最新高中数学竞赛解题策略-几何分册第32章勃罗卡定理

合集下载

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

全国高中数学联赛竞赛大纲及全部定理内容一、平面几何1、数学竞赛大纲所确定的所有内容。

补充要求:面积和面积方法。

2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。

到三角形三顶点距离的平方和最小的点--重心。

三角形内到三边距离之积最大的点--重心。

4、几何不等式。

5、简单的等周问题。

了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。

在周长一定的简单闭曲线的集合中,圆的面积最大。

在面积一定的n边形的集合中,正n边形的周长最小。

在面积一定的简单闭曲线的集合中,圆的周长最小。

6、几何中的运动:反射、平移、旋转。

7、复数方法、向量方法。

平面凸集、凸包及应用。

二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。

三倍角公式,三角形的一些简单的恒等式,三角不等式。

2、第二数学归纳法。

递归,一阶、二阶递归,特征方程法。

函数迭代,求n次迭代,简单的函数方程。

3、n个变元的平均不等式,柯西不等式,排序不等式及应用。

4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。

5、圆排列,有重复的排列与组合,简单的组合恒等式。

6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。

7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。

三、立体几何1、多面角,多面角的性质。

三面角、直三面角的基本性质。

2、正多面体,欧拉定理。

3、体积证法。

4、截面,会作截面、表面展开图。

四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。

2、二元一次不等式表示的区域。

3、三角形的面积公式。

4、圆锥曲线的切线和法线。

5、圆的幂和根轴。

五、其它抽屉原理。

容斤原理。

极端原理。

集合的划分。

高中数学联赛平面几何常用定理

高中数学联赛平面几何常用定理

(高中)平面几何常用基本定理1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+;中线长:222222a c b m a -+=.4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥.高线长:C b B c A abc c p b p a p p ah a sin sin sin ))()((2===---=.5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则ACAB DCBD=;(外角平分线定理).角平分线长:2cos 2)(2Ac b bc a p bcp cb t a +=-+=(其中p 为周长一半). 6. 张角定理:ABDAC ACBAD ADBAC ∠+∠=∠sin sin sin .7. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .8. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 9. 弦切角定理:弦切角等于夹弧所对的圆周角. 10. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 11. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.12. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 13. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD . 14. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .15. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.16. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C1 、⊙A1 、⊙B1的圆心构成的△——外拿破仑的三角形,⊙C1 、⊙A1 、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C2 、⊙A2 、⊙B2的圆心构成的△——内拿破仑三角形,⊙C2 、⊙A2 、⊙B2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.17. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;18. (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.19. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.20. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d2=R2-2Rr .21. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.22. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(CB AC B A y y y x x x G ++++23. 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;24.(2)设G 为△ABC 的重心,则ABCAC G BC G ABG S S S S ∆∆∆∆===31;25. (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KHCA FP BC DE AB KH CA FP BC DE ;26. (4)设G 为△ABC 的重心,则27.①222222333GC AB GB CA GA BC +=+=+;28. ②)(31222222CA BC AB GC GB GA ++=++;29.③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);30.④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;31. ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).32. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (C cB b A a yC cy B b y A a C c B b A a x C c x B b x A a H CB AC B A ++++++++33.垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍; 34. (2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;35. (3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆; 36. (4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.37. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;38. ),(c b a cy by ay c b a cx bx ax I CB AC B A ++++++++39. 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然; 40.(2)设I 为△ABC 的内心,则CAIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190;41.(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;42.(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC外接圆于点K ,则a cb KD IK KI AK ID AI +===; 43.(5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.44. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; 45.)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O CB AC B A ++++++++46. 外心性质:(1)外心到三角形各顶点距离相等;47. (2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;48. (3)∆=S abcR 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.49.旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠;(3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R . 50. 三角形面积公式:C B A R R a b cC ab ah S a ABCsin sin sin 24sin 21212====∆)c o tc o t (c o t4222C B A c b a ++++=))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=.51.三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin 4CB A R rC B A R r C B A R r C B A R r c b a ====.1111;2tan2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++===52. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有1=⋅⋅RBARQA CQ PC BP .(逆定理也成立)53. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.54. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.55.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.56.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.57.塞瓦定理的逆定理:(略)58.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.59.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.60.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).61.西摩松定理的逆定理:(略)62.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.63.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.64.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P 的西摩松线通过线段PH的中心.65.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC的镜象线.66.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.67.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.68.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.69.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A 和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.70.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC 交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .71.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R 关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.72.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.73.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.74.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.75.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线.76.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC 的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.77.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.78.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P、Q两点关于圆O互为反点)79.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上.80.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.81.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.82.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点.83.康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD的康托尔线.84.康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L 两点的关于四边形ABCD的康托尔线交于一点.这个点叫做M、N、L三点关于四边形ABCD的康托尔点.85.康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上.这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线.86.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.87.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.88.布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C 和F,则这三线共点.89. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和F A 的(或延长线的)交点共线.90. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆. 91. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.92. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.93. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.94. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222AB C D 4||R d R S S EF -=∆∆.斯特瓦尔特定理斯特瓦尔特(stewart)定理设已知△ABC 及其底边上B 、C 两点间的一点D ,则有 AB^2·DC+AC^2·BD-AD^2·BC =BC·DC·BD 。

高中数学联赛常用定理

高中数学联赛常用定理
P、L、C 四点共圆,有 ∠PBN =∠ PLN = ∠PCM= ∠ PLM. 故 L、M 、 N 三点共线。
相关性质的证明 连 AH 延长线交圆于 G, 连 PG 交西姆松线与 R,BC 于 Q 如图连其他相关线段 AH ⊥ BC,PF⊥BC==>AG//PF==> ∠ 1=∠2
A.G.C.P 共圆==> ∠2=∠3 PE⊥ AC,PF⊥ BC==>P.E.F.C 共圆 ==>∠ 3=∠4 ==>∠1=∠ 4 PF⊥ BC ==>PR=RQ BH ⊥AC,AH ⊥BC==> ∠5=∠6 A.B.G.C 共圆 ==>∠6=∠7 ==>∠5=∠ 7 AG ⊥ BC==>BC 垂直平分 GH ==>∠8=∠ 2=∠4
合,连结 AM 、GM 、A1G( 同上 ),则 AA1<A1G+GM+MA=AM+BM+CM. 所以费马点到三个顶点 A、B 、C 的距离最短。 平面四边形费马点 平面四边形中费马点证明相对于三角型中较为简易,也较容易研究。 (1)在凸四边形 ABCD 中,费马点为两对角线 AC、 BD 交点 P。
托勒密不等式是三角不等式的 反演 形式。
二、
设 ABCD 是圆内接四边形 。 在弦 BC 上, 圆周角 ∠BAC = ∠ BDC ,而在 AB 上,∠ ADB = ∠ACB 。 在 AC 上取一点 K,
1 / 16
费马点
(2)在凹四边形 ABCD 中,费马点为凹顶点 D(P)。 经过上述的推导,我们即得出了三角形中费马点的找法:
当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在
费马点就是使得费马点与三角形三顶点的连线两两夹角为

