2018年高考理科数学第一轮复习教案58 分类加法计数原理与分步乘法计数原理

合集下载

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。

2. 培养学生运用计数原理解决实际问题的能力。

3. 引导学生通过合作交流,提高思维能力和创新能力。

二、教学内容1. 分类加法计数原理:(1)了解分类加法计数原理的概念。

(2)学会运用分类加法计数原理解决问题。

2. 分步乘法计数原理:(1)了解分步乘法计数原理的概念。

(2)学会运用分步乘法计数原理解决问题。

三、教学重点与难点1. 教学重点:(1)分类加法计数原理的应用。

(2)分步乘法计数原理的应用。

2. 教学难点:(1)理解分类加法计数原理的含义。

(2)理解分步乘法计数原理的含义。

四、教学方法1. 采用问题驱动法,引导学生主动探究。

2. 运用实例分析,让学生直观理解计数原理。

3. 组织小组讨论,培养学生合作交流能力。

五、教学准备1. 课件、黑板、粉笔等教学工具。

2. 相关实例和练习题。

教案内容:一、分类加法计数原理1. 导入:通过生活中的实例,如“统计班级男生女生人数”,引出分类加法计数原理。

2. 讲解:解释分类加法计数原理的概念,即把总数分成几个部分,分别计算每个部分的数量,再相加得到总数。

3. 练习:让学生运用分类加法计数原理解决实际问题,如“统计学校三个年级的学生总数”。

二、分步乘法计数原理1. 导入:通过实例“做一批玩具,每组有5个,一共要做3组”,引出分步乘法计数原理。

2. 讲解:解释分步乘法计数原理的概念,即每步的数量相乘得到最终结果。

3. 练习:让学生运用分步乘法计数原理解决实际问题,如“做一批玩具,每组有5个,一共要做4组,需要多少个玩具?”教学过程:一、分类加法计数原理1. 引导学生思考生活中的计数问题,如统计人数、物品数量等。

2. 讲解分类加法计数原理的概念和步骤。

3. 让学生举例说明并计算。

二、分步乘法计数原理1. 引导学生思考生活中的计数问题,如制作玩具、做饭等。

2. 讲解分步乘法计数原理的概念和步骤。

高三一轮复习导学案58 第10章 第01节——分类加法计数原理与分步乘法计数原理

高三一轮复习导学案58 第10章 第01节——分类加法计数原理与分步乘法计数原理

§10.1分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事情,共有N=____________________种不同的方法.2.分步乘法计数原理完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事情共有N=____________________种不同的方法.3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.[难点正本疑点清源]1.两个原理的联系与区别两个原理都是对完成一件事的方法种数而言的.区别在于:(1)分类加法计数原理是“分类”,分步乘法计数原理是“分步”;(2)分类加法计数原理中每类办法中的每一种方法都能独立完成一件事,分步乘法计数原理中每步中每种方法都只能做这件事的一步,不能独立完成这件事.2.对两个原理的进一步理解分类加法计数原理中,“完成一件事,有n类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏.进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能独立完成这件事.只有满足这个条件,才能直接用分类加法计数原理,否则不可以.分步乘法计数原理中,“完成一件事,需要分成n个步骤”,是说每个步骤都不足以完成这件事,这些步骤彼此间也不能有重复和遗漏.1.从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法种数为________.2.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有________种.3.有不同颜色的四件上衣与不同颜色的三件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数是________.4.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,则大师赛共有________场比赛.5.有A、B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,现在要从三名工人中选2名分别去操作以上车床,不同的选派方法有() A.6种B.5种C.4种D.3种题型一分类加法计数原理例1高三一班有学生50人,男生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人.(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?(2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?探究提高分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次分类时要注意满足一个基本要求,就是完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.同学衣服上左、右各有一个口袋,左边口袋装有30张英语单词卡片,右边口袋装有20张英语单词卡片,这些英语单词卡片都互不相同,则从两个口袋里任取一张英语单词卡片,共有________种不同的取法.题型二分步乘法计数原理例2已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?(3)P可表示多少个不在直线y=x上的点?探究提高利用分步乘法计数原理解决问题:①要按事件发生的过程合理分步,即分步是有先后顺序的;②各步中的方法互相依存,缺一不可,只有各个步骤都完成了才算完成这件事.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.题型三两个计数原理的综合应用例3用0,1,2,3,4,5可以组成多少个无重复数字的比2 000大的4位偶数?探究提高用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数.11.分类不准、计数原理使用不当致误试题:(5分)(2010·湖南)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为() A.10B.11C.12D.15学生答案展示 A审题视角至多有两个对应位置上的数字相同是本题的题眼,可分为0个相同,1个相同,2个相同.正确答案 B解析方法一分0个相同、1个相同、2个相同讨论.(1)若0个相同,则信息为:1001.共1个.(2)若1个相同,则信息为:0001,1101,1011,1000.共4个.(3)若2个相同,又分为以下情况:①若位置一与二相同,则信息为:0101;②若位置一与三相同,则信息为:0011;③若位置一与四相同,则信息为:0000;④若位置二与三相同,则信息为:1111;⑤若位置二与四相同,则信息为:1100;⑥若位置三与四相同,则信息为:1010.共有6个.故与信息0110至多有两个对应位置上的数字相同的信息个数为1+4+6=11.方法二若0个相同,共有1个;若1个相同,共有C14=4(个);若2个相同,共有C24=6(个).故共有1+4+6=11(个).批阅笔记(1)本题考查的是分类加法计数原理,难度不大,属中档题.(2)本题要求至多有两个对应位置上的数字相同,应按照0个相同、1个相同、2个相同进行讨论,本题易错点是易漏掉0个相同的情况.方法与技巧1.分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.2.混合问题一般是先分类再分步.3.分类时标准要明确,做到不重复不遗漏.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.失误与防范应用两种原理解题:(1)分清要完成的事情是什么?(2)分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;(3)有无特殊条件的限制;(4)检验是否有重漏.课时规范训练(时间:60分钟)A组专项基础训练题组一、选择题1.由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有() A.238个B.232个C.174个D.168个2.如图,A、B、C、D为四个村庄,要修筑三条公路,将这四个村庄连接起来,则不同的修筑方案共有()A.8种B.12种C.16种D.20种3.已知集合M∈{1,-2,3},N∈{-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是() A.18 B.10 C.16 D.14二、填空题4.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有种.5.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有个.6.在2008年奥运选手选拔赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1、2、3、4、5、6、7、8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.三、解答题7.如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有多少种?8.某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?B组专项能力提升题组一、选择题1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是() A.9 B.14 C.15 D.212.三边长均为整数,且最大边长为11的三角形的个数为() A.25 B.26 C.36 D.373.如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48二、填空题4.某电子元件,是由3个电阻组成的回路,其中有4个焊点A、B、C、D,若某个焊点脱落,整个电路就不通,现在发现电路不通了,那么焊点脱落的可能情况共有种.5.将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有种.6.形如45132的数称为“波浪数”,即十位数字,千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为________.7.如图所示的几何体是由一个正三棱锥P—ABC与正三棱柱ABC—A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有种.三、解答题8.已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.(1)若B中每一元素都有原象,这样不同的f有多少个?(2)若B中的元素0必无原象,这样的f有多少个?(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?答案要点梳理1.m1+m2+…+m n 2.m1×m2×…×m n基础自测1.5 2.32 3.12 4.16 5.C题型分类·深度剖析例1解(1)50+60+55=165(种),即所求选法有165种.(2)30+30+20=80(种),即所求选法有80种.变式训练150例2解(1)确定平面上的点P(a,b)可分两步完成:第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步乘法计数原理,得到平面上的点的个数是6×6=36.(2)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.(3)点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.由(1)得不在直线y=x上的点共有36-6=30(个).变式训练2解(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180(个)不同的二次函数.(2)y=ax2+bx+c的开口向上时,a的取值有2种情况,b、c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72(个)图象开口向上的二次函数.例3解完成这件事可分为3类方法:第一类是用0做结尾的比2 000大的4位偶数,它可以分三步去完成:第一步,选取千位上的数字,只有2,3,4,5可以选择,有4种选法;第二步,选取百位上的数字,除0和千位上已选定的数字以外,还有4个数字可供选择,有4种选法;第三步,选取十位上的数字,还有3种选法.依据分步乘法计数原理,这类数的个数有4×4×3=48(个);第二类是用2做结尾的比2 000大的4位偶数,它可以分三步去完成:第一步,选取千位上的数字,除去2,1,0只有3个数字可以选择,有3种选法;第二步,选取百位上的数字,在去掉已经确定的首尾两数字之后,还有4个数字可供选择,有4种选法;第三步,选取十位上的数字,还有3种选法.依据分步乘法计数原理,这类数的个数有3×4×3=36(个);第三类是用4做结尾的比2 000大的4位偶数,其步骤同第二类,有3×4×3=36(个).对以上三类结论用分类加法计数原理,可得所求无重复数字的比2 000大的4位偶数有48+36+36=120(个).变式训练3解方法一可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论.由题设,四棱锥S—ABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420(种).方法二以S、A、B、C、D顺序分步染色.第一步,S点染色,有5种方法;第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S、A分别在同一条棱上,有3种方法;第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C 是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).方法三按所用颜色种数分类.第一类,5种颜色全用,共有A55种不同的方法;第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;第三类,只用3种颜色,则A与C、B与D必定同色,共有A35种不同的方法.由分类加法计数原理,得不同的染色方法总数为A55+2×A45+A35=420(种).课时规范训练A组1.C2.C3.D 4.48 5.40 6.2 8807.解先涂A、D、E三个点,共有4×3×2=24(种)涂法,然后再按B、C、F的顺序涂色,分为两类:一类是B与E或D同色,共有2×(2×1+1×2)=8(种)涂法;另一类是B与E或D不同色,共有1×(1×1+1×2)=3(种)涂法.所以涂色方法共有24×(8+3)=264(种).8.解由题意得有1人既会英语又会日语,6人只会英语,2人只会日语.第一类:从只会英语的6人中选1人说英语,共有6种方法,则说日语的有2+1=3(种),此时共有6×3=18(种);第二类:不从只会英语的6人中选1人说英语,则只有1种方法,则选会日语的有2种,此时共有1×2=2(种);所以根据分类加法计数原理知共有18+2=20(种)选法.B组1.B2.C3.B4.15 5.12 6.16 7.128.解(1)显然对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a3找象有2种方法,a4找象有1种方法,所以不同的f共有4×3×2×1=24(个).(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种方法.所以不同的f共有34=81(个).(3)分为如下四类:第一类:A中每一元素都与1对应,有1种方法;第二类:A中有两个元素对应1,一个元素对应2,另一个元素与0对应,有C24·C12=12(种)方法;第三类:A中有两个元素对应2,另两个元素对应0,有C24·C22=6(种)方法;第四类:A中有一个元素对应1,一个元素对应3,另两个元素与0对应,有C14·C13=12(种)方法.所以不同的f共有1+12+6+12=31(个).。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理(第一课时) 三维目标知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:① 通过对两个原理概念的学习培养学生的理解能力、归纳概括能力和类比分析能力;②通过对两个原理的应用,提高学生对数学知识的应用能力;情感态度与价值观:①了解学习本章的意义,激发学生的学习兴趣②引导学生形成 “自主学习”与“合作学习”等良好的学习方式.教学重点 理解两个原理,并能运用它们来解决一些简单的问题.教学难点 弄清楚“一件事”指的是什么,分清是“分类”还是“分步”. 教学方法 启发式教具准备 多媒体教学过程一、引入课题引例: ①我从二中到泗中有两量不同的马自达,三量不同的出租车可以乘坐,那么请同学们帮我算一下,我从二中到泗中有多少种乘坐交通工具的方式? ②从我们班上50名同学中推选出两名同学分别担任班长和团支书,有多少种不同的选法?这就是用我们这节课要研究的分类加法计数原理与分步乘法计数原理来解决问题.设计意图:从贴近学生实际生活的实例出发,让学生明白本节课的教学内容,激发学生学习兴趣。

