MF 2于点P . (1)当点M 变化时,求动点P 的轨迹G 的方程;(2)若斜率为的动直线l 与轨迹G 相交于A 、B 两点,Q (1,)为定点,求△QAB 面积的最大值.【考点】直线与圆锥曲线的综合问题;轨迹方程.【分析】(1)连接PF 1,推导出|PF 1|+|PF 2|=4>|F 1F 2|=2,由此利用椭圆的定义能求出动点P 的轨迹G 的方程.(2)设直线l 的方程为y=,代入椭圆方程,得4x 2+2+m 2﹣4=0,由此利用根的判别式、韦达定理、点到直线的距离公式,结合已知条件能求出△QAB 面积的最大值. 【解答】解:(1)如图,连接PF 1, ∵|MF 2|=4,∴|PM|+|PF 2|=4,又∵|PM|=|PF 1|,∴|PF 1|+|PF 2|=4>|F 1F 2|=2,由椭圆的定义可知动点P 的轨迹G 是以F 1(0,﹣),F 2(0,)为焦点、以2为长轴的椭圆,∴设椭圆方程为=1,(a >b >0),则,∴b=,∴动点P 的轨迹G 的方程为.(2)设直线l 的方程为y=,代入椭圆方程,得()2+2x 2=4,即4x 2+2+m 2﹣4=0,由△=8m 2﹣16(m 2﹣4)=8(8﹣m 2)>0,得m 2<8.又点Q 不在直线l 上,则m ≠0.0<m 2<8.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=﹣,.∴|AB|=|x 1﹣x 2=•=•=.可得,点Q 到直线l 的距离d=,则S △QAB =|AB|d=×=.∵≤=4,则S,当且仅当m 2=4,即m=±2时取等号.故△QAB 面积的最大值为.22.已知椭圆C : =1的离心率为,直线y=x+1被以椭圆的短轴为直径的圆截得弦长为,抛物线D 以原点为顶点,椭圆的右焦点为焦点.(Ⅰ)求椭圆C 与抛物线D 的方程;(Ⅱ)已知A ,B 是椭圆C 上两个不同点,且OA ⊥OB ,判定原点O 到直线AB 的距离是否为定值,若为定值求出定值,否则,说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质;抛物线的标准方程.【分析】(Ⅰ)利用离心率a=2c ,椭圆短轴为直径的圆的圆心到直线y=x+1距离d=,求解解得a ,c ,求出p ,即可得到椭圆C 的方程,抛物线D 方程.(Ⅱ)设A (x 1,y 1),B (x 2,y 2),当直线AB 与x 轴垂直时,设AB :x=m ,则,利用OA ⊥OB ,求出m ,推出原点到直线AB 的距离.当直线AB 斜率存在时,设直线AB 的方程为y=kx+m 代入3x 2+4y 2﹣12=0,利用韦达定理以及判别式大于0,利用向量数量积为0,求解即可.【解答】解:(Ⅰ)由题知=,即a=2c ,椭圆短轴为直径的圆的圆心到直线y=x+1距离d=,∴=,解得b=,∴a 2=,解得a 2=4,∴c=1,∴=1,∴p=2,∴椭圆C 的方程为,抛物线D 方程为y 2=4x ; 5分(Ⅱ)设A (x 1,y 1),B (x 2,y 2),当直线AB 与x 轴垂直时,设AB :x=m ,则,∵OA ⊥OB ,∴=x 1x 2+y 1y 2==0,解得m=,∴原点到直线AB 的距离为. 7分. 当直线AB 斜率存在时,设直线AB 的方程为y=kx+m 代入3x 2+4y 2﹣12=0整理得,(3+4k 2)x 2+8kmx+4m 2﹣12=0,则△=(8km )2﹣4(3+4k 2)(4m 2﹣12)>0,即4k 2﹣m 2+3>0,x 1+x 2=,x 1x 2=,∴y 1y 2=(kx 1+m )(kx 2+m )==,∵OA ⊥OB ,∴=x 1x 2+y 1y 2=+=0,即7m 2=12(k 2+1),且满足△>0,10分∴原点到直线AB 的距离为=,11分故原点O 到直线AB 的距离为定值,定值为. 12分.。
2017-2018学年辽宁省大连市高二上学期期末数学文试题(解析版)
大连市20172018学年度第一学期期末考试试卷高二数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 命题“”的否定是()A. B.C. D.【答案】D【解析】全称命题的否定是特称命题,故选D.2. 在等比数列a n中,a4=4,则()A. 4B. 16C. 8D. 32【答案】B【解析】等比数列的性质可知,故选B.<1,则p是q的()3. 命题p:x>1,命题q:1xA. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A<1,反之不成立,所以p是q的充分不必要条件【解析】试题分析:当x>1时可得到1x考点:充分条件与必要条件4. 已知实数x,y满足,则z=2x+y的最大值为()A. 8B. 12C. 14D. 20【答案】C【解析】画出可行域如下图所示,由图可知目标函数在点6,2处取得最大值为14,故选C.5. 双曲线的离心率等于33b,则该双曲线的焦距为()A. 25 B. 8 C. 6 D. 26【答案】B【解析】依题意可知a=2,ca =33b,c=233b,,故选B.6. ,且a>b,则下列结论正确的是()A. a2>b2B. ba<1 C. D.【答案】D【解析】令,代入验证,排除A.令,代入验证,排除B,C,故选D.7. F1,F2为椭圆C:x2a +y2b=1左右焦点,A为椭圆上一点,A F2垂直于x轴,且三角形A F1F2为等腰直角三角形,则椭圆的离心率为()A. B. 2 C. 2 D. 2��?/m:t>【答案】A【解析】由于轴,所以A F2=b2a,依题意可知b2a=2c,即,两边除以a2得,解得.故选A.8. 数列a n的前n项和,当S n取最小值时n的值为()A. 7B. 8C. 7��?/m:t>8D. 9【答案】C【解析】二次函数的开口向上,对称轴为x=152,故当n=7或n=8时,取得最小值.故选C.9. 已知直线y=x+a与曲线y=ln x相切,则的值为()A. 1B. 2C.D.【答案】C【解析】本题考查导数的运算,导数的几何意义及导数的应用.10. 关于x的不等式的解集为,则关于x的不等式的解集为()A. B. 1,2 C. D.【答案】D【解析】,由于解决为,故a<0,且,故的开口向下,两个根为1,2,所以解集为x<1,x>2.故选D.11. P为双曲线上的任意一点,则P到两条渐近线的距离乘积为()A. 185B. 2 C. 365D. 1【答案】A【解析】不妨设P2,0,双曲线渐近线为.点P到的距离为d=610=3105,故成绩为d2=9025=185.【点睛】本小题主要考查双曲线的概念与性质,考查双曲线上的点到渐近线的距离的成绩为定值.由于本题是一个定值问题,再结合题目是一个选择题,故可以采用特殊点,计算点到渐近线的距离然后相乘,即可得到所求的结果.