2012.04 第3章 弹塑性力学 本构理论

合集下载

弹塑性本构关系简介

弹塑性本构关系简介

松比)。
塑性材料受外部作用的反应和变形的历史有关(可称为历 史相关性或路径相关性),本构关系应写成增量关系。
应力空间表述的弹塑性本构关系
韧性(塑性)金属材料单向拉伸试验曲线如下 图示意
强度极限
b
屈服上限
L y
U y
e
屈服下限
弹性极限
强化段
软化段 卸载
残余变形
弹性变形
y
y
卸载、反向加载 包辛格效应
屈服面随内变量改变的规律称强化规律。由 材料试验的资料可建立各种强化模型,目前广 泛采用的有:等向强化;随动强化两种模型。
等 向 强
初始屈服面
2
B
f 0(ij ) 0 B
2
C A o1

o A 1
o
1
C
D

弹性

f 0 (ij ) 0
强 化
后继屈服面
f
( ij
,
p ij
,
k)
0
等向强化认为屈服面形状不变,只是作均匀
称后继屈服面,f
(
ij
,
p ij
,
k
)
0

如果一点应力的 f (ij ,ipj,,则k)此 点0 处于弹性状态,如

f (,ij则,处ipj ,于k)塑 0性状态。
式变张中形量的为i量j间应。存ip力j在张如和ip量j 下k,关统系称为ipj为塑内性变应量ip力j 。张其D量i中j,klkkp与l为塑标ipj 性志应永变久
d ij
Dt ijkl
d
kl
式中 Ditjk为l 切线弹性张量,形式上仍可表为
Dt ijkl

李同林 弹塑性力学 第3章 本构理论解析

李同林   弹塑性力学         第3章 本构理论解析

§3—8 屈服函数、主应力空间常用屈服条件 §3—9 加载准则、加载曲面、加载方式 §3—10 弹塑性应变增量、应变偏量增量间
的关系 §3—11 塑性本构方程(增量理论) §3—13 塑性本构方程(全量理论) §3—17 岩土材料的变形模型与强度准则 §3—18 本章小结、关于余能的概念
§3—1 概 述
◆ 这些附加假设都是建立在一些金属材料的实验基 础上的,前两条对岩土材料不适用。
§3—3 弹塑性力学力学模型
◆ 变形力学模型是在大量实验的基础上,将各种反映 材料力学性质的应力应变曲线,进行分析归类抽象 总结后提出的。
◆ 对不同的固体材料,不同的应用领域,可采用不同 的变形体力学模型。
★ 确定力学模型时应注意:
① 球应力引起了全部体变(即体积改变量),而不 包含畸变(即形状改变量),体变是弹性的。因 此,球应力不影响 屈服条件;
② 偏斜应力引起了全部畸变,而不包括体变,塑性 变形仅是 由应力偏量引起的。因此,在塑性变 形过程中材料具有不可压缩性(即体积应变为 零);
③ 不考虑时间因素对材料性质的影响,即认为材料 是非粘性的。
E s E1 ( s )
(当 s时)
(当 s时)
(4--3)
3、理想刚塑性力学模型
理想刚塑性 力学模型亦称 刚性完全塑性 力学模型,特 别适宜于塑性 极限载荷的分 析。其表达式 为:
s
(当 s时) (3--4)
4、理想线性强化刚塑性力学模型
理想线 性强化刚 塑性力学 模型,其 应力应变 关系的数 学表达式 为:
s E1
(当 0时) (3--5)
5、幂强化力学模型
为了避免在 处 s
的变化,有时可以采 用幂强化力学模型。 当表达式中幂强化系 数 n 分别取 0 或 1 时, 就代表理想弹塑性模 型和理想刚塑性模型。 其应力应变关系表达 式为:

弹塑性力学课件第三章

弹塑性力学课件第三章

zx C61x C62 y C63z C64 xy C65 yz C66 zx
C ij
ijkl kl
Cijkl Cijlk
2021/1/10
4
第三章 本构关系
一、线性弹性体的本构方程——具有一个弹性对称面的线
性弹性体
x
y
C11
C12 C22
C13 C23
C14 C24
2021/1/10
10
第三章 本构关系
一、线性弹性体的本构方程——各向同性弹性体
x
1 E
x
( y
z ) ,
xy
1 G
xy
y
1 E
y
( x
z ) ,
yz
1 G
yz
z
1 E
z
( x
y ) ,
zx
1 G
zx
ij 1Eij Ekkij
2021/1/10
11
第三章 本构关系 一、线性弹性体的本构方程——各向同性弹性体
0 x
0
y
z xy
C33 0 0