高中数学竞赛解题策略几何分册勃罗卡定理

高中数学竞赛解题策略几何分册勃罗卡定理

高中数学竞赛解题策略几何分册勃罗卡定理 This model paper was revised by LINDA on December 15, 2012.第32章勃罗卡定理勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥.证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆. 分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ⋅=⋅=-. 22EG GN BG GD R OG ⋅=⋅=-.以上两式相减得()22222EG OE R R OG =---,即22222OE EG R OG -=-.同理,22222OF FG R OG -=-.又由上述两式,有2222OE EG OF FG -=-.于是,由定差幂线定理,知OG EF ⊥.证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点共线,从而EN OF ⊥.同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥.于是,知G 为OEF △的垂心,故OG EF ⊥.证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD .此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 即有BME BCE DCF DMF ∠=∠=∠=∠,从而9090BMO DMO DMF DCF ∠-∠=︒-∠=︒-∠11180909022BOD BOD BOD ⎛⎫=︒-∠-︒=︒-∠=∠ ⎪⎝⎭, 即知点M 在OBD △的外接圆上.同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 共点于G .即知O ,G ,M 共线,故OG EF ⊥.该定理有如下推论推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点.事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,从而OM 与OM '重合,即M 与M '重合.推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M . 推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,则G 为OEF △的垂心.事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证. 下面给出定理及推论的应用实例.例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.事实上,由推论3知R 为OPQ △的垂心,再由垂心组的性质即知O 为PQR △的垂心.例2如图322-,凸四边形ABCD 内接于O ,延长AB ,DC 交于点E ,延长BC ,AD 交于点F ,AC 与BD 交于点P ,直线OP 交EF 于点G .求证:AGB CGD ∠=∠. 证明由勃罗卡定理知,OP EF ⊥于点G .延长AC 交EF 于点Q ,则在完全四边形ABECFD 中,点P ,Q 调和分割AC ,从而GA ,GC ,GP ,GQ 为调和线束,而GP GQ ⊥,于是GP 平分AGC ∠,即AGP CGP ∠=∠. 延长DB 交直线EF 于点L (或无穷远点L ),则知L ,P 调和分割BD ,同样可得BGP DGP ∠=∠.故AGB CGD ∠=∠.例3(2011年全国高中联赛题)如图323-,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于N ,直线CD 与AB 交于点M .求证:若OK MN ⊥,则A ,B ,D ,C 四点共圆.证明用反证法.若A ,B ,D ,C 四点不共圆,则可设ABC △的外接圆O 与直线AD 交于点E ,直线CE 交直线AB 于P .直线BE 交直线AC 于Q .联结PQ ,则由勃罗卡定理,知OK PQ ⊥.由题设,OK MN ⊥,从而知PQ MN ∥. 即有AQ AP QN PM=.① 对NDA △及截线BEQ ,对MDA △及截线CEP 分别应用梅涅劳斯定理 有1NB DE AQ BD EA QN ⋅⋅= 及1MC DE AP CD EA PM⋅⋅=. 由①,②得NB MC BD CD=. 再应用分比定理,有ND MD BD DC =, 从而DMN DCB △∽△.于是,DMN DCB⊥,得到K为BC的中点,这与已知矛∠=∠.即有BC MN∥,从而OK BC盾.故A,B,D,C四点共圆.例4(1997年CMO试题)设四边形ABCD内接于圆,边AB与DC的延长线交于点P,AD 与BC的延长线交于点Q.由点Q作该圆的两条切线QE,QF,切点分别为E,F.求证:P,E,F三点共线.证明如图324-,设ABCD的圆心为O,AC与BD交于点G,联结PQ,则由勃罗卡定理,知OG PQ⊥.设直线OG交PQ于点M,则由推论1,知M为完全四边形ABPCQD的密克尔点,即知M、Q、D、C四点共圆.又O、E、Q、F四点共圆,且OQ为其直径,注意到OM MQ⊥,知点M也在OEQF 上.此时,MQ,CD,EF分别为MQDC,OEMQF,ABCD两两相交的三条公共弦.由根心定理,知MQ、CD、EF三条直线共点于P.故P,E,F三点共线.例5(2006年瑞士国家队选拔赛题)在锐角ABC△的垂心,M△中,AB AC≠,H为ABC为BC的中点,D、E分别为AB,AC上的点,且AD AE=,D、H、E三点共线.求证:ABC△的外接圆与ADE△的外接圆的公共弦垂直于HM.证明如图325-,分别延长BH,CH交AC、AB于点B'、C',则知A、C'、H、B'及''的直径,点M为BCB C''的圆心.B、C、B'、C'分别四点共圆,且AH为AC HB设直线BC与直线C B''交于点Q,联结AQ,则在完全四边形BCQB AC''中,由勃罗卡定理,知MH AQ⊥.设直线MH交AQ于点P,则由推论1,2知HP AQ''的密克⊥,且P为完全四边形BCQB AC尔点,由此,即知P为ABC与AC HB''的公''的另一个交点,亦即AP为ABC与AC HB共弦,也可由根心定理,知三条公共弦BC ,C B '',AP 所在直线共点于Q .故AP HM ⊥.下证点P 在ADE △的外接圆上.延长HM 至N ,使MN HM =,则四边形BNCH 为平行四边形,由此亦推知N 在ABC 上. 由DBH ECH △∽△, 有BD CE BH CH=. 由BPN CPN S S =△△,有BP BN NC CP ⋅=⋅,并注意BN CN =,NC BH =,于是由*,有BD BH NC BP CE CH BN CP ===, 即BD CE BP CP=. 而DBP ECP ∠=∠,则DBP ECP △∽△,即有BDP CEP ∠=∠.于是,ADP AEP ∠=∠,即点P 在ADE △的外接圆上.故ABC △的外接圆与ADE △的外接圆的公共弦AP 垂直于HM .下面看定理的演变及应用将定理中的凸四边形ABCD 内接于圆,演变成凸四边形外切于圆,则有例6如图326-,凸四边形ABCD 外切于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G .则OG EF ⊥.证明设O 与边AB ,BC ,CD ,DA 分别切于点M 、N 、R 、S ,则由牛顿定理,知AC 、BD 、MR 、NS 四线共点于G .注意到EM ER =,在等腰ERM △中应用斯特瓦尔特定理,有22EG EM MG GR =-⋅. 同理,22FG FS SG GN =-⋅.由上述两式相减,得2222EG FG EM FS MG GR SG GN -=--⋅+⋅.联结MO、EO、FO、SO,设O的半径为r,则由勾股定理,有222=-,FM OE r 222FS OF r=-.又显然,有MG GR SG GN⋅=⋅.于是,2222-=-.EG FG EO FO由定差幂线定理,知OG EF⊥.由此例及勃罗卡定理,则可简捷处理如下问题:例7(1989年IMO预选题)证明:双心四边形的两个圆心与其对角线交点共线(双心四边形指既有外接圆,又有内切圆的四边形).证明如图327-,设O,I分别为四边形ABCD的外接圆、内切圆圆心,AC与BD交于点G.当ABCD为梯形时,结论显然成立,O,I,G共线于上、下底中点的联线.当ABCD不为梯形时,可设直线AD与直线DC交于点E,直线BC与直线AD交于点F,联结EF.由勃罗卡定理,知OG EF⊥;由例6的结论,知IG EF⊥.故O,I,G三点共线.将推论2中的凸四边形内接于圆演变为一般的完全四边形,其密克尔点变为凸四边形对角线交点在完全四边形另一条对角线上的射影,则有例8(2002年中国国家队选拔赛题)如图328-,设凸四边形ABCD的两组对边所在直线分别交于E,F两点,两对角线的交点为P,过P作PO EF⊥于点O.求证:∠=∠.BOC AOD事实上,可类似于前面例2的证法即证得结论成立.将勃罗卡定理中的凸四边形对角线的交点演变为三角形的垂心,则有例9(2001年全国高中联赛题)如图329△中,O为外心,三条高AD、BE、-,ABCCF交于点H,直线ED和AB交于点M,FD和AC交于点N.求证:(1)OB DF⊥.⊥;(2)OH MN⊥,OC DE证明(1)由A 、C 、D 、F 四点共圆,知BDF BAC ∠=∠. 又()1180902OBC BOC BAC ∠=︒-∠=︒-∠, 即90OBD BDF ∠=︒-∠,故OB DF ⊥. 同理,OC DE ⊥.(2)要证OH MN ⊥,由定差幂线定理知,只要证明 有222MO MH NO NH -=-即可.注意到CH MA ⊥,有2222MC MH AC AH -=-,① BH NA ⊥,有2222NB NH AB AH -=-.② DA BC ⊥,有2222BD CD BA AC -=-,③ OB DN ⊥,有2222BN BD DN OD -=-,④ OC DM ⊥,有2222CM CD DM OD -=-.⑤ 由①-②+③+④-⑤得2222NH MH ON OM -=-. 即有2222MO MH NO NH -=-.故OH MN ⊥.将例9中的外心O 演变为一般的点,则有 例10如图3210-,设H 是ABC △的垂心,O 是ABC △所在平面内一点,作HP OB ⊥于P ,交AC 的延长线于点N ,作HQ OC ⊥于Q 交AB 的延长线于点M .求证:OH MN ⊥. 证明要证OH MN ⊥,由定差幂线定理知,只要证明有2222OM HM HN ON -=-即可. 注意到HN OB ⊥,HM OC ⊥,分别有2222OH ON BH BN -=-,2222OH OM CH CM -=-. 从而得222222OM ON CM BN BH CH -=-+-.① 由BH AN ⊥,有2222BA BN HA HN -=-, CH AM ⊥,有2222CA CM HA HM -=-,AH BC ⊥,有2222AB AC HB HC -=-. 从而得222222HM HN CM BN BH CH -=-+-.② 由①,②得2222OM ON HM HN -=-.故OH MN ⊥.。