双曲线的渐近线是令求解出来.12. 已知函数,若,则的取值范围为()A. B. C. D.【答案】B【解析】画出函数f x的图象如下图所示.由图可知,当y=a x和相切时,斜率取得最小值,将y=a x代入,化简得,判别式,所以的取值范围是,故选B.【点睛】本小题主要考查函数图象与性质,考查含有绝对值函数图象的画法,考查直线和二次曲线相切的表示方法,即判别式为零. 应用函数零点的存在情况求参数的值或取值范围常用的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知a>0,b>0,a+b=2,a b的最大值为___.【答案】1【解析】由基本不等式得.14. 函数的单调递增区间是___.【答案】【解析】,由题意,解得x>2,所以函数的递增区间是.15. 已知抛物线y2=x和点A4,0,质点M在此抛物线上运动,则点M与点A距离的最小值为___.【答案】152【解析】设M m 2,m ,由两点间的距离公式得.16. 等差数列 a n 与 b n 的前n 项和为分别为S n 和T n ,若,则a6b 6=___.【答案】3123【解析】a 6b 6=2a 62b 6=a 1+a 11b 1+b 11=S11T 11=3123.【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质. 这些题都是等差数列的性质的应用,熟记等差数列的性质,并能灵活运用是解这一类题的关键,注意等差数列与等比数列的性质多与其下标有关,解题需多注意观察,发现其联系,加以应用.另外注意不能直接代入6计算.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 过抛物线E :y 2=2p x 的焦点F 的一条直线与抛物线E 交于P x 1,y 1 ,Q x 2,y 2 两点. 求证:【答案】证明见解析【解析】【试题分析】当直线斜率不存在时,可求得P 1,P 2两点的坐标,可得y 1y 2=−p 2成立.当直线斜率存在时,用点斜式设出直线方程,联立直线方程和抛物线方程,消去x ,用韦达定理证明. 【试题解析】当过焦点F 的直线垂直于x 轴时,则y 1y 2=−p 2成立, 当直线不与x 轴垂直时,设y =k x −p2y =k x −p2 y 2=2p x得k y 2−2p y −p 2=0所以y 1y 2=−p 2 . 18. 已知函数(1)当a =2时,求f x 的极大值; (2)当为何值时,函数f x 有3个零点. 【答案】(1)323;(2).【解析】【试题分析】(1)a =2时,对函数求导,写出单调区间,可得到极大值.(2)对函数求导,得到函数的单调区间和极大值与极小值,只需要极大值大于零,极小值小于零就符合题意,由此解得的取值范围. 【试题解析】 (1)f ′(x )=x 2−4,由解得x ��?/m :t >2或解得所以当x =−2时f (x )有极大值f (−2)=223 (2)由f ′(x )=x 2−4=0,解得x 1=−2,x 2=2.f (x )的单调增区间是和当x ��?/m :t >时,f (x )是减函数;f (x )的极大值f (−2)=a +163极小值为f (−2)=a −163所以a +163>0且a −163<0所以−163<a <16319. 已知 0,?��1 是椭圆C 的一个顶点,焦点在x 轴上,其右焦点到直线:y =x +2 2的距离等于3. (1)求椭圆C 的标准方程;(2)过点P 1,12 的直线与椭圆C 交于M ,N 两点,若P 为MN 中点,求直线方程. 【答案】(1)x 23+y 2=1;(2).【解析】【试题分析】(1)由题知b =1,利用焦点到直线的距离求出,进而得到和椭圆的标准方程.(2)设出M ,N 两点的坐标,代入椭圆方程,利用点差法求得直线的斜率,用点斜式得到直线方程. 【试题解析】(1)由题知b =1,d =2+ 2=3,(2)x 123+y 12=1x 223+y 22=1所��?/m:t>+y1−y2y1+y2=0,所以.所以直线方程为y−12=−23x−1,即4x+6y−7=0.【点睛】本小题主要考查椭圆方程的求法,考查点到直线的距离公式,考查点差法求解有关中点弦的问题. 处理直线与圆锥曲线相交时候的相交弦长和中点问题时,利用根与系数的关系或者中点坐标公式,涉及弦的中点,还可以利用点差法.设点的坐标,并没有求出来,这就是设而不求的思想.20. 已知数列a n的前n项和,数列b n的每一项都有b n=a n.(1)求数列a n的通项公式;(2)求数列b n前n项和.【答案】(1);(2).【解析】【试题分析】(1)利用求得数列的通项公式.(2)数列前5项为正数,从第6项起为负数,故将n分成n��?/m:t>5,n>5两类,求解出数列的前n项和.【试题解析】(1)(2)T n=2S5−S n=50−(10n−n2)=n2−10n+5021. 已知函数f x=ln xx.(1)求f x的单调区间;(2)当x>0时,若恒成立,求m的取值范围.【答案】(1)f(x)在(0,e12)上是增函数,在上是减函数;(2).【解析】【试题分析】(1)求函数的定义域,求导后写出单调区间.(2)原不等式等价于m��?/m:t>ln x恒成,构造函数g(x)=x2ln x,利用导数求得函数g x的最小值,由此求得实数m的取值范围.【试题解析】(1)f(x)定义域为,f′(x)=1−2ln xx3,f′(x)>0,解得0<x<e12,f′(x)<0,解得x>e12,∴f(x)在(0,e12)上是增函数,在上是减函数;(2)不等式等价于A��?/m:t>ln x,令g(x)=x2ln x,g′(x)=2x ln x+x=x(2ln x+1),g′(x)>0,解得x>e−12,g′(x)<0,解得0<x<e−12,∴g(x)在(0,e−12)上是减函数,在上是增函数,g(x)在x=e−12时取最小值g(e−12)=−12e ,∴m��?/m:t>−12e,故A的最佳取值为【点睛】本小题主要考查函数导数与单调性,函数导数与不等式恒成立问题的解法. 不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.22. 已知椭圆C的中心是坐标原点O,它的短轴长22,焦点F c,0,点,且(1)求椭圆C的标准方程;(2)是否存在过点A的直线与椭圆C相交于P,Q两点,且以线段P Q为直径的圆过坐标原点O,若存在,求出直线P Q的方程;不存在,说明理由.【答案】(1)x26+y22=1;(2)答案见解析.【解析】【试题分析】(1)利用列方程,可求得c=2,由题意可知b=2,由此求得,且出去椭圆的标准方程.(2)设直线P Q的方程为y=k x−3,联立直线的方程和椭圆的方程,写出韦达定理,利用圆的直径所对的圆周角为直角,转化为两个向量的数量积为零建立方程,由此求得k的值.【试题解析】(1)由题意知,b=,F c,0,A10c−c,0由,得c=20c−4c,解得:c=2.椭圆的方程为x26+y22=1离心率为6=63(2)A3,0,设直线P Q的方程为y=k x−3联立y=k x−3x26+y22=1,得1+3k2x2−18k2x+27k2−6=0设P x1,y1,Q x2,y2,则x1+x2=18k21+3k2,x1x2=27k2−61+3k2y1y2=k2x1x2−3x1+x2+9=k227k2−61+3k2−54k21+3k2+9=3k21+3k2由已知得,得x1x2+y1y2=0,即27k2−61+3k2+3k21+3k2=30k2−61+3k2=0解得:,符合直线P Q的方程为.。