师生互动:老师提问学生回答。

二、讲授新课:1、分类加法计数原理问题1:(多媒体展示)十一你打算从甲地到乙地旅游,假设可以乘汽车和火车.一天中,汽车有3班,火车有2班.那么一天中乘坐这些交通工具从甲地到乙地共有多少种坐交通工具的方法? 有3+2=5种方法探究1:(多媒体展示)你能说说以上问题的特征吗?(分析要完成的“一件事”是什么.)完成一件事有两类不同方案,在第1类方案中有3种不同的方法,在第2类方案中有2种不同的方法. 那么完成这件事共有3+2=5种方法。

一件事就是从甲地到乙地的一种乘坐交通工具的方式。

发现新知:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.(也称加法原理)设计意图:由特例到定义的设计思路让学生理解加法原理的概念,体现了一般存在于特殊之中的辩证法思想,便于让学生理解概念。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 理解分类加法计数原理和分步乘法计数原理的概念。

2. 学会运用分类加法计数原理和分步乘法计法原理解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 分类加法计数原理:定义:如果一个事件可以分成几个互斥的部分,这个事件发生的总次数就等于各部分事件发生次数的和。

公式:P(A) = P(A1) + P(A2) + + P(An)2. 分步乘法计数原理:定义:如果一个事件可以分成几个相互独立的步骤,这个事件发生的总次数等于各步骤事件发生次数的乘积。