高中数学竞赛解题策略-几何分册第32章勃罗卡定理

高中数学竞赛解题策略-几何分册第32章勃罗卡定理

第32章勃罗卡定理勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥.证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆.图321MFOL G NEDCBA分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ⋅=⋅=-. 22EG GN BG GD R OG ⋅=⋅=-.以上两式相减得()22222EG OE R R OG =---,即22222OE EG R OG -=-. 同理,22222OF FG R OG -=-.又由上述两式,有2222OE EG OF FG -=-. 于是,由定差幂线定理,知OG EF ⊥. 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点共线,从而EN OF ⊥. 同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 于是,知G 为OEF △的垂心,故OG EF ⊥. 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD .此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 即有BME BCE DCF DMF ∠=∠=∠=∠,从而9090BMO DMO DMF DCF ∠-∠=︒-∠=︒-∠ 90(180)90BCD BCD =︒-︒-∠=∠-︒11180909022BOD BOD BOD ⎛⎫=︒-∠-︒=︒-∠=∠ ⎪⎝⎭,即知点M 在OBD △的外接圆上.同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 该定理有如下推论推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥.由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,从而OM 与OM '重合,即M 与M '重合.推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M .推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,则G 为OEF △的垂心.事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证. 下面给出定理及推论的应用实例.例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.事实上,由推论3知R 为OPQ △的垂心,再由垂心组的性质即知O 为PQR △的垂心.例2如图322-,凸四边形ABCD 内接于O ,延长AB ,DC 交于点E ,延长BC ,AD 交于点F ,AC 与BD 交于点P ,直线OP 交EF 于点G .求证:AGB CGD ∠=∠.图322FA证明由勃罗卡定理知,OP EF ⊥于点G .延长AC 交EF 于点Q ,则在完全四边形ABECFD 中,点P ,Q 调和分割AC ,从而GA ,GC ,GP ,GQ 为调和线束,而GP GQ ⊥,于是GP 平分AGC ∠,即AGP CGP ∠=∠.延长DB 交直线EF 于点L (或无穷远点L ),则知L ,P 调和分割BD ,同样可得BGP DGP ∠=∠. 故AGB CGD ∠=∠.例3(2011年全国高中联赛题)如图323-,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于N ,直线CD 与AB 交于点M . 求证:若OK MN ⊥,则A ,B ,D ,C 四点共圆.图323证明用反证法.若A ,B ,D ,C 四点不共圆,则可设ABC △的外接圆O 与直线AD 交于点E ,直线CE 交直线AB 于P .直线BE 交直线AC 于Q .联结PQ ,则由勃罗卡定理,知OK PQ ⊥. 由题设,OK MN ⊥,从而知PQ MN ∥. 即有AQ APQN PM=.①对NDA △及截线BEQ ,对MDA △及截线CEP 分别应用梅涅劳斯定理 有1NB DE AQBD EA QN⋅⋅= 及1MC DE APCD EA PM⋅⋅=. 由①,②得NB MCBD CD=. 再应用分比定理,有ND MDBD DC=, 从而DMN DCB △∽△. 于是,DMN DCB ∠=∠.即有BC MN ∥,从而OK BC ⊥,得到K 为BC 的中点,这与已知矛盾.故A ,B ,D ,C 四点共圆.例4(1997年CMO 试题)设四边形ABCD 内接于圆,边AB 与DC 的延长线交于点P ,AD 与BC 的延长线交于点Q .由点Q 作该圆的两条切线QE ,QF ,切点分别为E ,F .求 证:P ,E ,F 三点共线.证明如图324-,设ABCD 的圆心为O ,AC 与BD 交于点G ,联结PQ ,则由勃罗卡定理,知OG PQ ⊥.A图324设直线OG 交PQ 于点M ,则由推论1,知M 为完全四边形ABPCQD 的密克尔点,即知M 、Q 、D 、C 四点共圆.又O 、E 、Q 、F 四点共圆,且OQ 为其直径,注意到OM MQ ⊥,知点M 也在OEQF 上.此时,MQ ,CD ,EF 分别为MQDC ,OEMQF ,ABCD 两两相交的三条公共弦.由根心定理,知MQ 、CD 、EF 三条直线共点于P .故P ,E ,F 三点共线.例5(2006年瑞士国家队选拔赛题)在锐角ABC △中,AB AC ≠,H 为ABC △的垂心,M 为BC 的中点,D 、E 分别为AB ,AC 上的点,且AD AE =,D 、H 、E 三点共线.求证:ABC △的外接圆与ADE △的外接圆的公共弦垂直于HM .证明如图325-,分别延长BH ,CH 交AC 、AB 于点B '、C ',则知A 、C '、H 、B '及B 、C 、B '、C '分别四点共圆,且AH 为AC HB ''的直径,点M 为BCB C ''的圆心.HB'QCEMNBC 'P图325设直线BC 与直线C B ''交于点Q ,联结AQ ,则在完全四边形BCQB AC ''中,由勃罗卡定理,知MH AQ ⊥.设直线MH 交AQ 于点P ,则由推论1,2知HP AQ ⊥,且P 为完全四边形BCQB AC ''的密克尔点,由此,即知P 为ABC 与AC HB ''的另一个交点,亦即AP 为ABC 与AC HB ''的公共弦,也可由根心定理,知三条公共弦BC ,C B '',AP 所在直线共点于Q .故AP HM ⊥. 下证点P 在ADE △的外接圆上.延长HM 至N ,使MN HM =,则四边形BNCH 为平行四边形,由此亦推知N 在ABC 上.由DBH ECH △∽△, 有BD CEBH CH=. 由BPN CPN S S =△△,有BP BN NC CP ⋅=⋅, 并注意BN CN =,NC BH =, 于是由*,有BD BH NC BPCE CH BN CP===, 即BD CEBP CP=. 而DBP ECP ∠=∠,则DBP ECP △∽△,即有BDP CEP ∠=∠. 于是,ADP AEP ∠=∠,即点P 在ADE △的外接圆上.故ABC △的外接圆与ADE △的外接圆的公共弦AP 垂直于HM . 下面看定理的演变及应用将定理中的凸四边形ABCD 内接于圆,演变成凸四边形外切于圆,则有 例6如图326-,凸四边形ABCD 外切于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G .则OG EF ⊥.图326S DFRCG OM BEN证明设O 与边AB ,BC ,CD ,DA 分别切于点M 、N 、R 、S ,则由牛顿定理,知AC 、BD 、MR 、NS 四线共点于G .注意到EM ER =,在等腰ERM △中应用斯特瓦尔特定理,有22EG EM MG GR =-⋅. 同理,22FG FS SG GN =-⋅. 由上述两式相减,得2222EG FG EM FS MG GR SG GN -=--⋅+⋅. 联结MO 、EO 、FO 、SO ,设O 的半径为r ,则由勾股定理,有222FM OE r =-,222FS OF r =-.又显然,有MG GR SG GN ⋅=⋅.于是,2222EG FG EO FO -=-. 由定差幂线定理,知OG EF ⊥.由此例及勃罗卡定理,则可简捷处理如下问题:例7(1989年IMO 预选题)证明:双心四边形的两个圆心与其对角线交点共线(双心四边形指既有外接圆,又有内切圆的四边形). 证明如图327-,设O ,I 分别为四边形ABCD 的外接圆、内切圆圆心,AC 与BD 交于点G .当ABCD 为梯形时,结论显然成立,O ,I ,G 共线于上、下底中点的联线.图327ADFCO I G BE当ABCD 不为梯形时,可设直线AD 与直线DC 交于点E ,直线BC 与直线AD 交于点F ,联结EF . 由勃罗卡定理,知OG EF ⊥;由例6的结论,知IG EF ⊥. 故O ,I ,G 三点共线.将推论2中的凸四边形内接于圆演变为一般的完全四边形,其密克尔点变为凸四边形对角线交点在完全四边形另一条对角线上的射影,则有例8(2002年中国国家队选拔赛题)如图328-,设凸四边形ABCD 的两组对边所在直线分别交于E ,F 两点,两对角线的交点为P ,过P 作PO EF ⊥于点O .求证:BOC AOD ∠=∠.图328DFOEP CB事实上,可类似于前面例2的证法即证得结论成立.将勃罗卡定理中的凸四边形对角线的交点演变为三角形的垂心,则有例9(2001年全国高中联赛题)如图329-,ABC △中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N .图329AE CNMDBF OH求证:(1)OB DF ⊥,OC DE ⊥;(2)OH MN ⊥.证明(1)由A 、C 、D 、F 四点共圆,知BDF BAC ∠=∠.又()1180902OBC BOC BAC ∠=︒-∠=︒-∠, 即90OBD BDF ∠=︒-∠,故OB DF ⊥. 同理,OC DE ⊥.(2)要证OH MN ⊥,由定差幂线定理知,只要证明 有222MO MH NO NH -=-即可.注意到CH MA ⊥,有2222MC MH AC AH -=-,① BH NA ⊥,有2222NB NH AB AH -=-.② DA BC ⊥,有2222BD CD BA AC -=-,③ OB DN ⊥,有2222BN BD DN OD -=-,④ OC DM ⊥,有2222CM CD DM OD -=-.⑤由①-②+③+④-⑤得2222NH MH ON OM -=-. 即有2222MO MH NO NH -=-. 故OH MN ⊥.将例9中的外心O 演变为一般的点,则有例10如图3210-,设H 是ABC △的垂心,O 是ABC △所在平面内一点,作HP OB ⊥于P ,交AC 的延长线于点N ,作HQ OC ⊥于Q 交AB 的延长线于点M .求证:OH MN ⊥.图3210E C ND H O QF BMP证明要证OH MN ⊥,由定差幂线定理知,只要证明有2222OM HM HN ON -=-即可. 注意到HN OB ⊥,HM OC ⊥,分别有2222OH ON BH BN -=-,2222OH OM CH CM -=-. 从而得222222OM ON CM BN BH CH -=-+-.① 由BH AN ⊥,有2222BA BN HA HN -=-, CH AM ⊥,有2222CA CM HA HM -=-, AH BC ⊥,有2222AB AC HB HC -=-.从而得222222HM HN CM BN BH CH -=-+-.②由①,②得2222OM ON HM HN -=-.故OH MN ⊥.。