辽宁省大连市2017-2018学年高二上学期期末考试物理试题(解析版)
辽宁省大连市2017-2018学年高二上学期期末考试物理(理)试题一、选择题(第1~8题单选,第9~12题多选)1. 下列表达式中,不是比值法定义物理量的是( )A. B. C. D.【答案】B【解析】A 项:电场强度E 与电场力及检验电荷的电荷量无关;属于比值定义法,故A 错误;B 项:导体的电阻中电阻与导线长度、电阻率成正比、与横截面积成反比,不属于比值定义法,故B正确;C 项:电容的定义式中,C 与两板间的电量及两板间的电势差无关,属于比值定义法,故C 错误;D 项:磁感应强度与通电导线所受的安培力、电流、导线长度无关,属于比值定义法,故D 错误。
点晴:用比值定义法所定义的物理量有:电场强度、磁感应强度、电容等等,注意它们均是由本身的性质决定的,和定义它们的物理量无关。
2. 关于电场线和磁感线,下列说法正确的是( )A. 电场线和磁感线都是不相交曲线B. 电场线和磁感线都是闭合的曲线C. 电场线和磁感线都是现实中存在的D. 磁感线是从磁体的N 极发出,终止于S 极【答案】A【解析】A 、B 项:磁感线在磁体的周围是从磁体的N 极出发回到S 极,在磁体的内部,磁感线是从磁体的S 极出发,回到N 极;所以磁感线是闭合的,而电场线从正电荷或无限远出发,终止于无限远或负电荷,不相交不闭合,故A 正确,B 错误;C 项:电场线和磁感线都是假想的,在空间不是实际存在的线,故C 错误;D 项:磁感线在磁体的周围是从磁体的N 极出发回到S 极.在磁体的内部,磁感线是从磁体的S 极出发,回到N 极,故D 错误。
3. 如图所示,在水平桌面上放着一个1匝的矩形线圈,线圈中心上方某处有一竖立的条形磁体,此时线圈内的磁通量为0.04Wb 。
在0.5s 内将条形磁体放到线圈内的桌面上,此时线圈内的磁通量为0.12Wb ,则在这个过程中线圈的感应电动势为( )A. 0.16VB. 0.24VC. 1.6VD. 2.4V【答案】A【解析】由题,穿过线圈的磁通量增加量为△Φ=Φ2-Φ1=0.12Wb-0.04Wb=0.08Wb.根据法拉第电磁感应定律得,,故A正确。
辽宁省大连市2017-2018学年高三上学期期末数学试卷(理科)Word版含解析
辽宁省大连市2017-2018学年高三上学期期末数学试卷(理科)一、选择题(每题5分,共60分)1.设U=R,M={y|y=2x+1,﹣≤x≤},N={x|y=lg(x2+3x)},则(∁UM)∩N=()A.(﹣∞,﹣3]∪(2,+∞)B.(﹣∞,﹣3)∪(0,+∞) C.(﹣∞,﹣3)∪(2,+∞)D.(﹣∞,0)∪(2,+∞)2.抛物线x2=﹣8y的准线方程是()A.x=B.y=2 C.y=D.y=﹣23.已知动点P,定点M(1,0)和N(3,0),若|PM|﹣|PN|=2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线4.等差数列{an }中,a1+a4+a7=39,a3+a6+a9=27,则数列{an}前9项的和S9等于()A.99 B.66 C.144 D.2975.已知α,β都是锐角,sinα=,cosβ=,则sin(β﹣α)=()A.﹣B.C.﹣D.6.设a,b是两条不同的直线,α,β是两个不同的平面,a⊂α,b⊥β,则α∥β是a⊥b 的()A.充分不必要条件B.必要不充分条件C.充要条件D.即非充分又非必要条件7.在△ABC中,若|+|=|﹣|,AB=2,AC=1,E,F为BC边的三等分点,则•=()A.B.C.D.8.已知点A、B、C、D均在球O上,AB=BC=,AC=3,若三棱锥D﹣ABC体积的最大值为,则球O的表面积为()A.36πB.16πC.12πD.π9.一个几何体的三视图如图所示,则该几何体的体积为()A .B .C .D .10.设m ,n ∈R ,若直线(m+1)x+(n+1)y ﹣2=0与圆(x ﹣1)2+(y ﹣1)2=1相切,则m+n 的取值范围是(A .(﹣∞,2﹣2]∪[2+2,+∞) B .(﹣∞,2]∪[2,+∞)C .[2﹣2,2+2] D .(﹣∞,﹣2]∪[2,+∞)11.已知函数f (x )=asinx ﹣bcosx (a ,b 常数,a ≠0,x ∈R )在x=处取得最小值,则函数y=f (﹣x )是( )A .偶函数且它的图象关于点(π,0)对称B .偶函数且它的图象关于点(,0)对称C .奇函数且它的图象关于点(,0)对称D .奇函数且它的图象关于点(π,0)对称12.已知f (x )为偶函数,且f (x )=f (x ﹣4),在区间[0,2]上,f (x )=,g (x )=()|x|+a ,若F (x )=f (x )﹣g (x )恰好有4个零点,则a 的取值范围是( )A .(2,)B .(2,3)C .(2,]D .(2,3]二、填空题(每题5分,共20分)13.已知等比数列{a n }前n 项和为S n ,a 1+a 2=,a 4+a 5=6,则S 6= .14.椭圆C 的中点在原点,焦点在x 轴上,若椭圆C 的离心率等于,且它的一个顶点恰好是抛物线x 2=8y 的焦点,则椭圆C 的标准方程为 .15.设直线x ﹣3y+m=0(m ≠0)与双曲线=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA|=|PB|,则该双曲线的离心率是 . 16.下列命题中:(1)a=4,A=30°,若△ABC 唯一确定,则0<b ≤4.(2)若点(1,1)在圆x 2+y 2+mx ﹣y+4=0外,则m 的取值范围是(﹣5,+∞);(3)若曲线+=1表示双曲线,则k 的取值范围是(1,+∞]∪(﹣∞,﹣4];(4)将函数y=cos (2x ﹣)(x ∈R )的图象向左平移个单位,得到函数y=cos2x 的图象.(5)已知双曲线方程为x 2﹣=1,则过点P (1,1)可以作一条直线l 与双曲线交于A ,B两点,使点P 是线段AB 的中点.