公式:P(A) = P(A1) ×P(A2) ××P(An)三、教学重点与难点1. 教学重点:分类加法计数原理的概念和公式。

分步乘法计数原理的概念和公式。

2. 教学难点:如何运用分类加法计数原理和分步乘法计数原理解决实际问题。

四、教学方法1. 采用讲授法讲解分类加法计数原理和分步乘法计数原理的概念和公式。

2. 运用案例分析法引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。

3. 开展小组讨论法,让学生分组讨论和解决问题,培养学生的团队协作能力。

五、教学步骤1. 导入新课,介绍分类加法计数原理和分步乘法计数原理的概念。

2. 讲解分类加法计数原理的公式和应用示例。

3. 讲解分步乘法计数原理的公式和应用示例。

4. 开展案例分析,让学生运用分类加法计数原理和分步乘法计数原理解决实际问题。

5. 进行小组讨论,让学生分组讨论和解决问题,分享解题心得。

六、教学评估1. 课堂问答:通过提问学生,了解学生对分类加法计数原理和分步乘法计数原理的理解程度。

2. 案例分析报告:评估学生在案例分析中的表现,包括问题解决能力和逻辑思维能力。

3. 小组讨论评价:评价学生在小组讨论中的参与程度、团队合作能力和问题解决能力。

七、教学反思1. 反思教学内容:检查教学内容是否全面、清晰,是否需要调整或补充。

2018年一轮复习(理)数学教案:第10章 第1节 分类加法计数原理和分步乘法计数原理

2018年一轮复习(理)数学教案:第10章 第1节 分类加法计数原理和分步乘法计数原理

第十章计数原理、概率、随机变量及其分布[深研高考·备考导航]为教师备课、授课提供丰富教学资源[五年考情]考点2016年2015年2014年2013年2012年计数原理、排列组合全国卷Ⅱ·T5,全国卷Ⅲ·T12———全国卷·T2二项式定理全国卷Ⅰ·T14全国卷Ⅰ·T10全国卷Ⅱ·T15全国卷Ⅱ·T13全国卷Ⅰ·T9全国卷Ⅱ·T5—随机事件的概率、古典概型与几何概型全国卷Ⅰ·T4全国卷Ⅱ·T10全国卷Ⅱ·T18—全国卷Ⅰ·T5全国卷Ⅱ·T5全国卷Ⅱ·T14—条件概率、二项分布、离散型随机变量的分布列、均值与方差全国卷Ⅰ·T19全国卷Ⅰ·T4全国卷Ⅱ·T18—全国卷Ⅰ·T19全国卷Ⅱ·T19全国卷·T18综合近5年全国卷高考试题,我们发现高考命题在本章呈现以下规律:1.从考查题型看:一般有1~2个客观题,1个解答题;从考查分值看,占10~22分,基础题主要考查对基础知识和基本方法的应用意识,中档题主要考查转化与化归思想及运算求解能力.2.从考查知识点看:主要考查计数原理、排列与组合、二项式定理、随机事件的概率、古典概型与几何概型、离散型随机变量及其分布列、离散型随机变量的均值与方差.3.从命题思路上看:(1)计数原理、排列组合与古典概型相结合考查.(2)几何概型与线性规划、定积分等知识相结合考查.(3)随机事件的概率、离散型随机变量及其分布列、离散型随机变量的均值与方差和统计知识交汇考查.(4)相互独立事件、二项分布、超几何分布、正态分布、实际问题等其他知识交汇考查.[导学心语]1.全面系统复习,深刻理解知识本质(1)重视计数原理、二项式定理的理解,深刻把握排列组合、随机事件、古典概型、几何概型、离散型随机变量及其分布列、条件概率、二项分布、离散型随机变量的均值与方差、正态分布等概念,研究事件的概率,注意该事件的特征,用适当的概率模型求解.(2)注意各类概率公式和概率模型的理解和应用,掌握其适用条件和用法.2.抓住重点、针对训练通过对近5年全国卷高考试题分析,可以预测,在2017年,本章问题考查的重点是:(1)计数原理、二项式定理、古典概型、几何概型.(2)离散型随机变量及其分布列、期望与方差.做针对性训练,通过小题强化概率各种题型的计算,通过解答题训练巩固离散型随机变量及分布列问题.3.重视转化与化归思想的应用研究计数原理、概率、随机变量及其分布列问题,转化与化归思想贯穿始终,首先需要将实际问题转化为相应的计数问题、排列与组合问题、概率计算问题、离散型随机变量的分布列与均值、方差等的计算问题,其次将概率的计算转化为计数问题、长度或面积的计算问题,将求分布列问题转化为概率的计算问题,将复杂事件的概率计算转化为简单事件的概率计算.第一节分类加法计数原理和分步乘法计数原理[考纲传真] 1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.1.分类加法计数原理完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,…,在第n类办法中有m n种方法.那么,完成这件事共有N =m1+m2+m3+…+m n种不同的方法.(也称加法原理)2.分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,…,做第n步有m n种方法.那么,完成这件事共有N=m1·m2·m3·…·m n种不同的方法(也称乘法原理)1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方法中的方法可以相同.()(2)在分类加法计数原理中,每类方法中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步乘法计数原理中,事情是分n步完成的,其中任何一个单独的步骤都能完成这件事.()[答案](1)×(2)√(3)√(4)×2.(教材改编)从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A.30B.20C.10D.6D[从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类:①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.]3.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有()A.30个B.42个C.36个D.35个C[∵a+b i为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.]4.(2016·全国卷Ⅱ)如图10-1-1,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()图10-1-1A.24 B.18C.12 D.9B[分两步,第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路程.]5.现有4种不同的颜色要对如图10-1-2所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有________种.图10-1-248[按A→B→C→D顺序分四步涂色,共4×3×2×2=48种不同的着色方法.]分类加法计数原理经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有() A.4种B.6种C.10种D.16种(2)(2017·青岛二中月考)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13C.12 D.10(1)B(2)B[(1)分两类:甲第一次踢给乙时,满足条件有3种方法(如图),同理,甲先传给丙时,满足条件有3种方法.由分类加法计数原理,共有3+3=6种传递方法.(2)①当a=0时,有x=-b2,b=-1,0,1,2,有4种可能;②当a≠0时,则Δ=4-4ab≥0,ab≤1,(ⅰ)当a=-1时,b=-1,0,1,2,有4种可能;(ⅱ)当a=1时,b=-1,0,1,有3种可能;(ⅲ)当a=2时,b=-1,0,有2种可能.∴有序数对(a,b)共有4+4+3+2=13个.][规律方法] 1.第(2)题常见的错误:(1)想当然认为a≠0;(2)误认为a≠b.2.分类标准是运用分类计数原理的难点所在,应抓住题目中的关键词、关键元素、关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.[变式训练1]从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()【导学号:57962447】A.3B.4C.6D.8D[以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到另外的4个数列,∴所求的数列共有2(2+1+1)=8个.]分步乘法计数原理6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的情况有()A.C26·45种B.A26·54种C.C26·A45种D.C26·54种(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.(1)D(2)120[(1)有两个年级选择甲博物馆共有C26种情况,其余四个年级每个年级各有5种选择情况,故有且只有两个年级选择甲博物馆的情况有C26×54种.(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120种.][规律方法] 1.利用分步乘法计数原理应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.2.在第(1)题中,除仅有两个年级选择甲博物馆外,其余4个年级易错误认为有45种选择方法.导致错选A项.[变式训练2](1)设集合A={-1,0,1},B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数为________.(2)将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的种数为________.(用数字作答)(1)10(2)8[(1)易知A∩B={0,1},A∪B={-1,0,1,2,3},∴x有2种取法,y有5种取法,由分步乘法计数原理,A*B的元素有2×5=10个.(2)第1步把甲、乙分到不同班级有A22=2种分法.第2步分丙、丁:①丙、丁分到同一班级有2种分法,②丙、丁分到两个不同的班级有A22=2种分法.由计数原理,不同的分法为2×(2+2)=8种.]两个计数原理的综合应用非空子集,若对任意x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有________个.(2)如图10-1-3,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.图10-1-3(1)17(2)260[(1)当A={1}时,B有23-1种情况;当A={2}时,B有22-1种情况;当A={3}时,B有1种情况;当A={1,2}时,B有22-1种情况;当A={1,3},{2,3},{1,2,3}时,B均有1种情况,所以满足题意的“子集对”共有7+3+1+3+3=17(个).(2)区域A有5种涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法,所以共有5×4×4+5×4×3×3=260种涂色方法.][规律方法] 1.(1)注意在综合应用两个原理解决问题时,一般是先分类再分步.在分步时可能又用到分类加法计数原理.(2)注意对于较复杂的两个原理综合应用的问题,可恰当地画出示意图或列出表格,使问题形象化、直观化.2.解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成,第(2)题中,由于共边的区域不同色,从而是按区域A与区域C是否同色分类处理的.[变式训练3](2017·厦门市联考)用a代表红球,b代表蓝球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取,“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)B.(1+a5)(1+b+b2+b3+b4+b5)C.(1+a)5(1+b+b2+b3+b4+b5)D.(1+a5)(1+b5)A[分两步:第一步,5个无区别的红球可能取出0个,1个,…,5个,则有1+a+a2+a3+a4+a5种不同的取法.第二步,5个无区别的蓝球都取出或都不取出,则有1+b5种不同取法.由分步乘法计数原理,共有(1+a+a2+a3+a4+a5)(1+b5)种取法.][思想与方法]1.分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数.区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.2.涉及加法与乘法原理的混合问题一般是先分类再分步.3.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.[易错与防范]1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.。

高三数学一轮复习精品教案2:分类加法计数原理与分步乘法计数原理教学设计

高三数学一轮复习精品教案2:分类加法计数原理与分步乘法计数原理教学设计

10.6.1 分类加法计数原理与分步乘法计数原理考纲传真 1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N =m +n 种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N =m ×n 种不同的方法.1.(人教A 版教材习题改编)在所有的两位数中,个位数字大于十位数字的两位数共有( )A .50个B .45个C .36个D .35个『解析』 根据题意,十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目要求的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个). 『答案』 C2.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A .10B .11C .12D .15『解析』 若4个位置的数字都不同的信息个数为1;若恰有3个位置的数字不同的信息个数为C34;若恰有2个位置上的数字不同的信息个数为C24.由分类计数原理知满足条件的信息个数为1+C34+C24=11.『答案』B3.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504 B.210 C.336 D.120『解析』分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.『答案』A4.(2012·大纲全国卷)6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有()A.240种B.360种C.480种D.720种『解析』第一步先排甲,共有A14种不同的排法;第二步再排其他人,共有A55种不同的排法.因此不同的演讲次序共有A14·A55=480(种).『答案』C5.从4名男生,2名女生中,选2人参加某项活动,至少有一名女生参加的选法有________种.『解析』法一分两类,①一男一女,共有4×2=8种;②两女,只有1种,共有8+1=9种.法二间接法C26-C24=15-6=9种.『答案』9分类加法计数原理某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种『思路点拨』由于是两类不同的书本,故用分类加法计数原理.『尝试解答』赠送一本画册,3本集邮册.需从4人中选取一人赠送画册,其余送邮册,有C14种方法.赠送2本画册,2本集邮册,只需从4人中选出2人送画册,其余2人送邮册,有C24种方法.由分类加法计数原理,不同的赠送方法有C14+C24=10(种).『答案』B,1.本题常见错误:①忽视相同画册,相同集邮册条件,错用排列计算.②找不准分类标准.求解的关键在于抓住赠送画册的本数进行分类.2.分类标准是运用分类计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置.首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法.图10-1-1如图10-1-1所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.『解析』把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8(个).由分类加法计数原理知,共有32+8=40(个).『答案』40分步乘法计数原理(2012·大纲全国卷)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种『思路点拨』先排第一列三个位置,再排第二列第一行上的元素,则其余位置上元素就可以确定.『尝试解答』先排第一列,由于每列的字母互不相同,因此共有A33种不同排法.再排第二列,其中第二列第一行的字母共有A12种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A33·A12·1=12(种)不同的排列方法.『答案』A,1.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且也要确定分步的标准,分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.2.分步必须满足两个条件:(1)步骤互相独立,互不干扰.(2)步与步确保连续,逐步完成.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.『解』(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y =ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)y=ax2+bx+c的开口向上时,a的取值有2种情况,b、c的取值均有6种情况.因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.两个计数原理的综合应用图10-1-2如图10-1-2所示,用四种不同颜色给图中的A、B、C、D、E、F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有()A.288种B.264种C.240种D.168种『思路点拨』解答本题应注意两点:(1)每一个点都有可以和它同色的两个点.(2)涂色的顺序不同影响解题的难度,可先涂A、D、E,再分类涂B、F、C.『尝试解答』先涂A、D、E,共有4×3×2=24种涂法,然后再按B、C、F的顺序涂色,分为两类:一类是B与E或D同色,共有2×(2×1+1×2)=8种涂法,另一类是B与E 和D不同色,共有1×(1×1+1×2)=3种涂法,故涂色方法共有24×(8+3)=264种.『答案』B,1.给B、C、F涂色时,在每一类下又有两种情况,应切实掌握好分类的标准,分清哪些可以同色,哪些不同色.2.用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,把完成每一步的方法数相乘,得到总数.(2013· 杭州模拟)如图10-1-3,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有________.图10-1-3『解析』按区域1与3是否同色分类:(1)区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.∴区域1与3涂同色,共有4A33=24种方法.(2)区域1与3不同色:先涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法.∴这时共有A24×2×1×3=72种方法,故由分类计数原理,不同的涂色种数为24+72=96.『答案』96两个原理分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础并贯穿始终.(1)分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类.(2)分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,构成完成这件事的一种方法,简单的说步与步之间的方法“相互独立,多步完成”.两点提醒1.分类时,标准要明确,应做到不重不漏.2.分步时,要合理设计顺序、步骤,并注意元素是否可以重复选取.从近两年高考试题看,两个计数原理是高考考查的热点,一般与排列、组合等知识结合,考查分类讨论的数学思想.主要涉及数字问题、几何问题、涂色问题,有时也出现与其它知识相结合的新定义题型.创新探究之十二与计数原理有关的新定义题(2012·江苏高考)设集合P n={1,2,…,n},n∈N*,记f(n)为同时满足下列条件的集合A 的个数:①A ⊆P n ;②若x ∈A ,则2x ∉A ;③若x ∈∁P n A ,则2x ∉∁P n A .(1)求f (4);(2)求f (n )的解析式(用n 表示).『解』 (1)当n =4时,符合条件的集合A 为:{2},{1,4},{2,3},{1,3,4},故f (4)=4.(2)任取偶数x ∈P n ,将x 除以2,若商仍为偶数,再除以2,…,经过k 次以后,商必为奇数,此时记商为m ,于是x =m ·2k ,其中m 为奇数,k ∈N *.由条件知,若m ∈A ,则x ∈A ⇔k 为偶数;若m ∉A ,则x ∈A ⇔k 为奇数.于是x 是否属于A 由m 是否属于A 确定.设Q n 是P n 中所有奇数的集合,因此f (n )等于Q n 的子集个数.当n 为偶数(或奇数)时,P n 中奇数的个数是n 2(或n +12), 所以f (n )=⎩⎨⎧2n 2,n 为偶数,2n +12,n 为奇数.创新点拨:(1)以集合的概念和运算为背景,求解计数问题.(2)一题两问,体现由特殊到一般的数学思想,考查归纳、抽象概括能力.防范措施:(1)通过阅读、分析,弄清新定义,弄清利用新定义所解决的问题,如本题中f (n )表示集合A 的个数,且集合A 满足三个条件.(2)从特殊情形入手,通过分析、归纳,发现问题中隐含的一些本质特征和规律,然后再推广到一般情形,必要时可以多列举一些特殊情形,使规律方法更加明确.1.(2012·课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A .12种B .10种C .9种D .8种『解析』 分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C 12=2(种)选派方法;第二步,选派两名学生到甲地,另外两名到乙地,共有C24=6(种)选派方法.由分步乘法计数原理得不同的选派方案共有2×6=12(种).『答案』A2.(2013·济南质检)如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.『解析』第一类:恰有三个相同的数字为1,选2,3,4中的一个数字排在十、百、千位的一个位置上,有C13·A13种方法,四位“好数”有9个.第二类:相同的三个数字为2,3,4中的一个,这样的四位“好数”为2221,3331,4441共3个.由分类加法计数原理,共有“好数”9+3=12个.『答案』12。