C44 0
0 z
0
xy
yz
zx

C55
0 C66
yz zx
2021/1/10
6
第三章 本构关系 一、线性弹性体的本构方程——正交各向异性弹性体
x y z xy
1 Ex
xy
1 Ey

xz
yz
弹塑性力学课件第三章
第三章 本构关系
本章学习要点:
掌握各项同性材料的广义Hooke定律 掌握弹性应变能密度函数的概念及计算 理解初始屈服、后继屈服以及加卸载的概 念 掌握几个常用的屈服条件 理解弹塑性材料的增量和全量本构关系的 基本概念

弹塑性本构模型理论课件

弹塑性本构模型理论课件


材料屈服强度影响规律
屈服强度定义
材料开始发生明显塑性变形的最小应力值,反映了材料抵抗塑性变 形的能力。
屈服强度对弹塑性行为的影响
屈服强度越大,材料抵抗塑性变形的能力越强,进入塑性阶段所需 的应力水平越高,材料的塑性变形能力越差。
屈服强度的影响因素
材料的晶体结构、化学成分、温度、应变速率等都会影响屈服强度 的大小。
材料弹性模量影响规律
弹性模量定义
01
材料在弹性阶段内,应力与应变之比,反映了材料抵抗弹性变
形的能力。
弹性模量对弹塑性行为的影响
02
弹性模量越大,材料的刚度越大,相同应力作用下产生的弹性
变形越小,进入塑性阶段所需的应力水平越高。
弹性模量的影响因素
03
材料的晶体结构、化学成分、温度等都会影响弹性模量的大小
弹性阶段
材料在受力初期表现出弹性行为,应 力与应变呈线性关系,卸载后无残余 变形。
屈服阶段
当应力达到屈服强度时,材料进入塑 性阶段,应力不再增加但应变继续增 加,卸载后有残余变形。
强化阶段
材料在塑性阶段表现出应变硬化特性 ,随着塑性应变的增加,屈服强度逐 渐提高。
理想弹塑性模型
无强化阶段的弹塑性模型,屈服后应 力保持恒定,应变无限增加。
通过实验测定金属材料的弹性模量、屈服强度、硬化模量等参 数,为模拟提供准确数据。
利用有限元软件建立金属材料的弹塑性行为模型,进行加载、 卸载等模拟过程。
将模拟结果与实验结果进行对比,验证弹塑性本构模型在金属 材料行为模拟中的准确性和可靠性。
实例二:混凝土结构弹塑性损伤评估
损伤模型选择
针对混凝土结构的损伤特点,选择合适 的弹塑性损伤本构模型,如塑性损伤模

弹塑性力学-弹塑性本构关系

弹塑性力学-弹塑性本构关系
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向
与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
ij
0 ij
(b) 不满足稳定 材料的屈服面
/2
2 塑性应变增量向量与屈服面法向平行
d 必p 与加载面的外法线
重合,否则总可以找到A0 使A0A·dεp≥0不成立(如右 图)。
的真实功与ij0起点无关;
Ñ d ipj ij ij 0
(2)附加应力功不符合功的 定义,并非真实功
i0j ij i0jdij0
-
应力循环中外载所作真实功 与附加应力功
(3)非真实物理功不能引用热力学定律;
(4)德鲁克公设的适用条件:
①ij0在塑性势面与屈服面
之内时,德鲁克公设成立;
d
p ij
d
ij
由应力空间中的屈服与应变空间中屈服面的转换关系,可得:
结合
-
D
ij
ij
dipj Ddipj
d
p ij
d
ij
可得:
d d
3.1.4 塑性位势理论与流动法则
与弹性位势理论相类似,Mises于1928年提出塑性
位势理论。他假设经过应力空间的任何一点M,必有
一塑性位势等势面存在,其数学表达式称为塑性位势
残余应力增量与塑性 应变增量存在关系:
dipj Ddipj
式中,D为弹性矩阵。 根据依留申公设,在 完成上述应变循环中, 外部功不为负,即
Ñ WI ijdij 0 i0j
只有在弹性应变时,上述WI=0。
根据Druker塑性公设
当 i0 jij时 (iji0 j)dijp 0

