中考数学专题《反比例函数》综合检测试卷及答案

合集下载

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。

中考数学压轴题专题反比例函数的经典综合题附答案

中考数学压轴题专题反比例函数的经典综合题附答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(,2),∴DO=AD=3,∴A点坐标为:(,5),∴k=5 ;(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2= ,解得x= ,∴FF′=OF′﹣OF= ﹣ = ,∴菱形ABCD平移的距离为,同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,菱形ABCD平移的距离为,综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.2.已知反比例函数y= 的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m, m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2﹣2 n+9的值.【答案】(1)解:由题意得1= ,解得k=﹣,∴反比例函数的解析式为y=﹣(2)解:过点A作x轴的垂线交x轴于点C.在Rt△AOC中,OC= ,AC=1,∴OA= =2,∠AOC=30°,∵将线段OA绕O点顺时针旋转30°得到线段OB,∴∠AOB=30°,OB=OA=2,∴∠BOC=60°.过点B作x轴的垂线交x轴于点D.在Rt△BOD中,BD=OB•sin∠BOD= ,OD= OB=1,∴B点坐标为(﹣1,),将x=﹣1代入y=﹣中,得y= ,∴点B(﹣1,)在反比例函数y=﹣的图象上(3)解:由y=﹣得xy=﹣,∵点P(m, m+6)在反比例函数y=﹣的图象上,其中m<0,∴m( m+6)=﹣,∴m2+2 m+1=0,∵PQ⊥x轴,∴Q点的坐标为(m,n).∵△OQM的面积是,∴OM•QM= ,∵m<0,∴mn=﹣1,∴m2n2+2 mn2+n2=0,∴n2﹣2 n=﹣1,∴n2﹣2 n+9=8.【解析】【分析】(1)由于反比例函数y= 的图象经过点A(﹣,1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点A的坐标,可求出OA的长度,∠AOC的大小,然后根据旋转的性质得出∠AOB=30°,OB=OA,再求出点B的坐标,进而判断点B是否在此反比例函数的图象上;(3)把点P(m, m+6)代入反比例函数的解析式,得到关于m的一元二次方程;根据题意,可得Q点的坐标为(m,n),再由△OQM的面积是,根据三角形的面积公式及m<0,得出mn的值,最后将所求的代数式变形,把mn的值代入,即可求出n2﹣2 n+9的值.3.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【答案】(1)解:把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)解:y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.4.已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+ .(1)当n=1时,求点A的坐标;(2)若OP=AP,求k的值;(3)设n是小于20的整数,且k≠ ,求OP2的最小值.【答案】(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,当n=1时,s= ,∴a= = .(2)解:解法一:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n= .∴1+ = •an.即n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.解法二:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n.设△OPQ的面积为s1则:s1= ∴•mn= (1+ ),即:n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.(3)解:解法一:∵PA⊥OP,PQ⊥OA,∴△OPQ∽△OAP.设:△OPQ的面积为s1,则 =即: = 化简得:化简得:2n4+2k2﹣kn4﹣4k=0(k﹣2)(2k﹣n4)=0,∴k=2或k= (舍去),∴当n是小于20的整数时,k=2.∵OP2=n2+m2=n2+ 又m>0,k=2,∴n是大于0且小于20的整数.当n=1时,OP2=5,当n=2时,OP2=5,当n=3时,OP2=32+ =9+ = ,当n是大于3且小于20的整数时,即当n=4、5、6…19时,OP2的值分别是:42+ 、52+ 、62+ …192+ ,∵192+ >182+ >32+ >5,∴OP2的最小值是5.【解析】【分析】(1)利用△OPA面积定义构建关于a的方程,求出A的坐标;(2)由已知OP=AP,PA⊥OP,可得△OPA是等腰直角三角形,由其面积构建关于n的方程,转化为k的方程,求出k;(3)利用相似三角形的面积比等于相似比的平方构建关于k的方程,最值问题的基本解决方法就是函数思想,利用勾股定理用m、n的代数式表达OP2,,在n的范围内求出OP2的最值.5.如图,在平面直角坐标系中,直线与双曲线相交于点A(,6)和点B(-3,),直线AB与轴交于点C.(1)求直线AB的表达式;(2)求的值.【答案】(1)解:∵点A(,6)和点B(-3,)在双曲线,∴m=1,n=-2,∴点A(1,6),点B(-3,-2),将点A、B代入直线,得,解得,∴直线AB的表达式为:(2)解:分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N,则∠AMO=∠BNO=90°,AM=1,BN=3,∴AM//BN,∴△ACM∽△BCN,∴【解析】【分析】根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.6.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.7.如图,在矩形OABC中,OA=6,OC=4,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?【答案】(1)解:∵在矩形OABC中,OA=6,OC=4,∴B(6,4),∵F为AB的中点,∴F(6,2),又∵点F在反比例函数(k>0)的图象上,∴k=12,∴该函数的解析式为y= (x>0)(2)解:由题意知E,F两点坐标分别为E(,4),F(6,),∴,==== ,∴当k=12时,S有最大值.S最大=3【解析】【分析】)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.8.在平面直角坐标系中,我们定义点P(a,b)的“变换点”为Q.且规定:当a≥b时,Q 为(b,﹣a);当a<b时,Q为(a,﹣b).(1)点(2,1)的变换点坐标为________;(2)若点A(a,﹣2)的变换点在函数y= 的图象上,求a的值;(3)已知直线l与坐标轴交于(6,0),(0,3)两点.将直线l上所有点的变换点组成一个新的图形记作M.判断抛物线y=x2+c与图形M的交点个数,以及相应的c的取值范围,请直接写出结论.【答案】(1)(1,﹣2)(2)解:当a≥﹣2时,则A(a,﹣2)的变换点坐标为(﹣2,﹣a),代入y= 可得﹣a= ,解得a= ;当a<﹣2时,则A(a,﹣2)的变换点坐标为(a,2),代入y= 可得2= ,解得a= ,不符合题意;综上可知a的值为;(3)解:设直线l的解析式为y=kx+b (k≠0 ),将点(6,0)、(0,3)代入y=kx+b得:,解得,∴直线l的解析式为y=﹣ x+3.当x=y时,x=﹣ x+3,解得x=2.点C的坐标为(2,﹣2),点C的变换点的坐标为C′( 2,﹣2 ),点(6,0)的变换点的坐标为(0,﹣6),点(0,3)的变换点的坐标为(0,﹣3),当x≥2时,所有变换点组成的图形是以C′( 2,﹣2)为端点,过(0,﹣6 )的一条射线;即:y=2x﹣6,其中x≥2,当x<2时,所有变换点组成的图形是以C′(2,﹣2)为端点,过(0,﹣3)的一条射线,即y= x﹣3,其中,x<2.所以新的图形M是以C′(2,﹣2)为端点的两条射线组成的图形.如图所示:由和得:x2﹣x+c+3=0①和x2﹣2x+c+6=0②讨论一元二次方程根的判别式及抛物线与点C′的位置关系可得:①当方程①无实数根时,即:当c>﹣时,抛物线y=x2+c与图形M没有交点;②当方程①有两个相等实数根时,即:当c=﹣时,抛物线y=x2+c与图形M有一个交点;③当方程②无实数根,且方程①有两个不相等的实数根时,即:当﹣5<c<﹣时,抛物线y=x2+c与图形M有两个交点;④当方程②有两个相等实数根或y=x2+c恰好经过经过点C′时,即:当c=﹣5或c=﹣6时,抛物线y=x2+c与图形M有三个交点;⑤当方程②方程①均有两个不相等的实数根时,且两根均小于2,即:当﹣6<c<﹣5时,抛物线y=x2+c与图形M有四个交点;⑥当c<﹣6时,抛物线y=x2+c与图形M有两个交点.【解析】【解答】解:(1)∵2≥﹣1,∴点(2,1)的变换点坐标为(1,﹣2),故答案为:(1,﹣2);【分析】(1)由变换点的定义可求得答案;(2)由变换点的定义可求得A的变换点,代入函数解析式可求得a的值;(3)先求得直线y=x与直线l的交点坐标,然后分为当x≥2和x<2两种情况,求得M的关系式,然后在画出M的大致图象,然后将抛物线y=x2+c与M的函数关系式组成方程组,然后依据一元二次方程根的判别式进行判断即可.9.如图,已知二次函数的图象与y轴交于点A(0,4),与x 轴交于点B,C,点C坐标为(8,0),连接AB,AC.(1)请直接写出二次函数的解析式.(2)判断△ABC的形状,并说明理由.(3)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标.【答案】(1)解:∵二次函数的图象与y轴交于点A(0,4),与x轴交于点B.C,点C坐标(8,0),∴解得∴抛物线表达式:(2)解:△ABC是直角三角形.令y=0,则解得x1=8,x2=-2,∴点B的坐标为(-2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∴BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形(3)解:∵A(0,4),C(8,0),AC= =4 ,①以A为圆心,以AC长为半径作圆,交轴于N,此时N的坐标为(-8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为( ,0)或( ,0)③作AC的垂直平分线,交g轴于N,此时N的坐标为(3,0),综上,若点N在轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(-8,0)、( ,0)、(3,0)、 ,0)【解析】【分析】(1)根据待定系数法即可求得;(2)根据拋物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC=10然后根据勾股定理的逆定理即可证得△ABC是直角三角形(3)分别以A.C两点为圆心,AC长为半径画弧,与m轴交于三个点,由AC的垂直平分线与c轴交于一个点,即可求得点N的坐标10.已知,抛物线的图象经过点,.(1)求这个抛物线的解析式;(2)如图1,是抛物线对称轴上一点,连接,,试求出当的值最小时点的坐标;(3)如图2,是线段上的一点,过点作轴,与抛物线交于点,若直线把分成面积之比为的两部分,请求出点的坐标.【答案】(1)解:将,的坐标分别代入.得解这个方程组,得,所以,抛物线的解析式为(2)解:如图1,由于点、关于轴对称,所以连接,直线与轴的交点即为所求的点,由,令,得,解得,,点的坐标为,又,易得直线的解析式为:.当时,,点坐标(3)解:设点的坐标为,所以所在的直线方程为.那么,与直线的交点坐标为,与抛物线的交点坐标为.由题意,得① ,即,解这个方程,得或(舍去).② ,即,解这个方程,得或(舍去),综上所述,点的坐标为,或,.【解析】【分析】(1)将点、的坐标代入可得出、的值,继而得出这个抛物线的解析式;(2)由于点、关于轴对称,所以连接,直线与轴的交点即为所求的点,利用待定系数法确定直线的解析式,然后求得该直线与轴的交点坐标即可;(3)如图2,交于,设,根据一次函数和二次函数图象上点的坐标特征,设点的坐标为,,.然后分类讨论:分别利用或,列关于的方程,然后分别解关于的方程,从而得到点坐标11.如图,二次函数y=x2+bx+c的图像与x轴交于A,B两点,B点坐标为(4,0),与y轴交于点C(0,4).点D为抛物线上一点(1)求抛物线的解析式及A点坐标;(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)若△BCD是锐角三角形,请直接写出点D的横坐标m的取值范围________.【答案】(1)解:将B(4,0),C(0,4)代入y=x2+bx+c得,,解得,所以抛物线的解析式为,令y=0,得,解得,,∴A点的坐标为(1,0)(2)解:设D点横坐标为,则纵坐标为,①当∠BCD=90°时,如下图所示,连接BC,过C点作CD⊥BC与抛物线交于点D,过D作DE⊥y轴与点E,由B、C坐标可知,OB=OC=4,∴△OBC为等腰直角三角形,∴∠OCB=∠OBC=45°,又∵∠BCD=90°,∴∠ECD+∠OCB=90°∴∠ECD=45°,∴△CDE为等腰直角三角形,∴DE=CE=a∴OE=OC+CE=a+4由D、E纵坐标相等,可得,解得,,当时,D点坐标为(0,4),与C重合,不符合题意,舍去.当时,D点坐标为(6,10);②当∠CBD=90°时,如下图所示,连接BC,过B点作BD⊥BC与抛物线交于点D,过B作FG⊥x轴,再过C作CF⊥FG于F,过D作DG⊥FG于G,∵∠COB=∠OBF=∠BFC=90°,∴四边形OBFC为矩形,又∵OC=OB,∴四边形OBFC为正方形,∴∠CBF=45°∵∠CBD=90°,∴∠CBF+∠DBG=90°,∴∠DBG=45°,∴△DBG为等腰直角三角形,∴DG=BG∵D点横坐标为a,∴DG=4-a,而BG=∴解得,,当时,D点坐标为(4,0),与B重合,不符合题意,舍去.当时,D点坐标为(2,-2);综上所述,D点坐标为(6,10)或(2,-2).(3)3+ <m <6或 3- <m <2【解析】【解答】解:(3)当BC为斜边构成Rt△BCD时,如下图所示,以BC中点O'为圆心,以BC为直径画圆,与抛物线交于D和D',∵BC为圆O'的直径,∴∠BDC=∠BD'C=90°,∵,∴D到O'的距离为圆O'的半径,∵D点横坐标为m,纵坐标为,O'点坐标为(2,2),∴即化简得:由图像易得m=0或4为方程的解,则方程左边必有因式,∴采用因式分解法进行降次解方程或或,解得,,,当时,D点坐标为(0,4),与C点重合,舍去;当时,D点坐标为(4,0),与B点重合,舍去;当时,D点横坐标;当时,D点横坐标为;结合(2)中△BCD形成直角三角形的情况,可得△BCD为锐角三角形时,D点横坐标m的取值范围为3+ <m <6或 3- <m <2.【分析】(1)利用待定系数法求抛物线的解析式,再令y=0,求A的坐标;(2)设D点横坐标为a,代入函数解析式可得纵坐标,分别讨论∠BCD=90°和∠CBD=90°的情况,作出图形进行求解;(3)当BC为斜边构成Rt△BCD时,以BC中点O'为圆心,以BC为直径画圆,与抛物线交于D和D',此时△BCD和△BCD'就是以BC为斜边的直角三角形,利用两点间距离公式列出方程求解,然后结合(2)找到m的取值范围.12.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG 与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.13.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.14.在平面直角坐标系xOy中,抛物线y=-x2+mx+n与x轴交于点A,B(A在B的左侧).(1)抛物线的对称轴为直线x=-3,AB=4.求抛物线的表达式;(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标;(3)当m=4时,抛物线上有两点M(x1, y1)和N(x2, y2),若x1<2,x2>2,x1+x2>4,试判断y1与y2的大小,并说明理由.【答案】(1)解:抛物线 y=-x2+mx+n的对称轴为直线x=-3,AB=4.∴点 A(-5,0),点B(-1,0).∴抛物线的表达式为y=-(x+5)( x+1)∴y=-x2-6x-5.(2)解:如图1,依题意,设平移后的抛物线表达式为:y=-x2+bx.∴抛物线的对称轴为直线x=,抛物线与x正半轴交于点C(b,0).∴b>0.记平移后的抛物线顶点为P,∴点P的坐标(,),∵△OCP是等腰直角三角形,∴ =∴b=2.∴点P的坐标(1,1).(3)解:如图2,当m=4时,抛物线表达式为:y=-x2+4x+n.∴抛物线的对称轴为直线 x=2.∵点M(x1, y1)和N(x2, y2)在抛物线上,且x1<2,x2>2,∴点M在直线x=2的左侧,点N在直线x=2的右侧.∵x1+x2>4,∴2-x1<x2-2,∴点M到直线x=2的距离比点N到直线x=2的距离近,∴y1>y2.【解析】【分析】(1)先根据抛物线和x轴的交点及线段的长,求出抛物线的解析式;(2)根据平移后抛物线的特点设出抛物线的解析式,再利用等腰直角三角形的性质求出抛物线解析式;(3)根据抛物线的解析式判断出点M,N的大概位置,再关键点M,N的横坐标的范围即可得出结论.15.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.【答案】(1)解:把点A(2,6)代入y= ,得m=12,则y= .把点B(n,1)代入y= ,得n=12,则点B的坐标为(12,1).由直线y=kx+b过点A(2,6),点B(12,1)得,解得,则所求一次函数的表达式为y=﹣x+7(2)解:如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,7).∴PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=10,∴×|m﹣7|×(12﹣2)=10.∴|m﹣7|=2.∴m1=5,m2=9.∴点E的坐标为(0,5)或(0,9).【解析】【分析】(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线y=kx+b,求出k、b的值,从而得出一次函数的解析式;(2)设点E 的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,7),得出PE=|m﹣7|,根据S△AEB=S△BEP﹣S△AEP=10,求出m的值,从而得出点E的坐标.。

中考数学总复习《反比例函数》专项测试卷-带参考答案

中考数学总复习《反比例函数》专项测试卷-带参考答案

中考数学总复习《反比例函数》专项测试卷-带参考答案一、单选题(共12题;共24分)1.如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═ k x(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k的值是()A.4B.8C.12D.162.已知反比例函数y=k−2x的图象在第二、四象限内,则k的值不可能是()A.3B.1C.0D.−123.已知反比例函数y=k x的图象经过点(1,2),则函数y=-kx可为()A.y=-2x B.y=12x C.y=-12x D.y=2x4.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=−5x(x>0)和y=3x(x>0)的图象交于A,B两点.若点C是y轴上任意一点,点D是AP的中点,连接DC,BC,则△DBC的面积为()A.94B.4C.5D.11 45.如图,直线y=n交y轴于点A,交双曲线y=kx(x>0)于点B,将直线y=n向下平移2个单位长度后与y轴交于点C,交双曲线y=kx(x>0)于点D,若ABCD=13,则n的值()A.4B.3C.2D.56.如图,反比例函数y= yx(x<o)的图象经过点P,则k的值为()A.-6B.-5C.6D.57.函数y=ax(a≠0)与y=ax2-1(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.8.反比例函数y=2x的图象位于平面直角坐标系的()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限9.如图,平面直角坐标系中,矩形OABC的边与函数y= 8x(x>0)图象交于E,F两点,且F是BC的中点,则四边形ACFE的面积等于()A.4B.6C.8D.不能确定10.已知二次函数y=ax2+bx+c的图象如图所示,则在同一直角坐标系中,一次函数y=ax+b和反比例函数y= cx的图象大致是()A.B.C.D.11.某反比例函数的图象过点(1,-3),则此反比例函数解析式为()A.y=3x B.y=-3x C.y=13x D.y=-13x12.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=6x的图象上,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y1二、填空题(共6题;共6分)13.如图,在反比例函数y1=4x和y2=k x的图象上取A,B两点,若AB//x轴,ΔAOB的面积为5,则k=.14.如图,点A是反比例函数y=k x的图象上的一点,过点A作AB△x轴,垂足为B,点C为y轴上的一点,连接AC、BC.若△ABC的面积为3,则k的值=.15.如图,过原点的直线交反比例函数y=ax图象于P,Q两点,过点P分别作x轴,y轴的垂线,交反比例函数y=b x(x>0)的图象于A,B两点.若b−a=7,则图中阴影部分的面积为.16.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=k x的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE的面积是△OAB的面积2倍时,则k的值为.17.已知如图,矩形OCBD如图所示,OD=2,OC=3,反比例函数的图象经过点B,点A为第一象限双曲线上的动点(点A的横坐标大于2),过点A作AF△BD于点F,AE△x轴于点E,连接OB,AD,若△OBD△△DAE,则点A的坐标是.18.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点P(2,3),且与函数y=2x(x>0)的图象交于点Q(m,n).若一次函数y随x的增大而增大,则m的取值范围是.三、综合题(共6题;共60分)19.制作一种产品,需先将材料加热达到60△后,再进行操作.设该材料温度为(△),从加热开始计算的时间为(分钟).据了解,该材料加热时,则温度与时间成一次函数关系;停止加热进行操作时,则温度与时间成反比例关系(如图8所示).已知该材料在操作加工前的温度为15△,加热5分钟后温度达到60△.(1)分别求出将材料加热和停止加热进行操作时,则与的函数关系式;(2)根据工艺要求,当材料的温度低于15△时,则须停止操作,那么从开始加热到停止操作,共经历了多少时间?20.如图所示,直线y=12x与反比例函数y=kx(k≠0,x>0)的图象交于点Q(4,a),点P(m,n)是反比例函数图象上一点,且n=2m.(1)求反比例函数和直线PQ的解析式;(2)若点M在x轴上,使得△PMQ的面积为3,求点M的坐标.21.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连结BO,若S△AOB=4.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求△OCB的面积.22.如图,一次函数y=﹣x+5的图象与反比例函数y= k x(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=k x (k≠0)的值时,则写出自变量x 的取值范围.23.如图所示,等边三角形ABC 放置在平面直角坐标系中,已知A (0,0)、B (6,0),反比例函数的图象经过点C .(1)求点C 的坐标及反比例函数的解析式.(2)将等边△ABC 向上平移n 个单位,使点B 恰好落在双曲线上,求n 的值.24.如图,在平面直角系中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,△ABO =30°,AB =2,以AB 为边在第一象限内作等边△ABC ,反比例函数的图象恰好经过边BC 的中点D ,边AC 与反比例函数的图象交于点E .(1)求反比例函数的解析式; (2)求点E 的横坐标.参考答案1.【答案】B 2.【答案】A 3.【答案】A 4.【答案】D 5.【答案】B 6.【答案】A 7.【答案】D 8.【答案】A 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】D 13.【答案】14 14.【答案】-6 15.【答案】14 16.【答案】117.【答案】( √5 +1, 3√5−32)18.【答案】23<m <2 19.【答案】(1)解:材料加热时,则设由题意,有 ,解得 .材料加热时,则 与的函数关系式为:停止加热时,则设 ,由题意,有 ,解得停止加热进行操作时 与的函数关系式为:(2)解:把代入,得20+5=25(分钟)答:从开始加热到停止操作,共经历了25分钟20.【答案】(1)解:∵直线 y =12x 与反比例函数 y =kx(k ≠0,x >0) 的图象交于点 Q(4,a) ∴a =12×4=2, .则 Q(4,2)∴2=k 4∴k =8, ∴ 反比例函数的解析式为 y =8x(x >0)∵ 点 P(m,n) 是反比例函数图象上一点 ∴mn =8 ,且 n =2m,m >0 ∴m =2,n =4, ∴P(2,4) ; 设直线 PQ 的解析式为 y =kx +b,∴{2=4k +b4=2k +b解得 {k =−1b =6∴直线 PQ 的解析式为 y =−x +6 (2)解:∵直线 PQ 交x 轴于点A ∴令 y =0,−x +6=0 ,得 x =6 ,如图∴A(6,0) ,设 M(a,0)∵S △PQM =S △PAM −S △QAM 且 △PMQ 的面积为3∴3=12|6−a|×4−12|6−a|×2∴a =3 或 a =9∴点M 的坐标为 (3,0) 或 (9,0) .21.【答案】(1)解:由A (-2,0),得OA=2;∵点B (2,n )在第一象限内,S △AOB =4∴12OA•n=4; ∴n=4;∴点B 的坐标是(2,4);设该反比例函数的解析式为y= ax (a≠0),将点B 的坐标代入,得4= a2 ,∴a=8;∴反比例函数的解析式为:y= 8x;设直线AB 的解析式为y=kx+b (k≠0),将点A ,B 的坐标分别代入,得{−2k +b =02k +b =4 ,解得{k =1b =2;∴直线AB 的解析式为y=x+2(2)解:在y=x+2中,令x=0,得y=2.∴点C 的坐标是(0,2) ∴OC=2;∴S △OCB = 12 OC×2= 12×2×2=222.【答案】(1)解:∵一次函数y=﹣x+5的图象过点A (1,n )∴n=﹣1+5 ∴n=4∴点A 坐标为(1,4)∵反比例函数y=k x (k≠0)过点A (1,4)∴k=4∴反比例函数的解析式为y=4x;(2)解:联立{y =−x +5y =4x解得{x =1y =4或{x =4y =1即点B 的坐标(4,1)若一次函数y=﹣x+5的值大于反比例函数y=kx (k≠0)的值则1<x <4.23.【答案】(1)解:过C 点作CD△x 轴,垂足为D,设反比例函数的解析式为y= k x∵△ABC 是等边三角形 ∴AC=AB=6,△CAB=60°∴AD=3,CD=sin60°×AC= √32×6=3 √3∴点C 坐标为(3,3 √3 ) ∵反比例函数的图象经过点C ∴k=9 √3∴反比例函数的解析式y= 9√3x;第 11 页 共 11 (2)解:若等边△ABC 向上平移n 个单位,使点B 恰好落在双曲线上 则此时B 点的横坐标为6即纵坐标y= 9√36 = 3√32 ,也是向上平移n= 3√32. 24.【答案】(1)解:∵△ABO =30°,AB =2∴OA =1连接AD .∵△ABC 是等边三角形,点D 是BC 的中点∴AD△BC又△OBD =△BOA =90°∴四边形OBDA 是矩形∴D(1,√3)∴反比例函数解析式是 y =√3x. (2)解:由(1)可知,A (1,0), C(2,√3)设一次函数解析式为y =kx+b ,将A ,C 代入得 {k +b =02k +b =√3 ,解得 {k =√3b =−√3∴y =√3x −√3 .联立 {y =√3x −√3y =√3x,消去y ,得 √3x −√3=√3x 变形得x 2﹣x ﹣1=0解得 x 1=1+√52∵x E >1∴x E =1+√52.。