2018届高考数学一轮复习(理科)课件 第10章-第1节分类加法计数原理与分步乘法计数原理(68张PPT) 课标版

2018届高考数学一轮复习(理科)课件 第10章-第1节分类加法计数原理与分步乘法计数原理(68张PPT) 课标版

=30(种);第二类,所取三点不在同一侧面(即点 A 所在棱上 的点与其对边的中点),有 3 种.故共有 33 种.
[答案] B
5.(2016· 江西上饶中学第一次月考)五名男同学,三名女 同学外出春游,平均分成两组,每组 4 人,则女同学不都在 同一组的不同分法有( A.30 种 C.35 种 ) B.65 种 D.70 种
要构成三角形,必须 x+y≥12. 当 y 取值 11 时,x=1,2,3,…,11,可有 11 个三角形; 当 y 取值 10 时,x=2,3,…,10,可有 9 个三角形;…;当 y 取值 6 时,x 只能取 6,只有一个三角形. ∴所求三角形的个数为 11+9+7+5+3+1=36.
[答案] 36
[解析]
有 2×2×2×2×2=32 种.
[答案]
D
4.四面体的一个顶点为 A,从其他顶点与各棱的中点中 取 3 个点, 使它们和点 A 在同一平面上, 不同的取法有( A.30 种 C.36 种 B.33 种 D.39 种 )
[解析]
分两类: 第一类, 三点位于同一个侧面, 有 3×C3 5
第十章
计数原理、 概率、 随机变量及分布列
第一节
分类加法计数原理与分步乘法计数 原理
1.理解分类加法计数原理和分步乘法计数原理; 2.会用分 类加法计数原理或分步乘法计数原理分析和解决一些简单的 实际问题.
知 识
梳 理 诊 断
1.分类加法计数原理 完成一件事有两类不同方案,在第 1 类方案中有 m 种不 同的方法,在第 2 类方案中有 n 种不同的方法.那么完成这 件事共有 N= m+n 种不同的方法.
[答案]
(1)×
(2)√
(3)√
(4)√

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理

自然数2520有多少个约数? 有多少个约数? 例3.自然数 自然数 有多少个约数 解:2520=23×32×5×7 = × 分四步完成: 分四步完成: 第一步: 第一步:取20,21,22,23,24有4种; 种 第二步: 第二步:取30,31,32有3种; 种 第三步:取50,51有2种; 第三步: 种 第四步: 第四步:取70,71有2种。 种 由分步计数原理,共有4× × × = 种 由分步计数原理,共有 ×3×2×2=48种 练习: 张 元币 元币, 张 角币 角币, 张 分币 分币, 张 分币 分币, 练习:5张1元币,4张1角币,1张5分币,2张2分币,可组成 多少种不同的币值?( 张不取, ?(1张不取 角不计在内) 多少种不同的币值?( 张不取,即0元0分0角不计在内) 元 分 角不计在内 元:0,1,2,3,4,5 , , , , , 角:0,1,2,3,4 , , , , 分:0,2,4,5,7,9 , , , , , 6×5×6-1=179 × × - =
பைடு நூலகம்
(染色问题) 染色问题)
1.如图 要给地图 、B、C、D四个区域分别涂上 种 如图,要给地图 四个区域分别涂上3种 如图 要给地图A、 、 、 四个区域分别涂上 不同颜色中的某一种,允许同一种颜色使用多次 允许同一种颜色使用多次,但相 不同颜色中的某一种 允许同一种颜色使用多次 但相 邻区域必须涂不同的颜色,不同的涂色方案有多少种 不同的涂色方案有多少种? 邻区域必须涂不同的颜色 不同的涂色方案有多少种?
深化理解 4. 何时用分类计数原理、分步计数原理呢 何时用分类计数原理、分步计数原理呢? 完成一件事情有n类方法 答:完成一件事情有 类方法 若每一类方法中的任 完成一件事情有 类方法,若每一类方法中的任 何一种方法均能将这件事情从头至尾完成,则计算完 何一种方法均能将这件事情从头至尾完成 则计算完 成这件事情的方法总数用分类计数原理. 成这件事情的方法总数用分类计数原理 完成一件事情有n个步骤 若每一步的任何一种 完成一件事情有 个步骤,若每一步的任何一种 个步骤 方法只能完成这件事的一部分,并且必须且只需完成 方法只能完成这件事的一部分 并且必须且只需完成 互相独立的这n步后 才能完成这件事,则计算完成这 步后,才能完成这件事 互相独立的这 步后 才能完成这件事 则计算完成这 件事的方法总数用分步计数原理. 件事的方法总数用分步计数原理

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标:1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。

2. 培养学生运用分类加法计数原理和分步乘法计法原理解决实际问题的能力。

3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。

二、教学重点与难点:1. 教学重点:分类加法计数原理和分步乘法计数原理的理解和应用。

2. 教学难点:如何引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。

三、教学方法:1. 采用问题驱动的教学方法,让学生在解决问题的过程中理解分类加法计数原理和分步乘法计数原理。

2. 使用案例分析和小组讨论的方式,培养学生的合作能力和沟通能力。

3. 运用数形结合的方法,帮助学生直观地理解分类加法计数原理和分步乘法计数原理。

四、教学准备:1. 教具准备:黑板、粉笔、多媒体教学设备。

2. 学具准备:学生用书、练习本、文具。

3. 教学素材:相关案例分析题、小组讨论题。

五、教学过程:1. 导入新课:通过一个实际问题,引入分类加法计数原理和分步乘法计数原理。

2. 讲解分类加法计数原理:解释分类加法计数原理的概念,并通过实例讲解如何运用。

3. 讲解分步乘法计数原理:解释分步乘法计数原理的概念,并通过实例讲解如何运用。

4. 案例分析:给出一个案例,让学生运用分类加法计数原理和分步乘法计数原理解决问题。

5. 小组讨论:学生分组讨论,分享各自解决问题的方法和答案。

7. 课堂练习:给出一些练习题,让学生巩固所学内容。

8. 课后作业:布置一些相关的作业题,让学生进一步巩固所学知识。

9. 课堂小结:对本节课的内容进行小结,强调重点和难点。

六、教学评价:1. 评价目标:通过课堂表现、练习完成情况和课后作业来评价学生对分类加法计数原理和分步乘法计数原理的理解和应用能力。

2. 评价方法:a) 课堂表现:观察学生在课堂上的参与程度、提问回答情况以及小组讨论的表现。

b) 练习完成情况:检查学生练习题的完成质量,包括解题思路、步骤和答案的正确性。

分类加法计数原理与分步乘法计数原理第一课时精品教案(平行班)