正确的是 (填序号)三、解答题(本大题共有6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.已知函数f (x )=|2x ﹣a|+|x+1|. (Ⅰ)当a=1时,解不等式f (x )<3; (Ⅱ)若f (x )的最小值为1,求a 的值.18.已知函数f (x )=2cos 2x+sin (2x ﹣)(1)求函数f (x )的单调增区间;最大值,以及取得最大值时x 的取值集合;(2)已知△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,若f (A )=,b+c=2,求实数a 的取值范围.19.已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足a n =,(n ≥2)(1)求证:数列{}是等差数列;(2)求:前n 项和公式S n ;(3)证明:当n ≥2时,S 1+S 2+S 3+…+S n <.20.如图,在四棱锥P ﹣ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,PD=PA ,已知AB=2DC=10,BD=AD=8.(1)设M 是PC 上的一点,求证:平面MBD ⊥平面PAD ;(2)当三角形PAD 为正三角形时,点M 在线段PC (不含线段端点)上的什么位置时,二面角P ﹣AD ﹣M 的大小为.21.已知F 1,F 2是椭圆=1的两焦点,P 是椭圆在第一象限弧上一点,且满足=1过点P 作倾斜角互补的两条直线PA 、PB 分别交椭圆于A ,B 两点, (1)求点P 坐标;(2)求证:直线AB 的斜率为定值; (3)求△PAB 面积的最大值.22.已知函数f (x )=(1)当a ≥1时,求f (x )在[0,e](e 为自然对数的底数)上的最大值;(2)对任意的正实数a ,问:曲线y=f (x )上是否存在两点P ,Q ,使得△POQ (O 为坐标原点)是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?辽宁省大连市2017-2018学年高三上学期期末数学试卷(理科)参考答案一、选择题(每题5分,共60分)1.设U=R,M={y|y=2x+1,﹣≤x≤},N={x|y=lg(x2+3x)},则(∁UM)∩N=()A.(﹣∞,﹣3]∪(2,+∞)B.(﹣∞,﹣3)∪(0,+∞) C.(﹣∞,﹣3)∪(2,+∞)D.(﹣∞,0)∪(2,+∞)【考点】交、并、补集的混合运算.【分析】由全集U=R,先求出CU M,再由集合N能够求出N∩(∁UM).【解答】解:∵全集U=R,M={y|y=2x+1,﹣≤x≤}=[0,2],∴CUM=(﹣∞,0)∪(2,+∞),∵x2+3x>0,解得x>0或x<﹣3∴集合N=(﹣∞,﹣3)∪(0,+∞)∴N∩(∁UM)=(﹣∞,﹣3)∪(2,+∞)故选C.2.抛物线x2=﹣8y的准线方程是()A.x=B.y=2 C.y=D.y=﹣2【考点】抛物线的简单性质.【分析】由抛物线x2=﹣8y可得:2p=8,即可其准线方程.【解答】解:由抛物线x2=﹣8y可得:2p=8,∴=2,其准线方程是y=2.故选:B.3.已知动点P,定点M(1,0)和N(3,0),若|PM|﹣|PN|=2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线【考点】轨迹方程.【分析】先计算|MN|,从而有|PM|﹣|PN|=|MN|,故可确定点P的轨迹.【解答】解:由题意,|MN|=3﹣1=2∵|PM|﹣|PN|=2∴|PM|﹣|PN|=|MN|∴点P的轨迹是射线NP故选D.4.等差数列{an }中,a1+a4+a7=39,a3+a6+a9=27,则数列{an}前9项的和S9等于()A.99 B.66 C.144 D.297【考点】等差数列的前n项和.【分析】由等差数列的性质可得a4=13,a6=9,可得a4+a6=22,再由等差数列的求和公式和性质可得S9=,代值计算可得.【解答】解:由等差数列的性质可得a1+a7=2a4,a3+a9=2a6,又∵a1+a4+a7=39,a3+a6+a9=27,∴a1+a4+a7=3a4=39,a3+a6+a9=3a6=27,∴a4=13,a6=9,∴a4+a6=22,∴数列{an }前9项的和S9====99故选:A5.已知α,β都是锐角,sinα=,cosβ=,则sin(β﹣α)=()A.﹣B.C.﹣D.【考点】两角和与差的正弦函数.【分析】利用同角三角函数基本关系式可求cosα,sinβ的值,进而利用两角差的正弦函数公式即可计算得解.【解答】解:∵α,β都是锐角,sinα=,cosβ=,∴cosα==,sin=,∴sin(β﹣α)=sinβcosα﹣cosβsinα=﹣=.故选:B.6.设a,b是两条不同的直线,α,β是两个不同的平面,a⊂α,b⊥β,则α∥β是a⊥b 的()A.充分不必要条件B.必要不充分条件C.充要条件D.即非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据面面平行和线面垂直的性质,利用充分条件和必要条件的定义即可得到结论.【解答】解:若a⊥b,∵b⊥β,∴a∥β或a⊂β,此时α∥β或α与β相交,即必要性不成立,若α∥β,∵b⊥β,∴b⊥α,∵a⊂α,∴a⊥b,即充分性成立,故α∥β是a⊥b的充分不必要条件,故选:A.7.在△ABC中,若|+|=|﹣|,AB=2,AC=1,E,F为BC边的三等分点,则•=()A.B.C.D.【考点】平面向量数量积的运算.【分析】运用向量的平方即为模的平方,可得=0,再由向量的三角形法则,以及向量共线的知识,化简即可得到所求.【解答】解:若|+|=|﹣|,则=,即有=0,E,F为BC边的三等分点,则=(+)•(+)=()•()=(+)•(+)=++=×(1+4)+0=.故选B.8.已知点A、B、C、D均在球O上,AB=BC=,AC=3,若三棱锥D﹣ABC体积的最大值为,则球O的表面积为()A.36πB.16πC.12πD.π【考点】球内接多面体.【分析】确定∠BAC=120°,S△ABC=,利用三棱锥D﹣ABC的体积的最大值为,可得D 到平面ABC的最大距离,再利用勾股定理,即可求出球的半径,即可求出球O的表面积.【解答】解:设△ABC的外接圆的半径为r,则∵AB=BC=,AC=3,∴∠ABC=120°,S△ABC=,∴2r==2∵三棱锥D﹣ABC的体积的最大值为,∴D到平面ABC的最大距离为3,设球的半径为R,则R2=3+(3﹣R)2,∴R=2,∴球O的表面积为4πR2=16π.故选:B.9.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】该几何体可视为正方体截去两个三棱锥,可得其体积.