2021年联赛几何题的十个思路和20种解法

2021年联赛几何题的十个思路和20种解法

2021年联赛几何题的十个思路和20种解法2021年高中数学联赛加试第二题为几何题,题目为:如图所示,在△ABC中,M是边BC的中点,D、E是△ABC的外接圆在点处的切线上的两点,满MD//AB,且A是线段DE的中点,过A、D、P三点的圆与边AC相交于另一点P,过A、D、P三点的圆与DM的延长线相交于点Q.证明:∠BCQ=∠BAC.先不增加其他点,适当连线,寻找图形的基本性质,容易得到:设△ABC边角为a,b,c;A,B,C.则等线段:AE=AD,MA=MC=0.5b,等角:∠A=∠AMD=∠QMP=∠BEP,∠B=∠DAC=∠DQP=∠EBP,∠C=∠EAB=∠ADM=∠APQ=∠EPB,∠BPC=∠BEA,∠PEA=∠PBA,平行;DQ//AB,PQ//BC,相似:△ABC∼△MAD∼△MQP∼△EBP,△BAE∼△BCP。

下面从结果入手分析,欲证∠BCQ=∠BAC,即确定点Q的位置,根据不同的确定方式,有以下几种思路:思路一:不添加其他点,直接证明△CMQ∼△CPQ。

设∠QCB=y,由分角定理则(CP/CM)=(PQsin∠CQP/(MQsin∠CQM),即(CP/AE)(AE/AM)=(AD/AM)(siny/sin(y+B)),即(sin(y+B)/siny)=(sin(A+B)/sinA),即coty=cotA,故∠QCB=∠A。

思路二:不添加其他点,计算确定△CMQ或△CPQ形状显然若∠BCQ=∠BAC,则上述结论成立。

下面只需说明满足上述条件的点Q是唯一的即可。

有5个方法的,解法3:用同一法若DM上Q'满足∠Q'CB=∠A,则MQ=MQ',由同一法Q,Q'重合,即∠QCB=∠A。

解法4:用单调性,(蕴秀斋)设∠MCQ=x,则f(x)=sin(x+A)/sinx=cosA+sinAcotx显然是单调的,从而x=C-A,即∠QCB=∠A。

解法5:用方程,设∠MCQ=x,则sin(x+A)/sinx=sinC/sin(C-A),即cosA+sinAcotx=cosA+sinAcot(C-A),cotx=cot(C-A),从而x=C-A,即∠QCB=∠A。

2024年高等数学竞赛讲义3第三部分中值定理与泰勒公式

2024年高等数学竞赛讲义3第三部分中值定理与泰勒公式

第一节中值定理中值定理是微积分中的重要定理,它揭示了函数在一些区间上的平均变化率与其在该区间上一些点的瞬时变化率之间的关系。

中值定理一般有以下几种形式:1.罗尔中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,并且f(a)=f(b),则在(a,b)内至少存在一点c,使得f'(c)=0。

罗尔中值定理的几何意义是,如果一条曲线在两个端点处的斜率相等,那么在这之间必然存在一点,其切线的斜率为0。

2.拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点c,使得f'(c)=(f(b)-f(a))/(b-a)。

拉格朗日中值定理的几何意义是,如果一条曲线在两个端点处的斜率相差不大于整个区间的平均变化率,那么在这之间必然存在一点,其切线的斜率等于整个区间的平均变化率。

3.柯西中值定理:若函数f(x)和g(x)在[a,b]上连续,在(a,b)内可导,并且g'(x)≠0,则在(a,b)内至少存在一点c,使得[f(b)-f(a)]/g(b)-g(a)=[f'(c)/g'(c)]。

柯西中值定理是拉格朗日中值定理的推广,它使得两个函数在一些点上的变化率可以完全不一样。

4.罗尔中值定理(三角函数形式):若函数f(x)在(0,π/2)上连续,在(0,π/2)内可导,并且f(0)=f(π/2)=0,则在(0,π/2)内至少存在一点c,使得f'(c)=0。

这个定理的几何意义是,如果一条曲线在两个端点处的斜率都为0,则在这之间必然存在一个点,其切线的斜率也为0。

中值定理在微积分中具有非常广泛的应用,它可以用来证明一些重要的定理,例如费马定理和柯西-施瓦茨不等式等。

第二节泰勒公式泰勒公式是微积分中的重要工具,它通过将函数在一些点处展开成无限项的幂级数,来近似表示函数在附近的取值。

一般来说,对于任意可导的函数f(x),在一些点a处,可以将f(x)在a的一些邻域内展开成泰勒级数的形式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+f'''(a)(x-a)³/3!+...其中f'(a)表示函数f(x)在点a处的导数,f''(a)表示二阶导数,以此类推。

2024年春高中数学奥赛专题培训平面几何基础

2024年春高中数学奥赛专题培训平面几何基础

平面几何基础1.全等和相似2.梅氏定理,赛瓦定理3.西姆松定理,托勒密定理,斯特瓦尔特定理4.帕斯卡定理与帕普斯定理5.三角形五心及其基本性质6.圆的基本性质7.1基础知识圆幂与根轴,蒙日定理2经典例题1.梅涅劳斯(Menelaus)定理:在∆ABC 中,F 是AB 延长线上的点,D,E 是BC,AC 上的点,求证:如果F DE 共线,则有AF F B ·BD DC ·CE EA=1.这个定理的逆定理也成立.2.(帕普斯定理)两直线上分别排列着A,B,C和E,F,G三个点,AF∩EC=H,AG∩EC=I,BG∩F C=J.求证:H,I,J三点共线.3.(帕斯卡定理)圆内接六边形的三条对边的交点共线。

如图:AB∩DE=G,BC∩EF=I,CD∩F A=H,则GHI三点共线.4.如图,∆ABC为锐角三角形,M为BC边的中点,过C向AM引垂线,垂足为D,过A,B,D的圆交BC于另一个点E,取N为AE中点,求证NB=NC.5.如图,D 为∆ABC 外接圆上一点,BD,CD 与对边交于F,E 两点.G 是AC 中垂线与AB的交点,H 是AB 中垂线和AC 的交点,求证:CE 2BF 2=AG ×GE AH ×HF .6.如图,过点A 作∆ABC 外接圆的切线,与以A 为圆心,AC 为半径的圆ω交于E,F 两点.AB 交ω于D 点,求证:DE,DF 分别通过∆ABC 的内心和一个旁心.7.如图I 为∆ABC 的内心,D 为BC 上一点,I 1,I 2分别为∆ABD 和∆CBD 的内心,直线CI,DI 1交于E,BI,DI 2交于点F,且AI 1=AI 2.求证:I 1E 2I 2F 2=IE ×ED IF ×F D .8.圆内接四边形ABCD 满足DA =DB,M 是对角线AC 与BD 的交点,I 为∆MBC 的内心,N 为对角线AC 上一点,求证:B,I,M,N 四点共圆的充分必要条件是BN 与CD 平行.9.如图,在圆中,弦AB的两个三等分点为M,NP为劣弧AB上一点,P M,P N交圆于另外两点D,C.求证:MN×CD=AD×BC.10.如图,∆ABC中,AB=AC,以A为圆心,AB为半径做圆Γ1,I为三角形内心,以I为圆心,IB为半径做圆Γ2.现在任意做一个经过B,I两点的圆Γ3交Γ1,Γ2于P,Q两点,IP,BQ延长线交于R点,求证:BR⊥RC.11.如图,O为∆ABC的外心,BO,CO分别交对边于D,E两点,直线DE交外接圆于P,Q.若AP=AQ,求证AB=AC.12.如图,在凸四边形ABCD中,∠BAD+2∠BCD=π.∠BAD的角分线交线段BD于E,线段AE的中垂线交CB,CD所在直线于X,Y两点.求证:A,X,C,Y四点共圆.13.如图,P为圆O外一点,P A,P B为两切线.C为劣弧AB上一点,过C做P C的垂线交∠AOC,∠COB角分线于D,E两点,求证:CD=CE.14.如图,P QRS是∆ABC的一个内接正方形,A1为其中心.类似的可以做出B1,C1.求证:AA1,BB1,CC1三线共点.15.如图,凸五边形ABCDE中,∠ABC=∠AED=90◦,∠BAC=∠DAE.线段BD,CE交于点F,求证:AF⊥BC.16.∆ABC中,D,E,F是内切圆的三个切点,R为EF与BC的交点,设BE,CF与内切圆的另一个交点为P,Q.求证:R,P,Q三点共线.17.如图,∆ABC的三个旁心分别为A1,B1,C1.取AB,AC中点M,N.B2,C2分别是B1,C1关于N,M的对称点,设旁切圆A1在BC上的切点为D,求证AD⊥B2C2.18.如图,圆O1与圆O2交于A,B两点,延长O1A,O2A交圆于C,D两点.过B做BE平行于O2A,若已知DE平行于O1A,求证:DC⊥CO2.。