分类加法计数原理与分步乘法计数原理第一课时精品教案(平行班)

1.1 分类加法计数原理与分步乘法计数原理【课题】:1.1.1分类加法计数原理与分步乘法计数原理【教学目标】:(1)知识与技能理解分类加法原理和分步乘法计数原理,能根据具体问题的特征选择分类加法计数原理或分步乘法计数原理解决一些简单问题.(2)过程与方法通过实例,总结出分类加法计数原理和分步乘法计数原理,提高学生综合、归纳的能力.(3)情感、态度与价值观培养学生数学来源于实践并指导实践的思想意识,通过实例分析培养学生学习数学的兴趣【教学重点】归纳地得出分类加法计数原理和分步乘法计数原理。

【教学难点】正确理解“完成一件事情”的含义;根据实际问题的特征,正确地区分“分类”或“分步”【教法、学法设计】启发引导式【课前准备】Powerpoint【教学过程设计】:教学环节教学活动设计意图一、引入1师提出问题1:从广州到海口,可以乘火车,也可以乘汽车.假设一天中,火车有3班,汽车有4班,那么一天中乘坐这些交通工具从广州到海口共有多少种不同的走法?师:(启发学生回答后,作补充说明)因为一天中乘火车有3种走法,乘汽车有4种走法,每种走法都可以完成由广州到海口这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有3+4=7师:在上述的分析过程中,就体现了分类计数原理.(板书原理内容)分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.师:对于分类计数原理,我们应注意以下几点.(1)从分类计数原理中可以看出,各类之间相互独立,都能完成这件事,且各类方法数相加,所以分类计数原理又称加法原理;(2)分类时,首先要根据问题的特点确定一个分类的标准,然后在确定的分类标准下进行分类;(3)完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法都是不同的方法.设置问题情境,引出分类计数问题,激发学生的求知欲。

公开课教案】分类加法计数原理与分步乘法计数原理教学设计

公开课教案】分类加法计数原理与分步乘法计数原理教学设计

公开课教案】分类加法计数原理与分步乘法计数原理教学设计二是要注重培养学生的思维能力,引导学生在解决问题时能够灵活运用两个计数原理,并能将其应用于实际问题中,这是提高学生数学素养的关键.3.教学目标1)知识目标:①掌握分类加法计数原理和分步乘法计数原理的概念和应用方法;②初步掌握运用两个计数原理解决实际问题的方法;③了解两个计数原理在排列、组合和二项式定理中的应用.2)能力目标:①培养学生的分类思维和分步思维;②提高学生的问题解决能力;③提高学生的数学抽象概括能力.3)情感目标:①激发学生研究数学的兴趣和热情;②培养学生的数学思维和创新精神;③提高学生的自信心和自主研究能力.二、教学过程设计1.教学方法本课程采用讲授、示范、演练和讨论相结合的教学方法.2.教学内容及时间安排1)引入(5分钟):通过引入一道简单的计数问题,让学生对两个计数原理有一个初步的认识.2)概念讲解(10分钟):通过PPT展示,讲解分类加法计数原理和分步乘法计数原理的概念和应用方法.3)实例讲解(20分钟):通过多个实例,讲解如何运用两个计数原理解决实际问题.4)练(15分钟):提供一些简单的计数问题,让学生在小组内讨论解决方法,并在班内汇报.5)拓展(10分钟):介绍两个计数原理在排列、组合和二项式定理中的应用.6)总结(5分钟):对本节课的研究内容进行总结,强调掌握两个计数原理对于数学研究的重要性.三、教学评价1.评价方式本节课采用自评、互评和教师评价相结合的方式进行评价.2.评价内容1)知识掌握情况;2)解决问题的能力;3)数学思维和创新精神;4)自主研究能力.本节课的重点是教授两个计数原理,即弄清“完成一件事”的含义和区分“分步”与“分类”的特征。

教学目标是通过具体实例,让学生体会到从特殊到一般的思维过程,并能正确选择和应用两个计数原理解决一些简单的实际问题。

本节课采用“情景引入—问题诱导—实例探究—抽象概括—原理应用—归纳总结—拓展铺垫”的探究发现式教学方法,让学生在不断思考中获取两个计数原理的发现过程。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案第一章:引言1.1 教学目标让学生理解分类加法计数原理和分步乘法计数原理的概念。