【解答】解:该几何体可视为正方体截去两个三棱锥,如图所示,所以其体积为.故选D.10.设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n 的取值范围是(A.(﹣∞,2﹣2]∪[2+2,+∞)B.(﹣∞,2]∪[2,+∞)C.[2﹣2,2+2] D.(﹣∞,﹣2]∪[2,+∞)【考点】直线与圆的位置关系.【分析】根据题意可得圆心(1,1)到直线(m+1)x+(n+1)y﹣2=0的距离等于半径,整理得mn=m+n+1,由可求得m+n的范围.【解答】解:由直线与圆相切,可得圆心(1,1)到直线(m+1)x+(n+1)y﹣2=0的距离等于半径,即=1,化简可得|m+n|=,整理得mn=m+n+1,由可知,m+n+1≤,解得m+n∈(﹣∞,2﹣2]∪[2+2,+∞),故选:A.11.已知函数f(x)=asinx﹣bcosx(a,b常数,a≠0,x∈R)在x=处取得最小值,则函数y=f(﹣x)是()A.偶函数且它的图象关于点(π,0)对称B.偶函数且它的图象关于点(,0)对称C.奇函数且它的图象关于点(,0)对称D.奇函数且它的图象关于点(π,0)对称【考点】正弦函数的对称性;三角函数中的恒等变换应用.【分析】根据函数f(x)在x=处取得最小值,求得a=b,f(x)=asin(x﹣),可得f(﹣x)=asinx,从而得出结论.【解答】解:由于函数f(x)=asinx﹣bcosx=sin(x+θ)(a,b常数,a≠0,x∈R),根据函数f(x)在x=处取得最小值,则f()=a+b=﹣,∴a=b,∴f(x)=asinx﹣acosx=asin(x﹣),∴f(﹣x)=asin(﹣x﹣)=﹣asinx,故函数f(x)为奇函数且它的图象关于点(π,0)对称,故选:D.12.已知f(x)为偶函数,且f(x)=f(x﹣4),在区间[0,2]上,f(x)=,g(x)=()|x|+a,若F(x)=f(x)﹣g(x)恰好有4个零点,则a的取值范围是()A.(2,)B.(2,3)C.(2,] D.(2,3]【考点】根的存在性及根的个数判断.【分析】由函数f(x)为偶函数且f(x)=f(x﹣4),则f(x)=f(﹣x),函数的周期为4,求得在区间[﹣2,0]上,f (x )的解析式,作出f (x )和g (x )的图象,通过平移,即可得到所求a 的范围.【解答】解:由函数f (x )为偶函数且f (x )=f (x ﹣4), 则f (x )=f (﹣x ),函数的周期为4,则在区间[﹣2,0]上,有f (x )=,分别作出函数y=f (x )在[﹣2,2]的图象, 并左右平移4个单位,8个单位,可得y=f (x )的图象,再作y=g (x )的图象,注意上下平移.当经过A (1,)时,a==2,经过B (3,)时,a=2,5﹣=.则平移可得2<a <时,图象共有4个交点,即f (x )﹣g (x )恰好有4个零点,故选:A .二、填空题(每题5分,共20分)13.已知等比数列{a n }前n 项和为S n ,a 1+a 2=,a 4+a 5=6,则S 6= . 【考点】等比数列的前n 项和.【分析】设等比数列{a n }的公比为q ,运用通项公式,列出方程,解得公比和首项,再由求和公式,即可得到所求值.【解答】解:设等比数列{a n }的公比为q ,由于,即a 1+a 1q=,a 1q 3+a 1q 4=6,两式相除,可得,q=2,a 1=.则S 6==.故答案为:14.椭圆C 的中点在原点,焦点在x 轴上,若椭圆C 的离心率等于,且它的一个顶点恰好是抛物线x 2=8y 的焦点,则椭圆C 的标准方程为.【考点】椭圆的标准方程.【分析】由题意设椭圆C 的标准方程为,a >b >0,由已知得,由此能求出椭圆C 的标准方程.故答案为:.【解答】解:由题意设椭圆C 的标准方程为,a >b >0,∵抛物线x 2=8y 的焦点为F (0,2),∴由已知得,解得a=4,b=2,∴椭圆C 的标准方程为.故答案为:.15.设直线x ﹣3y+m=0(m ≠0)与双曲线=1(a >0,b >0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【考点】双曲线的简单性质.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P(m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.16.下列命题中:(1)a=4,A=30°,若△ABC唯一确定,则0<b≤4.(2)若点(1,1)在圆x2+y2+mx﹣y+4=0外,则m的取值范围是(﹣5,+∞);(3)若曲线+=1表示双曲线,则k的取值范围是(1,+∞]∪(﹣∞,﹣4];(4)将函数y=cos(2x﹣)(x∈R)的图象向左平移个单位,得到函数y=cos2x的图象.(5)已知双曲线方程为x 2﹣=1,则过点P (1,1)可以作一条直线l 与双曲线交于A ,B两点,使点P 是线段AB 的中点.正确的是 (2),(5) (填序号) 【考点】命题的真假判断与应用.【分析】由正弦定理求得sinB ,举例说明(1)错误;把点的坐标代入圆的方程说明(2)正确;由双曲线的方程可得关于k 的不等式,求得k 值说明(3)错误;由函数图形的平移可得(4)错误;利用点差法求出直线l 的方程说明(5)正确.【解答】解:对于(1),由,得sinB=.当b=8时,sinB=1,B=90°,C=60°,△ABC 唯一确定,故(1)错误;对于(2),点(1,1)在圆x 2+y 2+mx ﹣y+4=0外,则12+12+m ﹣1+4>0,即m >﹣5,故(2)正确;对于(3),若曲线+=1表示双曲线,则(4+k )(1﹣k )<0,解得k >1或k <﹣4,即k 的取值范围是(1,+∞)∪(﹣∞,﹣4),故(3)错误;对于(4),将函数y=cos (2x ﹣)(x ∈R )的图象向左平移个单位,得到函数图象的解析式为y=cos[2(x+)]=cos (2x+),故(4)错误;对于(5),设A (x 1,y 1),B (x 2,y 2),则,,两式作差得:,∴,∴k AB =2,此时直线方程为y ﹣1=2(x ﹣2),即y=2x ﹣3,联立,得2x 2﹣12x+11=0,△=144﹣88=56>0,故(5)正确.∴正确命题的序号是(2),(5). 故答案为:(2),(5).三、解答题(本大题共有6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.已知函数f (x )=|2x ﹣a|+|x+1|.(Ⅰ)当a=1时,解不等式f(x)<3;(Ⅱ)若f(x)的最小值为1,求a的值.【考点】绝对值不等式的解法.