(完整版)九年级数学反比例函数单元测试题及答案

(完整版)九年级数学反比例函数单元测试题及答案

反比例函数综合检测题一、选择题(每小题3分,共30分)n 51、反比例函数y = -------- 图象经过点(2, 3),则n的值是().xA、一2B、一1C、0D、1k2、若反比例函数y = —(k工0)的图象经过点(一1, 2),则这个函数的图象一定经过点().x1 1A、(2, - 1)B、(一一,2)C、(- 2,—1)D、(一,2)2 23、(08双柏县)已知甲、乙两地相距s (km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h)与行驶速度v (km/h)的函数关系图象大致是()y与z之间的关系是(A、成正比例B、成反比例C、不成正比例也不成反比例D、无法确定k5、一次函数y = kx —k, y随x的增大而减小,那么反比例函数y= 满足().xC、图象分布在第一、三象限D、图象分布在第二、四象限6、如图,点P是x轴正半轴上一个动点,过点P作x轴的垂1 - 一线PQ交双曲线y = 于点Q,连结OQ,点P沿x轴正方向运动时,xRt A QOP的面积().A、逐渐增大B、逐渐减小C、保持不变D、无法确定7、在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积V时,气体的密度p也随之改变. P与V在一定范围内满足p = m,它的图象如图所示,则该V气体的质量m为().A、1.4kgB、5kgC、6.4kgD、7kg&若A (—3, y1), B (—2, y2), C (—1, y3)三点都在函h1■5 /1y =——的图象上,贝V y1, y2, y3的大小关x玄阜(系疋().4、若y与x成正比例,x与z成反比例,则).B 、y 1V y 2V y 3C 、y 1= y 2= y 3 y =「■卬的图象上有A (X 1, y 1) x ).A 、y 1 > y 2> y 39、已知反比例函数 的取值范围是(D 、y 1V y 3V y 2B (X 2, y 2)两点,当 X 1V X 2V 0 时,yK y 2,贝U m11A 、m v 0B 、m >0C 、m vD 、m > —2 210、如图,一次函数与反比例函数的图象相交于 A 、B 两 点,则图中使反比例函数的值小于一次函数的值的 x 的取值范围是( )• A 、x v-1B 、x >2C 、— 1 v x v 0 或 x >2D 、x v — 1 或 0v x v 2二、填空题(每小题3分,共30分) 11、某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数 x 之间的函数关系式为 __________ . _________k12、 已知反比例函数 y的图象分布在第二、四象限,则在一次函数y kx b 中,y 随x 的增大而x(填“增大”或“减小”或“不变”).13、 若反比例函数 y = ——3和一次函数y = 3x + b 的图象有两个交点,且有一个交点的纵坐标为6,贝V bx2 —14、反比例函数y =( m + 2) x m 10的图象分布在第二、四象限内,贝V m 的值为115、 有一面积为 S 的梯形,其上底是下底长的-,若下底长为3是 _______________ .a16、 如图,点 M 是反比例函数y =(a 丰0)的图象上一点,x过M 点作x 轴、y 轴的平行线,若 S 阴影=5,则此反比例函数解析式为 _____________ .2 — +17、使函数y =( 2m 2— 7m — 9) x m 9m 19是反比例函数,且图象在每个象限内 y 随x 的增大而减小,则可列方程(不等式组)为 ____________________419. 如图,直线y = kx(k > 0)与双曲线y 交于A (X 1, y 1),x B (X 2, y 2)两点,贝U 2x 1y 2 — 7x 2y 1= ____________ .20、如图,长方形 AOCB 的两边OC 、OA 分别位于x 轴、20y 轴上,点B 的坐标为B (― ——,5), D 是AB 边上的一点,3将厶ADO 沿直线OD 翻折,使A 点恰好落在对角线 OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .三、解答题(共60分)x ,高为y ,则y 与x 的函数关系k18、过双曲线y =(k 丰0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为21、(8分)如图,P是反比例函数图象上的一点,且点P到x轴的距离为3,到y轴的距离为2,求这个反比例函数的解析式.B\ ALC O X22、(9分)请你举出一个生活中能用反比例函数关系描述的实例,写出其函数表达式,并画出函数图象. 举例:函数表达式:23、(10 分)如图,已知A(x i, y i),B(X2, y2)OB.k(1)试说明y i v OA v y i + 一 ;y i(2)过B作BC丄x轴于C,当m = 4时,k是双曲线y= 在第一象限内的分支上的两点,连结xOA、824、(10分)如图,已知反比例函数y=——与一次函数Xy= kx + b的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是一2.求:(1)一次函数的解析式;(2 )△ AOB的面积.k25、(11分)如图,一次函数y= ax+ b的图象与反比例函数y= 的图象交于M、x(1 )求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.N两点.三、解答题621、 y =——.x222、 举例:要编织一块面积为 2米2的矩形地毯,地毯的长 x (米)与宽y (米)之间的函数关系式为 y =k26、( 12分)如图, 已知反比例函数 y = 的图象与一次函x数y = ax + b 的图象交于 M (2, m )和N (— 1, - 4)两点. (1)求这两个函数的解析式; (2 )求厶MON 的面积;(3) 请判断点P (4, 1)是否在这个反比例函数的图象上, 并说明理由.参考答案:一、选择题1、D ;2、 A ;3、C ; 6、C 二、填空题7、D ;& B ;1000、减小;1 1、y =— ;12 13、5 ;x2m 9m 191; 18、|k|;19、2m 7m 9>04、B ;5、D ; 9、D ;10、D .14、一 3 ; 3s 15、y =;2x16、y =—-;x17、1220、y =—x2017年3月测试题x x(x > 0).2017年3月测试题kk 23、( 1)过点A 作AD 丄x 轴于D ,则OD = x i , AD = y i ,因为点A (x i , y i )在双曲线y =—上,故x i =,xy ik 又在 Rt△ OAD 中,AD v OA v AD + OD ,所以 y i v OA v y i +;y i24、(i )由已知易得 A (-2, 4), B (4,— 2),代入 y = kx + b 中,求得 y =— x + 2;(2 )当 y = 0 时,x = 2,贝U y =— x + 2 与 x 轴的交点 M ( 2, 0),即 |OM| = 2,于是 S A AOB = S A AOM + & BOM k425、(i )将N (— i ,— 4)代入y =,得k = 4 ••••反比例函数的解析式为y =•将M ( 2, m )代入yx x=-,得 m = 2.将 M (2, 2), N (— i ,— 4)代入 y = ax + b ,得 '解得 '•••一次函数xa b 4. b 2.的解析式为y = 2x — 2.(2)由图象可知,当 x v — i 或0v x v 2时,反比例函数的值大于一次函数的值.1 (2) 如图,对于 y = 2x — 2, y = 0 时,x = i , • A (i , 0), OA = i ,• S A MON = S A MOA + S A NOA = OA • MC21 i i+ — OA • ND = — X i X 2+ X i X 4= 3.22 24(3) 将点P ( 4, i )的坐标代入y =,知两边相等,• P 点在反比例函数图象上.(2)A BOC 的面积为2.=1|OM| • |y A |+ 1|OM| •沖 丄 X 2X 4+ 丄 X 2X 2=6.2 2 26、解(i )由已知,得一k44=, k = 4,「. y = .又•••图象过i xM (2, m )点, m = — = 2,2y = ax+ b 图象经过M 、N 两点,2a b a b2,解之得42• y = 2x — 2.。

中考数学总复习《反比例函数综合》专项测试卷(附答案)

中考数学总复习《反比例函数综合》专项测试卷(附答案)

中考数学总复习《反比例函数综合》专项测试卷(附答案)(考试时间:90分钟;试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题,每小题3分,共30分)。

1.若点A(1,3)是反比例函数y=(k≠0)图象上一点,则常数k的值为()A.3B.﹣3C.D.2.下列各点中,在反比例函数y=图象上的是()A.(3,1)B.(﹣3,1)C.(3,)D.(,3)3.如果点A(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数图象上的三个点,则下列结论正确的是()A.y1>y3>y2B.y3>y2>y1C.y2>y1>y3D.y3>y1>y24.如图,反比例函数与正比例函数y=ax(a≠0)相交于点和点B,则点B的坐标为()A.B.C.D.5.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞赛人数x的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是()A.甲B.乙C.丙D.丁6.已知反比例函数,下列说法不正确的是()A.图象经过点(﹣3,2)B.图象分别位于第二、四象限内C.在每个象限内y的值随x的值增大而增大D.x≥﹣1时,y≥67.反比例函数y=中,当x>0时,y随x的增大而增大,则m的取值范围是()A.m>B.m<2C.m<D.m>28.如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A、B两点,其中A点的横坐标为3,当y1<y2时,x的取值范围是()A.x<﹣3或x>3B.x<﹣3或0<x<3C.﹣3<x<0或0<x<3D.﹣3<x<0或x>39.在同一平面直角坐标系中,函数y=ax+b与(其中a,b是常数,ab≠0)的大致图象是()A.B.C.D.10.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值是()A.1B.2C.4D.8二、填空题(本题共6题,每小题2分,共12分)。

中考数学总复习《反比例函数》专项测试卷-附参考答案

中考数学总复习《反比例函数》专项测试卷-附参考答案

中考数学总复习《反比例函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图,直线l和双曲线y=k x(k>0)交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则().A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S32.已知正比例函数y=xk中,y的值随x的值的增大而增大,那么它和反比例函数y=kx在同一平面直角坐标系内的大致图像可能是()A.B.C.D.3.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣5x的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y14.已知点A(-1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可能是() A.B.C.D.5.反比例函数y= a+4x的图象如图所示,P、Q为该图象上关于原点对称的两点,分别过点P、Q作y轴的垂线,垂足分别为A、B.若四边形AQBP的面积大于12,则关于x的方程(a﹣1)x2﹣x+ 14 =0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定6.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=k 2+2k+1x的图象上。

若点A的坐标为(-2,-2),则k的值为()A.1B.-3C.4D.1或-37.如图,已知P(m,0),Q(0,n)(m>0,n>0),反比例函数y=mx的图象与线段PQ交于C,D两点,若S△POC=S△COD=S△DOQ,则n=()A.92B.4C.3D.328.已知正比例函数y=2x与反比例函数y=2x的图象相交于A,B两点,若A点的坐标为(1,2),则B点的坐标为()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2)D.(2,1)9.如图,点A是反比例函数y=6x的图象上一点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=2x的图象于点C,则△OAC的面积是()A.2B.3C.4D.510.A(x1,y1),B(x2,y2)是反比例函数y=6x的图象上的两点,若2<x1<x2,则下列结论正确的是()A.3<y1<y2B.3<y2<y1C.y1<y2<3D.y2<y1<311.在同一直角坐标系中,反比例函数图象与二次函数图象的交点的个数至少有() A.0B.1C.2D.312.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是().A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例D.一条直角边与斜边成反比例二、填空题(共6题;共7分)13.如图,点B是反比例函数y=k x在在第一象限内的图象上的点,若矩形OABC的面积为2,则k=.14.如图,在平面直角坐标系中,点A(−2,3),点B与点A关于直线x=1对称,过点B作反比例函数y=mx(x>0)的图像.(1)m=;(2)若对于直线y=kx−5k+4,总有y随x的增大而增大,设直线y=kx−5k+4与双曲线y=mx(x>0)交点的横坐标为t,则t的取值范围是.15.如图,在平面直角坐标系中,等腰直角三角形ABC的直角顶点在x轴上,顶点B在y轴上,顶点C在函数y=8x(x>0)的图象上,且BC△x轴.将△ABC沿y轴正方向平移,使点A的对应点A′落在此函数的图象上,则平移的距离为.16.已知一个矩形的面积为2,两条边的长度分别为x、y,则y与x的函数关系式为.17.设函数y=x−3与y=2x的图象的两个交点的横坐标为a、b,则1a+1b=.18.如图,已知动点A在函数y=4x(x>0)的图象上,AB△x轴于点B,AC△y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x,y轴分别于点P,Q.当QE:DP=4:9时,则图中阴影部分的面积等于.三、综合题(共6题;共63分)19.如图,已知点A(1,√3)在反比例函数y= k x(x>0)的图象上,连接OA,将线段OA绕点O沿顺时针方向旋转30°,得到线段OB.(1)求反比例函数的解析式;(2)填空:①点B的坐标是;②判断点B是否在反比例函数的图象上?答;③设直线AB的解析式为y=ax+b,则不等式ax+b﹣k x<0的解集是.20.已知反比例函数y= k x与一次函数y=x+2的图象交于点A(﹣3,m)(1)求反比例函数的解析式;(2)如果点M的横、纵坐标都是不大于3的正整数,求点M在反比例函数图象上的概率.21.病人按规定的剂量服用某种药物,测得服药后2小时,则每毫升血液中的含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求当0≤x≤2时,则y与x的函数关系式;(2)求当x>2时,则y与x的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?22.如图,一次函数y=kx+b(k≠0)与反比例函数y=mx(m≠0)的图象在第一象限内交于A(1,6),B(3,n)两点.请解答下列问题:(1)求这两个函数的表达式;(2)根据图象直接写出kx+b﹣mx>0的x的取值范围.23.如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=kx(x>0)的图象交于点C、D.若tan∠BAO=2,BC=3AC.(1)求一次函数和反比例函数的表达式;(2)求△OCD的面积.24.在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣2x的图象上的概率.参考答案1.【答案】D 2.【答案】B 3.【答案】C 4.【答案】D 5.【答案】A 6.【答案】D 7.【答案】A 8.【答案】C 9.【答案】A 10.【答案】D 11.【答案】B 12.【答案】B 13.【答案】2 14.【答案】(1)12(2)3<t <515.【答案】4 16.【答案】y=2x17.【答案】-1.5 18.【答案】13319.【答案】(1)解:∵点A (1, √3 )在反比例函数y= k x(x >0)的图象上∴√3 = k 1,解得k= √3∴反比例函数的解析式为y= √3x(x >0)(2)(1, √3 );点B 在反比例函数的图象上;0<x <1或x > √320.【答案】(1)解:∵反比例函数y= k x与一次函数y=x+2的图象交于点A (﹣3,m )∴﹣3+2=m=﹣1∴点A 的坐标为(﹣3,﹣1) ∴k=﹣3×(﹣1)=3∴反比例函数的解析式为y= 3x(2)解:∵点M 的横、纵坐标都是不大于3的正整数∴点M 的坐标可能为:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3)∵在反比例函数的图象上的有(1,3)和(3,1)两个点 ∴点M 在反比例函数图象上的概率为 2921.【答案】(1)解:根据图象,正比例函数图象经过点(2,4)设函数解析式为y=kx 则2k=4 解得k=2所以函数关系为y=2x (0≤x≤2)(2)解:根据图象,反比例函数图象经过点(2,4) 设函数解析式为y= k x则 k 2 =4解得k=8所以,函数关系为y= 8x (x >2)(3)解:当y=2时,则2x=2,解得x=18x=2,解得x=4 4﹣1=3小时∴服药一次,治疗疾病的有效时间是3小时22.【答案】(1)解:∵反比例函数y =mx (k≠0)的图象与一次函数y =kx+b 的图象在第一象限交于A(1,6),B(3,n)两点∴将A(1,6)代入反比例函数表达式中 m=1×6=6∴反比例函数表达式为:y=6x把B(3,n)代入得 n=2 ∴B(3,2)将A 、B 代入y =kx+b 中得{k +b =63k +b =2∴{k =−2b =8∴反比例函数和一次函数的表达式分别为y =6x,y =﹣2x+8(2)解:由图象可得:当kx+b ﹣mx >0时,则1<x <3或x <0. 23.【答案】(1)解:在Rt △AOB 中∵A(4,0)∴OA =4,OB =8∴B(0,8)∵A ,B 两点在直线y =ax +b 上∴{b =84a +b =0 ∴{a =−2b =8∴直线AB 的解析式为y =−2x +8 过点C 作CE ⊥OA 于点E∵BC =3AC ∴AB =4AC ∴CE//OB ∴CE OB =AC AB =14∴CE =2 ∴C(3,2)∴k =3×2=6∴反比例函数的解析式为y =6x(2)解:由{y =−2x +8y =6x,解得{x =1y =6或{x =2y =3 ∴D(1,6)过点D 作DF ⊥y 轴于点F∴S △OCD =S △AOB −S △BOD −S △COA =12⋅OA ⋅OB −12⋅OB ⋅DF −12⋅OA ⋅CE=12×4×8−12×8×1−12×4×2=824.【答案】(1)解:树状图如下图:则点M所有可能的坐标为:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0)(2)解:∵点M(x,y)在函数y=﹣2x的图象上的有:(1,﹣2),(2,﹣1)∴点M(x,y)在函数y=﹣2x的图象上的概率为:29。

中考数学总复习《反比例函数与一次函数综合》专项训练题(带答案)