高中数学竞赛解题策略-几何分册第29章牛顿定理

高中数学竞赛解题策略-几何分册第29章牛顿定理

第章牛顿定理牛顿定理圆的外切四边形的对角线的交点和以切点为顶点的四边形的对角线的交点重合. 此定理即是说,若四边形外切于圆.边、、、上的切点分别为、、、,则四条直线、、、交于形内一点.1 证法如图,设与交于点,与交于点,下证与重合. 由切线的性质,知,则有,即.同理,. 注意到,,则.再由合比定理,有. 于是与重合,即知、、三线共点. 同理,、、三线共点.故、、、四直线共点. 注:此证法由熊斌先生给出. 证法如图,过作交直线于,过作交直线于,设与、分别交于点,,则由~,~,注意到,.图291AX YS KPBGDH FM M ′R αβl有,,即.从而与重合.同证法,即知、、、四直线共点.注:注:此证法由尚强先生给出.1沈文选.牛顿定理的证明、应用及其他.中学教研(数学),2010(4):26-29.证法如图,过作的平行线,交于,则,从而.同理,过作的平行线交直线于,有.图292M2M1ZSBDQR WF PA而,所以.①设与交于点,与交于点, 则,.②注意到,由①,②得,由合比定理有,即知与重合,从而知,,三线共点. 同理,,三线共点.故,,,交于形内一点. 证法如图,设与交于点,在射线上取点,使,而,从而∽, 即有.③由及角平分线性质,有.④由③、④有.⑤ 同理,若与交于点, 有.⑥由⑤、⑥即有.以下同证法.证法如图,设与交于点,连、、、.设,,,则,.在中应用正弦定理,有, 即.。