让学生掌握分类加法计数原理和分步乘法计数原理的运用方法。

1.2 教学内容分类加法计数原理:将问题划分为若干个互不重叠的分类,分别计算每个分类的数量,将结果相加得到总数。

分步乘法计数原理:将问题分解为若干个相互依赖的步骤,每个步骤的数量相乘得到最终结果。

1.3 教学方法采用讲解示例、练习题和小组讨论的方式进行教学。

1.4 教学步骤引入分类加法计数原理和分步乘法计数原理的概念。

通过示例讲解分类加法计数原理的运用方法。

通过示例讲解分步乘法计数原理的运用方法。

学生练习题:让学生运用分类加法计数原理和分步乘法计数原理解决问题。

小组讨论:让学生分享解题心得,互相学习和交流。

第二章:分类加法计数原理2.1 教学目标让学生掌握分类加法计数原理的概念和运用方法。

2.2 教学内容分类加法计数原理:将问题划分为若干个互不重叠的分类,分别计算每个分类的数量,将结果相加得到总数。

2.3 教学方法采用讲解示例、练习题和小组讨论的方式进行教学。

2.4 教学步骤复习分类加法计数原理的概念。

通过示例讲解分类加法计数原理的运用方法。

学生练习题:让学生运用分类加法计数原理解决问题。

小组讨论:让学生分享解题心得,互相学习和交流。

第三章:分步乘法计数原理3.1 教学目标让学生掌握分步乘法计数原理的概念和运用方法。

3.2 教学内容分步乘法计数原理:将问题分解为若干个相互依赖的步骤,每个步骤的数量相乘得到最终结果。

3.3 教学方法采用讲解示例、练习题和小组讨论的方式进行教学。

3.4 教学步骤复习分步乘法计数原理的概念。

通过示例讲解分步乘法计数原理的运用方法。

学生练习题:让学生运用分步乘法计数原理解决问题。

小组讨论:让学生分享解题心得,互相学习和交流。

第四章:应用举例4.1 教学目标让学生能够运用分类加法计数原理和分步乘法计数原理解决实际问题。

高考数学一轮复习讲义分类加法计数原理与分步乘法计数原理学生

高考数学一轮复习讲义分类加法计数原理与分步乘法计数原理学生

课题:分类加法计数原理与分步乘法计数原理知识点1.分类加法计数原理(加法原理)的概念一般形式:完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,……,在第n 类方案中有n m 种不同的方法,那么完成这件事共有N=1m +2m +……+n m 种不同的方法.2.分步乘法计数原理(乘法原理)的概念一般形式:完成一件事需要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事共有N=12n m m m ⨯⨯⨯…种不同的方法.3.两个原理的区别:(1)“每类”间与“每步”间的关系不同:分类加法计数原理中的每一类方案中的任何一种方法、不同类之间的任何一种方法都是相互独立,互不依赖的,且是一次性的;而分步乘法计数原理中的每一步是相互依赖,且是连续性的.(2)“每类”与“每步”完成的效果不同:分类加法计数原理中所描述的每一种方法完成后,整个事件就完成了,而分步乘法计数原理中每一步中的每一种方法得到的只是中间结果,任何一步都不能独立完成这件事.4.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行,同时要优先考虑题中的限制条件.【注1】1.计数问题中如何判定是分类加法计数原理还是分步乘法计数原理:如果已知的每类方法中的每一种方法都能单独完成这件事,用分类加法计数原理;如果每类方法中的每一种方法只能完成事件的一部分,用分步乘法计数原理.2.利用分类计数原理解决问题时:(1)将一个比较复杂的问题分解为若干个“类别”,先分类解决,然后将其整合,如何合理进行分类是解决问题的关键.(2)要准确把握分类加法计数原理的两个特点:①根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;②分类时,注意完成这件事情的任何一种方法必须属于某一类,不能重复;③对于分类问题所含类型较多时也可考虑使用间接法.3.利用分步乘法计数原理解决问题时要注意:(1)要按事件发生的过程合理分步,即考虑分步的先后顺序.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这个事件.(3)对完成各步的方法数要准确确定.4.用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析,使问题形象化、直观化.(4)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理.5.在解决具体问题时,首先必须弄清楚是“分类”还是“分步”,接着还要搞清楚“分类”或者“分步”的具体标准是什么.(1)分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.(2)分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.6.分类加法计数原理的两个条件:(1)根据问题的特点能确定一个适合于它的分类标准,然后在这个标准下进行分类;(2)完成这件事的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.分步乘法计数原理的两个条件:(1)明确题目中的“完成这件事”是什么,确定完成这件事需要几个步骤,且每步都是独立的.(2)将完成这件事划分成几个步骤来完成,各步骤之间有一定的连续性,只有当所有步骤都完成了,整个事件才算完成,这是分步的基础,也是关键.从计数上来看,各步的方法数的积就是完成事件的方法总数.7应用两种原理解题(1)分清要完成的事情是什么?(2)分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;(3)有无特殊条件的限制;(4)检验是否有重漏.8.涂色问题:涂色问题是由两个基本原理和排列组合知识的综合运用所产生的一类问题,这类问题是计数原理应用的典型问题,由于涂色本身就是策略的一个运用过程,能较好地考查考生的思维连贯性与敏捷性,加之涂色问题的趣味性,自然成为新课标高考的命题热点.涂色问题的关键是颜色的数目和在不相邻的区域内是否可以使用同一种颜色,具体操作法和按照颜色的数目进行分类法是解决这类问题的首选方法.涂色问题的实质是分类与分步,一般是整体分步,分步过程中若出现某一步需分情况说明时还要进行分类.涂色问题通常没有固定的方法可循,只能按照题目的实际情况,结合两个基本原理和排列组合的知识灵活处理.【注2】(1)用两个计数原理解决计数问题时,关键是在开始之前要进行仔细分析——需要分类还是需要分步,分类时要注意不重不漏,分步时要注意整个事件的完成步骤.(2)两个原理的区别:①“每类”间与“每步”间的关系不同:分类加法计数原理中的每一类方案中的任何一种方法、不同类之间的任何一种方法都是相互独立,互不依赖的,且是一次性的;而分步乘法计数原理中的每一步是相互依赖,且是连续性的.②“每类”与“每步”完成的效果不同:分类加法计数原理中所描述的每一种方法完成后,整个事件就完成了,而分步乘法计数原理中每一步中的每一种方法得到的只是中间结果,任何一步都不能独立完成这件事.(3)本题定义了新概念“回文数”,然后以此为出发点设置了求五位“回文数”的个数问题.求解时充分依据题设条件与“回文数”的定义,运用分步、分类计数原理,逐一分析探求“回文数”的形成过程,从而确定其个数使得问题获解.典型例题例1图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取一本书,共有()种不同的取法.A.120 B.16 C.64 D.39例2只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,则这样的四位数有()A.6个B.9个C.18个D.36个例3如图所示,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9例4某校的A、B、C、D四位同学准备从三门选修课中各选一门,若要求每门选修课至少有一人选修,且A,B不选修同一门课,则不同的选法有()A.36种B.72种C.30种D.66种例5用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个例6图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取一本书,共有()种不同的取法.A.120 B.16 C.64 D.39例7只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,则这样的四位数有()A.6个B.9个C.18个D.36个例8某通讯公司推出一组卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码.公司规定:凡卡号的后四位带数字“5”或“8”的一律作为“金马卡”,享受一定优惠政策,则这组号码中“金马卡”的个数为()A.2000 B.4096 C.5904 D.8320例9某班2名同学准备报名参加浙江大学、复旦大学和上海交大的自主招生考试,要求每人最多选报两所学校,则不同的报名结果有()A.33种B.24种C.27种D.36种例10从1,2,…,9这九个数字中,任意抽取两个相加所得的和为奇数的不同代数式的种数是()A.6 B.9 C.20 D.25例11按ABO血型系统学说,每个人的血型为A,B,O,AB型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB型时,子女的血型一定不是O型,若某人的血型的O型,则父母血型的所有可能情况有()A.12种B.6种C.10种D.9种例12有5列火车停在某车站并列的5条轨道上,若火车A不能停在第1道上,则5列火车的停车方法共有()A.96种B.24种C.120种D.12种例13把5名师范大学的毕业生分配到A、B、C三所学校,每所学校至少一人。

2018-2019高考新课标数学(理)大一轮复习讲义课件:第10章-第1节分类加法计数原理和分步乘法计数原理

2018-2019高考新课标数学(理)大一轮复习讲义课件:第10章-第1节分类加法计数原理和分步乘法计数原理

(2)如图,从 A 到 O 有________种不同的走法(不重复过 一点).
解析:(1)分 3 类:买 1 本书,买 2 本书和买 3 本书, 各类的购买方式依次有 3 种、3 种和 1 种,故购买方式共有 3+3+1=7(种).(2)分 3 类:第一类,直接由 A 到 O,有 1 种走法;第二类,中间过一个点,有 A→B→O 和 A→C→O 2 种不同的走法;第三类,中间过两个点,有 A→B→C→O 和 A→C→B→O 2 种不同的走法, 由分类加法计数原理可得 共有 1+2+2=5 种不同的走法.
答案 m1×m2×…×mn
3.从集合{0,1,2,3,4,5,6}中任取两个互不相等 的数 a,b 组成复数 a+bi,其中虚数有( A.30 个 B.42 个 )
C.36 个 D.35 个 解析:∵a+bi 为虚数,∴b≠0,即 b 有 6 种取法,a
有 6 种取法,由分步乘法计数原理知可以组成 6×6=36 个 虚数. 答案:C
课前热身 稳固根基
分类加法计数原理
完成一件事有 n 类不同的方案,在第一类方案中有 m1 种不同的方法,在第二类方案中有 m2 种不同的方法,……, 在第 n 类方案中有 mn 种不同的方法,则完成这件事情,共 有 N=__________________种不同的方法.
答案 m1+m2+…+mn
1.从 3 名女同学和 2 名男同学中选 1 人主持本班的某 次主题班会,则不同的选法种数为( A.6 C.3 B.5 D.2 )
1 2 3 4 5 6 7 8 9
解析:把区域分为三部分,第一部分 1、5、9,有 3 种 涂法.第二部分 4、7、8,当 5、7 同色时,4、8 各有 2 种 涂法,共 4 种涂法;当 5、7 异色时,7 有 2 种涂法,4、8 均只有 1 种涂法,故第二部分共 4+2=6 种涂法.第三部分 与第二部分一样,共 6 种涂法.由分步乘法计数原理,可得 共有 3×6×6=108 种涂法.

分类加法原理和分步乘法原理

分类加法原理和分步乘法原理

分类加法原理和分步乘法原理【考纲要求】1、理解分类加法计数原理和分步乘法计数原理;2、会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.【基础知识】一、分类加法计数原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.二、分步乘法计数原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有N=m1·m2·…·m n种不同的方法.三、“类”和“步”的区别在于:“类”和“类”之间是相互独立的,互不影响,每一类都可以单独完成任务;“步”和“步”之间是相互依存的,相互影响的,每一步不能单独完成任务。

四、注意要点1、认真读题审题,弄清事件的要求。

2、分类不重不漏,分步条理清晰。

【例题精讲】例1:电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?例2:(1)在广州亚运会上,4个选手争夺3项比赛的冠军(没有并列的冠军),问一共有多少种不同的结果?(2)暑假,4个老师每个人从3个旅游城市上海、北京和深圳中选择一个去旅游,问一共有多少种不同的结果?分类加法原理和分步乘法原理强化训练【基础精练】1.从a、b、c、d、e五人中选1名班长,1名副班长,1名学习委员,1名纪律委员,1名文娱委员,但a不能当班长,b不能当副班长,不同选法总数为()A.78B.54 C.24 D.202.一生产过程有4道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有()A.24种B.36种C.48种D.72种3.一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有() A.6 B.8 C.36 D.484.把编号为1、2、3、4、5的5位运动员排在编号为1、2、3、4、5的5条跑道中,要求有且只有两位运动员的编号与其所在跑道的编号相同,共有不同排法的种数是()A.10 B.20 C.40 D.605. 如图所示的几何体是由一个正三棱锥P—ABC与正三棱柱ABC—A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有() A.24种B.18种C.16种D.12种6.只用1、2、3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个7.2009年9月某地全运会火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有______种(用数字作答).8. 如图,正五边形ABCDE中,若把顶点A、B、C、D、E染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有种.9.某电视台连续播放5个广告,其中有3个不同的商业广告和2个不同的公益广告,要求最后播放的必须是公益广告,且两个公益广告不能连续播放,则不同的播放种类数为________.10. 中央电视台“开心辞典”节目的现场观众来自四个不同的单位,分别在右图中的A、B、C、D四个区域落座.现有四种不同颜色的服装,每个单位的观众必须穿同色服装,且相邻区域不能同色,不相邻区域是否同色不受限制,则不同的着装方法共有多少种?11.一个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同.(1)从两个口袋中任取一封信,有多少种不同的取法?(2)从两个口袋里各取一封信,有多少种不同的取法?(3)把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的放法?【拓展提高】1.现有高一年级四个班有学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?。