中考数学总复习《反比例函数与一次函数综合》专项训练题(带答案)

中考数学总复习《反比例函数与一次函数综合》专项训练题(带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角坐标系中,直线33y x =-与反比例函数k y x=的图象在第一象限交于点()2,A n ,在第三象限交于点B ,过点B 作BC x ⊥轴于C ,连接AC .(1)求反比例函数解析式;(2)求ABC 的面积;2.如图,一次函数y ax b =+与反比例函数k y x =()0k ≠的图象交于()23A -,,()1B m ,两点.(1)试求m 的值和一次函数的解析式;(2)求AOB 的面积.3.如图,在平面直角坐标系中,一次函数1y k x b =+的图象与反比例函数2k y x=的图象交于()2,1A -、()1,B n -两点,与x 轴交于点C .(1)求2k ,n 的值;(2)请直接写出不等式21k k x b x+<的解集; (3)连接OA 、OB ,求AOB 的面积.4.一次函数2y x b =+的图象与反比例函数()60y x x=>的图象交于点()16A ,,与x 轴交于点B .(1)求一次函数的表达式;(2)过点A 作AC x ⊥轴于点C ,求ABC 的面积.5.如图,在平面直角坐标系中,直线y x =与双曲线k y x =相交于()2,A m ,B 两点BC x ⊥轴,垂足为C .(1)求双曲线k y x=的解析式,并直接写出点B 的坐标. (2)求ABC 的面积.6.如图,一次函数y ax b =+的图象与反比例函数k y x=的图象交于第一象限C D ,两点,与坐标轴交于A 、 B 两点,连接(OC OD O ,是坐标原点).(1)求反比例函数的表达式及m 的值;(2)根据函数图象,直接写出不等式k ax b x +≥的解集为 .7.如图,已知一次函数y ax b =+与反比例函数(0)m y x x=<的图象交于(2,4)A -,(4,2)B -两点,且与x 轴和y 轴分别交于点C 、点D .(1)求反比例函数与一次函数的解析式;(2)根据图象直接写出不等式m ax b x<+的解集; (3)点P 在y 轴上,且13AOP AOB S S =△△,请求出点P 的坐标.8.如图,反比例函数m y x=的图象与一次函数y kx b =+的图象交于A 、B 两点,点A 的坐标为()23,,点B 的坐标为()1n ,.(1)求反比例函数与一次函数表达式;(2)结合图象,直接写出不等式m kx b x<+的解集.9.如图,一次函数2y kx =+的图象与x 轴交于点(4,0)A -,与反比例函数m y x =的图象交于点B ,C (-6,c ).(1)求反比例函数的表达式及点B 的坐标;(2)当m kx b x+≥时,直接写出x 的取值范围; (3)在双曲线m y x=上是否存在点P ,使ABP 是以点A 为直角顶点的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,一次函数y kx b =+的图象与反比例函数()0m y x x=>的图象交于点()2P n ,,与x 轴交于点()40A -,,与y 轴交于点C ,PB x ⊥轴于点B ,且AC BC =.(1)求一次函数、反比例函数的解析式;(2)在平面内找一点D ,使以B ,C ,P ,D 为顶点的四边形是平行四边形,求出点D 的坐标.11.如图,反比例函数1k y x =图象与一次函数2112y x =--的图象交于点()4,A a -与点B .(1)求a 的值与反比例函数关系式;(2)连接OA ,OB ,求AOB S ;(3)若12y y >,请结合图象直接写出x 的取值范围.12.如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()12A -,,(1),B m -.(1)求这两个函数的表达式;(2)在x 轴上是否存在点(0)(0),P n n >,使ABP 为等腰三角形?若存在,求n 的值,若不存在,说明理由.13.如图,在平面直角坐标系中,点()2,2A -,()6,6B -为Rt ABC △的顶点90BAC ∠=︒,点C 在x 轴上.将ABC 沿x 轴水平向右平移a 个单位得到A B C ''',A ,B 两点的对应点A ',B '恰好落在反比例函数()0k y x x=>的图象上.(1)求a 和k 的值;(2)作直线l 平行于A C ''且与A B '',B C ''分别交于M ,N ,若B MN '△与四边形MA C N ''的面积比为4:21,求直线l 的函数表达式;(3)在(2)问的条件下,是否存在x 轴上的点P 和直线l 上的点Q ,使得以P A Q ',,,B '四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P ,Q 的坐标;若不存在,请说明理由.14.如图,已知直线1y x m =-++与反比例函数()0,0m y x m x =>>的图象分别交于点A 和点B ,与x 轴交于点C ,与y 轴交于点D .(1)如图1,当点A 坐标为()1,3时 ①求直线AB 的解析式:①若点P 是反比例函数在第一象限直线AB 上方一点,当ABP 面积为2时,求点P 的坐标;(2)将直线CD 向上平移2个单位得到直线EF ,将双曲线位于CD 下方部分沿直线CD 翻折,若翻折后的图象(图中虚线部分)与直线EF 有且只有一个公共点,求m 的值.15.已知在直角坐标平面内,直线l 经过点()0,4A -,且与x 轴正半轴交于点B ,25cos 5BAO ∠=,反比例函数()0k y x x =>的图像与直线l 交于点()3,C m .(1)求k 的值;(2)点P 在上述反比例函数的图像上,联结BP 、PC ①过点P 作PD x 轴,交直线l 于点D ,若PD 平分BPC ∠,求PD 的长; ①作直线PC 交y 轴于点E ,联结BE ,若3PBE PBC S S =△△,请直接写出点P 的坐标.参考答案:1.(1)6y x=; (2)92.(1)16,42m y x =-=+ (2)83.(1)22k =-,n=2(2)2x >或10x -<<(3)324.(1)一次函数的表达式为24y x =+;(2)ABC 的面积为9.5.(1)4y x =;()2,2B -- (2)46.(1)4y x=;1m = (2)14x ≤≤7.(1)8y x=- 6y x =+ (2)42x -<<-(3)(0,2)P 或(0,2)-8.(1)6y x = 142y x =-+; (2)26x <<或0x <.9.(1)反比例函数得表达式为:6y x=()2,3B (2)60x -≤<或2x ≥(3)存在 1(1,6)P -- 2(3,2)P --10.(1)114y x =+ 8y x = (2)()01-,、()03,和()81,11.(1)1a = 4y x=- (2)3(3)40x -<<或2x >12.(1)2y x=- 1y x =-+; (2)114n =-+或217n =+13.(1)8a = 12k =(2)45y x (3)存在,点P 、Q 的坐标分别为4360855⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,或1405⎛⎫- ⎪⎝⎭,、625⎛⎫ ⎪⎝⎭,或36,85⎛⎫ ⎪⎝⎭ 1645⎛⎫ ⎪⎝⎭,14.(1)①4y x =-+;①()3636P +-,或()3636-+, (2)322m =+15.(1)6k =.(2)①125PD =;①94,23P ⎛⎫ ⎪⎝⎭或98,43P ⎛⎫ ⎪⎝⎭.。

中考数学综合题专题复习【反比例函数】专题解析附答案

中考数学综合题专题复习【反比例函数】专题解析附答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.3.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。

中考数学反比例函数专题训练(含答案)

中考数学反比例函数专题训练(含答案)

中考数学反比例函数专题训练(含答案)一、反比例函数的图象与性质1.已知反比例函数的解析式为y=( |a|-2 ) / x,则a 的取值范围是( )A. a ≠2B. a ≠-2C. a ≠±2D. a=±22.反比例函数y=-3 / x,下列说法不正确的是( )A. 图象经过点(1,-3)B. 图象位于第二、四象限C. 图象关于直线y=x 对称D. y 随x 的增大而增大3.下列各点中,与点(-3,4) 在同一个反比例函数图象上的点的是( )A. (2,-3)B. (3,4)C. (2,-6)D. (-3,-4)4.点M(a,2a) 在反比例函数y=8 / x 的图象上,那么a 的值是( )A. 4B. -4C. 2D. ±25.如果反比例函数y=(a-2) / x ( a 是常数) 的图象在第一、三象限,那么a 的取值范围是( )A. a<0B. a>0C. a<2D. a>26.若点A(-3,y1),B(-2,y2),C(1,y3) 都在反比例函数y=-12 / x 的图象上,则y1,y2,y3 的大小关系是( )A. y2<y1<y3B. y3<y1<y2C. y1<y2<y3D. y3<y2<y17.反比例函数y=k / x 的图象经过点A(-1,2),则当x>1 时,函数值y 的取值范围是( )A. y>-1B. -1<y<0C. y<-2D. -2<y<08.若点A(a,b) 在反比例函数y=3 / x 的图象上,则代数式ab-1 的值为________.9.反比例函数y=(2m-1)xm2-2,x>0时,y 随着x 的增大而增大,则m 的值是________.10.已知一个反比例函数的图象位于第二、四象限内,点P(x0,y0) 在这个反比例函数的图象上,且x0y0>-4.请你写出这个反比例函数的表达式__________.(写出符合题意的一个即可)11.已知A(x1,y1),B(x2,y2) 都在反比例函数y=-2 / x 的图象上.若x1x2=-4,则y1y2 的值为________.12.已知A(1,m),B(2,n) 是反比例函数y=k/x 图象上的两点,若m-n=4,则k 的值为________.13.已知反比例函数的图象经过三个点A(-4,-3)、B(2m,y1)、C(6m,y2).若y1-y2=4,则m 的值为________.14.已知反比例函数y=m / x 在其所在象限内y 随x 的增大而减小,点P(2-m,m+1) 是该反比例函数图象上一点,则m 的值为________.15.已知A(x1,y1),B(x2,y2) 是反比例函数y=k / x 图象上的两点,且x1+x2=-2,x1·x2=2,y1+y2=-4/3,则k=________.16.已知点A(x1,y1)、B(x2,y2) 是反比例函数y=k/x 图象上的两点,且(x1-x2)(y1-y2)=9,3x1=2x2,则k 的值为________.17.在平面直角坐标系xOy 中,点A(a,b) (a>0,b>0) 在双曲线y=k1/x 上,点A 关于x 轴的对称点B 在双曲线y=k2/x 上,则k1+k2 的值为________.18.反比例函数y=k/x 的图象上有一点P(2,n),将点P 向右平移1 个单位,再向下平移1 个单位得到点Q,若点Q 也在该函数的图象上,则k=________.19.已知A、B 两点分别在反比例函数y=(2m-3) / x ( m ≠3/2 ) 和y=(3m-2) / x ( m ≠2/3) 的图象上,且点A 与点B 关于y 轴对称,则m 的值为________.【参考答案】二、反比例函数与几何图形或一次函数结合1.若一次函数y=ax+6 (a≠0) 的图象与反比例函数y=3/x 的图象只有一个交点,则a 的值为________.2.若直线y=-x+m 与双曲线y=n/x (x>0) 交于A(2,a),B(4,b) 两点,则mn 的值为________.3.一次函数y1=-x+6 与反比例函数y2=8/x (x>0) 的图象如图所示,当y1>y2 时,自变量x 的取值范围是________.4. 如图,在平面直角坐标系中,直线y=-x+2 与反比例函数y=1/x 的图象有唯一公共点.若直线y=-x+b 与反比例函数y=1/x 的图象没有公共点,则b 的取值范围是________.5.如图,过x 轴的正半轴上任意一点P,作y 轴的平行线,分别与反比例函数y=3/x (x>0),y=-6/x (x>0) 的图象相交于点A,B,若C 为y 轴上任意一点,连接AC,BC,则△ABC 的面积为________.6.如图,矩形ABCD 的顶点A,C 在反比例函数y=k/x (k>0,x>0) 的图象上,若点A 的坐标为(3,4),AB=2,AD∥x 轴,则点C 的坐标为________.7.如图,正方形ABCD 的边长为2,点B 与原点O 重合,与反比例函数y=k/x 的图象交于E、F 两点,若△DEF 的面积为9/8,则k 的值为________.8.如图,已知反比例函数y=4/x 的图象经过Rt△OAB 斜边OB 的中点D,与直角边AB 相交于点C,则△OBC 的面积为________.9.如图,反比例函数y=k/x 的图象经过平行四边形ABCD 对角线的交点P,已知点A、C、D 在坐标轴上,BD⊥DC,平行四边形ABCD 的面积为6,则k=________.10.如图,点A,C 分别是正比例函数y=x 的图象与反比例函数y=4/x 的图象的交点,过A 点作AD⊥x 轴于点D,过C 点作CB⊥x 轴于点B,则四边形ABCD 的面积为________.11.如图,点A 是反比例函数y=-8/x 图象上的一点,过点A 的直线与y 轴交于点B,与反比例函数y=k/x (x>0) 的图象交于点C、D.若AB=BC=CD,则k 的值为________.12.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=k/x 在第一象限的图象经过点B,若OA2-AB2=8,则k 的值为________.【参考答案】。

中考数学专题复习:反比例函数综合题

中考数学专题复习:反比例函数综合题
设P(a,0),
当AB=AP时,5=
1−
2
+ 32 ,
解得a=5或a=-3(舍去),
故P(5,0);
当AB=PB时,5=|-3-a|,
解得a=-8或a=2,
故P(-8,0)或(2,0).
综上所述,符合条件的点P的坐标为(2,0)或(5,0)或(-8,0).
2 . Rt△ABC 在 直 角 坐 标 系 内 的 位 置 如 图 所 示 , 反 比 例 函 数 y =
∴OC=CE=2.
∵∠AEC=∠DOC=90°,∠ACE=∠DCO,
∴△AEC≌△DOC(ASA).
∴AE=OD=1.
∴A(-1,4).

∵点A在反比例函数y2= 的图象上,

∴k=-1×4=-4.
4
∴反比例函数的表达式为y2=- .

= −2 + 2,
1 = −1,
4
(2)方程组ቐ
的解为ቊ
(1)点A及点D的坐标;

(2)反比例函数y= 经过点F关于y轴的对称点F′,求k的值;

(3)点G和点H在直线AB上,平面内存在点P,使以E,G,H,P为顶
点的四边形是边长为6的菱形,符合条件的菱形有几个?请直接写出
满足条件的两个点P的坐标.
(1)点A的坐标为(8,0),点D的坐标为(4,3)
的菱形有5个,点P的坐标为
出两个即可)
158
144

25
25

48
(2)k=-
25
14
18
− ,
5
5

(3)符合条件
34

5

18

初三数学中考专题复习 反比例函数 综合练习题 含答案

初三数学中考专题复习  反比例函数   综合练习题 含答案

反比例函数综合练习题1.下列函数关系中,不是反比例函数的是( ) A .xy =-5 B .y =-73x C .y =2x y D .=x42.下列各点中,在反比例函数y =8x 的图象上的是( )A .(-1,8)B .(-2,4)C .(1,7)D .(2,4)3.若反比例函数y =2k -1x 的图象经过第二、四象限,则k 的取值范围是( )A .k>12B .k<12C .k =12D .不存在4. 为了更好的保护水资源,造福人类,某工厂计划建一个容积V(m 3)一定的污水处理池,池的底面积S(m 2)与其深度h(m)满足关系式:V =Sh(V≠0),则S 关于h 的函数图象大致是( )5.在反比例函数y =4x的图象上,阴影部分的面积不等于4的是( )6.若在同一坐标系中,直线y =k 1x 与双曲线y =k 2x 有两个交点,则有( )A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<07.如图,点A 和点B 都在反比例函数y =4x的图象上,且线段AB 过原点,过点A 作x 轴的垂线段,垂足为点C ,P 是线段OB 上的动点,连接CP.设△ACP 的面积为S ,则下列说法正确的是( )A .S >2B .S >4C .2<S <4D .2≤S ≤48.如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x 的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1=( )A .4 B.143 C.163D .69. 若点A(-5,y 1),B(-3,y 2),C(2,y 3)在反比例函数y =3x 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 3<y 2B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 310. 已知矩形的面积为8,则它的长y 与宽x 之间的函数关系用图象大致可以表示为( )11. 已知反比例函数y =2x ,则自变量x 的取值范围是________.12. 已知y =(m +3)x |m|-4是反比例函数,则m =________.13.已知P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,若x 2=x 1+2,且1y 2=1y 1+12,则这个反比例函数的表达式为________.14.如图,已知点P(6,3),过点P 作PM⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数y =kx 的图象交PM 于点A ,交PN 于点B.若四边形OAPB 的面积为12,则k=________.15.已知直线y =-3x 与双曲线y =m -5x 交于点P (-1,n).(1)求m 的值;(2)若点A (x 1,y 1),B(x 2,y 2)在双曲线y =m -5x 上,且x 1<x 2<0,试比较y 1,y 2的大小.16.如图,一次函数y 1=x +1的图象与反比例函数y 2=kx (k 为常数,且k≠0)的图象都经过点A(m ,2).(1)求点A 的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y 1与y 2的大小.17.制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(min ).当该材料加热时,温度y 与时间x 成一次函数关系;当停止加热进行操作时,温度y 与时间x 成反比例关系(如图).若该材料在操作加热前的温度为15 ℃,加热5分钟后温度达到60 ℃. (1)分别求出将材料加热和停止加热进行操作时,y 与x 间的函数关系式; (2)根据工艺要求,当材料的温度低于15℃时,停止操作,那么从开始加热到停止操作,共经历了多少时间?18.如图,四边形ABCD为正方形,点A,B的坐标分别为(0,2),(0,-3),反比例函数y=错误!的图象经过点C,一次函数y=ax+b的图象经过点A,C.(1)求反比例函数和一次函数的表达式;(2)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求P点的坐标.参考答案:1---10 DDBCB CDADB 11. x ≠0 12. 313. y =4x14. 615.(1)∵点P(-1,n)在直线y =-3x 上,∴n =3,∴点P 的坐标为(-1,3).∵点P(-1,3)在双曲线y =m -5x上,∴m =2.(2)由(1)得,双曲线的表达式为y =-3x.在第二象限内,y 随x 的增大而增大,∴当x 1<x 2<0时,y 1<y 2.16.(1)∵一次函数y 1=x +1的图象经过点A(m ,2),∴2=m +1.解得m =1.∴点A 的坐标为A(1,2).∵反比例函数y 2=k x 的图象经过点A(1,2),∴2=k′1.解得k′=2,∴反比例函数的表达式为y 2=2x.(2)由图象,得当0<x <1时,y 1<y 2;当x =1时,y 1=y 2;当x >1时,y 1>y 2.17.(1)当0≤x<5时,为一次函数,设一次函数关系式为y =kx +b ,由于一次函数图象过点(0,15),(5,60),所以⎩⎨⎧15=b ,60=5k +b ,解得⎩⎨⎧k =9,b =15.所以y =9x +15.当x≥5时,为反比例函数,设函数关系式为y =k′x,由于图象过点(5,60),所以k′=300.综上可知,y 与x 间的函数关系式为y =⎩⎨⎧9x +15(0≤x<5),300x (x≥5).(2)当y =15时,x =30015=20,所以从开始加热到停止操作,共经历了20分钟.18.(1)由题意知,C 点坐标为(5,-3),把C(5,-3)代入y =k x 中,-3=k5,∴k =-15.∴反比例函数的表达式为y =-15x.把A(0,2),C(5,-3)两点坐标分别代入y =ax +b 中,得⎩⎨⎧b =2,5a +b =-3.解得⎩⎨⎧a =-1,b =2.∴一次函数的表达式为y =-x +2. (2)设P 点坐标为(x ,y).∵S △OAP =S 正方形ABCD ,S △OAP =12×OA·|x|,S 正方形ABCD =52=25,∴12×OA·|x|=25,12×2|x|=25,x 1=25,x 2=-25将其分别代入y =-15x 中,得y 1=-35,y 2=35.∴P 点坐标为⎝⎛⎭⎪⎫25,-35或⎝ ⎛⎭⎪⎫-25,35.。