【分析】(Ⅰ)当a=1时,求出函数的分段函数形式,然后求解不等式f(x)<3的解集即可;(Ⅱ)利用绝对值的几何意义求出f(x)的最小值的表达式,利用最小值为1,求a的值.【解答】解:(Ⅰ)因为f(x)=|2x﹣1|+|x+1|=;且f(1)=f(﹣1)=3,所以,f(x)<3的解集为{x|﹣1<x<1};…(Ⅱ)|2x﹣a|+|x+1|=|x﹣|+|x+1|+|x﹣|≥|1+|+0=|1+|当且仅当(x+1)(x﹣)≤0且x﹣=0时,取等号.所以|1+|=1,解得a=﹣4或0.…18.已知函数f(x)=2cos2x+sin(2x﹣)(1)求函数f(x)的单调增区间;最大值,以及取得最大值时x的取值集合;(2)已知△ABC中,角A、B、C的对边分别为a,b,c,若f(A)=,b+c=2,求实数a的取值范围.【考点】三角函数的最值;正弦函数的单调性.【分析】(1)化简可得解析式f(x)=sin(2x+)+1,从而可求函数f(x)的单调增区间;函数f(x)的最大值,并写出f(x)取最大值时x的取值集合;(2)由题意,f(A)=sin(2A+)+1=,化简可求得A的值,在△ABC中,根据余弦定理,由b+c=2,知bc≤1,即a2≥1.又由b+c>a得a<2,即可求实数a的取值范围.【解答】解:(1)f(x)=2cos2x+sin(2x﹣)=cos2x+sin2x+1=sin(2x+)+1,2kπ﹣≤2x+≤2kπ+,可得函数f(x)的单调增区间[kπ﹣,kπ+](k∈Z),函数f(x)的最大值为2.当且仅当sin(2x+)=1,即2x+=2kπ+,即x=kπ+(k∈Z)时取到.所以函数最大值为2时x 的取值集合为{x|x=k π+,k ∈Z}.…(2)由题意,f (A )=sin (2A+)+1=,化简得sin (2A+)=.∵A ∈(0,π),∴2A+=,∴A=.在△ABC 中,根据余弦定理,得a 2=b 2+c 2﹣bc=(b+c )2﹣3bc . 由b+c=2,知bc ≤1,即a 2≥1. ∴当b=c=1时,取等号. 又由b+c >a 得a <2.所以a 的取值范围是[1,2 ).…19.已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足a n =,(n ≥2)(1)求证:数列{}是等差数列;(2)求:前n 项和公式S n ;(3)证明:当n ≥2时,S 1+S 2+S 3+…+S n <. 【考点】数列递推式;数列的求和.【分析】(1)当n ≥2时,,S n ﹣1﹣S n =2S n S n ﹣1,由此能证明数列{}是以1为首项,2为公差的等差数列.(2)由=1+(n ﹣1)×2=2n ﹣1,能求出前n 项和公式S n .(3)由==,利用裂项求和法能证明S 1+S 2+S 3+…+S n <.【解答】证明:(1)∵数列{a n }中,a 1=1,其前n 项和为S n ,且满足a n =,(n ≥2)∴当n ≥2时,,S n ﹣1﹣S n =2S n S n ﹣1,∴当n ≥2时,,∴数列{}是以1为首项,2为公差的等差数列.解:(2)由(1)得=1+(n ﹣1)×2=2n ﹣1,∴S n =.证明:(3)由(2)知:当n ≥2时,==,∴S 1+S 2+S 3+…+S n <1+(1﹣)<﹣<.∴S 1+S 2+S 3+…+S n <.20.如图,在四棱锥P ﹣ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,PD=PA ,已知AB=2DC=10,BD=AD=8.(1)设M 是PC 上的一点,求证:平面MBD ⊥平面PAD ;(2)当三角形PAD 为正三角形时,点M 在线段PC (不含线段端点)上的什么位置时,二面角P ﹣AD ﹣M 的大小为.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定.【分析】(1)通过证明BD ⊥平面PAD ,利用直线与平面垂直的判定定理证明平面MBD ⊥平面PAD .(2)以OA 、OE 、OP 为x ,y ,z 轴,建空间直角坐标系,求出点O ,A ,D ,B ,P ,C 的坐标,设(0<λ<1),平面PAD 的法向量可取:,求出平面MAD 的法向量为,利用空间向量的数量积,结合二面角P ﹣AD ﹣M 的大小为.求出.【解答】(本小题满分12分)解:(1)证明:因为BD=AD=8,得BD=8,AD=6,又AB=10, 所以有AD 2+BD 2=AB 2,即AD ⊥BD ,又因为平面PAD ⊥平面ABCD ,且交线为AD ,所以PD ⊥平面PAD , BD ⊂平面BDM ,故平面MBD ⊥平面PAD .(2)由条件可知,三角形PAD 为正三角形,所以取AD 的中点O ,连PO ,则PO 垂直于AD , 由于平面PAD ⊥平面ABCD ,所以PO 垂直于平面ABCD ,过O 点作BD 的平行线,交AB 于点E ,则有OE ⊥AD ,所以分别以OA 、OE 、OP 为x ,y ,z 轴,建空间直角坐标系所以点O (0,0,0),A (3,0,0),D (﹣3,0,0),B (﹣3,8,0),P (0,0,3),由于AB ∥DC 且AB=2DC ,得到C (﹣6,4,0),设(0<λ<1),则有,因为由(1)的证明可知BD ⊥平面PAD ,所以平面PAD 的法向量可取:,设平面MAD 的法向量为,则有,即有由由二面角P ﹣AD ﹣M 的大小为. ==,解得故当M 满足:PM=PC 时符合条件.21.已知F 1,F 2是椭圆=1的两焦点,P 是椭圆在第一象限弧上一点,且满足=1过点P 作倾斜角互补的两条直线PA 、PB 分别交椭圆于A ,B 两点, (1)求点P 坐标;(2)求证:直线AB 的斜率为定值; (3)求△PAB 面积的最大值.【考点】直线与圆锥曲线的关系;平面向量数量积的运算.【分析】(1)求出椭圆的两焦点坐标,设P (x ,y ),(x >0,y >0),由数量积坐标公式和点在椭圆上,列出方程,解出,即可得到P 的坐标;(2)设出直线PA ,PB 的方程,联立椭圆方程,消去y ,得到x 的二次方程,运用韦达定理,即可解得A ,B 的横坐标,再由直线方程,得到纵坐标,再由斜率公式,即可得证;(3)设出直线AB 的方程,联立椭圆方程,消去y ,得到x 的方程,运用韦达定理,以及弦长公式和点到直线的距离公式,再由面积公式,运用基本不等式,即可得到最大值.【解答】(1)解:F 1,F 2是椭圆=1的两焦点,则c==,即有F 1(0,),F 2(0,﹣),设P (x ,y ),(x >0,y >0),则由=1,得x 2+y 2=3,又=1,解得,x=1,y=.则有点P 的坐标为;(2)证明:由题意知,两直线PA 、PB 的斜率必存在,设直线PB 的斜率为k ,则直线PB 的方程为,由于过点P 作倾斜角互补的两条直线PA 、PB ,则直线PA :y ﹣=﹣k (x ﹣1).