1.1分类加法计数原理和分步乘法计数原理(教案).doc

1.1分类加法计数原理和分步乘法计数原理(教案).doc

1.1 分类加法计数原理和分步乘法计数原理教学目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成“自主学习”与“合作学习”等良好的学习方式教学重点:分类计数原理( 加法原理) 与分步计数原理( 乘法原理)教学难点:分类计数原理( 加法原理) 与分步计数原理( 乘法原理) 的准确理解授课类型:新授课课时安排: 2 课时教具:多媒体、实物投影仪第一课时引入课题先看下面的问题:①从我们班上推选出两名同学担任班长,有多少种不同的选法?②把我们的同学排成一排,共有多少种不同的排法?要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.1 分类加法计数原理(1)提出问题问题 1.1 :用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题 1.2 :从甲地到乙地,可以乘火车,也可以乘汽车. 如果一天中火车有 3 班,汽车有2 班. 那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:你能说说以上两个问题的特征吗?种不同的方(2)发现新知分类加法计数原理完成一件事有两类不同方案,在第 1 类方案中有m法,在第 2 类方案中有n种不同的方法. 那么完成这件事共有N m n种不同的方法.(3)知识应用例1. 在填写高考志愿表时,一名高中毕业生了解到,A,B 两所大学各有一些自己感兴趣的强项专业,具体情况如下:A 大学B 大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9(种).变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学. 那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第 1 类方案中有m1 种不同的方法,在第 2类方案中有m种不同的方法,在第3 类方案中有m3 种不同的方法,那么完成这件事共有多2少种不同的方法?如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n 类办法,在第 1 类办法中有m种不同的方法,在第2 类办法中有m21种不同的方法,, 在第n 类办法中有m种不同的方法. 那么完成这件事共有nN m1 m2mn种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.例2. 一蚂蚁沿着长方体的棱, 从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?解: 从总体上看, 如, 蚂蚁从顶点A爬到顶点C1有三类方法, 从局部上看每类又需两步完成, 所以,第一类, m1 = 1 × 2 = 2 条第二类, m2 = 1 × 2 = 2 条第三类, m3 = 1 × 2 = 2 条所以, 根据加法原理, 从顶点A到顶点C1最近路线共有N = 2 + 2 + 2 = 6 条练习1.填空:( 1 )一件工作可以用 2 种方法完成,有 5 人只会用第 1 种方法完成,另有 4 人只会用第 2 种方法完成,从中选出l 人来完成这件工作,不同选法的种数是_;( 2 )从 A 村去 B 村的道路有 3 条,从 B 村去 C 村的道路有 2 条,从 A 村经 B 的路线有_条.第二课时2 分步乘法计数原理(1)提出问题问题 2.1 :用前 6 个大写英文字母和1—9 九个阿拉伯数字,以A, A2 , , ,B1 , B2 , ,1的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 6 ×9 = 54 个不同的号码.探究:你能说说这个问题的特征吗?(2)发现新知分步乘法计数原理完成一件事有两类不同方案,在第 1 类方案中有m法,在第 2 类方案中有n种不同的方法. 那么完成这件事共有N m n种不同的方法.(3)知识应用种不同的方例1. 设某班有男生30 名,女生24 名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第l 步选男生.第 2 步选女生.解:第 1 步,从30 名男生中选出 1 人,有30 种不同选择;第2 步,从24 名女生中选出 1 人,有24 种不同选择.根据分步乘法计数原理,共有30×24 =720种不同的选法.探究:如果完成一件事需要三个步骤,做第1 步有m1 种不同的方法,做第 2 步有m2 种不同的方法,做第 3 步有m种不同的方法,那么完成这件事共有多少种不同的方法?3如果完成一件事情需要n个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n 个步骤,做第1 步有m1 种不同的方法,做第2 步有m2 种不同的方法,, 做第n 步有m种不同的方法. 那么完成这件事共有nN m1 m2mn种不同的方法. 理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事. 3.理解分类加法计数原理与分步乘法计数原理异同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.例2 . 如图, 要给地图A、B、C、D四个区域分别涂上 3 种不同颜色中的某一种, 允许同一种颜色使用多次, 但相邻区域必须涂不同的颜色, 不同的涂色方案有多少种?解: 按地图A、B、C、D四个区域依次分四步完成,第一步, m1 = 3 种,第二步, m2 = 2 种,第三步, m3 = 1 种,第四步, m4 = 1 种,所以根据乘法原理, 得到不同的涂色方案种数共有N = 3 × 2 ×1× 1 = 6变式1,如图, 要给地图A、B、C、D四个区域分别涂上 3 种不同颜色中的某一种, 允许同一种颜色使用多次, 但相邻区域必须涂不同的颜色, 不同的涂色方案有多少种?2 若颜色是 2 种,4 种,5 种又会什么样的结果呢?练习2.现有高一年级的学生 3 名,高二年级的学生 5 名,高三年级的学生 4 名.( 1 )从中任选 1 人参加接待外宾的活动,有多少种不同的选法?村去 C 村,不同( 2 )从 3 个年级的学生中各选 1 人参加接待外宾的活动,有多少种不同的选法?4第三课时3 综合应用例1. 书架的第 1 层放有 4 本不同的计算机书,第 2 层放有 3 本不同的文艺书,第 3 层放2 本不同的体育书.①从书架上任取 1 本书,有多少种不同的取法?②从书架的第1、2、3 层各取 1 本书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?【分析】①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.②要完成的事是“从书架的第1、2、3 层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3 层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.③要完成的事是“取 2 本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各 1 本,再要考虑取 1 本计算机书或取 1 本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解:(1) 从书架上任取 1 本书,有 3 类方法:第 1 类方法是从第 1 层取1 本计算机书,有4 种方法;第2 类方法是从第 2 层取 1 本文艺书,有3 种方法;第3 类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是N m m m =4+3+2=9;1 2 3( 2 )从书架的第 1 , 2 , 3 层各取 1 本书,可以分成 3 个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取 1 本文艺书,有 3 种方法;第 3 步从第 3 层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是N m m m =4×3×2=24 .1 2 3(3)N 4 3 4 2 3 2 26 。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。