中考数学复习《反比例函数》专题练习-附带参考答案

中考数学复习《反比例函数》专题练习-附带参考答案

中考数学复习《反比例函数》专题练习-附带参考答案一、选择题1.下列函数关系式中,y 是x 的反比例函数的是( )A .y =x +3B .y =x 3C .y =3x 2D .y =3x 2.若反比例函数y=6x 的图像经过点(﹣2,a ),则a 的值是( )A .6B .﹣2C .﹣3D .3 3.已知反比例函数y =−1x ,下列结论不正确...的是( ) A .该函数图象经过点(−1,1)B .该函数图象位于第二、四象限C .y 的值随着x 值的增大而增大D .该函数图象关于原点成中心对称 4.反比例函数(其中),当时,y 随x 的增大而增大,那么m 的取值范围是( ) A . B .C .D . 5.在同一直角坐标系中,函数y =−kx +k 与y =k x (k ≠0)的大致图象可能为( )A .B .C .D .6.反比例函数y =6x 图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3)其中y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 3<x 1<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1 7.如图,A 、B 是第二象限内双曲线y =k x 上的点,A 、B 两点的横坐标分别是a ,3a ,线段AB 的延长线交x轴于点C ,S △AOC =12.则k 的值为( )A .﹣6B .﹣5C .﹣4D .﹣38.如图,矩形OABC与反比例函数y1=k1x(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=k2x(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3 B.﹣3 C.32D.−32二、填空题9.已知点A(−3,2)在反比例函数y=kx的图象上,则k的值为.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=kx(k<0)的图象上,则m n.(填“>”,“<”或“=”)11.正比例函数y=k1x(k1≠0)和反比例函数y= k2x(k2≠0)的一个交点为(m,n),则另一个交点为12.如图,在平面直角坐标系中,点A是x轴上任意一点,BC∥x轴,分别交y=2x (x>0),y=kx(x<0)的图象于B,C两点,若△ABC的面积是3,则k的值为.13.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为.三、解答题14.如图,一次函数的图象与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.(1)求一次函数与反比例函数的表达式;(2)请直接写出不等式的解集.15.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“嗐转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,y与x之间有如表关系:请根据表中的信息解决下列问题:(1)求出y与x之间的函数解析式;(2)若某人蒙上眼睛走出的大圆圈的半径为35米,则其两腿迈出的步长之差是多少厘米?(k>0).16.如图,设反比例函数的解析式为y=3kx(1)若反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若反比例函数的图象与过点M (﹣2,0)的直线l :y =kx+b 的图象交于A 、B 两点,如图,当△ABO 的面积为12时,求直线l 的解析式.17.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第10分钟起每分钟每毫升血液中含药量增加0.3微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1) ; (2)分别求出当和时,y 与x 之间的函数关系式; (3)如果每毫升血液中含药量不低于12微克时是有效的,求一次服药后的有效时间是多少分钟?18.如图,一次函数 y ax b =+ 的图象与反比例函数 k y x=的图象交于第一象限C ,D 两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)求△DOC 的面积.(3)双曲线上是否存在一点P ,使得△POC 和△POD 全等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.参考答案1.B2.C3.C4.A5.D6.C7.A8.B9.k=-610.>11.(-m,-n).12.−413.1014.(1)解:点在反比例函数的图象上反比例函数解析式为;OA=OB,点在轴负半轴上点.把点、代入中得解得:一次函数的解析式为;(2) 15.(1)解:设y 与x 之间的函数解析式为y =k x 将(2,7)代入得7=k 2∴k =14∴y 与x 之间的函数解析式为y =14x . (2)解:当y =35时,即14x =35,解得x =0.4∴某人蒙上眼睛走出的大圆圈的半径为35米,其两腿迈出的步长之差是0.4厘米.16.(1)解:∵反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2 把y =2代入y =2x 求得x =1∴反比例函数与正比例函数y =2x 的图象交点的坐标为(1,2)把(1,2)代入y =3k x (k >0),得到3k =2 ∴k =23;(2)解:把M (﹣2,0)代入y =kx+b ,可得b =2k∴y =kx+2k解{y =3k x y =kx +2k 得{x =−3y =−k 或{x =1y =3k∴B (﹣3,﹣k ),A (1,3k )∵△ABO 的面积为12∴12•2•3k+12•2•k =12解得k =3∴直线l 的解析式为y =3x+6.17.(1)27(2)解:当时,设y 与x 之间的函数关系式为∵经过点 ∴解得:,∴解析式为;当时,y 与x 之间的函数关系式为∵经过点∴解得:∴函数的解析式为; (3)解:令解得:令,解得:∴分钟 ∴服药后能持续175分钟.18.(1)∵点C (1,2)在反比例函数 图象上 ∴k=2∴反比例函数解析式为 2y x= ∵点B (2,m )在反比例函数 图象上 ∴m= 22=1. (2)如图,过点C 作⊥OA 于E ,过点D 作DF ⊥OA 于 Fk y x =2y x =∵C (1,2),D (2,1)∴CE=2,DF=1∵C 、D 在一次函数 的图象上∴221a b a b +=⎧⎨+=⎩解得: 13a b =-⎧⎨=⎩∴一次函数解析式为y=-x+3当y=0时,x=3∴A 点坐标为(3,0)∴OA=3∴DOC S =S △AOC -S △AOD = 1122OA CE OA DF ⋅-⋅ = 11323122⨯⨯-⨯⨯ =1.5.(3)设点P 坐标为(n , 2n )∵C (2,1),D (1,2)∴OC=OD∵△POC 和△POD 全等∴PC=PD ∴222222(1)(2)(2)(1)n n n n -+-=-+-解得: 2n =∴P (, )或P ( 2 , ) ∴双曲线上存在一点P ,使得△POC 和△POD 全等,P ( , )或P ( , ). y ax b =+222-2222。

中考数学总复习《反比例函数》专项测试题-附参考答案

中考数学总复习《反比例函数》专项测试题-附参考答案

中考数学总复习《反比例函数》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.如果反比例函数y=kx的图象经过点(1,−2),那么k等于( )A.−2B.2C.−12D.122.已知点A在双曲线y=−2x上,点B在直线y=x−4上,且A,B两点关于y轴对称,设点A的坐标为(m,n),则mn +nm的值是( )A.−10B.−8C.6D.43.如图,点A是反比例函数y=3x(x>0)的图象上任意一点,AB∥x轴交反比例函数y=−2x的图象于点B,以AB为边作平行四边形ABCD,其中C,D在x轴上,则S平行四边形ABCD为( )A.2B.3C.4D.54.下列函数关系式中属于反比例函数的是( )A.y=3x B.y=−3xC.y=x2+3D.x+y=35.如图,点A是反比例函数y=3x(x>0)的图象上任意一点,AB∥x轴交反比例函数y=−2x的图象于点B,以AB为边作平行四边形ABCD,其中C,D在x轴上,则S平行四边形ABCD为( )A.2B.3C.4D.56.如果反比例函数y=kx的图象经过点(−2,3),那么函数的图象应在( ) A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限7.正比例函数y=x与反比例函数y=1x的图象相交于A,C两点.AB⊥x轴于B,CD⊥x轴于D(如图),则四边形ABCD的面积为( )A.1B.32C.2D.528.对于反比例函数y=−2x,下列说法不正确的是( )A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,−2)D.若A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2二、填空题(共5题,共15分)9.点A(a,b)是一次函数y=x−2与反比例函数y=4x的交点,则a2b−ab2=.10.双曲线 y =2x经过点 A (2,y 1) 和点 B (3,y 2),则 y 1 y 2.(填“>”、“<”或“=”)11.若点 P 1(1,m ),P 2(2,n ) 在反比例函数 y =kx (k <0) 的图象上,则 m n (填 ">""<"或"=" ).12.点 P ,Q ,R 在反比例函数 y =kx (常数 k >0,x >0)图象上的位置如图所示,分别过这三个点作 x 轴、 y 轴的平行线.图中所构成的阴影部分面积从左到右依次为 S 1,S 2,S 3.若 OE =ED =DC ,S 1+S 3=27,则 S 2 的值为 .13.若关于 t 的不等式组 {t −a ≥0,2t +1≤4恰有三个整数解,则关于 x 的一次函数 y =14x −a的图象与反比例函数 y =3a+2x的图象的公共点的个数为 .三、解答题(共3题,共45分)14.已知函数y=(m ﹣1)x|m|﹣2是反比例函数. (1)求m 的值;(2)求当x=3时,y 的值.15.如图,一次函数y=kx+b 的图象与反比例函数y=mx (x >0)的图象交于P (n ,2),与x轴交于A(﹣4,0),与y轴交于C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象有一点D,使得以B、C、P、D为顶点的四边形是菱形,求出点D的坐标.16.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如下图,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井.参考答案1. 【答案】A2. 【答案】A3. 【答案】D4. 【答案】B5. 【答案】D6. 【答案】C7. 【答案】C8. 【答案】B9. 【答案】810. 【答案】>11. 【答案】<12. 【答案】27513. 【答案】1或014.【答案】解:(1)|m|﹣2=﹣1且m﹣1≠0解得:m=±1且m ≠1 ∴m=﹣1.(2)当m=﹣1时,原方程变为y=﹣ 当x=3时,y=﹣. 考点:反比例函数的定义.15.【答案】解:(1)∵AC=BC ,CO ⊥AB ,A (﹣4,0) ∴O 为AB 的中点,即OA=OB=4 ∴P (4,2),B (4,0)将A (﹣4,0)与P (4,2)代入y=kx+b 得: {;−4k +b =04k +b =2解得:k=14,b=1∴一次函数解析式为y=14x+1将P (4,2)代入反比例解析式得:m=8,即反比例解析式为y=14.(2)如图所示当PB 为菱形的对角线时 ∵四边形BCPD 为菱形 ∴PB 垂直且平分CD ∵PB ⊥x 轴,P (4,2) ∴点D (8,1).当PC 为菱形的对角线时,PB ∥CD此时点D 在y 轴上,不可能在反比例函数的图象上,故此种情形不存在. 综上所述,点D (8,1).16.【答案】解:(1)因为爆炸前浓度呈直线型增加,所以可设y 与x 的函数关系式为y=k 1x+b (k 1≠0),由图象知y=k 1x+b 过点(0,4)与(7,46),则{b =47k 1+b =46,解得{k 1=6b =4,则y=6x+4,此时自变量x 的取值范围是0≤x ≤7.(不取x=0不扣分,x=7可放在第二段函数中)∵爆炸后浓度成反比例下降,∴可设y 与x 的函数关系式为y=k2x (k 2≠0).由图象知y=k 2x过点(7,46),∴k 27=46,∴k 2=322,∴y=322x,此时自变量x 的取值范围是x >7.(2)当y=34时,由y=6x+4得,6x+4=34,x=5.∴撤离的最长时间为7﹣5=2(小时).∴撤离的最小速度为3÷2=1.5(km/h ).(3)当y=4时,由y=322x得,x=80.5,80.5﹣7=73.5(小时).∴矿工至少在爆炸后73.5小时才能下井。

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)一、单选题1.如图,反比例函数y= 2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.82.小兰画了一个函数y= ax−1的图象如图,那么关于x的分式方程ax−1=2的解是()A.x=1B.x=2C.x=3D.x=43.若A(a1,b1),B(a2,b2)是反比例函数y = –√2x图象上的两点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1 = b2C.b1>b2D.不能确定4.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=Vℎ(ℎ≠0),这个函数的图象大致是()A.B.C.D.5.若反比例函数y=k x(k为常数,且k≠0)的图象过点(3,-4),则下列各点在该图象上的是()A.(6,-8)B.(-6,8)C.(-3,4)D.(-3,-4)6.已知反比例函数y=k x(k>0)的图象与直线y=﹣x+6相交于第一象限A、B的两点.如图所示,过A、B两点分别作x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②四边形OCPD 是正方形;③若k=5.则△ABP的面积是8;④P点一定在直线y=x上,其中正确命题的个数是几个()A.4B.3C.2D.17.已知点P(3,2)在反比例函数y=k x(k≠0)图象上,则下列各点中在此反比例函数图象上的是()A.(−3,−2)B.(3,−2)C.(−2,3)D.(2,−3)8.下列函数:①y=−x;②y=−1x;③y=√2x;④y=120x2+240x+3(x<0)中,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=k x(x >0)的图象上,若△C=60°,AB=2,则k的值为()A.√2B.√3C.1D.2 10.对于反比例函数y=﹣1x,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小11.一次函数y=ax+a与反比例函数y=−ax(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.12.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是() A.B.C.D.二、填空题13.如图,在平面直角坐标系中,菱形ABCD的顶点A与D在函数y=k x(x>0)的图象上,AC⊥x轴,垂足为C,∠BCO=30°,点B的坐标为(0,1),则k的值为.14.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB 的面积是.15.反比例函数y=7x图象与正比例函数y=kx图象交于A(x1,y1),B(x2,y2),则x1y2+x2y1的值为.16.如图,正比例函数y1=ax(a≠0)与反比例函数y2=k x(k≠0)的图象相交于A,B两点,其中点A的坐标为(1,3).当y1<y2时,x的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上、顶点D在y 轴的正半轴上,点C在第二象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C,且S△BEF=12,则k的值为.18.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点M,N,与反比例函数y=kx的图象在第一象限内交于点B,过点B作BA△x轴,BC△y轴.垂足分别为点A,C.当矩形OABC与△OMN 的面积相等时,点B的坐标为.三、综合题19.如图,双曲线y1=k x(k为常数,且k≠0)与直线y2=﹣13x+b交于点A(﹣2,a)和B(3c,2﹣c).(1)求k,b的值;(2)求直线与x轴的交点坐标.20.如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y= k1x的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y= k2x(x>0)的图象交于点D(n,﹣2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△△ACE?若存在,求出点F的坐标;若不存在,请说明理由.21.如图,直线y=2x+1与双曲线相交于点A(m,32)与x轴交于点B.(1)求双曲线的函数表达式:(2)点P在x轴上,如果△ABP的面积为6,求点P坐标.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣2|x−2|x−1上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣101243322345…y (5)2834﹣40﹣1﹣43…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣2|x−2|x−1的图象;(3)根据函数图象,写出该函数的一条性质:;(4)结合所画函数图象,直接写出不等式﹣2|x−2|x−1<﹣53x+5的解集为:.(保留1位小数,误差不超过0.2)23.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+2ax−a2−a+2(a 是常数)上.(1)若该二次函数图象的顶点在第二象限时,求a的取值范围;(2)若抛物线的顶点在反比例函数y=−8x(x<0)的图象上,且y1=y2,求x1+x2的值;(3)若当1<x1<x2时,都有y2<y1<1,求a的取值范围.24.如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数y=k x(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】A9.【答案】B10.【答案】C11.【答案】A12.【答案】B13.【答案】2√314.【答案】815.【答案】-1416.【答案】x<-1或0<x<117.【答案】-1218.【答案】(−1+√3,1+√3)19.【答案】(1)解:∵点B(3c,2﹣c)在直线y2=﹣13x+b的图象上∴−13×3c+b=2−c解得:b=2∴直线解析式为y2=﹣13x+2∵点A(﹣2,a)在直线y2=﹣13x+2的图象上∴a=−13×(−2)+2=83∴点A坐标为(-2,8 3)∵点A(-2,83)在y1=kx图象上∴83=k−2解得:k=−16 3 .(2)解:∵直线解析式为y2=﹣13x+2∴当y2=0时,x=6∴直线与x轴的交点坐标为(6,0).20.【答案】(1)解:将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4)将A(1,4)代入反比例解析式y= k1x得:k1=4;过A作AM△y轴,过D作DN△y轴∴△AMB=△DNB=90°∴△BAM+△ABM=90°∵AC△BD,即△ABD=90°∴△ABM+△DBN=90°∴△BAM=△DBN∴△ABM△△BDN∴AMBN=BMDN,即14=2DN∴DN=8∴D(8,﹣2)将D坐标代入y= k2x得:k2=﹣16(2)解:符合条件的F坐标为(0,﹣8),理由为:由y=2x+2,求出C坐标为(﹣1,0)∵OB=ON=2,DN=8∴OE=4可得AE=5,CE=5,AC=2 √5,BD=4 √5,△EBO=△ACE=△EAC若△BDF△△ACE,则BDAC=BFAE,即√52√5=BF5解得:BF=10则F(0,﹣8).综上所述:F点坐标为(0,﹣8)时,△BDF△△ACE.21.【答案】(1)解:把A(m,32)代入直线y=2x+1得:32=2m+1,即m=14∴A(14,32)∵点A(14,32)为直线与反比例函数y=kx的交点把A点坐标代入y=k x,得k=14× 32=38则双曲线解析式为y=38x;(2)解:对于直线y=2x+1,令y=0,得到x=−12,即B(−12,0)设P(x,0),可得PB=|x+1 2|∵△ABP面积为6∴12×|x+12|×32=6,即|x+12|=8解得:x=7.5或x=﹣8.5则P坐标为(7.5,0)或(﹣8.5,0). 22.【答案】(1)解:如下表所示:x…﹣3﹣2﹣101243322345…y (5)283346﹣4-20﹣1﹣43-32…(3)当x<1时,y随x的增大而增大(4)x<0.3或1<x<3.723.【答案】(1)解:∵y=−x2+2ax−a2−a+2=−(x−a)2−a+2第 11 页 共 11 页 ∴ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点为 (a ,−a +2) ∵ 抛物线的顶点在第二象限∴{a <0−a +2>0解得 2<a <0 ;(2)解: ∵ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点在反比例函数 y =−8x(x <0) 的图象上 ∴a(−a +2)=−8解得 a =4 或 a =−2∵a <0∴a =−2∴ 顶点为 (−2,4)∵y 1=y 2∴ 点 A(x 1,y 1) , B(x 2,y 2) 关于直线 x =−2 对称∴x 1+x22=−2∴x 1+x 2=−4 ;(3)解: ∵ 当 1<x 1<x 2 时,都有 y 2<y 1<1∴ 抛物线的对称轴 x =a <1 ,经过点为 (1,1)∴{a <1−1+2a −a 2−a +2=1解得 a =0 或 a =−3故 a 的取为0或-3.24.【答案】(1)解:由题意可知,m (m+1)=(m+3)(m ﹣1). 解得m=3.∴A (3,4),B (6,2); ∴k=4×3=12, ∴y =12x∵A 点坐标为(3,4),B 点坐标为(6,2), ∴{3a +b =46a +b =2 , ∴{a =−23b =6 ,∴y=﹣ 23 x+6 (2)解:根据图象得x 的取值范围:0<x <3或x >6.。

中考数学总复习《反比例函数与一次函数综合》专题训练-附答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,已知反比例函数()10cy c x=≠和一次函数()20y kx b k =+≠的图象相交于点()2,3A -和()3,B a .(1)求反比例函数和一次函数的表达式;(2)将一次函数2y 向下平移5个单位长度后得到直线3y ,当213y y y >>时,求x 的取值范围. 2.如图,反比例函数()0ky k x=>的图象经过正方形OABC 的顶点B ,一次函数1y x =+经过BC 的中点D .(1)求反比例函数的表达式;(2)将ABD △绕点A 顺时针旋转90︒,点D 的对应点为E ,判断E 点是否落在双曲线上. 3.如图,反比例函数()0ky k x=< 的图象与矩形ABCO 的边相交于D 、E 两点()51E -,,且23AD BD =∶∶,一次函数经过D 、E 两点.(1)求反比例函数与一次函数的解析式; (2)求BDE △的面积.4.对于实数,a b ,我们可以用{}min ,a b 表示,a b 两数中较小的数,例如{}min 3,11-=- {}min 2,22=,类x x⎩⎭(1)求反比例函数的解析式;(2)请直接写出不等式2kx x ->的解集;(3)点P 为反比例函数ky x=图像的任意一点,若3POC AOC S S =△△,求点P 的坐标. 7.如图,一次函数y mx n =+()0m ≠的图象与反比例函数ky x=()0k ≠的图象交于第二、四象限内的点(),3A a 和点()6,B b .过点A 作x 轴的垂线,垂足为点C ,AOC 的面积为3(1)分别求出一次函数y mx n =+()0m ≠与反比例函数ky x=()0k ≠的表达式; (2)结合图象直接写出kmx n x>+的解集; (3)在x 轴正半轴上取点P ,使PA PB -取得最大值时,求出点P 的坐标.8.如图,直线y =2x +6与反比例函数=ky x(k >0)的图象交于点A (1,m ),与x 轴交于点B ,平行于x 轴的直线y =n (0<n <6)交反比例函数的图象于点M ,交AB 于点N ,连接BM .x,求AOB 的面积;根据图象,请直接写出满足不等式1y kx b =+C ,点A 的坐标为(2)若点E 是点C 关于x 轴的对称点,求ABE 的面积. 11.已知平面直角坐标系中,直线AB 与反比例函数(0)ky x x=>的图象交于点()1,3A 和点()3,B n ,与x 轴交于点C ,与y 轴交于点D .(1)求反比例函数的表达式及n 的值;(2)将OCD 沿直线AB 翻折,点O 落在第一象限内的点E 处,EC 与反比例函数的图象交于点F . △请求出点F 的坐标;△将线段BF 绕点B 旋转,在旋转过程中,求线段OF 的最大值. 12.如图,正比例函数(0)y kx k =≠与反比例函数my (m 0)x=≠的图象交于A 、B 两点,A 的横坐标为4-,B 的纵坐标为6-.(1)求反比例函数的表达式. (2)观察图象,直接写出不等式mkx x<的解集. (3)将直线AB 向上平移n 个单位,交双曲线于C 、D 两点,交坐标轴于点E 、F ,连接OD 、BD ,若OBD 的面积为20,求直线CD 的表达式.13.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示.②的面积是OCD.如图,已知一次函数y轴交于点,若ACD的面积为16.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为()1,0,点()44D ,在反比例函数()0k y x x=>的图象上,直线23y x b =+经过点C ,与y 轴交于点E ,与x 轴交于点M ,连接AC 、AE .(1)求k 、b 的值; (2)求ACE △的面积;(3)在x 轴上取点P ,求出使PC PE -取得最大值时点P 的坐标. 17.已知反比例函数1k y x=图象经过点(3,2)A ,直线:(0)l y kx b k =+<,经过点(2,0)C -,经过点A 且垂直于x 轴的直线与直线l 相交于B .(1)求1k 的值;(2)若ABC 的面积等于15,求直线l 的解析式;(3)点G 在反比例函数的图象上,点Q 在x 轴上,问是否存在点G 和点Q ,使以G .Q 及(2)中的C .B 四点为顶点的四边形是平行四边形,若存在,请求出点Q 的坐标,若不存在,请说明理由. 18.(综合与探究)如图,在平面直角坐标系中,已知反比例函数()0ky x x=<的图象过点()4,2C -,点D 的纵坐标为4,直线CD 与x 轴,y 轴分别交于点,A B .Rt AOB直角边上的一个动点,当16PCD AOBS S=时,求点关于y轴的对称点为x轴的对称点为,N 使得以点,,M N为顶点的四边形是平行四边形?若存在,标;若不存在,请说明理由..如图,已知直线y=x参考答案:3.(1)5y x =- 1722y x =+(2)944.(1)B (2)直线1x = 5.(1)1y x =- 2y x= (2)(1,0)C 12x <≤6.(1)3y x= (2)10x -<<或3>x (3)()1,3或()1,3--7.(1)反比例函数的表达式为6y x =-,一次函数表达式为122y x =-+.(2)2x <-或06x << (3)()10,0P 8.(1)8y x= (2)39.(1)反比例函数的表达式为:22y x=-(2)32AOBS=(3)20x -<<或1x >10.(1)一次函数解析式1y x 4=-,反比例函数解析式212y x= (2)32ABE S =△11.(1)3y x= 1n =(2)△F 点坐标为3(4,)4;△线段OF 的最大值为17104+12.(1)24y x=-(2)40x -<<或>4x。