2023年高中数学竞赛平面几何定理

2023年高中数学竞赛平面几何定理

平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边旳平方,等于其他两边之平方和,减去这两边中旳一边和另一边在这边上旳射影乘积旳两倍. (2)钝角对边旳平方等于其他两边旳平方和,加上这两边中旳一边与另一边在这边上旳射影乘积旳两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 旳边BC 旳中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一种角旳平分线分对边所成旳两条线段与这个角旳两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长二分之一). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间旳一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10.圆周角定理:同弧所对旳圆周角相等,等于圆心角旳二分之一.(圆外角怎样转化?) 11. 弦切角定理:弦切角等于夹弧所对旳圆周角.12.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13.布拉美古塔(Brahmagupta)定理:在圆内接四边形ABCD中,AC⊥BD,自对角线旳交点P向一边作垂线,其延长线必平分对边.14.点到圆旳幂:设P为⊙O所在平面上任意一点,PO=d,⊙O旳半径为r,则d2-r2就是点P对于⊙O旳幂.过P任作一直线与⊙O交于点A、B,则P A·PB= |d2-r2|.“到两圆等幂旳点旳轨迹是与此二圆旳连心线垂直旳一条直线,假如此二圆相交,则该轨迹是此二圆旳公共弦所在直线”这个结论.这条直线称为两圆旳“根轴”.三个圆两两旳根轴假如不互相平行,则它们交于一点,这一点称为三圆旳“根心”.三个圆旳根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两旳根轴)所在直线交于一点.15.托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC·BD=AB·CD+AD·BC,(逆命题成立) .(广义托勒密定理)AB·CD+AD·BC≥AC·BD.16.蝴蝶定理:AB是⊙O旳弦,M是其中点,弦CD、EF通过点M,CF、DE交AB 于P、Q,求证:MP=QM.17.费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点旳距离;不在等边三角形外接圆上旳点,到该三角形两顶点距离之和不小于到另一点旳距离.定理2三角形每一内角都不不小于120°时,在三角形内必存在一点,它对三条边所张旳角都是120°,该点到三顶点距离和到达最小,称为“费马点”,当三角形有一内角不不不小于120°时,此角旳顶点即为费马点.18.拿破仑三角形:在任意△ABC旳外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,这个命题称为拿破仑定理.以△ABC旳三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们旳外接圆⊙C 1 、⊙A 1 、⊙B 1旳圆心构成旳△——外拿破仑旳三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一种等边三角形;△ABC 旳三条边分别向△ABC 旳内侧作等边△ABD 、△BCE 、△CAF ,它们旳外接圆⊙C 2 、⊙A 2 、⊙B 2旳圆心构成旳△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一种等边三角形.这两个拿破仑三角形还具有相似旳中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线旳垂足,以及垂心与各顶点连线旳中点,这九个点在同一种圆上,九点圆具有许多有趣旳性质,例如:(1)三角形旳九点圆旳半径是三角形旳外接圆半径之半;(2)九点圆旳圆心在欧拉线上,且恰为垂心与外心连线旳中点;(3)三角形旳九点圆与三角形旳内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形旳外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形旳外接圆半径为R ,内切圆半径为r ,外心与内心旳距离为d ,则d 2=R 2-2Rr .22.锐角三角形旳外接圆半径与内切圆半径旳和等于外心到各边距离旳和. 23.重心:三角形旳三条中线交于一点,并且各中线被这个点提成2:1旳两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 旳重心,连结AG 并延长交BC 于D ,则D 为BC 旳中点,则1:2:=GD AG ;(2)设G 为△ABC 旳重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31;(3)设G 为△ABC 旳重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 旳重心,则①222222333GC AB GB CA GA BC +=+=+; ②)(31222222CA BC AB GC GB GA ++=++;③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离旳平方和最小旳点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大旳点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 旳重心).24. 垂心:三角形旳三条高线旳交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心旳距离,等于外心到对边旳距离旳2倍;(2)垂心H 有关△ABC 旳三边旳对称点,均在△ABC 旳外接圆上;(3)△ABC 旳垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 旳外接圆是等圆;(4)设O ,H 分别为△ABC 旳外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形旳三条角分线旳交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 旳内心,则I 到△ABC 三边旳距离相等,反之亦然;(2)设I 为△ABC 旳内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190;(3)三角形一内角平分线与其外接圆旳交点到另两顶点旳距离与到内心旳距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上旳点且满足KI=KB ,则I 为△ABC 旳内心;(4)设I 为△ABC 旳内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则a c b KD IK KI AK ID AI +===; (5)设I 为△ABC 旳内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上旳射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形旳三条中垂线旳交点——外接圆圆心,即外心到三角形各顶点距离相等;)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (CB A Cy By AyC B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 旳外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形旳外心到三边旳距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 旳三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切旳旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似旳式子);(2))(21C A I I I C B A ∠+∠=∠;(3)设A AI 旳连线交△ABC 旳外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样旳结论);(4)△ABC 是△I A I B I C 旳垂足三角形,且△I A I B I C 旳外接圆半径'R 等于△ABC 旳直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表达BC 边上旳高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径旳互相关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 旳三边BC 、CA 、AB 或其延长线和一条不通过它们任一顶点旳直线旳交点分别为P 、Q 、R 则有1=⋅⋅RB AR QA CQ PC BP .(逆定理也成立)31.梅涅劳斯定理旳应用定理1:设△ABC旳∠A旳外角平分线交边CA于Q,∠C旳平分线交边AB于R,∠B旳平分线交边CA于Q,则P、Q、R三点共线.32.梅涅劳斯定理旳应用定理2:过任意△ABC旳三个顶点A、B、C作它旳外接圆旳切线,分别和BC、CA、AB旳延长线交于点P、Q、R,则P、Q、R三点共线.33.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC旳边BC、CA、AB上旳一点,则AX、BY、CZ所在直线交于一点旳充要条件是AZZB·BXXC·CYYA=1.34.塞瓦定理旳应用定理:设平行于△ABC旳边BC旳直线与两边AB、AC旳交点分别是D、E,又设BE和CD交于S,则AS一定过边BC旳中点M.35.塞瓦定理旳逆定理:(略)36.塞瓦定理旳逆定理旳应用定理1:三角形旳三条中线交于一点,三角形旳三条高线交于一点,三角形旳三条角分线交于一点.37.塞瓦定理旳逆定理旳应用定理2:设△ABC旳内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.38.西摩松(Simson)定理:从△ABC旳外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理旳逆定理:(略)40.有关西摩松线旳定理1:△ABC旳外接圆旳两个端点P、Q有关该三角形旳西摩松线互相垂直,其交点在九点圆上.41.有关西摩松线旳定理2(安宁定理):在一种圆周上有4点,以其中任三点作三角形,再作其他一点旳有关该三角形旳西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC旳垂心为H,其外接圆旳任意点P,这时有关△ABC旳点P 旳西摩松线通过线段PH旳中心.43.史坦纳定理旳应用定理:△ABC旳外接圆上旳一点P旳有关边BC、CA、AB旳对称点和△ABC旳垂心H同在一条(与西摩松线平行旳)直线上.这条直线被叫做点P 有关△ABC旳镜象线.44.牛顿定理1:四边形两条对边旳延长线旳交点所连线段旳中点和两条对角线旳中点,三点共线.这条直线叫做这个四边形旳牛顿线.45.牛顿定理2:圆外切四边形旳两条对角线旳中点,及该圆旳圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们旳对应顶点(A和D、B和E、C和F)旳连线交于一点,这时假如对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们旳对应顶点(A 和D、B和E、C和F)旳连线交于一点,这时假如对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC旳外接圆上旳三点为P、Q、R,则P、Q、R有关△ABC 交于一点旳充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC旳外接圆上旳三点,若P、Q、R 有关△ABC旳西摩松线交于一点,则A、B、C三点有关△PQR旳旳西摩松线交于与前相似旳一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线旳交点是A、B、C、P、Q、R六点任取三点所作旳三角形旳垂心和其他三点所作旳三角形旳垂心旳连线段旳中点.51.波朗杰、腾下定理推论3:考察△ABC旳外接圆上旳一点P旳有关△ABC旳西摩松线,如设QR为垂直于这条西摩松线该外接圆旳弦,则三点P、Q、R旳有关△ABC 旳西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC旳顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB旳中点分别是L、M、N,则D、E、F、L、M、N六点在同一种圆上,这时L、M、N点有关有关△ABC旳西摩松线交于一点.53.卡诺定理:通过△ABC旳外接圆旳一点P,引与△ABC旳三边BC、CA、AB分别成同向旳等角旳直线PD、PE、PF,与三边旳交点分别是D、E、F,则D、E、F三点共线.54.奥倍尔定理:通过△ABC旳三个顶点引互相平行旳三条直线,设它们与△ABC旳外接圆旳交点分别是L、M、N,在△ABC旳外接圆上取一点P,则PL、PM、PN与△ABC 旳三边BC、CA、AB或其延长线旳交点分别是D、E、F,则D、E、F三点共线.55.清宫定理:设P、Q为△ABC旳外接圆旳异于A、B、C旳两点,P点旳有关三边BC、CA、AB旳对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线旳交点分别是D、E、F,则D、E、F三点共线.56.他拿定理:设P、Q为有关△ABC旳外接圆旳一对反点,点P旳有关三边BC、CA、AB旳对称点分别是U、V、W,这时,假如QU、QV、QW和边BC、CA、AB或其延长线旳交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O旳半径OC和其延长线旳两点,假如OC2=OQ×OP则称P、Q两点有关圆O互为反点)57.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点旳有关这4个三角形旳西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上.58.从三角形各边旳中点,向这条边所对旳顶点处旳外接圆旳切线引垂线,这些垂线交于该三角形旳九点圆旳圆心.59.一种圆周上有n个点,从其中任意n-1个点旳重心,向该圆周旳在其他一点处旳切线所引旳垂线都交于一点.60.康托尔定理1:一种圆周上有n个点,从其中任意n-2个点旳重心向余下两点旳连线所引旳垂线共点.61.康托尔定理2:一种圆周上有A、B、C、D四点及M、N两点,则M和N点有关四个三角形△BCD、△CDA、△DAB、△ABC中旳每一种旳两条西摩松线旳交点在同一直线上.这条直线叫做M、N两点有关四边形ABCD旳康托尔线.62.康托尔定理3:一种圆周上有A、B、C、D四点及M、N、L三点,则M、N两点旳有关四边形ABCD旳康托尔线、L、N两点旳有关四边形ABCD旳康托尔线、M、L 两点旳有关四边形ABCD旳康托尔线交于一点.这个点叫做M、N、L三点有关四边形ABCD旳康托尔点.63.康托尔定理4:一种圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点有关四边形BCDE、CDEA、DEAB、EABC中旳每一种康托尔点在一条直线上.这条直线叫做M、N、L三点有关五边形A、B、C、D、E旳康托尔线.64.费尔巴赫定理:三角形旳九点圆与内切圆和旁切圆相切.65.莫利定理:将三角形旳三个内角三等分,靠近某边旳两条三分角线相得到一种交点,则这样旳三个交点可以构成一种正三角形.这个三角形常被称作莫利正三角形.66.布利安松定理:连结外切于圆旳六边形ABCDEF相对旳顶点A和D、B和E、C 和F,则这三线共点.67.帕斯卡(Paskal)定理:圆内接六边形ABCDEF相对旳边AB和DE、BC和EF、CD和F A旳(或延长线旳)交点共线.68.阿波罗尼斯(Apollonius)定理:到两定点A、B旳距离之比为定比m:n(值不为1)旳点P,位于将线段AB提成m:n旳内分点C和外分点D为直径两端点旳定圆周上.这个圆称为阿波罗尼斯圆.69.库立奇*大上定理:(圆内接四边形旳九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形旳九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心旳圆叫做圆内接四边形旳九点圆.70.密格尔(Miquel)点:若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F 六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形旳外接圆共点,这个点称为密格尔点.71.葛尔刚(Gergonne)点:△ABC旳内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点.72.欧拉有关垂足三角形旳面积公式:O是三角形旳外心,M是三角形中旳任意一点,过M 向三边作垂线,三个垂足形成旳三角形旳面积,其公式:222ABC D 4||R d R S S EF -=∆∆.平面几何旳意义 就个人经验而言,我相信人旳智力懵懂旳大门获得开悟往往缘于某些不经意旳偶尔事件.罗素说过:“一种人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之因此这样说,是由于平面几何曾经救了他一命旳缘故.天懂得是什么缘故,这个养尊处优旳贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家旳孩子巴望一辈子都够不到旳幸福生活.在上吊或者抹脖子之前,头戴假发旳小子想到做最终一件事情,那就是理解一下平面几何究竟有多大迷人旳魅力.而这个魅力是之前他旳哥哥向他吹嘘旳.估计他旳哥哥将平面几何与人生旳意义搅和在一起向他做了推介,否则万念俱灰旳旳头脑怎么会在离开之前想到去做最终旳光顾?而罗素真旳一下被迷住了,厌世旳念头由于沉湎于平面几何而被淡化,最终竟被遗忘了.罗素毕竟是罗素.平面几何对于我旳意义只是发掘了一种成绩本来不错旳中学生旳潜力,为我解开了智力上旳扭结;而在罗素那里,这门知识从一开始就使这个未来旳伟大旳怀疑论者显露了执拗旳本性.他反对不加考察就接受平面几何旳公理,在与哥哥旳反复争论之后,只是他旳哥哥使他确信不也许用其他旳措施一步步由这样旳公理来构建庞大旳平面几何旳体系旳后来,他才同意接受这些公理.公元前334年,年轻旳亚历山大从马其顿麾师东进,短短旳时间就建立了一种从尼罗河到印度河旳庞大帝国.伴随他旳征服,希腊文明传播到了东方,开始了一种新旳文明时代即“希腊化时代”,这时希腊文明旳中心也从希腊本土转移到了东方,精确地说,是从雅典转移到了埃及旳亚历山大城.正是在这个都市,诞生了“希腊化时代”最为杰出旳科学成就,其中就包括欧几里德旳几何学.由于他旳成就,平面几何也被叫作“欧氏几何”.“欧氏几何”以它无与伦比旳完美体系一直被视为演绎知识旳典范,哲学史家更乐意把它看作是古代希腊文化旳结晶.它由人类理性不可反驳旳几种极其简朴旳“自明性公理”出发,通过严密旳逻辑推理,演绎出一连串旳定理,这些在构造上紧密依存旳定理和作为基础旳几种公理一起构筑了一种庞大旳知识体系.世间事物旳简洁之美无出其右.★费马点:法国著名数学家费尔马曾提出有关三角形旳一种有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一种历史名题,近几年仍有不少文献对此简介.★拿破仑三角形:读了这个题目,你一定觉得很奇怪.尚有三角形用拿破仑这个名子来命名旳呢!拿破仑与我们旳几何图形三角形有什么关系?少年朋友懂得拿破仑是法国著名旳军事家、政治家、大革命旳领导者、法兰西共和国旳缔造者,但对他任过炮兵军官,对与射击、测量有关旳几何等知识素有研究,却懂得得就不多了吧!史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值旳文献,包括欧几里德旳名著《几何原本》都送回了巴黎,他还对法国数学家提出了“怎样用圆规将圆周四等分”旳问题,被法国数学家曼彻罗尼所处理.听说拿破仑在统治法国之前,曾与法国大数学家拉格朗日及拉普拉斯一起讨论过数学问题.拿破仑在数学上旳真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一种规定:“将军,我们最终有个祈求,你来给大家上一次几何课吧!”你大概不会想到拿破仑还是这样一位有相称造诣旳数学爱好者吧!不少几何史上有名旳题目还和拿破仑有着关联,他曾经研究过旳三角形称为“拿破仑三角形”,并且还是一种很有趣旳三角形.在任意△ABC旳外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD 三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.以△ABC旳三条边分别向外作等边△ABD、△BCE、△CAF,它们旳外接圆⊙、⊙、⊙、旳圆心构成旳△——外拿破仑旳三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一种等边三角形,如下图.△ABC旳三条边分别向△ABC旳内侧作等边△ABD、△BCE、△CAF,它们旳外接圆⊙、⊙、⊙旳圆心构成旳△——内拿破仑三角形⊙、⊙、⊙三圆共点,内拿破仑三角形也是一种等边三角形.如下图.由于外拿破仑三角形和内拿破仑三角形都是正三角形,这两个三角形还具有相似旳中心.少年朋友,你与否惊讶拿破仑是一位军事家、政治家,同步还是一位受异书籍、热爱知识旳数学家呢?拿破仑定理、拿破仑三角形及其性质与否更让你非常惊讶、有趣呢?★欧拉圆:三角形三边旳中点,三高旳垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段旳中点〕九点共圆〔一般称这个圆为九点圆〔nine-point circle〕,或欧拉圆,费尔巴哈圆.九点圆是几何学史上旳一种著名问题,最早提出九点圆旳是英国旳培亚敏.俾几〔Benjamin Beven〕,问题刊登在1823年旳一本英国杂志上.第一种完全证明此定理旳是法国数学家彭赛列〔1788-1867〕.也有说是1820-1823年间由法国数学家热而工〔1771-1859〕与彭赛列首先刊登旳.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他旳证明刊登在1823年旳《直边三角形旳某些特殊点旳性质》一文里,文中费尔巴哈还获得了九点圆旳某些重要性质〔如下列旳性质3〕,故有人称九点圆为费尔巴哈圆.九点圆具有许多有趣旳性质,例如:1.三角形旳九点圆旳半径是三角形旳外接圆半径之半;2.九点圆旳圆心在欧拉线上,且恰为垂心与外心连线旳中点;3.三角形旳九点圆与三角形旳内切圆,三个旁切圆均相切〔费尔巴哈定理〕.。