由,消去y ,得,设A (x A ,y A ),B (x B ,y B ),由韦达定理,得1+x B =,即有,y B =同理可得,y A =,所以为定值.(3)解:由(2)可设直线AB 的方程为,联立方程,得,消去y ,得,由判别式8m 2﹣16(m 2﹣4)>0,得,x 1+x 2=﹣m ,x 1x 2=,|AB|==易知点P 到直线AB 的距离为,所以,当且仅当m=±2时取等号,满足,所以△PAB 面积的最大值为.22.已知函数f (x )=(1)当a ≥1时,求f (x )在[0,e](e 为自然对数的底数)上的最大值;(2)对任意的正实数a ,问:曲线y=f (x )上是否存在两点P ,Q ,使得△POQ (O 为坐标原点)是以O 为直角顶点的直角三角形,且此三角形斜边中点在y 轴上? 【考点】利用导数研究函数的单调性.【分析】(1)当0≤x <e 时,求导函数,可得f (x )在区间[0,e]上的最大值;(2)假设曲线y=f (x )上存在两点P 、Q 满足题设要求,则点P 、Q 只能在y 轴两侧.设P 、Q 的坐标,由此入手能得到对任意给定的正实数a ,曲线y=f (x )上存在两点P 、Q ,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上.【解答】解:(1)∵f(x)=,当0≤x<1时,f′(x)=﹣3x2+2x=﹣3x(x﹣),令f'(x)>0,解得:0≤x<,令f′(x)<0,解得:<x<1,故f(x)在[0,)递增,在(,1)递减,而f()=,∴f(x)在区间[0,1)上的最大值为,1≤x<e时,f(x)=alnx,f′(x)=>0,f(x)在[1,e]递增,f(x)max=f(e)=a≥1,综上f(x)在[0,e]的最大值是a;(2)曲线y=f(x)上存在两点P、Q满足题设要求,则点P,Q只能在y轴的两侧,不妨设P(t,f(t))(t>0),则Q(﹣t,t3+t2),显然t≠1,∵△POQ是以O为直角顶点的直角三角形,∴•=0,即﹣t2+f(t)(t3+t2)=0.(1)是否存在两点P、Q等价于方程(1)是否有解.若0<t<1,则f(t)=﹣t3+t2,代入(1)式得,﹣t2+(﹣t3+t2)(t3+t2)=0,即t4﹣t2+1=0,而此方程无实数解,因此t>1.∴f(t)=alnt,代入(1)式得,﹣t2+(alnt)(t3+t2)=0,即=(t+1)lnt.(*),考察函数在h(x)=(x+1)lnx(x≥1),则h′(x)=lnx++1>0,∴h(x)在[1,+∞)上单调递增,∵t>1,∴h(t)>h(1)=0,当t→+∞时,h(t)→+∞,∴h(t)的取值范围是(0,+∞).∴对于a>0,方程(*)总有解,即方程(1)总有解.因此对任意给定的正实数a,曲线y=f(x)上总存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大连市20172018学年度第一学期期末考试试卷高二数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 抛物线y2=12x的准线方程为()A. B. C. D.【答案】A【解析】结合抛物线的标准方程可得:抛物线y2=12x的准线方程为.本题选择A选项.2. 命题:“”的否定是()A. B.C. D.【答案】C【解析】全称命题的否定是特称命题,改量词,否结论,所以命题:“”的否定是��?/m:t>>0,x2−x<0.本题选择C选项.3. 若a b>0,则ba +ab的最小值是()A. 1B. 2C. 2D. 22【答案】C【解析】,等号当且仅当ba =ab,即a=b时等号成立.则ba+ab的最小值是2.本题选择C选项.4. 已知a n是等差数列,a1+a2=4,a7+a8=28,则该数列前10项和S10等于()A. 64B. 100C. 110D. 120【答案】B【解析】解:设公差为d,则由已知得2a1+d="4" 2a1+13d=28 ⇒ a1="1" d=2 ⇒S10=10×1+10×9 =100,故选B.5. 命题,命题,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】对于命题q,求解有显然命题p对应的集合为命题q对应集合的真子集,所以p是q的充分不必要条件.本题选择A选项.6. 已知实数x,y满足,则的最小值是()A. 5B.C. 5D.2【答案】B【解析】作出不等式组表示的平面区域,得到如图的三角形及其内部,其中,由,将直线l:y=2x进行平移,观察y轴上的截距变化,可得:当l经过点A��?/m:t>,3时,目标函数达到最小值,∴z最小值为本题选择B选项.7. 已知ΔA B C的顶点B,C在椭圆x2+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在B C边上,3则ΔA B C的周长是()A. 23B. 6C. 43D. 12【答案】C∴|A B|+|B C|+|C A|=4a+y2=1∵椭圆方程为x23∴a=3∴ΔA B C的周长为4故选C8. 平行六面体中,向量两两的夹角均为600,且,,则等于()A. 5B. 6C. 4D. 8【答案】A【解析】如图所示,∵平行六面体中,向量两两的夹角均为60°,且,本题选择A选项.9. 已知直线y=x+1与曲线y=ln x+a相切,则的值为()A. 1B. 2C.D. 【答案】B【解析】由直线y=x+1与曲线y=l n x+a相切,设切点坐标是(x0,y0),则有y0=x0+1y0=ln x0+a,由曲线y=ln x+a可得y��?//=1x+a ,所以切线的斜率是1x0+a,据此有:y0=x0+1y0=ln x0+ax0+a=1,求解方程组有:.本题选择B选项.点睛:(1)导数f′(x0)的几何意义就是函数y=f(x)在点P(x0,y0)处的切线的斜率.(2)在求切线方程时,应先判断已知点Q(a,b)是否为切点,若已知点Q(a,b)不是切点,则应求出切点的坐标,利用切点坐标求出切线斜率,进而用切点坐标表示出切线方程.10. 关于x的不等式的解集为,则关于x的不等式的解集为()A. B. 1,2 C. D.【答案】D【解析】,由于解决为,故a<0,且,故的开口向下,两个根为1,2,所以解集为x<1,x>2.故选D.11. 已知双曲线的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为()A. B. C. D.【答案】A【解析】试题分析:抛物线焦点为(1,0),所以双曲线中c=1,,双曲线方程为考点:双曲线抛物线方程及性质12. 若f x的定义域为R,f��?//x<2恒成立,f��?/m:t>=2,则f x>2x+4的解集为()A. B. C. D.【答案】B【解析】设,则,因为f��?/m:t><2恒成立,所以即函数F(x)在R上单调递减.因为f��?/m:t>=2,所以,则不等式即,据此可得:.所以,即不等式f x>2x+4解集为.本题选择B选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。