2024年中考数学《反比例函数及其应用》真题含解析

2024年中考数学《反比例函数及其应用》真题含解析

专题反比例函数及其应用(41题)一、单选题1.(2024·安徽·中考真题)已知反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,则k的值为()A.-3B.-1C.1D.3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出y=2-3=-1,代入反比例函数求解即可【详解】解:∵反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,∴y=2-3=-1,∴-1=k3,∴k=-3,故选:A2.(2024·重庆·中考真题)反比例函数y=-10x的图象一定经过的点是()A.1,10B.-2,5C.2,5D.2,8【答案】B【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当x=1时,y=-101=-10,图象不经过1,10,故A不符合要求;当x=-2时,y=-10-2=5,图象一定经过-2,5,故B符合要求;当x=2时,y=-102=-5,图象不经过2,5,故C不符合要求;当x=2时,y=-102=-5,图象不经过2,8,故D不符合要求;故选:B.3.(2024·天津·中考真题)若点A x1,-1,B x2,1,C x3,5都在反比例函数y=5x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x1<x3<x2C.x3<x2<x1D.x2<x1<x3【答案】B【分析】本题主要考查了比较反比例函数值的大小,根据反比例函数性质即可判断.【详解】解:∵k=5>0,∴反比例函数y =5x的图象分布在第一、三象限,在每一象限y 随x 的增大而减小,∵点B x 2,1 ,C x 3,5 ,都在反比例函数y =5x的图象上,1<5,∴x 2>x 3>0.∵-1<0,A x 1,-1 在反比例函数y =5x的图象上,∴x 1<0,∴x 1<x 3<x 2.故选:B .4.(2024·广西·中考真题)已知点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,若x 1<0<x 2,则有()A.y 1<0<y 2B.y 2<0<y 1C.y 1<y 2<0D.0<y 1<y 2【答案】A【分析】本题考查了反比例函数的图象,熟练掌握反比例函数图象上点的坐标特征是解题的关键.根据点M x 1,y 1 ,N x 2,y 2 在反比例函数图象上,则满足关系式y =2x,横纵坐标的积等于2,结合x 1<0<x 2即可得出答案.【详解】解:∵点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,∴x 1y 1=2,x 2y 2=2,∵x 1<0<x 2,∴y 1<0,y 2>0,∴y 1<0<y 2.故选:A .5.(2024·浙江·中考真题)反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点.下列正确的选项是()A.当t <-4时,y 2<y 1<0B.当-4<t <0时,y 2<y 1<0C.当-4<t <0时,0<y 1<y 2D.当t >0时,0<y 1<y 2【答案】A【分析】本题考查了反比例函数图象上的点的坐标特征,由于反比例函数y =4x,可知函数位于一、三象限,分情况讨论,根据反比例函数的增减性判断出y 1与y 2的大小.【详解】解:根据反比例函数y =4x,可知函数图象位于一、三象限,且在每个象限中,y 都是随着x 的增大而减小,反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点,当t<t+4<0,即t<-4时,0>y1>y2;当t<0<t+4,即-4<t<0时,y1<0<y2;当0<t<t+4,即t>0时,y1>y2>0;故选:A.6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A.若x=5,则y=100B.若y=125,则x=4C.若x减小,则y也减小D.若x减小一半,则y增大一倍【答案】C【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x度,能使用y天.∴xy=500,∴y=500x,当x=5时,y=100,故A不符合题意;当y=125时,x=500125=4,故B不符合题意;∵x>0,y>0,∴当x减小,则y增大,故C符合题意;若x减小一半,则y增大一倍,表述正确,故D不符合题意;故选:C.7.(2024·四川泸州·中考真题)已知关于x的一元二次方程x2+2x+1-k=0无实数根,则函数y=kx与函数y=2x的图象交点个数为()A.0B.1C.2D.3【答案】A【分析】本题考查了根的判别式及一次函数和反比例函数的图象.首先根据一元二次方程无实数根确定k 的取值范围,然后根据一次函数和反比例函数的性质确定其图象的位置.【详解】解:∵方程x2+2x+1-k=0无实数根,∴Δ=4-41-k<0,解得:k<0,则函数y=kx的图象过二,四象限,而函数y=2x的图象过一,三象限,∴函数y=kx与函数y=2x的图象不会相交,则交点个数为0,故选:A.8.(2024·重庆·中考真题)已知点-3,2 在反比例函数y =kxk ≠0 的图象上,则k 的值为()A.-3B.3C.-6D.6【答案】C【分析】本题考查了待定系数法求反比例解析式,把-3,2 代入y =kxk ≠0 求解即可.【详解】解:把-3,2 代入y =kxk ≠0 ,得k =-3×2=-6.故选C .9.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数y =kx的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,OE =2AE ,若四边形ODAF 的面积为2,则k 的值是()A.25B.35C.45D.85【答案】D【分析】本题考查了矩形的性质、三角形面积的计算、反比例函数的图象和性质、相似三角形的判定和性质;熟练掌握矩形的性质和反比例函数的性质是解决问题的关键.过点E 作EM ⊥OC ,则EM ∥AC ,设E a ,k a ,由△OME ∽△OCA ,可得OC =32a ,AC =32⋅ka,再由S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF ,列方程,即可得出k 的值.【详解】过点E 作EM ⊥OC ,则EM ∥AC ,∴△OME ∽△OCA ,∴OM OC =EM AC =OEOA设E a ,k a ,∵OE =2AE ∴OM OC =EM AC=23,∴OC =32a ,AC =32⋅ka∴S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF =32a ⋅32⋅ka即k 2+k 2+2=32a ⋅32⋅k a ,解得:k =85故选D10.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线y =12xx >0 经过A 、B 两点,连接OA 、AB ,过点B 作BD ⊥y 轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则△AEB 的面积是()A.4.5B.3.5C.3D.2.5【答案】A【分析】本题考查了反比例函数,相似三角形的判定与性质等知识,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a ,证明△AFE ∽△ODE ,有AF OD =AE OE=EF DE ,根据E 为AO 的中点,可得AF =OD ,EF =DE ,进而有EF =DE =12DF =12a ,AF =OD =12y A =6a ,可得y B =OD =6a ,x B=2a ,则有BE =BD -DE=32a ,问题随之得解.【详解】如图,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a,a >0,∵BD ⊥y 轴,AF ⊥BD ,∴AF ∥y 轴,DF =a ,∴△AFE ∽△ODE ,∴AF OD =AE OE=EFDE ,∵E 为AO 的中点,∴AE =OE ,∴AF OD =AE OE=EFDE =1,∴AF =OD ,EF =DE ∴EF =DE =12DF =12a ,AF =OD =12y A =6a,∵OD =y B ,∴y B =OD =6a,∴xB =2a ,∴BD=x B=2a,∴BE=BD-DE=32a,∴S△ABE=12×AF×BE=12×6a×32a=92=4.5,故选:A.11.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数y=4x+2的图像与坐标轴的交点个数是()A.0B.1C.2D.4【答案】B【分析】根据函数表达式计算当x=0时y的值,可得图像与y轴的交点坐标;由于4x+2的值不可能为0,即y≠0,因此图像与x轴没有交点,由此即可得解.本题主要考查了函数图像与坐标轴交点个数,掌握求函数图像与坐标轴交点的计算方法是解题的关键.【详解】当x=0时,y=42=2,∴y=4x+2与y轴的交点为0,2;由于4x+2是分式,且当x≠-2时,4x+2≠0,即y≠0,∴y=4x+2与x轴没有交点.∴函数y=4x+2的图像与坐标轴的交点个数是1个,故选:B.12.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O是坐标原点,点A4,2在函数y=k xk>0,x>0的图象上.将直线OA沿y轴向上平移,平移后的直线与y轴交于点B,与函数y=k xk>0,x>0的图象交于点C.若BC=5,则点B的坐标是()A.0,5B.0,3C.0,4D.0,25【答案】B【分析】本题主要考查反比例函数、解直角三角形、平移的性质等知识点,掌握数形结合思想成为解题的关键.如图:过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,先根据点A坐标计算出sin∠OAE、k值,再根据平移、平行线的性质证明∠DBC=∠OAE,进而根据sin∠DBC=CDBC=sin∠OAE求出CD,最后代入反比例函数解析式取得点C的坐标,进而确定CD=2,OD=4,再运用勾股定理求得BD,进而求得OB即可解答.【详解】解:如图,过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,则AE∥y轴,∵A4,2,∴OE=4,OA=22+42=25,∴sin∠OAE=OEOA =425=255.∵A4,2在反比例函数的图象上,∴k=4×2=8.∴将直线OA向上平移若干个单位长度后得到直线BC,∴OA∥BC,∴∠OAE=∠BOA,∵AE∥y轴,∴∠DBC=∠BOA,∴∠DBC=∠OAE,∴sin∠DBC=CDBC =sin∠OAE=255,∴CD5=255,解得:CD=2,即点C的横坐标为2,将x=2代入y=8x,得y=4,∴C点的坐标为2,4,∴CD=2,OD=4,∴BD=BC2-CD2=1,∴OB=OD-BD=4-1=3,∴B0,3故选:B.13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC中,AB=AC,反比例函数y=kxk≠0的图象经过点A、B及AC的中点M,BC∥x轴,AB与y轴交于点N.则ANAB的值为()A.13B.14C.15D.25【答案】B【分析】本题考查反比例函数的性质,平行线分线段成比例定理,等腰三角形的性质等知识,找到坐标之间的关系是解题的关键.作辅助线如图,利用函数表达式设出A 、B 两点的坐标,利用D ,M 是中点,找到坐标之间的关系,利用平行线分线段成比例定理即可求得结果.【详解】解:作过A 作BC 的垂线垂足为D ,BC 与y 轴交于E 点,如图,在等腰三角形ABC 中,AD ⊥BC ,D 是BC 中点,设A a ,k a,B b ,kb ,由BC 中点为D ,AB =AC ,故等腰三角形ABC 中,∴BD =DC =a -b ,∴C 2a -b ,kb,∵AC 的中点为M ,∴M 3a -b 2,ka +kb 2 ,即3a -b 2,k a +b 2ab,由M 在反比例函数上得M 3a -b 2,k 3a -b2,∴k a +b 2ab=k3a -b 2,解得:b =-3a ,由题可知,AD ∥NE ,∴AN AB=DE BD =a a -b =a a +3a =14.故选:B .二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数y =kxk ≠0 的图象经过点3,y 1 和-3,y 2 ,则y1+y2的值是.【答案】0【分析】本题考查了反比例函数图象上点的坐标特征,已知自变量求函数值,熟练掌握反比例函数的性质是解题的关键.将点3,y1和-3,y2代入y=kxk≠0,求得y1和y2,再相加即可.【详解】解:∵函数y=kxk≠0的图象经过点3,y1和-3,y2,∴有y1=k3,y2=-k3,∴y1+y2=k3-k3=0,故答案为:0.15.(2024·云南·中考真题)已知点P2,n在反比例函数y=10x的图象上,则n=.【答案】5【分析】本题考查反比例函数图象上点的坐标特征,将点P2,n代入y=10x求值,即可解题.【详解】解:∵点P2,n在反比例函数y=10x的图象上,∴n=102=5,故答案为:5.16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线y1=ax+b a≠0与双曲线y2=kxk≠0交于点A-1,m,B2,-1.则满足y1≤y2的x的取值范围.【答案】-1≤x<0或x≥2【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当-1≤x<0或x≥2时,y1≤y2,∴满足y1≤y2的x的取值范围为-1≤x<0或x≥2,故答案为:-1≤x<0或x≥2.17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f与弦长l成反比例关系,即f=kl(k为常数.k≠0),若某乐器的弦长l为0.9米,振动频率f为200赫兹,则k的值为.【答案】180【分析】本题考查了待定系数法求反比例函数解析式,把l=0.9,f=200代入f=kl求解即可.【详解】解:把l=0.9,f=200代入f=kl,得200=k0.9,解得k=180,故答案为:180.18.(2024·陕西·中考真题)已知点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,若0<m<1,则y1+y20.【答案】</小于【分析】本题主要考查了反比例函数的性质,先求出y1=52,y2=-5m,再根据0<m<1,得出y2<-5,最后求出y1+y2<0即可.【详解】解:∵点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,∴y1=52,y2=-5m,∵0<m<1,∴y2<-5,∴y1+y2<0.故答案为:<.19.(2024·湖北武汉·中考真题)某反比例函数y=kx具有下列性质:当x>0时,y随x的增大而减小,写出一个满足条件的k的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当x>0时,y随x的增大而减小,∴k>0故答案为:1(答案不唯一).20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数y=kx(x<0)的图象经过平行四边形ABCO的顶点A,OC在x轴上,若点B-1,3,S▱ABCO=3,则实数k的值为.【答案】-6【分析】本题考查了反比例函数,根据A ,B 的纵坐标相同以及点A 在反比例函数上得到A 的坐标,进而用代数式表达AB 的长度,然后根据S ▱ABCO =3列出一元一次方程求解即可.【详解】∵ABCO 是平行四边形∴A ,B 纵坐标相同∵B -1,3∴A 的纵坐标是3∵A 在反比例函数图象上∴将y =3代入函数中,得到x =k 3∴A k 3,3∴AB =-1-k 3∵S ▱ABCO =3,B 的纵坐标为3∴AB ×3=3即:-1-k 3×3=3解得:k =-6故答案为:-6.21.(2024·内蒙古包头·中考真题)若反比例函数y 1=2x ,y 2=-3x,当1≤x ≤3时,函数y 1的最大值是a ,函数y 2的最大值是b ,则a b =.【答案】12/0.5【分析】此题主要考查了反比例函数的性质,负整数指数幂,正确得出a 与b 的关系是解题关键.直接利用反比例函数的性质分别得出a 与b ,再代入a b 进而得出答案.【详解】解:∵函数y 1=2x,当1≤x ≤3时,函数y 1随x 的增大而减小,最大值为a ,∴x =1时,y 1=2=a ,∵y 2=-3x ,当1≤x ≤3时,函数y 2随x 的增大而减大,函数y 2的最大值为y 2=-1=b ,∴a b =2-1=12.故答案为:12.22.(2024·四川遂宁·中考真题)反比例函数y =k -1x 的图象在第一、三象限,则点k ,-3 在第象限.【答案】四/4【分析】本题考查了反比例函数的性质,点所在的象限,根据反比例函数的性质得出k >1,进而即可求解.【详解】解:∵反比例函数y =k -1x的图象在第一、三象限,∴k -1>0∴k >1∴点k ,-3 在第四象限,故答案为:四.23.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数y =k x (x >0)的图像上,BC ⊥x 轴于点C ,∠BAC =30°,将△ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为.【答案】23【分析】本题考查了反比例函数k 的几何意义,掌握求解的方法是解题的关键.如图,过点D 作DE ⊥x 轴于点E .根据∠BAC =30°,BC ⊥x ,设BC =a ,则AD =AC =3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,即可得AE =32a ,DE =32a ,解得B (1+3a ,a ),D 1+32a ,32a ,根据点B 的对应点D 落在该反比例函数的图像上,即可列方程求解;【详解】解:如图,过点D 作DE ⊥x 轴于点E .∵点A 的坐标为(1,0),∴OA =1,∵∠BAC =30°,BC ⊥x 轴,设BC =a ,则AD =AC =BC tan30°=3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,∴∠DAC =60°,∠ADE =30°,∴AE =32a ,DE =AD ·sin60°=32a ,∴B (1+3a ,a ),D 1+32a ,32a ,∵点B 的对应点D 落在该反比例函数的图像上,∴k =a 1+3a =32a ⋅1+32a,解得:a =233,∵反比例函数图象在第一象限,∴k =2331+233×3 =23,故答案为:23.24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为5,0 ,2,6 ,过点B 作BC ∥x 轴交y 轴于点C ,点D 为线段AB 上的一点,且BD =2AD .反比例函数y =k x(x >0)的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是.【答案】12【分析】本题主要考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数k 的几何意义,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,由点A ,B 的坐标分别为5,0 ,2,6 得BC =OM =2,BM =OC =6,AM =3,然后证明△ADN ∽△ABM 得DN BM =AN AM =AD AB ,求出DN =2,则ON =OA -AN =4,故有D 点坐标为4,2 ,求出反比例函数解析式y =8x ,再求出E 43,6 ,最后根据S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD 即可求解,熟练掌握知识点的应用是解题的关键.【详解】如图,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,∵点A ,B 的坐标分别为5,0 ,2,6 ,∴BC =OM =2,BM =OC =6,AM =3,∵DN ∥BM ,∴△ADN ∽△ABM ,∴DN BM =AN AM =AD AB,∵BD =2AD ,∴DN 6=AN 3=13,∴DN =2,AN =1,∴ON =OA -AN =4,∴D 点坐标为4,2 ,代入y =k x 得,k =2×4=8,∴反比例函数解析式为y =8x,∵BC ∥x 轴,∴点E 与点B 纵坐标相等,且E 在反比例函数图象上,∴E 43,6,∴CE =43,∴S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD =12×2+5 ×6-12×6×43-12×5×2=12,故答案为:12.25.(2024·四川广元·中考真题)已知y =3x 与y =k x x >0 的图象交于点A 2,m ,点B 为y 轴上一点,将△OAB 沿OA 翻折,使点B 恰好落在y =k x x >0 上点C 处,则B 点坐标为.【答案】0,4【分析】本题考查了反比例函数的几何综合,折叠性质,解直角三角形的性质,勾股定理,正确掌握相关性质内容是解题的关键.先得出A 2,23 以及y =43xx >0 ,根据解直角三角形得∠1=30°,根据折叠性质,∠3=30°,然后根据勾股定理进行列式,即OB =OC =23 2+22=4.【详解】解:如图所示:过点A 作AH ⊥y 轴,过点C 作CD ⊥x 轴,∵y =3x 与y =k xx >0 的图象交于点A 2,m ,∴把A 2,m 代入y =3x ,得出m =3×2=23,∴A 2,23 ,把A 2,23 代入y =k xx >0 ,解得k =2×23=43,∴y =43xx >0 ,设C m ,43m,在Rt △AHO ,tan ∠1=AH OH =223=33,∴∠1=30°,∵点B 为y 轴上一点,将△OAB 沿OA 翻折,∴∠2=∠1=30°,OC =OB ,∴∠3=90°-∠1-∠2=30°,则CD OD=tan ∠3=33=43m m ,解得m =23(负值已舍去),∴C 23,2 ,∴OB =OC =23 2+22=4,∴点B 的坐标为0,4 ,故答案为:0,4 .26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,tan ∠AOC =43,且点A 落在反比例函数y =3x 上,点B 落在反比例函数y =k x k ≠0 上,则k =.【答案】8【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A 、B 作x 轴的垂线,垂足分别为D 、E ,然后根据特殊三角函数值结合勾股定理求得A 32,2 ,OA =52,再求得点B 4,2 ,利用待定系数法求解即可.【详解】解:过点A 、B 作x 轴的垂线,垂足分别为D 、E ,如图,∵tan ∠AOC =43,∴AD OD =43,∴设AD =4a ,则OD =3a ,∴点A 3a ,4a,∵点A 在反比例函数y =3x 上,∴3a ⋅4a =3,∴a =12(负值已舍),则点A 32,2,∴AD =2,OD =32,∴OA =OD 2+AD 2=52,∵四边形AOCB 为菱形,∴AB =OA =52,AB ∥CO ,∴点B 4,2 ,∵点B 落在反比例函数y =k x k ≠0 上,∴k =4×2=8,故答案为:8.27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数y =k x(x >0)的图象上,A (1,0),C (0,2).将线段AB 沿x 轴正方向平移得线段A B (点A 平移后的对应点为A ),A B 交函数y =k x (x >0)的图象于点D ,过点D 作DE ⊥y 轴于点E ,则下列结论:①k =2;②△OBD 的面积等于四边形ABDA 的面积;③A E 的最小值是2;④∠B BD =∠BB O .其中正确的结论有.(填写所有正确结论的序号)【答案】①②④【分析】由B 1,2 ,可得k =1×2=2,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,利用k 的几何意义可得△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,证明四边形A DEO 为矩形,可得当OD 最小,则A E 最小,设D x ,2xx >0 ,可得A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,可得B n +1,2 ,证明△B BD ∽△A OB ,可得∠B BD =∠B OA ,再进一步可得答案.【详解】解:∵A (1,0),C (0,2),四边形OABC 是矩形;∴B 1,2 ,∴k =1×2=2,故①符合题意;2如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,05∵S △AOB =S △A OD =12×2=1,∴S △BOK =S 四边形AKDA,∴S △BOK +S △BKD =S 四边形AKDA+S △BKD ,∴△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,∵DE ⊥y 轴,∠DA O =∠EOA =90°,∴四边形A DEO 为矩形,∴A E =OD ,∴当OD 最小,则A E 最小,设D x ,2x x >0 ,∴OD 2=x 2+4x 2≥2⋅x ⋅2x =4,∴OD ≥2,∴A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,∴B n +1,2 ,∵反比例函数为y =2x,四边形A B CO 为矩形,∴∠BB D =∠OA B =90°,D n +1,2n +1 ,∴BB =n ,OA =n +1,B D =2-2n +1=2n n +1,A B =2,∴BB OA =n n +1=2n n +12=B D A B,∴△B BD ∽△A OB ,∴∠B BD =∠B OA ,∵B C ∥A O ,∴∠CB O =∠A OB ,∴∠B BD =∠BB O ,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点0,1 是函数y =x +1图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是(填序号);①y =-x +3;②y =2x;③y =-x 2+2x -1.(2)若一次函数y =mx -3m 图象上存在“近轴点”,则m 的取值范围为.【答案】③-12≤m <0或0<m ≤12【分析】本题主要考查了新定义--“近轴点”.正确理解新定义,熟练掌握一次函数,反比例函数,二次函数图象上点的坐标特点,是解决问题的关键.(1)①y =-x +3中,取x =y =1.5,不存在“近轴点”;②y =2x,由对称性,取x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,取x =1时,y =0,得到1,0 是y =-x 2+2x -1的“近轴点”;(2)y =mx -3m =m x -3 图象恒过点3,0 ,当直线过1,-1 时,m =12,得到0<m ≤12;当直线过1,1 时,m =-12,得到-12≤m <0.【详解】(1)①y =-x +3中,x =1.5时,y =1.5,不存在“近轴点”;②y =2x,由对称性,当x =y 时,x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,x =1时,y =0,∴1,0 是y =-x 2+2x -1的“近轴点”;∴上面三个函数的图象上存在“近轴点”的是③故答案为:③;(2)y =mx -3m =m x -3 中,x =3时,y =0,∴图象恒过点3,0 ,当直线过1,-1 时,-1=m 1-3 ,∴m =12,∴0<m ≤12;当直线过1,1 时,1=m 1-3 ,∴m =-12,∴-12≤m <0;∴m 的取值范围为-12≤m <0或0<m ≤12.故答案为:-12≤m <0或0<m ≤12.三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,与反比例函数y =k x x >0 的图象交于点A 2,4 .过点B 0,2 作x 轴的平行线分别交y =ax +b 与y =k xx >0 的图象于C ,D 两点.(1)求一次函数y =ax +b 和反比例函数y =k x的表达式;(2)连接AD ,求△ACD 的面积.【答案】(1)一次函数y =ax +b 的解析式为y =12x +3;反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)6【分析】本题主要考查了一次函数与反比例函数综合:(1)先根据一次函数图象的平移规律y =ax +b =ax +3,再把点A 的坐标分别代入对应的一次函数解析式和反比例函数解析式中,利用待定系数法求解即可;(2)先分别求出C 、D 的坐标,进而求出CD 的长,再根据三角形面积计算公式求解即可.【详解】(1)解:∵将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,∴y =ax +b =ax +3,把A 2,4 代入y =ax +3中得:2a +3=4,解得a =12,∴一次函数y =ax +b 的解析式为y =12x +3;把A 2,4 代入y =k x x >0 中得:4=k 2x >0 ,解得k =8,∴反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)解:∵BC ∥x 轴,B 0,2 ,∴点C 和点D 的纵坐标都为2,在y =12x +3中,当y =12x +3=2时,x =-2,即C -2,2 ;在y =8x x >0 中,当y =8x =2时,x =4,即D 4,2 ;∴CD =4--2 =6,∵A 2,4 ,∴S △ACD =12CD ⋅y A -y C =12×6×4-2 =6.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y =-x +b 和反比例函数y =9x 的图象相交于点A 1,m ,B n ,1 .(1)求点A ,点B 的坐标及一次函数的解析式;(2)根据图象,直接写出不等式-x +b >9x的解集.【答案】(1)A 1,9 ,B 9,1 ,y =-x +10(2)x <0或1<x <9【分析】本题主要考查了一次函数与反比函数的交点问题:(1)分别把点A 1,m ,点B n ,1 代入y =9x,可求出点A ,B 的坐标,即可求解;(2)直接观察图象,即可求解.【详解】(1)解:把点A 1,m 代入y =9x 中,得:m =91=9,∴点A 的坐标为1,9 ,把点B n ,1 代入y =9x 中,得:n =91=9,∴点B 的坐标为9,1 ,把x =1,y =9代入y =-x +b 中得:-1+b =9,∴b =10,∴一次函数的解析式为y =-x +10,(2)解:根据一次函数和反比例函数图象,得:当x <0或1<x <9时,一次函数y =-x +b 的图象位于反比例函数y =9x的图象的上方,∴-x +b >9x的解集为x <0或1<x <9.31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围).(2)当电阻R 为3Ω时,求此时的电流I .【答案】(1)I =36R(2)12A【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当R =3Ω时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为I =URU ≠0 ,把9,4 代入I =U RU ≠0 中得:4=U9U ≠0 ,解得U =36,∴这个反比例函数的解析式为I =36R;(2)解:在I =36R中,当R =3Ω时,I =363=12A ,∴此时的电流I 为12A .32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数y =2x +b 与y =kx部分自变量与函数值的对应关系:x -72a12x +ba1________kx________________7(1)求a、b的值,并补全表格;(2)结合表格,当y=2x+b的图像在y=kx的图像上方时,直接写出x的取值范围.【答案】(1)a=-2b=5,补全表格见解析(2)x的取值范围为-72<x<0或x>1;【分析】本题考查的是一次函数与反比例函数的综合,利用图像法写自变量的取值范围;(1)根据表格信息建立方程组求解a,b的值,再求解k的值,再补全表格即可;(2)由表格信息可得两个函数的交点坐标,再结合函数图像可得答案.【详解】(1)解:当x=-72时,2x+b=a,即-7+b=a,当x=a时,2x+b=1,即2a+b=1,∴a-b=-72a+b=1,解得:a=-2b=5,∴一次函数为y=2x+5,当x=1时,y=7,∵当x=1时,y=kx=7,即k=7,∴反比例函数为:y=7x,当x=-72时,y=7÷-72=-2,当y=1时,x=a=-2,当x=-2时,y=-7 2,补全表格如下:x-72-212x+b-217kx-2-7 27(2)由表格信息可得:两个函数的交点坐标分别为-72,-2,1,7 ,∴当y=2x+b的图像在y=kx的图像上方时,x的取值范围为-72<x<0或x>1;33.(2024·湖北·中考真题)一次函数y=x+m经过点A-3,0,交反比例函数y=kx于点B n,4.(1)求m,n,k;(2)点C在反比例函数y=kx第一象限的图象上,若S△AOC<S△AOB,直接写出C的横坐标a的取值范围.【答案】(1)m=3,n=1,k=4;(2)a>1.【分析】本题主要考查了一次函数和反比例函数的综合,求反比例函数解析式,解题的关键是熟练掌握数形结合的思想.(1)利用一次函数y=x+m经过点A-3,0,点B n,4,列式计算求得m=3,n=1,得到点B1,4,再利用待定系数法求解即可;(2)利用三角形面积公式求得S△AOB=6,得到32y C<6,据此求解即可.【详解】(1)解:∵一次函数y=x+m经过点A-3,0,点B n,4,∴-3+m=0 n+m=4 ,解得m=3 n=1 ,∴点B1,4,∵反比例函数y=kx经过点B1,4,∴k=1×4=4;(2)解:∵点A-3,0,点B1,4,∴AO =3,∴S △AOB =12AO ×y B =12×3×4=6,S △AOC =12AO ×y C =32y C ,由题意得32y C<6,∴y C <4,∴x C >1,∴C 的横坐标a 的取值范围为a >1.34.(2024·四川凉山·中考真题)如图,正比例函数y 1=12x 与反比例函数y 2=kxx >0 的图象交于点A m ,2 .(1)求反比例函数的解析式;(2)把直线y 1=12x 向上平移3个单位长度与y 2=kxx >0 的图象交于点B ,连接AB ,OB ,求△AOB 的面积.【答案】(1)y 2=8x(2)6【分析】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,一次函数的平移等知识,熟练掌握函数的平移法则是关键.(1)待定系数法求出反比例函数解析式即可;(2)先得到平移后直线解析式,联立方程组求出点B 坐标,根据平行线间的距离可得S △AOB =S △ADO ,代入数据计算即可.【详解】(1)解:∵点A (m ,2)在正比例函数图象上,∴2=12m ,解得m =4,∴A (4,2),∵A (4,2)在反比例函数图象上,∴k =8,∴反比例函数解析式为y 2=8x.(2)解:把直线y 1=12x 向上平移3个单位得到解析式为y =12x +3,令x =0,则y =3,∴记直线与y 轴交点坐标为D (0,3),连接AD ,联立方程组y =8xy =12x +3,解得x =2y =4,x =-8y =-1 (舍去),∴B (2,4),由题意得:BD ∥AO ,∴△AOB ,△AOD 同底等高,∴S △AOB =S △ADO =12OD ⋅x A =12×3×4=6.35.(2024·贵州·中考真题)已知点1,3 在反比例函数y =kx的图象上.(1)求反比例函数的表达式;(2)点-3,a ,1,b ,3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)y =3x(2)a <c <b ,理由见解析【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点1,3 代入y =kx可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【详解】(1)解:把1,3 代入y =k x ,得3=k 1,∴k =3,∴反比例函数的表达式为y =3x;(2)解:∵k =3>0,∴函数图象位于第一、三象限,∵点-3,a ,1,b ,3,c 都在反比例函数的图象上,-3<0<1<3,∴a <0<c <b ,∴a <c <b .36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数y =kxx >0 的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为.【答案】(1)y =6x(2)见解析(3)92【分析】本题考查了待定系数法求反比例函数解析,画反比例函数图象,平移的性质等知识,解题的关键是:(1)利用待定系数法求解即可;(2)分别求出x =1,x =2,x =6对应的函数值,然后描点、连线画出函数图象即可;(3)求出平移后点E 对应点的坐标,利用平移前后对应点的横坐标相减即可求解.【详解】(1)解:反比例函数y =kx的图象经过点A 3,2 ,∴2=k3,∴k =6,∴这个反比例函数的表达式为y =6x;(2)解:当x =1时,y =6,当x =2时,y =3,当x =6时,y =1,∴反比例函数y =6x的图象经过1,6 ,2,3 ,6,1 ,画图如下:(3)解:∵E 6,4 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当y =4时,4=6x,解得x =32,∴平移距离为6-32=92.故答案为:92.37.(2024·四川乐山·中考真题)如图,已知点A 1,m 、B n ,1 在反比例函数y =3xx >0 的图象上,过点A 的一次函数y =kx +b 的图象与y 轴交于点C 0,1 .(1)求m 、n 的值和一次函数的表达式;(2)连接AB ,求点C 到线段AB 的距离.【答案】(1)m =3,n =3,y =2x +1(2)点C 到线段AB 的距离为322【分析】(1)根据点A 1,m 、B n ,1 在反比例函数y =3x图象上,代入即可求得m 、n 的值;根据一次函数y =kx +b 过点A 1,3 ,C 0,1 ,代入求得k ,b ,即可得到表达式;(2)连接BC ,过点A 作AD ⊥BC ,垂足为点D ,过点C 作CE ⊥AB ,垂足为点E ,可推出BC ∥x 轴,BC 、AD 、DB 的长度,然后利用勾股定理计算出AB 的长度,最后根据S △ABC =12BC ⋅AD =12AB ⋅CE ,计算得CE 的长度,即为点C 到线段AB 的距离.【详解】(1)∵点A 1,m 、B n ,1 在反比例函数y =3x图象上。