高中数学竞赛中平面几何涉及的定理

高中数学竞赛中平面几何涉及的定理

1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

6、三角形各边的垂直一平分线交于一点。

7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。

10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。

高中数学竞赛讲义

高中数学竞赛讲义

若 C ≠ ∅ ,则1∈ C 或 2 ∈ C ,解得 m = 3.
综 所述, a = 2 或 a = 3 m = 3 或 − 2 2 < m < 2 2
4.计数原理的 用
例 4 集合 A,B,C 是 I={1,2,3,4,5,6,7,8,9,0}的子集, 1 若 A U B = I ,
求有序集合对 A,B 的个数 2 求 I 的非空真子集的个数
定理 1 集合的性质 对任意集合 A,B,C,有
1 A I (B U C) = ( A I B) U ( A I C); 2 A U (B I C) = ( A U B) I ( A U C)
3 C1 A U C1 B = C1 ( A I B); 4 C1 A I C1 B = C1 ( A U B).
综合除法 余式定理 因式 解 拆 添 配方 定系数法 对 式和 换对
式 整式
根式的恒等 形 恒等式的证明
3 方程和 等式
含 母系数的一元一次方程 一元 次方程的解法,一元 次方程根的 布 含绝对值
的一元一次方程 一元 次方程的解法 含 母系数的一元一次 等式的解法,一元 次
等式的解法 含绝对值的一元一次 等式 简单的多元方程组 简单的 定方程 组
法原理,子集共有 210 = 1024 个,非空真子集有 1022 个
5.配对方法
例 5 给定集合 I = {1,2,3,L, n} 的 k 个子集 A1 , A2 ,L, Ak ,满足任何 个子集的交集非 空,并且再添加 I 的任何一个 他子集 将 再 有 性质,求 k 的值
解 将 I 的子集作如 配对 个子集和它的补集 一对,共得 2n−1 对, 一对 能 在
4 函数
次函数在给定 间 的最值,简单 函数的最值 含 母系数的 次函数

高中数学竞赛平面几何中的几个重要定理

高中数学竞赛平面几何中的几个重要定理

高中数学竞赛平面几何中的几个重要定理平面几何中几个重要定理及其证明一、 塞瓦定理1.塞瓦定理及其证明定理:在∆ABC 内一点P ,该点与∆ABC 的三个顶点相连所在的三条直线分别交∆ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是∆ABC 的顶点,则有1AD BE CFDB EC FA⋅⋅=. 证明:运用面积比可得ADCADP BDP BDCS S AD DB S S ∆∆∆∆==. 根据等比定理有ADC ADC ADP APCADP BDP BDC BDC BDP BPCS S S S S S S S S S ∆∆∆∆∆∆∆∆∆∆-===-,所以APCBPC S AD DB S ∆∆=.同理可得APB APCS BE EC S ∆∆=,BPCAPB S CF FA S ∆∆=. 三式相乘得1AD BE CFDB EC FA⋅⋅=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”ABCD FP还是“等底”,这样就可以产生出“边之比”.2.塞瓦定理的逆定理及其证明定理:在∆ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是∆ABC 的顶点,若1AD BE CFDB EC FA⋅⋅=,那么直线CD 、AE 、BF 三线共点.证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有//1AD BE CFD B EC FA⋅⋅=.因为1AD BE CF DB EC FA⋅⋅=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线.注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理ABCD EFPD /3.梅涅劳斯定理及其证明定理:一条直线与∆ABC 的三边AB 、BC 、CA 所在直线分别交于点D 、E 、F ,且D 、E 、F 均不是∆ABC 的顶点,则有1AD BE CFDB EC FA⨯⨯=.证明:如图,过点C 作AB 的平行线,交EF 于点G .因为CG // AB ,所以CG CFAD FA= ————(1) 因为CG // AB ,所以CG ECDB BE= ————(2) 由(1)÷(2)可得DB BE CFAD EC FA=⋅,即得1AD BE CF DB EC FA ⋅⋅=. 注:添加的辅助线CG 是证明的关键“桥梁”,两次运用相似比得出两个比例等式,再拆去“桥梁”(CG )使得命题顺利获证.4.梅涅劳斯定理的逆定理及其证明定理:在∆ABC 的边AB 、BC 上各有一点D 、E ,在边AC 的延长线上有一点F ,若1AD BE CFDB EC FA⋅⋅=, 那么,D 、E 、F 三点共线.ABCD EFD /证明:设直线EF 交AB 于点D /,则据梅涅劳斯定理有//1AD BE CFD B EC FA⋅⋅=. 因为1AD BE CF DB EC FA⋅⋅=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线.注:证明方法与上面的塞瓦定理的逆定理如出一辙,注意分析其相似后面的规律. 三、 托勒密定理5.托勒密定理及其证明定理:凸四边形ABCD 是某圆的内接四边形,则有 AB ·CD + BC ·AD = AC ·BD .证明:设点M 是对角线AC 与BD 的交点,在线段BD 上找一点,使得∠DAE =∠BAM .因为∠ADB =∠ACB ,即∠ADE =∠ACB ,所以∆ADE ∽∆ACB ,即得AD DEAC BC=,即AD BC AC DE ⋅=⋅ ————(1) 由于∠DAE =∠BAM ,所以∠DAM =∠BAE ,即∠DAC =∠BAE 。