2. 培养学生运用分类加法计数原理和分步乘法计法原理解决实际问题的能力。

3. 引导学生通过观察、分析、归纳和推理,形成数学概念。

二、教学内容1. 分类加法计数原理:通过实例让学生理解分类加法计数原理,即在计数时,将事物按照某种特征进行分类,将各类别的事物数量相加。

2. 分步乘法计数原理:通过实例让学生理解分步乘法计数原理,即在计数时,将一个复杂的问题分解成几个简单的步骤,将每一步的数量相乘。

三、教学重点与难点1. 教学重点:让学生掌握分类加法计数原理和分步乘法计数原理的概念及应用。

2. 教学难点:引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。

四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、分析、归纳和推理,形成数学概念。

2. 利用实例讲解,让学生在实际问题中体验和理解分类加法计数原理和分步乘法计数原理。

3. 设计练习题,让学生巩固所学知识,提高解决问题的能力。

五、教学准备1. 教学课件:制作课件,展示实例及练习题。

2. 教学素材:准备相关实例,如水果、动物等分类计数问题,以及需要分步解决的问题,如制作午餐、完成作业等。

3. 练习题:设计分类加法计数原理和分步乘法计数原理的练习题。

六、教学过程1. 导入新课:通过一个简单的实例,如计数教室里的学生,引出分类加法计数原理和分步乘法计数原理。

2. 讲解分类加法计数原理:展示实例,让学生观察并分析,引导学生归纳出分类加法计数原理。

3. 讲解分步乘法计数原理:展示实例,让学生观察并分析,引导学生归纳出分步乘法计数原理。

5. 总结:对本节课的内容进行总结,强调分类加法计数原理和分步乘法计数原理的应用。

七、课堂练习a) 班级里有男生20人,女生15人,一共有多少人?b) 水果店里有苹果、香蕉和橙子,苹果有10个,香蕉有5个,橙子有8个,一共有多少个水果?a) 小明做作业,一共需要完成3个任务,每个任务需要1小时,一共需要多少小时?b) 小华准备午餐,需要炒菜、煮饭和洗碗,炒菜需要10分钟,煮饭需要30分钟,洗碗需要15分钟,一共需要多少分钟?八、课后作业a) 学校里有小学生、初中生和高中生,小学生有180人,初中生有200人,高中生有150人,一共有多少人?b) 动物园里有鸟类、哺乳动物和爬行动物,鸟类有100只,哺乳动物有200只,爬行动物有50只,一共有多少只动物?a) 小红要做家务,需要打扫卫生、洗衣服和整理房间,打扫卫生需要30分钟,洗衣服需要1小时,整理房间需要45分钟,一共需要多少分钟?b) 小刚准备参加篮球比赛,一共需要进行3场比赛,每场比赛需要40分钟,一共需要多少分钟?九、教学反思1. 反思本节课的教学内容,是否清晰易懂,学生是否掌握分类加法计数原理和分步乘法计数原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节分类加法计数原理与分步乘法计数原理两个原理分类加法计数原理、分步乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.知识点两个原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m +n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.易误提醒(1)分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.(2)分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步与步之间是相关联的.[自测练习]1.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A.30 B.20 C.10 D.6解析:从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.答案:D2.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.279解析:0,1,2…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).答案:B考点一分类加法计数原理|1.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同选法的种数是()A.20 B.16C.10 D.6解析:当a当组长时,则共有1×4=4种选法;当a不当组长时,又因为a也不能当副组长,则共有4×3=12种选法.因此共有4+12=16种选法.答案:B2.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有() A.8种B.9种C.10种D.11种解析:法一:设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9(种).法二:班级按a,b,c,d的顺序依次排列,为避免重复或遗漏现象,教师的监考顺序可用“树形图”表示如下:∴共有9种不同的监考方法.答案:B3.在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止.若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有()A.6种B.12种C.18种D.20种解析:分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C23=6(种)情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C24=12(种)情形.所有可能出现的情形共有2+6+12=20(种).答案:D利用加法原理解决问题时的注意点(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;(2)分类时,注意完成这件事件的任何一种方法必须属于某一类,不能重复.考点二分步乘法原理|有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这项任务,不同的选法有() A.1 260种 B.2 025种C.2 520种D.5 040种[解析]第一步,从10人中选派2人承担任务甲,有C210种选派方法;第二步,从余下的8人中选派1人承担任务乙,有C18种选派方法;第三步,再从余下的7人中选派1人承担任务丙,有C17种选派方法.根据分步乘法计数原理,知选法为C210·C18·C17=2 520种.[答案] C利用分步乘法计数原理解决问题时应注意(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18个二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6个偶函数.答案:18 6考点三两个原理的应用|两个原理的应用类型主要有:1.涂色问题.2.几何问题.3.集合问题.探究一涂色问题1.(2015·湖南十二校联考)用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.解析:第一步,从红、“1、5、9”的小正方形,涂法有3种;第二步,涂标号为“2、3、6”的小正方形,若“2、6”同色,涂法有2×2种,若“2、6”不同色,涂法有2×1种;第三步:涂标号为“4、7、8”的小正方形,涂法同涂标号为“2、3、6”的小正方形的方法一样.因此符合条件的所有涂法共有3×(2×2+2×1)×(2×2+2×1)=108(种).答案:108探究二几何问题2.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60B.48C.36 D.24解析:长方体的6个表面构成的“平行线面组”有6×6=36个,6个对角面构成的“平行线面组”有6×2=12个,共有36+12=48个,故选B.答案:B探究三集合问题3.(2015·保定市高三调研考试)已知集合M={1,2,3,4},集合A,B为集合M的非空子集.若对∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有______个.解析:当A={1}时,B有23-1种情况,当A={2}时,B有22-1种情况,当A={3}时,B有1种情况,当A={1,2}时,B有22-1种情况,当A={1,3},{2,3},{1,2,3}时,B均有1种情况,所以满足题意的“子集对”共有7+3+1+3+3=17个.答案:17用两个计数原理解决计数问题时,关键是明确需要分类还是分步(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成了任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析.21.分类不当致误【典例】(2016·沈阳模拟)一生产过程有四道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有________种.[解析]按甲先分类,再分步①若甲在第一道工序,则第四道工序只能是丙,其余两道工序的安排方法有4×3=12种,②若乙在第一道工序,则第四道工序从甲、丙两人中选一人.有2种方法,其余两道工序有4×3=12种方法,所以共有12×2=24种方法.综上可知,共有的安排方法有12+24=36种.[答案]36[易错点评]本题解题时分类不当易致误,分类时可按甲在第一道工序与乙在第一道工序分类.[防范措施]利用两个原理解题时,关键是根据要完成的事件恰当地选择唯一标准进行分类,切勿标准不统一,导致多解或少解,从而失误.[跟踪练习]如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.解析:分两类:①有一条公共边的三角形共有8×4=32(个);②有两条公共边的三角形共有8个.故共有32+8=40(个).答案:40A组考点能力演练1.如果把个位数是1,且恰好有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有()A.9个B.3个C.12个D.6个解析:当重复数字是1时,有C13·C13;当重复数字不是1时,有C13种.由分类加法计数原理,得满足条件的“好数”有C13·C13+C13=12个.答案:C2.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有() A.18个B.15个C.12个D.9个解析:依题意,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数分别为400,040,004;由3,1,0组成6个数分别为310,301,130,103,013,031;由2,2,0组成3个数分别为220,202,022;由2,1,1组成3个数分别为211,121,112.共计:3+6+3+3=15个.答案:B3.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为() A.56 B.54C.53 D.52解析:在8个数中任取2个不同的数共有8×7=56个对数值;但在这56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56-4=52(个).答案:D4.(2015·辽宁五校联考)甲、乙、丙三位志愿者安排在周一至周五参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方案共有()A.20种B.30种C.40种D.60种解析:可将安排方案分为三类:①甲排在周一,共有A24种排法;②甲排在周二,共有A23种排法;③甲排在周三,共有A22种排法,故不同的安排方案共有A24+A23+A22=20种.故选A.答案:A5.从集合{1,2,3,4,…,10}中,选出5个数组成的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有() A.32个B.34个C.36个D.38个解析:先把数字分成5组:{1,10},{2,9},{3,8},{4,7},{5,6},由于选出的5个数中,任意两个数的和都不等于11,所以从每组中任选一个数字即可,故共可组成2×2×2×2×2=32(个).答案:A6.从0,1,2,3,4这5个数字中任取3个组成三位数,其中奇数的个数是________.解析:从1,3中取一个排个位,故排个位有2种方法;排百位不能是0,可以从另外3个数中取一个,有3种方法;排十位有3种方法,故所求奇数的个数为3×3×2=18.答案:187.如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则涂色方法共有________种.(用数字作答)解析:从A开始涂色,A有6种涂色方法,B有5种涂色方法,C有4种涂色方法,D有4种涂色方法.由分步乘法计数原理可知,共有6×5×4×4=480(种)涂色方法.答案:4808.形如45132的数称为“波浪数”,即十位数字,千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为________.解析:由题意可得,十位和千位只能是4、5或者3、5.若十位和千位排4、5,则其他位置任意排1、2、3,则这样的数有A22A33=12(个);若十位和千位排5、3,这时4只能排在5的一边且不能和其他数字相邻,1、2在其余位置上任意排列,则这样的数有A22A22=4(个),综上,共有16个.答案:169.标号为A,B,C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.(1)若取出的两个球颜色不同,有多少种取法?(2)若取出的两个球颜色相同,有多少种取法?解析:(1)若两个球颜色不同,则应在A,B袋中各取一个或A,C袋中各取一个或B,C袋中各取一个.∴应有1×2+1×3+2×3=11(种).(2)若两个球颜色相同,则应在B或C袋中取出2个.∴应有1+3=4(种).10.现有4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有多少种?解:先给最上面的一块着色,有4种方法,再给中间左边一块着色,有3种方法,再给中间右边一块着色,有2种方法,最后再给下面一块着色,有2种方法,根据分步乘法计数原理,共有4×3×2×2=48种方法.B组高考题型专练1.(2014·高考大纲全国卷)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种解析:从中选出2名男医生的选法有C26=15种,从中选出1名女医生的选法有C15=5种,所以不同的选法共有15×5=75种,故选C.答案:C2.(2014·高考广东卷)设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60 B.90C.120 D.130解析:设t=|x1|+|x2|+|x3|+|x4|+|x5|,t=1说明x1,x2,x3,x4,x5中有一个为-1或1,其他为0,所以有2·C15=10个元素满足t=1;t=2说明x1,x2,x3,x4,x5中有两个为-1或1,其他为0,所以有C25×2×2=40个元素满足t=2;t=3说明x1,x2,x3,x4,x5中有三个为-1或1,其他为0,所以有C35×2×2×2=80个元素满足t=3,从而,共有10+40+80=130个元素满足1≤t≤3.故选D.答案:D3.(2013·高考重庆卷)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________(用数字作答).解析:按每科选派人数分3、1、1和2、2、1两类.当选派人数为3、1、1时,有3类,共有C33C14C15+C13C34C15+C13C14 C35=200(种).当选派人数为2、2、1时,有3类,共有C23C24C15+C23C14C25+C13C24 C25=390(种).故共有590种.答案:590。

相关文档
最新文档