中考数学《反比例函数》专项练习及答案

中考数学《反比例函数》专项练习及答案

中考数学《反比例函数》专项练习及答案一、单选题1.函数y=﹣6x的图象经过点A(x1,y1)、B(x2,y2),若x1<x2<0,则y1、y2、0三者的大小关系是()A.y1<y2<0B.y2<y1<0C.y1>y2>0D.y2>y1>02.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数y=1x的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A.﹣1<x0<0B.0<x0<1C.1<x0<2D.2<x0<33.如图正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y= 4x(x>0)的图象上,则点E的坐标是()A.(√5+1,√5−1)B.(3+√5,3−√5)C.(√5−1,√5+1)D.(3−√5,3+√5) 4.函数y=kx﹣1与y=﹣k x在同一坐标系中的大致图象可能是下图中的()A.B.C.D.5.已知反比例函数y= 6x在第一象限的图象如图,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=()A.3B.6C.12D.96.如图,过反比例函数y= k x(x>0)的图像上一点A作AB△x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.57.若点P1(x1,y1),P2(x2,y2)在反比例函数y=k x(k>0)的图象上,且x1=﹣x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y28.甲乙两地相距s,汽车从甲地以v(千米/时)的速度开往乙地,所需时间是t(小时),则正确的是为()A.当t为定值时,s与v成反比例B.当v为定值时,s与t成反比例C.当s为定值时,v与t成反比例D.以上三个均不正确9.已知反比例函数y=1x,当x=m时,y=n,则化简(m−1m)(n+1n)的结果是()A.2m2B.2n2C.n2−m2D.m2−n210.已知:如图,直线l经过点A(﹣2,0)和点B(0,1),点M在x轴上,过点M作x轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为()A.y=24x B.y=3x C.y=12x D.y=6x11.如图,平面直角坐标系中,直线CD分别与x轴、y轴分别交于点D、C,点A、B为线段CD的三等分点,且A、B在反比例函数y=kx(x>0,k>0)的图象上,若△AOD的面积为12,则k的值为()A.2B.4C.6D.812.如图,过点P(2,3)分别作PC△x轴于点C,PD△y轴于点D,PC、PD分别交反比例函数y= 2x(x>0)的图象于点A、B,则四边形BOAP的面积为()A.3B.3.5C.4D.5二、填空题13.在滑草过程中,小明发现滑道两边形如两条双曲线.如图,点A1,A2,A3…在反比例函数y=1x(x>0)的图象上,点B1,B2,B3…在反比例函数y=k x(k>1,x>0)的图象上,A1B1∥A2B2∥⋅⋅⋅∥y轴,已知点A1,A2…的横坐标分别为1,2…,令四边形A1B1B2A2、A2B2 B3A3、…的面积分别为S1、S2、…,(1)用含k的代数式表示S1=;(2)若S19=39,则k=.14.已知点A为双曲线y= k x图象上的点,点O为坐标原点,过点A作AB△x轴于点B,连接OA.若△AOB的面积为5,则k的值为.15.若反比例函数y=1−kx,当x>0时,y随着x的增大而增大,则k的取值范围是. 16.如图,在平面直角坐标系中,四边形AOBD的边OB与x轴的正半轴重合,AD∥OB,DB⊥x轴,对角线AB,OD交于点M.已知AD:OB=2:3,△AMD的面积为4.若反比例函数y=kx的图象恰好经过点M,则k的值为.17.已知反比例函数的表达式为y=1+2mx,A(x1,y1)和B(x2,y2)是反比例函数图象上两点,若x1<0<x2时,y1<y2,则m的取值范围是.18.已知点D是反比例函数上一点,矩形ABCD的周长是16,正方形ABOF和正方形ADGH的面积之和为50,则反比例函数的解析式是.三、综合题19.如图,反比例函数y=mx的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求n的值;(2)结合图象,直接写出不等式mx<kx+b的解集;(3)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.x﹣√3与x,y轴分别交于点A,B,与反比例函数y= k x(k>0)图象交于20.如图,直线y= √33点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标.(2)若AE=AC.①求k的值.②试判断点E与点D是否关于原点O成中心对称?并说明理由.21.某种型号的温控水箱的工作过程是:接通电源后,在初始温度20△下加热水箱中的水;当水温达到设定温度80△时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20△时,再次自动加热水箱中的水至80△时,加热停止:当水箱中的水温下降到20△时,再次自动加热,…,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究,发现水温y是时间x的函数,其中y(单位:△)表示水箱中水的温度,x(单位:min)表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了16 min内9个时间点的温控水箱中水的温度y随时间x的变化情况:接通电源后的时间x(单位:min)01234581016…水箱中水的温度y(单位:°C)2035m658064403220…的值为.(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式▲ ;当4<x≤16时,写出一符合表中数据的函数解析式_ ▲ .②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤16时,温度y随时间x变化的函数图象;(3)如果水温y随时间x的变化规律不变,预测水温第8次达到40△时,距离接通电源min.22.已知反比例函数y=k x的图像经过点(23,92).(1)求k的值,并判断点A(−2,16)是否在该反比例函数的图象上;(2)该反比例函数图象在第象限,在每个象限内,y随x的增大而;(3)当−4<x<−1时,求y的取值范围.23.如图,反比例函数y=k x的图象与一次函数y=mx+b的图象交于A(1,3),B(n,−1)两点.求:(1)反比例函数关系式;(2)n的值;(3)一次函数关系式;(4)根据图像回答,当反比例函数的值大于一次函数的值时,x的取值范围.24.如图,反比例函数y=kx(k≠0)的图象与正比例函数y=2x相交于A(1,a),B两点,点C在第四象限,CA△y轴,AB△BC.(1)求反比例函数解析式及点B坐标;(2)求△ABC的面积.参考答案1.【答案】D2.【答案】B 3.【答案】A 4.【答案】D 5.【答案】B 6.【答案】C 7.【答案】D 8.【答案】C 9.【答案】D 10.【答案】C 11.【答案】D 12.【答案】C13.【答案】34(k −1);76114.【答案】10或-10 15.【答案】k>1 16.【答案】54517.【答案】m >−1218.【答案】y =8x或 56x19.【答案】(1)解:把点 A(2,6) 代入 y =m x ,得 m =12 ,则 y =12x把点 B(n,1) 代入 y =12x,得 n =12则 n =12 .(2)2<x <12 或 x <0(3)解:设过点 A(2,6) ,点 B(12,1) 的直线为: y =kx +b 根据题意,得: {6=2k +b 1=12k +b.∴k =−12,b =7则直线 AB 解析式为 y =−12x +7 .如图,设直线 AB 与y 轴的交点为P ,设点E 的坐标为 (0,m) ,连接 AE,BE ,则点P 的坐标为 (0,7) .∴PE=|m−7|.∵S△AEB=S△PEB−S△PEA=5.∴12|m−7|×12−12×|m−7|×2=5.∴12|m−7|×(12−2)=5∴|m−7|=1.∴m1=6,m2=8∴点E的坐标为(0,6)或(0,8)20.【答案】(1)解:当y=0时,得0= √33x﹣√3,解得:x=3.∴点A的坐标为(3,0).(2)解:①过点C作CF△x轴于点F,如图所示.设AE=AC=t,点E的坐标是(3,t)在Rt△AOB中,tan△OAB= OBOA=√33∴△OAB=30°.在Rt△ACF中,△CAF=30°∴CF= 12t,AF=AC•cos30°=√32t∴点C的坐标是(3+ √32t,12t).∴(3+ √32t)× 12t=3t解得:t1=0(舍去),t2=2 √3.∴k=3t=6 √3.②点E与点D关于原点O成中心对称,理由如下:设点D 的坐标是(x , √33x ﹣ √3 )∴x ( √33x ﹣ √3 )=6 √3 ,解得:x 1=6,x 2=﹣3∴点D 的坐标是(﹣3,﹣2 √3 ). 又∵点E 的坐标为(3,2 √3 ) ∴点E 与点D 关于原点O 成中心对称.21.【答案】(1)50(2)解:①y=15x+20| y =320x;②画出的函数图象如解图所示.(3)5622.【答案】(1)解:将 (23,92) 代入函数解析式,得k=3反比例函数解析式为 y =3x当x=-2时, y =−32≠16∴点 A(−2,16) 不在该反比例函数的图象上(2)一、三;增大(3)解:当x=-4时, y =−34,当x=-1时, y =−3在每个象限内, y 随 x 的增大而增大得 −3<y <−3423.【答案】(1)解:∵点A (1,3)在反比例函数 y =kx的图象上∴k=3∴反比例函数的解析式为 y =3x(2)解:∵点B (n ,-1)在反比例函数 y =3x的图象上∴3n=-1 ∴n=-3∴点B 的坐标为(-3,-1)(3)解:点A 、B 在一次函数 y =mx +b 的图象上 ∴{m +b =3−3m +b =−1 ∴{m =1b =2∴一次函数的解析式为 y =x +2(4)解:根据图象可知 ,当x<-3或0<x<1时,反比例函数的值大于一次函数的值24.【答案】(1)解:∵点A(1,a)在y =2x 上∴a =2 ∴A(1,2)把A(1,2)代入y =kx 得k =2∴反比例函数的解析式为y =2x∵A 、B 两点关于原点成中心对称 ∴B(﹣1,﹣2);(2)解:如图所示,作BH△AC 于H ,设AC 交x 轴于点D∵AB△BC .∴△ABC =90°,△BHC =90° ∴△C =△ABH ∵BH△x 轴 ∴△AOD =△ABH ∴△AOD =△C∴tanC =tan∠AOD =ADOD=2 ∵A(1,2),B(﹣1,﹣2)∴AH =4,BH =2,OD=1,AD=2第 11 页 共 11 ∴AB =√AH 2+BH 2=√42+22=2√5,S △AOD =12OD ⋅AD =1 ∵△AOD =△C ,△ADO =△ABC =90° ∴△ADO ~△ABC∴有S △ADO S △ABC =(AD AB )2,即1S △ABC =(22√5)2 解得S △ABC =5.。