一道竞赛题的三种解法

一道竞赛题的三种解法

一道竞赛题的三种解法
张东升
【期刊名称】《数理天地:高中版》
【年(卷),期】2009(000)010
【摘要】题在如图1所示的直角坐标系中,有一塑料制成的半锥角为θ的圆锥体Oab.圆锥体的顶点在原点处,其轴线沿z轴方向.有一条长为l的细金属丝OP 固定在圆锥体的侧面上,金属丝与圆锥体的一条母线重合.
【总页数】1页(P43)
【作者】张东升
【作者单位】山东省昌乐二中,262400
【正文语种】中文
【中图分类】G632.479
【相关文献】
1.一道竞赛题的三种解法
2.常规、改进与创新—一道化学竞赛题的三种解法
3.追寻本质解法变式演绎精彩--一道竞赛题的解法及变式探究
4.运用广义对称另解竞赛题——一道竞赛题的解法新探
5.寻找“中间地带”——一道竞赛题的第三种解法
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第32章勃罗卡定理1 勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD2 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥.3 证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四4 边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆.5图321FOL G NEDCBA6 分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ⋅=⋅=-.7 22EG GN BG GD R OG ⋅=⋅=-.8 以上两式相减得()22222EG OE R R OG =---, 9 即22222OE EG R OG -=-. 10 同理,22222OF FG R OG -=-.11 又由上述两式,有2222OE EG OF FG -=-. 12 于是,由定差幂线定理,知OG EF ⊥.13 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 14 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点15 共线,从而EN OF ⊥.16同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 17 于是,知G 为OEF △的垂心,故OG EF ⊥.18 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 19 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD .20 此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 21 即有BME BCE DCF DMF ∠=∠=∠=∠, 22 从而9090BMO DMO DMF DCF ∠-∠=︒-∠=︒-∠23 90(180)90BCD BCD =︒-︒-∠=∠-︒24 11180909022BOD BOD BOD ⎛⎫=︒-∠-︒=︒-∠=∠ ⎪⎝⎭,25 即知点M 在OBD △的外接圆上.26 同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 27 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 28 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 29 该定理有如下推论30 推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 31 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 32 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 33 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,34 从而OM 与OM '重合,即M 与M '重合.35 推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC36与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M . 37 推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,38 AC 与BD 交于点G ,则G 为OEF △的垂心.39 事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,40 22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证.41 下面给出定理及推论的应用实例.42 例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,43 Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.44 事实上,由推论3知R 为OPQ △的垂心,再由垂心组的性质即知O 为PQR △的垂心. 45 例2如图322-,凸四边形ABCD 内接于O ,延长AB ,DC 交于点E ,延长BC ,AD 交46 于点F ,AC 与BD 交于点P ,直线OP 交EF 于点G .求证:AGB CGD ∠=∠.47图322F48 证明由勃罗卡定理知,OP EF ⊥于点G .49 延长AC 交EF 于点Q ,则在完全四边形ABECFD 中,点P ,Q 调和分割AC ,从而GA ,GC ,50 GP ,GQ 为调和线束,而GP GQ ⊥,于是GP 平分AGC ∠,即AGP CGP ∠=∠.51 延长DB 交直线EF 于点L (或无穷远点L ),则知L ,P 调和分割BD ,同样可得52 BGP DGP ∠=∠.53故AGB CGD ∠=∠.54 例3(2011年全国高中联赛题)如图323-,锐角三角形ABC 的外心为O ,K 是边BC 上55 一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于N ,直线CD 与56 AB 交于点M .57 求证:若OK MN ⊥,则A ,B ,D ,C 四点共圆.58图32359 证明用反证法.若A ,B ,D ,C 四点不共圆,则可设ABC △的外接圆O 与直线AD 交60 于点E ,直线CE 交直线AB 于P .直线BE 交直线AC 于Q .联结PQ ,则由勃罗卡定理,61 知OK PQ ⊥.62 由题设,OK MN ⊥,从而知PQ MN ∥. 63 即有AQ APQN PM=.① 64 对NDA △及截线BEQ ,对MDA △及截线CEP 分别应用梅涅劳斯定理 65 有1NB DE AQBD EA QN⋅⋅= 66 及1MC DE APCD EA PM⋅⋅=. 67 由①,②得NB MCBD CD=. 68再应用分比定理,有ND MDBD DC=, 69 从而DMN DCB △∽△.70 于是,DMN DCB ∠=∠.即有BC MN ∥,从而OK BC ⊥,得到K 为BC 的中点,这与已知71 矛盾.故A ,B ,D ,C 四点共圆.72 例4(1997年CMO 试题)设四边形ABCD 内接于圆,边AB 与DC 的延长线交于点P ,AD 73 与BC 的延长线交于点Q .由点Q 作该圆的两条切线QE ,QF ,切点分别为E ,F .求 74 证:P ,E ,F 三点共线.75 证明如图324-,设ABCD 的圆心为O ,AC 与BD 交于点G ,联结PQ ,则由勃罗卡定76 理,知OG PQ ⊥.77A图32478 设直线OG 交PQ 于点M ,则由推论1,知M 为完全四边形ABPCQD 的密克尔点,即知M 、79 Q 、D 、C 四点共圆.80 又O 、E 、Q 、F 四点共圆,且OQ 为其直径,注意到OM MQ ⊥,知点M 也在OEQF 上.81 此时,MQ ,CD ,EF 分别为MQDC ,OEMQF ,ABCD 两两相交的三条公共弦.由82 根心定理,知MQ 、CD 、EF 三条直线共点于P .83故P ,E ,F 三点共线.84 例5(2006年瑞士国家队选拔赛题)在锐角ABC △中,AB AC ≠,H 为ABC △的垂心,M 85 为BC 的中点,D 、E 分别为AB ,AC 上的点,且AD AE =,D 、H 、E 三点共线.求证:86 ABC △的外接圆与ADE △的外接圆的公共弦垂直于HM .87 证明如图325-,分别延长BH ,CH 交AC 、AB 于点B '、C ',则知A 、C '、H 、B '及B 、88 C 、B '、C '分别四点共圆,且AH 为AC HB ''的直径,点M 为BCB C ''的圆心.89HB'QCEMNBC 'PA图32590 设直线BC 与直线C B ''交于点Q ,联结AQ ,则在完全四边形BCQB AC ''中,由勃罗卡定理,91 知MH AQ ⊥.92 设直线MH 交AQ 于点P ,则由推论1,2知HP AQ ⊥,且P 为完全四边形BCQB AC ''的密93 克尔点,由此,即知P 为ABC 与AC HB ''的另一个交点,亦即AP 为ABC 与AC HB ''的94 公共弦,也可由根心定理,知三条公共弦BC ,C B '',AP 所在直线共点于Q .故AP HM ⊥. 95 下证点P 在ADE △的外接圆上.96 延长HM 至N ,使MN HM =,则四边形BNCH 为平行四边形,由此亦推知N 在ABC 上. 97 由DBH ECH △∽△, 98 有BD CEBH CH=. 99由BPN CPN S S =△△,有BP BN NC CP ⋅=⋅, 100 并注意BN CN =,NC BH =, 101 于是由*,有BD BH NC BPCE CH BN CP===, 102 即BD CEBP CP=. 103 而DBP ECP ∠=∠,则DBP ECP △∽△,即有BDP CEP ∠=∠. 104 于是,ADP AEP ∠=∠,即点P 在ADE △的外接圆上. 105 故ABC △的外接圆与ADE △的外接圆的公共弦AP 垂直于HM . 106 下面看定理的演变及应用107 将定理中的凸四边形ABCD 内接于圆,演变成凸四边形外切于圆,则有108 例6如图326-,凸四边形ABCD 外切于O ,延长AB 、DC 交于点E ,延长BC 、AD 交109 于点F ,AC 与BD 交于点G .则OG EF ⊥.110图326AS DFRCG OM BEN111 证明设O 与边AB ,BC ,CD ,DA 分别切于点M 、N 、R 、S ,则由牛顿定理,知AC 、112 BD 、MR 、NS 四线共点于G .113 注意到EM ER =,在等腰ERM △中应用斯特瓦尔特定理,有22EG EM MG GR =-⋅.114同理,22FG FS SG GN =-⋅. 115 由上述两式相减,得116 2222EG FG EM FS MG GR SG GN -=--⋅+⋅.117 联结MO 、EO 、FO 、SO ,设O 的半径为r ,则由勾股定理,有222FM OE r =-,118 222FS OF r =-.又显然,有MG GR SG GN ⋅=⋅.119 于是,2222EG FG EO FO -=-. 120 由定差幂线定理,知OG EF ⊥.121 由此例及勃罗卡定理,则可简捷处理如下问题:122 例7(1989年IMO 预选题)证明:双心四边形的两个圆心与其对角线交点共线(双心四123 边形指既有外接圆,又有内切圆的四边形).124 证明如图327-,设O ,I 分别为四边形ABCD 的外接圆、内切圆圆心,AC 与BD 交于点125 G .当ABCD 为梯形时,结论显然成立,O ,I ,G 共线于上、下底中点的联线.126图327ADFCOI G BE127 当ABCD 不为梯形时,可设直线AD 与直线DC 交于点E ,直线BC 与直线AD 交于点F ,128 联结EF .129 由勃罗卡定理,知OG EF ⊥;由例6的结论,知IG EF ⊥. 130 故O ,I ,G 三点共线.131将推论2中的凸四边形内接于圆演变为一般的完全四边形,其密克尔点变为凸四边形对132 角线交点在完全四边形另一条对角线上的射影,则有133 例8(2002年中国国家队选拔赛题)如图328-,设凸四边形ABCD 的两组对边所在直线134 分别交于E ,F 两点,两对角线的交点为P ,过P 作PO EF ⊥于点O .求证:BOC AOD ∠=∠.135图328A DFOEP CB136 事实上,可类似于前面例2的证法即证得结论成立.137 将勃罗卡定理中的凸四边形对角线的交点演变为三角形的垂心,则有138 例9(2001年全国高中联赛题)如图329-,ABC △中,O 为外心,三条高AD 、BE 、CF 139 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N .140图329AE CNMDBF OH141 求证:(1)OB DF ⊥,OC DE ⊥;(2)OH MN ⊥. 142 证明(1)由A 、C 、D 、F 四点共圆,知BDF BAC ∠=∠. 143 又()1180902OBC BOC BAC ∠=︒-∠=︒-∠,144即90OBD BDF ∠=︒-∠,故OB DF ⊥. 145 同理,OC DE ⊥.146 (2)要证OH MN ⊥,由定差幂线定理知,只要证明 147 有222MO MH NO NH -=-即可.148 注意到CH MA ⊥,有2222MC MH AC AH -=-,①149 BH NA ⊥,有2222NB NH AB AH -=-.② 150 DA BC ⊥,有2222BD CD BA AC -=-,③ 151 OB DN ⊥,有2222BN BD DN OD -=-,④152 OC DM ⊥,有2222CM CD DM OD -=-.⑤153 由①-②+③+④-⑤得2222NH MH ON OM -=-. 154 即有2222MO MH NO NH -=-. 155 故OH MN ⊥.156 将例9中的外心O 演变为一般的点,则有157 例10如图3210-,设H 是ABC △的垂心,O 是ABC △所在平面内一点,作HP OB ⊥于P ,158 交AC 的延长线于点N ,作HQ OC ⊥于Q 交AB 的延长线于点M .求证:OH MN ⊥.15911 图3210AE C ND HO Q FB MP160证明要证OH MN ⊥,由定差幂线定理知,只要证明有2222OM HM HN ON -=-即可. 161注意到HN OB ⊥,HM OC ⊥,分别有 1622222OH ON BH BN -=-,2222OH OM CH CM -=-. 163从而得222222OM ON CM BN BH CH -=-+-.① 164由BH AN ⊥,有2222BA BN HA HN -=-, 165CH AM ⊥,有2222CA CM HA HM -=-, 166AH BC ⊥,有2222AB AC HB HC -=-. 167从而得222222HM HN CM BN BH CH -=-+-.② 168由①,②得2222OM ON HM HN -=-.故OH MN ⊥. 169170。

相关文档
最新文档