弹塑性力学基础理论与应用

弹塑性力学基础理论与应用

弹塑性力学基础理论与应用弹塑性力学是力学中一个重要的分支,涵盖了弹性力学和塑性力学的基本原理和应用。

本文将简要介绍弹塑性力学的基础理论和一些应用领域。

一、弹塑性力学的基础理论1. 弹性力学理论弹性力学研究材料在外力作用下的弹性变形及其恢复过程。

根据胡克定律,应力与应变成正比。

弹性力学理论通过应力张量与应变张量之间的关系描述了弹性材料的力学行为。

弹性模量是弹性力学的重要参数,表征了材料的刚度。

2. 塑性力学理论塑性力学研究材料在超过弹性极限后的变形行为。

当外力超过材料的弹性极限时,材料会发生塑性变形,而不是立即恢复到原来的形状。

塑性力学理论包括弹塑性本构方程的建立和塑性流动规律的描述。

3. 弹塑性力学理论弹塑性力学是弹性力学和塑性力学的综合应用。

它考虑了材料在弹性和塑性行为之间的转换。

在某些情况下,材料可以同时表现出弹性和塑性特性。

弹塑性力学理论利用不同的本构关系来描述材料在变形过程中的不同阶段。

二、弹塑性力学的应用1. 材料工程弹塑性力学在材料工程领域中具有重要的应用价值。

通过研究材料的弹性行为和塑性行为,可以确定材料的强度、韧性和耐久性,从而指导材料的选用和设计。

在材料的加工过程中,弹塑性力学理论也可以用于模拟和预测材料的变形行为。

2. 结构工程在结构设计和分析中,弹塑性力学也发挥着重要作用。

结构的承载能力和变形行为与材料的弹性和塑性特性密切相关。

通过考虑弹塑性行为,可以更准确地评估结构的安全性和稳定性。

3. 土木工程土木工程中的地基和土壤材料往往存在复杂的弹塑性特性。

弹塑性力学可用于分析土壤的沉降和变形行为,以及地基的稳定性。

在岩土工程中,弹塑性力学理论也可以用于分析岩土体的稳定性和变形行为。

4. 金属加工金属的塑性变形是金属加工过程中的核心问题。

弹塑性力学理论可以用于研究金属的屈服和流动行为,从而指导金属的模具设计和加工工艺的优化。

总结:弹塑性力学是力学中的一个重要分支,它综合了弹性力学和塑性力学的基础理论与应用。

弹塑性力学塑性本构关系

弹塑性力学塑性本构关系

0
14
1.理想塑性材料的增量本构关系 2.硬化材料的增量塑性本构关系 3.全量塑性本构关系
15
2. 硬化材料的增量塑性本构关系
d
p ij
d
f
ij
f g 相关联流动
塑性应变大小 塑性应变方向
对于强化材料
f
ij
d ij
0
d ij 在
f
ij
方向上的投影,反映了塑性应变增量的大小。
可假设:
d
1 h
H121
Cp ijkl
1
9K 2
G
H11H 22
H
2 22
对称
H11H 33
H 22H33
H
2 33
H11H12 H 22H12 H 33 H12
H122
H11H 23
H 22H 23
H 33 H12
H12H 23
H
2 23
H11H 31 H 22H31
H
33
H
31
H12H31
H12
H
0
如果hd以 d累积pf塑2ij d性d32应ijd变ijpdkfddijpkdp作32p0为d内2变hd量f ij
f
fij ij
ij
p ij
d
k k p k d2 p f f
p ij
d
d
p ij
d
f k
k
p
d
d p
f
p
ij
0
3 ij ij
2 f f
3 ij ij
h f
Cijkl
1 H
H
ij
H
kl
H

弹塑性力学-弹塑性本构关系ppt课件

弹塑性力学-弹塑性本构关系ppt课件

d
p
|
cos
0
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向
与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
ij
0 ij
(b) 不满足稳定 材料的屈服面
/2
工程弹塑性力学·塑性位势理论
2 塑性应变增量向量与屈服面法向平行
d 必p 与加载面的外法线
p
ij
0
0 ij
WD
(ij
adij
0 ij
)d
p
ij
0
1 a 1 2

0 ij
时,略去无穷小量
ij
( ij
0 ij
)d
p ij
0

0 ij
ij时,
d
ij
d
p ij
0
屈服面的外凸性
塑性应变增量方向 与加载曲面正交
工程弹塑性力学·塑性位势理论
1 屈服曲面的外凸性
( ij
0 ij
)dijp
|
A0 A||
不小于零,即附加应力的塑性功不出现负值, 则这种材料就是稳定的,这就是德鲁克公设。
工程弹塑性力学·塑性位势理论
在应力循环中,外载所作的 功为:
Ñ W
0 ij
ij
d ij
0
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
弹塑性力学本构关系
1
工程弹塑性力学·塑性位势理论
(1) 稳定材料与非稳定材料