中考数学专题复习《反比例函数与几何综合》测试卷-附带答案

中考数学专题复习《反比例函数与几何综合》测试卷-附带答案

中考数学专题复习《反比例函数与几何综合》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________1.如图 在直角坐标系中 A B C D 四点在反比例函数k y x=线段AC BD ,都过原点O ()4,2A 点B 点纵坐标为4 连接AB CD DA ,,.(1)求该反比例函数的解析式(2)当-2y ≥时 写出x 的取值范围(3)求四边形ABCD 的面积.2.如图 在平面直角坐标系中 直线2y x b =+经过点()2,0A - 与y 轴交于点B 与反比例函数()0k y x x =>的图象交于点(),6C m 过点B 作BD y ⊥轴 交反比例函数()0k y x x=>的图象于点D 连接AD CD 、.(1)b =______ k =______(2)求ACD 的面积.3.如图 一次函数y kx b =+与反比例函数m y x=的图象相交于A B 两点(点A 在点B 的左侧) 与x 轴相交于点C 已知点()1,4A 连接OB .(1)求反比例函数的解析式(2)若BOC 的面积为3 求AOB 的面积(3)在(2)的条件下 根据图象 直接写出m kx b x>+的解集. 4.小明借助反比例函数图象设计“鱼形”图案.如图 在平面直角坐标系中 以反比例函数ky x =图象上的点()2A 和点B 为顶点 分别作菱形AOCD 和荾形OBEF 点D E 在x 轴上 以点O 为圆心 OA 长为半径作AC 连接BF(1)求k 值(2)计算图形阴影部分面积之和.5.在平面直角坐标系xOy 中 反比例函数()0k y x x=>的图象与等腰直角三角形OAB 相交 90OBA ∠=︒ 6OA =.(1)如图1 若反比例函数的图象恰好经过OAB 的顶点B 时 求反比例函数的表达式(2)在(1)的前提下 过点A 作AQ OB 交反比例函数的图象于点Q 连接BQ 求OBQ △的面积和点Q 的坐标(3)如图2 若反比例函数的图象交OAB 的边OB 于点C 且13BC OB = 点P 是反比例函数图象上的一动点 满足OCP △的面积是3 请直接写出点P 的坐标.6.平面直角坐标系xOy 中 横坐标为a 的点A 在反比例函数()10k y x x=>的图象上 点A '与点A 关于点O 对称 一次函数2y mx n =+的图象经过点A '.(1)设2a = 点()4,2B 在函数1y 2y 的图象上 分别求函数1y 2y 的表达式.(2)如图① 设函数1y 2y 的图象相交于点B 点B 的横坐标为3aAA B '的面积为16 求k 的值(3)设12m = 如图① 过点A 作AD x ⊥轴 与函数2y 的图象相交于点D 以AD 为一边向右侧作正方形ADEF 试说明函数2y 的图象与线段EF 的交点P 一定在函数1y 的图象上. 7.如图 在矩形OABC 中 3OA = 2OC = F 是AB 上的一个动点(F 不与A B 重合) 过点F 的反比例函数()0ky x x=>的图象与BC 边交于点E .(1)当F 为AB 的中点时 求该反比例函数的解析式和点E 的坐标.(2)当k 为何值时 CEF △的面积最大 最大面积是多少?8.已知直线11y x =+与双曲线22y x=相交于点A 和点B 如图所示 过点B 作BD y ⊥轴于点D 设直线AB 交x 轴于点C 连接CD .(1)求:BCD △的面积(2)求:当12y y ≥时 x 的取值范围.9.如图 在平面直角坐标系中 O 为坐标原点 ABO 的边AB 垂直x 轴于点B 反比例函数()0k y x x=>的图象经过AO 的中点C 与边AB 相交于点D 若D 的坐标为()4,m 3AD =.(1)反比例函数k y x=的解析式是 (2)设点E 是线段CD 上的动点 过点E 且平行y 轴的直线与反比例函数的图象交于点F 则OEF 面积的最大值是 .10.如图 一次函数1y kx b =+的图象与x 轴 y 轴分别交于点A B 与反比例函数()20m y x x=>的图象交于点()1,2C ()2,D n .(1)分别求出两个函数的解析式(2)连接OC OD 求COD △的面积(3)点P 是反比例函数上一点 PQ x ∥轴交直线AB 于Q 且3PQ = 求点P 的坐标. 11.如图 反比例函数(0)k y x x =<的图像与直线3x =-交于点P AOP 的面积等于3.(1)求反比例函数的表达式(2)利用图像 求当30x -<<时 y 的取值范围.12.如图 ABC 中 60CAB ∠= 45ABC ∠= 点A B 在x 轴上 反比例函数k y x =的图象经过点(123C , 且与BC 边交于另一点D CE x ⊥轴 垂足为点E .(1)求反比例函数的解析式(2)求点D 的坐标(3)在x 轴上是否存在点P 使得BDP △与BCE 相似 若存在 请直接写出满足条件点P 的坐标 若不存在 请说明理由.13.如图 Rt OAB 的直角顶点B 在x 轴的正半轴上 点A 在第一象限内 已知反比例函数()0k y x x =>的图象经过线段OA 的中点D 交直线AB 于点C .若OAB 的面积为6.(1)求k 的值(2)若AC OB = 求点A 的坐标.14.如图 在Rt ABO △中 直角顶点B 在x 轴正半轴上 反比例函数n y x=(0n >)的图象分别与边AO 边AB 交于点C D .(1)如果点C 的坐标为()23,且8AD = 求n 的值及点B 的坐标 (2)连结CB 如果AD DB = 求OAB OCB S S :的值.15.如图 一次函数y ax b =+与反比例函数k y x =的图象交于D E 两点 CD x ⊥轴 垂足为C 过C 作CB DE ∥交y 轴于B 已知四边形ABCD 的面积为12 E 点纵坐标为2-.(1)求反比例函数的解析式(2)当6AB =时 求一次函数的解析式(3)在(2)的条件下 直接写出k ax b x+<的自变量x 的取值范围. 参考答案:1.(1)8y x= (2)4x ≤-或0x >(3)242.(1)4 6 (2)92.3.(1)4y x= (2)3AOB S =△(3)01x <<或2x >4.(1)43(2)833π5.(1)9y x = (2)9 点Q 的坐标为()332,323+(3)()1,4或()4,16.(1)18y x=22y x =- (2)6k =7.(1)3y x = 3,22E ⎛⎫ ⎪⎝⎭ (2)3k =时 CEF S △最大为348.(1)BCD △的面积为1(2)20x -≤<或1x ≥9.(1)4y x= (2)1410.(1)13y x =-+ 22y x= (2)32(3)(3P 或(3P11.(1)()60y x x=-< (2)2y >12.(1)y =(2)()D(3)()P 或()10P ,13.(1)3(2)()3,414.(1)()660n B =,,15.(1)反比例函数的解析式为12y x=- (2)一次函数的解析式为4y x =-+(3)20x -<<或6x >.。

中考数学《反比例函数》专项练习(附答案解析)

中考数学《反比例函数》专项练习(附答案解析)

中考数学《反比例函数》专项练习(附答案解析)一、综合题1.已知:如图1,函数y1=kx 和y2=xk(k>1)的图象相交于点A和点B .(1)求点A和点B的坐标(用含k的式子表示);(2)如图2,点C的坐标为(1,k),点D是第一象限内函数y1的图象上的动点,且在点A的右侧,直线AC、BC、AD、BD分别与x轴相交于点E、F、G、H .①判定△CEF的形状,并说明理由;②点D在运动的过程中,∠CAD和∠CBD的度数和是否变化?如果变化,说明理由;如果不变,求出∠CAD和∠CBD的度数和.2.在平面直角坐标系中,我们把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),(√2,√2),…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=nx(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由.3.如图,点A是坐标原点,点D是反比例函数y=6x(x>0)图象上一点,点B在x轴上,AD=BD,四边形ABCD是平行四边形,BC交反比例函数y=6x(x>0)图象于点E.(1)平行四边形BCD 的面积等于 ;(2)设D 点横坐标为m ,试用m 表示点E 的坐标;(要有推理和计算过程) (3)求 CE:EB 的值; (4)求 EB 的最小值.4.如图,一次函数y=kx+b 的图象与反比例函数y= mx 的图象交于点A (﹣3,m+8),B (n ,﹣6)两点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.5.已知双曲线y=1x (x >0),直线l 1:y ﹣√2=k (x ﹣√2)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y=﹣x+√2. (1)若k=﹣1,求△OAB 的面积S ; (2)若AB=52√2,求k 的值;(3)设N (0,2√2),P 在双曲线上,M 在直线l 2上且PM ∥x 轴,求PM+PN 最小值,并求PM+PN 取得最小值时P 的坐标.(参考公式:在平面直角坐标系中,若A (x 1,y 1),B (x 2,y 2)则A ,B 两点间的距离为AB=√(x 1−x 2)2+(y 1−y 2)2)6.已知反比例函数y=1−2mx( m为常数)的图象在一、三象限.(1)求m的取值范围.(2)如图,若该反比例函数的图象经过▱ ABCD的顶点D,点A,B的坐标分别为(0,3),(-2,0).①求出反比例函数表达式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为▲ .若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为▲ .7.绘制函数y=x+1x的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0;列表﹣﹣描点﹣﹣连线,得到该函数的图象如图所示.x …-4 -3 -2 -1 −12−13−141413121 2 3 4 …y …−414−313−212−2−212−313−4144143132122 212313414…观察函数图象,回答下列问题:(1)函数图象在第象限;(2)函数图象的对称性是A.既是轴对称图形,又是中心对称图形B.只是轴对称图形,不是中心对称图形C.不是轴对称图形,而是中心对称图形D.既不是轴对称图形,也不是中心对称图形(3)在x>0时,当x=时,函数y有最(大,小)值,且这个最值等于;在x<0时,当x=时,函数y有最(大,小)值,且这个最值等于;=−2x+1是否有实数解?说明理由.(4)方程x+1x8.菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(k≠0)的图象经过点H,则k= ;(2)若反比例函数y= kx(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.9.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;的图象与函数y1的图象相交于点A,且点A的纵坐标为2.(2)若反比例函数y2=kx①求k的值;②结合图象,当y1>y2时,写出x的取值范围.10.受新冠肺炎疫情的影响,运城市某化工厂从2020年1月开始产量下降.借此机会,为了贯彻“发展循环经济,提高工厂效益”的绿色发展理念;管理人员对生产线进行为期5个月的升级改造,改造期间的月利润与时间成反比例函数;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2020年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别写出该化工厂对生产线进行升级改造前后,y与x的函数表达式.(2)到第几个月时,该化工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该化工厂的资金紧张期,问该化工厂资金紧张期共有几个月?11.(如图,四边形ABCD在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数y1=nx 与y2=4nx的图象上,对角线AC⊥BD于点P,AC⊥x轴于点N(2,0)(1)若CN=12,试求n的值;(2)当n=2,点P是线段AC的中点时,试判断四边形ABCD的形状,并说明理由;(3)直线AB与y轴相交于E点.当四边形ABCD为正方形时,请求出OE的长度.12.如图点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= √5,反比例函数y= kx(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理由.13.如图所示,一次函数y=kx+b的图象与x轴、y轴分别交于点A、B,且与反比例函数y=m的图象在第二象限交于点C,CD⊥x轴,垂足为点D.若OB=2OA=3OD= x12 .(1)求一次函数与反比例函数的解析式;(2)若两函数图象的另一个交点为E,连结DE,求△CDE的面积;(3)直接写出不等式kx+b≤m的解集.x与y2= 14.某校九年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数y1=k1xk2(k2>k1>0)在第一象限图象的性质,经历了如下探究过程:x操作猜想:(1)如图①,当k1=2,k2=6时,在y轴的正方向上取一点A作x轴的平行线交y1于点B,交y2于点C .当OA=1时,AB=,BC=,BC AB =;当OA=3时,AB=,BC=,BCAB=;当OA=a时,猜想BCAB=(2)在y轴的正方向上任意取点A作x轴的平行线,交y1于点B、交y2于点C,请用含k1、k2的式子表示BCAB的值,并利用图②加以证明.(3)如图③,若k2=12,BCAB =12,在y轴的正方向上分别取点A、D(OD>OA)作x轴的平行线,交y1于点B、E,交y2于点C、F,是否存在四边形ADFB是正方形?如果存在,求OA的长和点B的坐标;如果不存在,请说明理由.15.如图,直线y=2x+2与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求H点的坐标及k的值;(2)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P 点坐标;(3)点N(a,1)是反比例函数y=kx(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.16.如图,双曲线y1=k1x与直线y2=xk2的图象交于A、B两点.已知点A的坐标为(4,1),点P(a,b)是双曲线y1=k1x上的任意一点,且0<a<4.(1)分别求出y1、y2的函数表达式;(2)连接PA、PB,得到△PAB,若4a=b,求三角形ABP的面积;(3)当点P在双曲线y1=k1x上运动时,设PB交x轴于点E,延长PA交x轴于点F,判断PE与PF的大小关系,并说明理由.参考答案与解析1.【答案】(1)解:由题意,联立{y=kxy=xk,解得{x=ky=1或{x=−ky=−1,∵点A在第一象限,点B在第二象限,且k>1,∴A(k,1),B(−k,−1)(2)解:①△CEF是等腰直角三角形,理由如下:设直线BC的解析式为y=k0x+b0,将点B(−k,−1),C(1,k)代入得:{−kk0+b0=−1k0+b0=k,解得{k0=1b0=k−1,则直线BC的解析式为y=x+k−1,当y=0时,x+k−1=0,解得x=1−k,即F(1−k,0),同理可得:点E的坐标为E(1+k,0),∴CF=√(1−k−1)2+(0−k)2=√2k,CE=√(1+k−1)2+(0−k)2=√2k,EF=1+k−(1−k)=2k,∴CE=CF,CE2+CF2=4k2=EF2,∴△CEF是等腰直角三角形;②由题意,设点D的坐标为D(m,km),则m>k>1,∵△CEF是等腰直角三角形,∴∠CFE=∠CEF=45°,∴∠BFH=∠AEG=135°,设直线BD的解析式为y=k1x+b1,将点B(−k,−1),D(m,km )代入得:{−kk1+b1=−1mk1+b1=km,解得{k1=1mb1=k−mm,则直线BD的解析式为y=1m x+k−mm,当y=0时,1m x+k−mm=0,解得x=m−k,即H(m−k,0),同理可得:点G的坐标为G(k+m,0),∴DH=√(m−k−m)2+(0−km )2=km√1+m2,DG=√(k+m−m)2+(0−km )2=km√1+m2,∴DH=DG,∴∠DHG=∠DGH,∵∠DHG=∠BHF,∴∠DGH=∠BHF,∴∠CAD+∠CBD=∠AEG+∠DGH+∠CBD,=∠BFH+∠BHF+∠CBD,=180°,即∠CAD与∠CBD的度数和不变,度数和为180°2.【答案】(1)解:根据题意,“梦之点”就是有关函数图象与直线y=x的交点,其坐标就是对应的方程组的解.由题意可得:m=2由点P(2, 2)在反比例函数y=nx图象上,可得n=2×2=4故所求的反比例函数的解析式为y=4x(2)解:由题意可得:(Ⅰ)当k=0时,y=s−1,此时“梦之点”的坐标为(s−1, s−1 ) . (Ⅱ)当k≠0 时, (3k−1)x=1−s显然,此方程的解的情况决定函数y=3kx+s−1的图象上“梦之点”的存在情况,当k=13, s≠1时,方程无解,不存在“梦之点”;当k=13, s=1时,方程有无数个解,此时存在无数个“梦之点”,“梦之点”的坐标可表示为(ℎ,ℎ)(ℎ为任意实数);当k≠13时,得{x=1−s3k−1y=1−s3k−1,即“梦之点”的坐标为(1−s3k−1, 1−s3k−1)3.【答案】(1)12(2)解:由题意D(m,6m),由(1)可知AB=2m,∵四边形ABCD是平行四边形,∴CD=AB=2m,∴C(3m,6m) .∵B(2m,0),C(3m,6m),∴直线BC的解析式为y=6m2x−12m,由{y=6xy=6m2x−12m,解得{x=(√2+1)my=6√2−6m或{x=(1−√2)my=6(1+√2)m(舍弃),∴E((√2+1)m,6√2−6m);(3)解:作EF⊥x轴于F,CG⊥x轴于G . ∵EF//CG,∴CE BE=FG BF=√2+1)m (√2+1)m−2m =√2√2−1=√2 ;(4)解:∵CEBE =√2 ∴BE =√2+1 ,要使得 BE 最小,只要 AD 最小, ∵AD =√m 2+36m 2=√(m −6m )2+12 ,∴AD 的最小值为 2√3 , ∴BE 的最小值为√3√2+1=2√6−2√3 .4.【答案】(1)解:将A (﹣3,m+8)代入反比例函数y= mx 得,m −3=m+8,解得m=﹣6, m+8=﹣6+8=2,所以,点A 的坐标为(﹣3,2), 反比例函数解析式为y=﹣ 6x ,将点B (n ,﹣6)代入y=﹣ 6x 得,﹣ 6n =﹣6, 解得n=1,所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得, {−3k +b =2k +b =−6 , 解得 {k =−2b =−4,所以,一次函数解析式为y=﹣2x ﹣4; (2)解:设AB 与x 轴相交于点C , 令﹣2x ﹣4=0解得x=﹣2, 所以,点C 的坐标为(﹣2,0), 所以,OC=2, S △AOB =S △AOC +S △BOC , = 12 ×2×3+ 12 ×2×1,=3+1, =4.5.【答案】(1)解:当k=-1时,l 1:y=﹣x+2√2, 联立得,{y =−x +2√2y =1x ,化简得x 2﹣2√2x+1=0, 解得:x 1=√2﹣1,x 2=√2+1,设直线l 1与y 轴交于点C ,则C (0,2√2). S △OAB =S △AOC ﹣S △BOC =12•2√2•(x 2﹣x 1)=2√2;(2)解:根据题意得:{y −√2=k(x −√2)y =1x 整理得:kx 2+√2(1﹣k )x ﹣1=0(k <0), ∵△=[√2(1﹣k )]2﹣4×k ×(﹣1)=2(1+k 2)>0, ∴x 1、x 2 是方程的两根, ∴{x 1+x 2=√2(k−1)k x 1·x 2=−1k①, ∴AB=√(x 1−x 2)2+(y 1−y 2)2=√(x 1−x 2)2+(1x 1−1x 2)2=√(x 1−x 2)2(1+1x 12·x 22)=√[(x 1+x 2)2−4x 1x 2](1+1x 12·x 22),将①代入得,AB=√2(k 2+1)2k 2=√2(k 2+1)−k (k <0),∴√2(k 2+1)−k =5√22,整理得:2k2+5k+2=0,解得:k=﹣2,或 k=12;(3)解:∵直线l1:y﹣√2=k(x﹣√2)(k<0)过定点F, ∴ F(√2,√2).如图:设P(x,1x ),则M(﹣1x+√2,1x),则PM=x+1x ﹣√2=√(x+1x−√2)2=√x2+1x2−2√2(x+1x)+4,∵PF=√(x−√2)2+(1x −√2)2=√x2+1x2−2√2(x+1x)+4,∴PM=PF.∴PM+PN=PF+PN≥NF=2,当点P在NF上时等号成立,此时NF的方程为y=﹣x+2√2,由(1)知P(√2﹣1,√2+1),∴当P(√2﹣1,√2+1)时,PM+PN最小值是2.6.【答案】(1)解:根据题意,得1−2m>0,解得m<12,∴m的取值范围是m<12.(2)解:①∵四边形ABCD是平行四边形,A(0,3),B(−2,0),∴D(2,3) .把D(2,3)代入y=1−2mx ,得3=1−2m2,∴1−2m=6 .∴反比例函数表达式为y=6x;②(3,2)或(-2,-3)或(-3,-2);4 7.【答案】(1)一、三(2)C(3)1;小;2;−1;大;−2(4)解:方程x + 1x =﹣2x +1没有实数解,理由为:y =x + 1x 与y =﹣2x +1在同一直角坐标系中无交点.8.【答案】(1)解:x 2﹣9x+18=0, (x ﹣3)(x ﹣6)=0, x=3或6, ∵CD >DE , ∴CD=6,DE=3, ∵四边形ABCD 是菱形,∴AC ⊥BD ,AE=EC= √62−32 =3 √3 , ∴∠DCA=30°,∠EDC=60°, Rt △DEM 中,∠DEM=30°, ∴DM= 12 DE= 32 , ∵OM ⊥AB ,∴S 菱形ABCD = 12 AC •BD=CD •OM , ∴12×6√3×6 =6OM ,OM=3 √3 , ∴D (﹣ 32 ,3 √3 ) (2)解:(3)解:如图1,①∵DC=BC ,∠DCB=60°, ∴△DCB 是等边三角形, ∵H 是BC 的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30°,AB=6,∴FB=2 √3 =CP,,√3);∴P(92②如图2,∵四边形QPFC是平行四边形,∴CQ∥PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6 √3,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6 √3,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB=90°,∴Q(﹣92,6 √3),由①知:F(32,2 √3),由F到C的平移规律可得P到Q的平移规律,则P(﹣92﹣3,6 √3﹣√3),即P(﹣152,5 √3);③如图3,四边形CQFP是平行四边形,同理知:Q(﹣92,6 √3),F(32,2 √3),C(92,3 √3),∴P(212,﹣√3);综上所述,点P的坐标为:(92,√3)或(﹣152,5 √3)或(212,﹣√3).9.【答案】(1)解:由题意y1=|x|.函数图象如图所示:(2)解:①当点A在第一象限时,由题意A(2,2),∴2=k2,∴k=4.同法当点A在第二象限时,k=−4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<−2时,y1>y2或x>0时,y1>y2.10.【答案】(1)解:由题意得,设前5个月中y= kx,把x=1,y=100代入得,k=100,∴y与x之间的函数关系式为y= 100x(0<x<5,且x为整数),把x=5代入,得y=20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,解得:b=-30,∴y与x之间的函数关系式为y=10x-30(x>5且x为整数);(2)解:在函数y=10x−30中,令y=100,得10x−30=100解得:x=13答:到第13个月时,该化工厂月利润再次达到100万元.(3)解:在函数y=100x中,当y=50时,x=2,∵100>0,y随x的增大而减小,∴当y<50时,x>2在函数y=10x−30中,当y<50时,得10x−30<50解得:x<8∴2<x<8且x为整数;∴x可取3,4,5,6,7;共5个月.答:该化工厂资金紧张期共有5个月.11.【答案】(1)解:∵点N的坐标为(2,0),CN⊥x轴,且CN=12,∴点C的坐标为(2,12).∵点C在反比例函数y1=nx的图象上,∴n=2×12=1.(2)解:四边形ABCD为菱形,理由如下:当n=2时,y1=nx=2x,y2=4nx=8x.当x=2时,y1=2x=1,y2=8x=4,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P 的坐标为(2, 52 ). 当y = 52 时, 2x = 52 , 8x = 52 , 解得:x = 45 ,x = 165 ,∴点B 的坐标为( 45 , 52 ),点D 的坐标为( 165 , 52 ), ∴BP =2﹣ 45 = 65 ,DP = 165 ﹣2= 65 , ∴BP =DP .又∵AP =CP ,AC ⊥BD , ∴四边形ABCD 为菱形.(3)解:∵四边形ABCD 为正方形, ∴AC =BD ,且点P 为线段AC 及BD 的中点. 当x =2时,y 1= 12 n ,y 2=2n ,∴点A 的坐标为(2,2n ),点C 的坐标为(2, 12 n ),AC = 32 n , ∴点P 的坐标为(2, 54 n ).同理,点B 的坐标为( 45 , 54 n ),点D 的坐标为( 165 , 54 n ),BD = 125 . ∵AC =BD , ∴32 n = 125 , ∴n = 85 ,∴点A 的坐标为(2, 165 ),点B 的坐标为( 45 ,2). 设直线AB 的解析式为y =kx+b (k ≠0),将A (2, 165 ),B ( 45 ,2)代入y =kx+b ,得: {2k +b =16545k +b =2 ,解得: {b =65k =1 ,∴直线AB 的解析式为y =x+ 65 . 当x =0时,y =x+ 65 = 65 , ∴点E 的坐标为(0, 65 ),∴当四边形ABCD为正方形时,OE的长度为6.512.【答案】(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴,∴∠AOB=∠DCA=90°,在Rt△AOB和Rt△DCA中,AO=CD,AB=DA∴Rt△AOB≌Rt△DCA(HL)(2)解:在Rt△ACD中,CD=2,AD= √5,∴AC= =1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),k=3×1=3(3)解:点G在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG≌△DCA,∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y= 的图象上13.【答案】(1)解:∵OB =2OA =3OD =12 ∴OA =6,OD =4 ∴A(6,0),B(0,12)把 A(6,0),B(0,12) 分别代入 y =kx +b 得: {6k +b =0b =12 ,解之得: m =−4×20=−80 ∴一次函数的解析式为 y =−2x +12 令 x =−4 ,则 y =20 ∴C(−4,20)把 C(−4,20) 代入 y =mx 得:m =−4×20=−80∴反比例函数的解析式为 y =−80x ; (2)解:解方程组 {y =−2x +12y =−80x 得: {x 1=−4y 1=20,{x 2=10y 2=−8∴E(10,−8)∴S ΔCDE =S ΔADC +S ΔADE=12AD ⋅(CD +|y E |)=12×(4+6)×(20+8) =140(3)解:如图:当x <-4时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 −4 ≤ x <0 时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 当0<x <10时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 x ≥10时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 综上可得,不等式 kx +b ≤ mx 的解集为 −4 ≤ x <0 或 x ≥10. 14.【答案】(1)2;4;2;23;43;2;2 数学思考: (2)BCAB =k 2−k 1k 1证明:∵AB ·OA =k 1 , AC ·OA =k 2 , ∴AC ·OA −AB ·OA =BC ·OA =k 2−k 1 ,∴BCAB =BC·OAAB·OA=k2−k1k1.推广应用:(3)解:若四边形ADFB是正方形,设点B的坐标为(a,b)(a>0,b>0),则有DF=DA=AB=a,OA=b,OD=a+b,∴点F的坐标为(a,a+b) .∵k2=12,BCAB =k2−k1k1=12,∴12−k1k1=12,解得:k1=8 .∵点B在y=8x 图象上,点F在y=12x图象上,∴ab=8,a (a+b)=12,∴a2=12−8=4,∴a=2,∴b=4,∴OA=4,点B的坐标为(2,4) .15.【答案】(1)解:由y=2x+2可知A(0,2),即OA=2,∵tan∠AHO=2,∴OH=1,∴H(1,0),∵MH⊥x轴,∴点M的横坐标为1,∵点M在直线y=2x+2上,∴点M的纵坐标为4,即M(1,4),∵点M在y=kx上,∴k=1×4=4;(2)解:①当AM=AP时,∵A(0,2),M(1,4),∴AM=√5,则AP=AM=√5,∴此时点P的坐标为(0,2﹣√5)或(0,2+ √5);②若AM=PM时,设P(0,y),则PM=√(1−0)2+(4−y)2,∴√(1−0)2+(4−y)2=√5,解得y=2(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,2+ √5),或(0,2﹣√5);(3)解:∵点N(a,1)在反比例函数y=4x(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有{m+n=44m+n=1,,解得{m=−1n=5,∴直线MN的解析式为y=﹣x+5.∵点C是直线y=﹣x+5与x轴的交点,∴点C的坐标为(5,0),OC=5,∵S△MNQ=3,∴S△MNQ =S△MQC﹣S△NQC=12×QC×4﹣12×QC×1=32QC=3,∴QC=2,∵C(5,0),Q(m,0),∴|m﹣5|=2,∴m=7或3,故答案为7或3.16.【答案】(1)解:把点A(4,1)代入双曲线y1=k1x得k1=4,∴双曲线的解析式为y1=4x;把点A(4,1)代入直线y2=x k2得k2=4,∴直线的解析式为y2=14x(2)解:∵点P(a,b)在y1=4x的图象上,∴ab=4,∵4a=b,∴4a2=4,则a=±1,∵0<a<4,∴a=1,∴点P的坐标为(1,4),又∵双曲线y1=4x 与直线y2=14x的图象交于A、B两点,且点A的坐标为(4,1),∴点B的坐标为(−4,−1),过点P作PG∥y轴交AB于点G,如图所示,把x=1代入y2=14x,得到y=14,∴点G的坐标为(1,14),∴PG =4−14=154 , ∴S △ABP =12 PG ( x A −x B )=12×154×8=15 (3)解:PE=PF .理由如下:∵点P ( a , b )在 y 1=4x 的图象上,∴b =4a ,∵点B 的坐标为( −4 , −1 ), 设直线PB 的表达式为 y =mx +n , ∴{am +n =4a −4m +n =−1, ∴{m =1a n =4a −1, ∴直线PB 的表达式为 y =1a x +4a −1 , 当 y =0 时, x =a −4 ,∴E 点的坐标为( a −4 ,0), 同理:直线PA 的表达式为 y =−1a x +4a +1 , 当 y =0 时, x =a +4 ,∴F 点的坐标为( a +4 ,0),过点P 作PH ⊥x 轴于H ,如图所示,∵P 点坐标为(,∴H 点的坐标为( a ,0),∴EH =x H −x E =a −(a −4)=4 , FH =x F −x H =a +4−a =4 , ∴EH=FH ,∴PE=PF .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【答案】(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,∴∠AMO=∠CEO=∠DFB=90°,∵直线OA:y=x和直线AB:y=﹣x+10,∴∠AOB=∠ABO=45°,∴△CEO∽△DEB∴= =3,设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,∴9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,∴双曲线y= (x>0)(2)解:由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB= ×3×3+ ×(1+3)×6+ ×1×1=17,∴四边形OCDB的面积是17【解析】【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.2.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.3.如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A,B,反比例函数y= 经过点M.(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.(2)当一次函数y=ax+2的图象与反比例函数y= 的图象有唯一公共点M,且OM= ,求a的值.(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.【答案】(1)解:当a=﹣3时,y=﹣3x+2,当y=0时,﹣3x+2=0,x= ,∵点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合),∴0<m<,,DANG则,﹣3x+2= ,当x=m时,﹣3m+2= ,∴k=﹣3m2+2m(0<m<)(2)解:由题意得:,ax+2= ,ax2+2x﹣k=0,∵直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,∴△=4+4ak=0,ak=﹣1,∴k=﹣,则,解得:,∵OM= ,∴12+(﹣)2=()2,a=±(3)解:当a=﹣2时,y=﹣2x+2,∴点A的坐标为(1,0),点B的坐标为(0,2),∵将Rt△AOB在第一象限内沿直线y=x平移个单位得到Rt△A′O′B′,∴A′(2,1),B′(1,3),点M是Rt△A′O′B′斜边上一动点,当点M′与A′重合时,k=2,当点M′与B′重合时,k=3,∴k的取值范围是2≤k≤3【解析】【分析】(1)当a=﹣3时,直线解析式为y=﹣3x+2,求出A点的横坐标,由于点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合)从而得到m的取值范围,由﹣3x+2= ,由X=m得k=﹣3m2+2m(0<m<);(2)由ax+2= 得ax2+2x﹣k=0,直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,△=4+4ak=0,ak=﹣1,由勾股定理即可;(3)当a=﹣2时,y=﹣2x+2,从而求出A、B两点的坐标,由平移的知识知A′,B′点的坐标,从而得到k的取值范围。