某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用。
因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的。
根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。
许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效。
第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. a n是公比为正数的等比数列,若a3=4,a5=16则数列a n的前5项和为___.【答案】31【解析】设等比数列a n的公比为q,则q>0,,解得q=2,,∴数列a n的前5项和.14. 直线与椭圆x24+y22=1相交于A,B两点,则A B=___.【答案】435【解析】试题分析:把代入椭圆x24+y22=1化简可得,∴,由弦长公式可得考点:直线与椭圆方程相交的弦长问题15. F1,F2为椭圆C:x2a2+y2b2=1左右焦点,A为椭圆上一点,A F2垂直于x轴,且三角形A F1F2为等腰直角三角形,则椭圆的离心率为___.【答案】【解析】由椭圆的通径公式可得:A F2=b2a,由抛物线方程可得F1F2=2c,三角形A F1F2为等腰直角三角形,则:A F2=F1F2,即:b2a=2c,整理可得:,求解关于的方程可得:,椭圆的离心率e>0,据此可知,椭圆的离心率为2−1.16. 点P是圆C:x+22+y2=4上的动点,定点F2,0,线段P F的垂直平分线与直线C P的交点为Q,则点Q的轨迹方程是___.【答案】【解析】由垂直平分线的性质有Q P=Q F,所以,又C F=4>2,根据双曲线的定义,点Q的轨迹是C,F为焦点,以4为实轴长的双曲线,,,所以点Q的轨迹方程是.点睛:求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可以直接根据定义先定轨迹类型,再写出其方程,这种求轨迹方程的方法叫做定义法,其关键是准确应用解析几何中有关曲线的定义.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 过抛物线E:y2=2p x的焦点F的一条直线与抛物线E交于P x1,y1,Q x2,y2两点.求证:【答案】证明见解析【解析】【试题分析】当直线斜率不存在时,可求得P1,P2两点的坐标,可得y1y2=−p2成立.当直线斜率存在时,用点斜式设出直线方程,联立直线方程和抛物线方程,消去x,用韦达定理证明.【试题解析】当过焦点F的直线垂直于x轴时,则y1y2=−p2成立,当直线不与x轴垂直时,设y=k x−p2y=k x−p得k y2−2p y−p2=02y2=2p x所以y1y2=−p2 .18. 已知等差数列a n的前项和为S n,且a3=5,S3=9.(1)求数列a n的通项公式;(2)等比数列,若b2=a2,b3=a5,求数列a n+b n的前n项和T n.【答案】(1);(2).【解析】试题分析:(1)由S3=9,可得则数列的公差d=2.通项公式为a n=a2+n−2d=2n−1.3n−1. (2)由(1)可得b2=a2=3,b3=a5=9,则公比q=3.从而b n=3n−1,分组求和可得T n=n2+12试题解析:(1)由S3=9,得3a2=9,所以a2=3.又因为a3=5,所以公差d=2.从而a n=a2+n−2d=2n−1.(2)由(1)可得b2=a2=3,b3=a5=9,所以公比q=3.从而,则,3n−1.分组求和可得T n=n2+12点睛:数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.19. 如图,四边形A B C D是直角梯形,平面A B C D,S A=A B=B C=2,A D=1.(1)求直线S C 与平面A S D 所成角的余弦; (2)求平面S A B 和平面S C D 所成角的余弦. 【答案】(1) 63;(2) 63.【解析】试题分析:(1)建立空间直角坐标系,由题意可得S 0,0,2 ,C 2,2,0 ,则,平面A S D 的一个法向量为,据此计算可得S C 与平面A S D 所成的角的余弦值为 63(2)平面S A B 的一个法向量为,计算可得平面S C D 的一个法向量为据此计算可得平面S A B 和平面S C D 所成角的余弦值为.试题解析: (1) 如图建系,S (0,0,2), C (2,2,0), D (1,0,0),平面S A D ,故平面A S D 的一个法向量为设S C 与平面A S D 所成的角为,由题意可得:,故cos θ= 63,即S C 与平面A S D 所成的角余弦为 63.(2)平面S A B 的一个法向量为,设平面S C D 的一个法向量为n = x ,y ,z ,由令z =1可得平面S C D 的一个法向量为显然,平面S A B 和平面S C D 所成角为锐角,不妨设为α则即平面S A B 和平面S C D 所成角的余弦 63.20. 已知函数f x =x 3+a x 2+b x +c 在与x =1时都取得极值.(1)求a ,b 的值与函数f x 的单调区间; (2)若对,不等式f x <c 2恒成立,求的取值范围.【答案】(1)答案见解析;(2)或c >2.【解析】 试题分析:(1)根据极值定义得f '()=0,f '(1)=0,解方程组可得a ��?/m :t >b 的值,再列表根据导函数符号确定单调区间(2)不等式恒成立问题一般转化为对应函数最值问题:f (x )最大值<c 2,根据(1)可得f (x )最大值为f (2),解不等式可得的取值范围试题解析:解:(1)f (x )=x 3+ax 2+bx +c ,f '(x )=3x 2+2ax +b由f '()=,f '(1)=3+2a +b =0得a =,b =-2f '(x )=3x 2-x -2=(3x +2)(x -1),函数f (x )的单调区间如下表:所以函数f (x )的递增区间是(-∞,-23)与(1,+∞)递减区间是(-23,1)(2)f (x )=x 3-12x 2-2x +c ,x ∈〔-1,2〕,当x =-23时,f (x )=2227+c为极大值,而f(2)=2+c,则f(2)=2+c为最大值。