塑性力学-塑性本构关系

塑性力学-塑性本构关系

第三章塑性本构关系全量和增量理论•全量理论(形变理论):在塑性状态下仍有应力和应变之间的关系。

Il’yushin(伊柳辛)理论。

•增量理论(流动理论):在塑性状态下是塑性应变增量和应力及应力增量之间的关系。

Levy-Mises理论和Prandtl-Reuss理论。

3-5 全量理论的适用范围简单加载定律变形:小变形加载:简单加载适用范围:物体内每一点应力的各个应力分量,在加载过程中成比例增长简单加载:()0ij ijt σασ=0ijσ非零的参考应力状态()t α随着加载单调增长加载时物体内应力和应变特点:应力和应变的主方向都保持不变应力和应变的主分量成比例增长应力Lode参数和应力Lode角保持常数应力点的轨迹在应力空间是直线小变形前提下,判断简单加载的条件:荷载按比例增长(包括体力);零位移边界材料不可压缩应力强度和应变强度幂函数关系m i iA σε=实际应用:满足荷载比例增长和零位移边界条件3-6 卸载定律卸载:按照单一曲线假设,应力强度减小•外载荷减小,应力水平降低•塑性变形发展,应力重分布,局部应力强度降低简单卸载定律:•各点的应力分量按比例减少•不发生新的塑性变形¾以卸载时的荷载改变量为假想荷载,按弹性计算得到应力和应变的改变量¾卸载前的应力和应变减去卸载过程中的改变量塑性本构关系的基本要素•初始屈服条件–判断弹性或者塑性区•后继屈服条件–描述材料硬化特性,内变量演化•流动法则–应变增量和应力以及应力增量之间的关系,包括方向和分配关系Saint-Venant(1870):应变增量和应力张量主轴重合•继承这个方向关系•提出分配关系()0ij ij d d S d ελλ=≥应变增量分量和应力偏量分量成比例Levy-Mises 流动法则(M. Levy,1871 & Von Mises,1913)适用范围:刚塑性材料3-7 流动法则--Levy-Mises & Prandtl-Reuss。

弹塑性力学讲稿课件

弹塑性力学讲稿课件
详细描述
金属材料的弹塑性分析主要关注金属在受力过程中发生的弹性变形和塑性变形。通过弹塑性分析,可以预测金属 在复杂应力状态下的行为,为金属材料的加工、设计和应用提供理论依据。
混凝土结构的弹塑性分析
总结词
混凝土结构在受到压力时会产生弹性变形和塑性变形,弹塑性分析是研究混凝土结构在受力过程中应 力和变形的变化规律。
总结词
复杂结构与系统的弹塑性行为研究是推动工程应用的重 要基础。
详细描述
在实际工程中,许多结构和系统的弹塑性行为非常复杂 ,如大型桥梁、高层建筑、航空航天器等,需要从整体 和局部多个角度进行研究,以揭示其力学行为和稳定性 规律,为工程安全和优化设计提供科学依据。
THANKS
感谢观看
VS
详细描述
复合材料的弹塑性分析主要关注复合材料 的组成材料和复合方式对弹塑性性能的影 响。通过弹塑性分析,可以预测复合材料 在不同环境下的力学性能,为复合材料的 应用和发展提供理论依据。
工程结构的弹塑性分析
总结词
工程结构在受到外力作用时会产生变形,弹 塑性分析是研究工程结构在外力作用下的应 力和应变的变化规律。
03
弹塑性力学的分析方法
有限元法
有限元法是一种将连续体离散化 为有限个小的单元体的集合,并 对每个单元体进行受力分析的方
法。
有限元法通过将复杂的结构或系 统简化为有限个简单的单元,使
得计算变得简单且精度较高。
有限元法广泛应用于各种工程领 域,如结构分析、热传导、流体
动力学等。
有限差分法
01
有限差分法是一种将偏微分方程 转化为差分方程的方法,通过离 散化空间和时间变量来求解问题 。
其他常见的弹塑性力学分析方法还包括有限体积法、无网格 法等。