4.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.所以双曲线的解析式为y=﹣.设点B的坐标为(m,﹣m).∵点B在双曲线上,∴﹣m2=﹣4,解得m=2或m=﹣2.∵点B在第四象限,∴m=2.∴B(2,﹣2).将点A、B、C的坐标代入得:,解得:.∴抛物线的解析式为y=x2﹣3x.(2)解:如图1,连接AC、BC.令y=0,则x2﹣3x=0,∴x=0或x=3,∴C(3,0),∵A(﹣1,4),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点D是直线AB与x轴的交点,∴D(1,0),∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;(3)解:存在,理由:如图2,由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,∴原抛物线的顶点坐标为(,﹣),∴抛物线向左平移个单位,再向上平移个单位,而平移前A(﹣1,4),B(2,﹣2),∴平移后点A(﹣,),B(,),∴点A关于y轴的对称点A'(,),连接A'B并延长交y轴于点P,连接AP,由对称性知,∠APE=∠BPE,∴△APB的内切圆的圆心在y轴上,∵B(,),A'(,),∴直线A'B的解析式为y=3x﹣,∴P(0,﹣).【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.5.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,反比例函数y= (k≠0)在第一象限内的图象经过点D(m,2)和AB边上的点E(3,).(1)求反比例函数的表达式和m的值;(2)将矩形OABC的进行折叠,使点O于点D重合,折痕分别与x轴、y轴正半轴交于点F,G,求折痕FG所在直线的函数关系式.【答案】(1)解:∵反比例函数y= (k≠0)在第一象限内的图象经过点E(3,),∴k=3× =2,∴反比例函数的表达式为y= .又∵点D(m,2)在反比例函数y= 的图象上,∴2m=2,解得:m=1(2)解:设OG=x,则CG=OC﹣OG=2﹣x,∵点D(1,2),∴CD=1.在Rt△CDG中,∠DCG=90°,CG=2﹣x,CD=1,DG=OG=x,∴CD2+CG2=DG2,即1+(2﹣x)2=x2,解得:x= ,∴点G(0,).过点F作FH⊥CB于点H,如图所示.由折叠的特性可知:∠GDF=∠GOF=90°,OG=DG,OF=DF.∵∠CGD+∠CDG=90°,∠CDG+∠HDF=90°,∴∠CGD=∠HDF,∵∠DCG=∠FHD=90°,∴△GCD∽△DHF,∴=2,∴DF=2GD= ,∴点F的坐标为(,0).设折痕FG所在直线的函数关系式为y=ax+b,∴有,解得:.∴折痕FG所在直线的函数关系式为y=﹣x+【解析】【分析】(1)由点E的坐标利用反比例函数图象上点的坐标特征即可求出k值,再由点B在反比例函数图象上,代入即可求出m值;(2)设OG=x,利用勾股定理即可得出关于x的一元二次方程,解方程即可求出x值,从而得出点G的坐标.再过点F作FH⊥CB于点H,由此可得出△GCD∽△DHF,根据相似三角形的性质即可求出线段DF的长度,从而得出点F的坐标,结合点G、F的坐标利用待定系数法即可求出结论.6.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.7.如图,直线y=2x+6与反比例函数y= (k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时不等式2x+6﹣<0的解集;(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?【答案】(1)解:∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为y= .(2)解:不等式2x+6﹣<0的解集为0<x<1.(3)解:由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴﹣>0∴S△BMN= |MN|×|y M|= ×(﹣)×n=﹣(n﹣3)2+ ,∴n=3时,△BMN的面积最大,最大值为.【解析】【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)由图象直接求得;(3)构建二次函数,利用二次函数的最值即可解决问题.8.如图,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A (﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.【答案】(1)解:把A(﹣2,b)代入,得b=﹣ =4,所以A点坐标为(﹣2,4),把A(﹣2,4)代入y=kx+5,得﹣2k+5=4,解得k= ,所以一次函数解析式为y= x+5;(2)解:将直线AB向下平移m(m>0)个单位长度得直线解析式为y= x+5﹣m,根据题意方程组只有一组解,消去y得﹣ = x+5﹣m,整理得 x2﹣(m﹣5)x+8=0,△=(m﹣5)2﹣4× ×8=0,解得m=9或m=1,即m的值为1或9.【解析】【分析】(1)先利用反比例函数解析式求出b=4,得到A点坐标为(-2,4),然后把A点坐标代入y=kx+5中求出k,从而得到一次函数解析式;(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=,又与反比例函数有且只有一个公共点,可组成方程组,且只有一组解,然后消去y得到关于x的一元二次方程,再根据判别式=0得到关于m的方程,最后解方程求出m的值.9.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2(当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.10.如图,在菱形ABCD中,, ,点E是边BC的中点,连接DE,AE.(1)求DE的长;(2)点F为边CD上的一点,连接AF,交DE于点G,连接EF,若 ,①求证:△△;②求DF的长.【答案】(1)解:连结BD(2)解:①②【解析】【分析】(1)连结BD ,根据菱形的性质及等边三角形的判定方法首先判定出△CDB是等边三角形,根据等边三角形的性质得出DE⊥BC,CE=2,然后利用勾股定理算出DE的长;(2)①首先判断出△AGD∽△EGF,根据相似三角形对应边成比例得出,又∠AGE=∠DGF,故△AGE∽△DGF;②根据相似三角形的性质及含30°直角三角形的边之间的关系及勾股定理得出EF的长,然后过点E作EH⊥DC于点H,在Rt△ECH中,利用勾股定理算出FH的长,从而根据线段的和差即可算出答案.11.(1)如图1所示,在中,,,点在斜边上,点在直角边上,若,求证: .(2)如图2所示,在矩形中,,,点在上,连接,过点作交 (或的延长线)于点 .①若,求的长;②若点恰好与点重合,请在备用图上画出图形,并求的长.【答案】(1)证明:∵在中,,,∴,∴,∵,∴,∴,∴ .(2)解:①∵四边形是矩形,∴,∴,∵,∴,∴,∴,∴,∵,∴,,∴,;②如图所示,设,由①得,∴,即,整理,得:,解得:,,所以的长为或 .【解析】【分析】(1)利用平角的定义和三角形的内角和证明即可证得结论;(2)①仿(1)题证明,再利用相似三角形的性质即可求得结果;②由①得,设,根据相似三角形的性质可得关于x的方程,解方程即可求得结果.12.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.13.如图,抛物线与轴交于、两点,与轴交于点,且.(1)求抛物线的解析式和顶点的坐标;(2)判断的形状,证明你的结论;(3)点是轴上的一个动点,当的周长最小时,求的值.【答案】(1)解:∵点在抛物线上,∴,解得,∴抛物线解析式为,∵,∴点坐标为;(2)解:为直角三角形,证明如下:在中,令可得,解得或,∴为,且为,∴,,,由勾股定理可求得,,又,∴,∴为直角三角形;(3)解:∵,∴点关于轴的对称点为,如图,连接,交轴于点,则即为满足条件的点,设直线解析式为,把、坐标代入可得,解得,∴直线解析式为,令,可得,∴.【解析】【分析】(1)把A点坐标代入可求得b的值,可求得抛物线的解析式,再求D 点坐标即可;(2)由解析式可求得A、B、C的坐标,可求得AB、BC、AC的长,由勾股定理的逆定理可判定△ABC为直角三角形;(3)先求得C点关于x轴的对称点E,连接DE,与轴交于点M,则M即为所求,可求得DE的解析式,令其y=0,可求得M点的坐标,可求得m.14.如图,反比例函数y= 的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y= 在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.【答案】(1)解:∵反比例函数y= 的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)解:当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD= ×2×2=2(3)解:存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b= (舍去),∴b的值为﹣.【解析】【分析】(1)根据反比例函数的图象上点的坐标特征易得k=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,则利用坐标轴上点的坐标特征可求出C(﹣2,0),D(0,﹣2),然后根据三角形面积公式求解;(3)先表示出C(b,0),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(﹣b,0),利用直线解析式可得到Q(﹣b,2b),再根据反比例函数的图象上点的坐标特征得到﹣b•2b=﹣4,然后解方程即可得到满足条件的b的值.15.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.【答案】(1)解:把点A(2,6)代入y= ,得m=12,则y= .把点B(n,1)代入y= ,得n=12,则点B的坐标为(12,1).由直线y=kx+b过点A(2,6),点B(12,1)得,解得,则所求一次函数的表达式为y=﹣x+7(2)解:如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,7).∴PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=10,∴×|m﹣7|×(12﹣2)=10.∴|m﹣7|=2.∴m1=5,m2=9.∴点E的坐标为(0,5)或(0,9).【解析】【分析】(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线y=kx+b,求出k、b的值,从而得出一次函数的解析式;(2)设点E 的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,7),得出PE=|m﹣7|,根据S△AEB=S△BEP﹣S△AEP=10,求出m的值,从而得出点E的坐标.。

相关文档
最新文档