第三章 弹塑性本构关系

第三章 弹塑性本构关系

d ij d 0 dσ n 0
p ij
加载准则
意义:只有当应力增量指向加载面的外部时才能产生塑性变形。
3德鲁克塑性公设的评述
德鲁克公设的适用条件:
(1)应力循环中外载所作 的真实功与ij0起点无关;

p ij
ij d ij 0
(2)附加应力功不符合功的 定义,并非真实功
1 屈服曲面的外凸性
0 ( ij ij )dijp | A0 A || d p | cos 0
ij
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向 与塑性应变向量之间所成的夹角不应 该大于90° 稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
0 ij
由得屈服条件流动法则硬化规律判断何时达到屈服屈服后塑性应变增量的方向也即各分量的比值决定给定的应力增量引起的塑性应变增量大小本节内容屈服后塑性应变增量的方向也即各分量的比值1加载曲面后继屈服面由单向拉伸试验知道对理想塑性材料一旦屈服以后其应力保持常值屈服应力卸载后再重新加载时其屈服应力的大小也不改变没有强化现象
3.1.4 塑性位势理论与流动法则
与弹性位势理论相类似,Mises于1928年提出塑性 位势理论。他假设经过应力空间的任何一点M,必有 一塑性位势等势面存在,其数学表达式称为塑性位势 函数,记为:
g I1, J 2 , J3 , H 0
g ij , H 0

式中, H 为硬化参数。 塑性应变增量可以用塑性位势函数对应力微分的表达 式来表示,即: g p
残余应力增量与塑性 应变增量存在关系:
p p d ij D d ij
式中,D为弹性矩阵。 根据依留申公设,在 完成上述应变循环中, 外部功不为负,即

最新7.弹塑性力学--塑性本构关系汇总

最新7.弹塑性力学--塑性本构关系汇总

f g J2 k
Cep ijkl
ij kl
ik jl
il jk
k2
sij skl
d ij
C d ep ijkl kl
d x
d
y
d
d z d xy
d
yz
d zx
d x
d y
d
d d
z xy
d
yz
d zx
C ep ijkl
Ce ijkl
Cp ijkl
6
1.理想塑性材料的增量本构关系
f g 相关联流动
塑性应变大小 塑性应变方向
对于强化材料
f
ij
d ij
0
d ij 在
f
ij
方向上的投影,反映了塑性应变增量的大小。
可假设:
d
1 h
f
ij
d ij
d
p ij
1 h
f
ij
f
kl
d kl
如何确定?
f
ij d ij
f ij k
16
2. 硬化材料的增量塑性本构关系
f ij ,ij , k 0
sx2 sysx
Cp ijkl
G k2
szsx
sxy sx
s
yz
sx
szxsx
sxsy
s
2 y
szsy
sxy sy
syz sy
szx sy
sxsz
sysz
s
2 z
sxy sz
syz sz
szx sz
sx sxy sy sxy sz sxy sx2y syz sxy szx sxy
sx syz

第3章_弹塑性本构模型理论

第3章_弹塑性本构模型理论

A()fp
g g
ij ij
假定3:
H H(ipj )
A() f H g
Hij ij
假定3:
HH(vp,p)
A()H f H vp g pHp g q
弹塑性模量矩阵
总应变增量:
e pD 1 d g
i , j 21 22 23
31 32 33
x
1 2
yx
1 2
zx
1 2

xy
y
1 2
zy
1 2

xz
1 2
yz
z
1


2
3
体积应变增量 v123
n
Ei

Kp
a
3 pa

K , n 试验常数
p a 大气压
切线弹性模量:
1
Et ( 1 a3)E 1i (E 1R i fa3)f
1R 2fc(1 co si sn 2 )(31sin 3)2Ei

f1(p,q,H1)0 f2(p,q,H2)0
q 2 M
1
0
p
流动规则
定义:也称正交定律,是确定塑性应变增量各分量 间的相互关系,也即塑性应变增量方向的一条规定
假定经过应力空间任一点M,必有一塑性势面,这
个面在p-q平面上将成为一根塑性势线
g(I1,J2,J3,H)0 g(p,q,H)0
e-lnp坐标系上可得到基本相互平行的直线
曲线表达式:
eeanlnp 或
v
ean 1e0

1e0
lnp
f1函数表达式:

弹塑性力学讲义—本构关系

弹塑性力学讲义—本构关系
例2-1 对Mises屈服条件,证明
f J 2 sij ij ij
证: Mises屈服条件为
2 f J2 s 0 3
J 2 J 2 sk l 1 1 smn smn k l pp k l ij sk l ij sk l 2 3 ij
量是x=,y=0,且x,y,z均为应力的主方向。若材料为理想塑
性,Poisson比<1/2,单轴拉伸屈服极限为s,试利用Mises屈服 条件求出该材料单元达到屈服时的值。记屈服时的值为0,屈服
后加载使得x=0+d,求z方向的应力增量dz。
解:屈服处于弹性阶段,对于平面应变状态,因此根据虎克定律,有 z=(x+y)= 偏应力分量为 1 1 1 sx= (2),sy= (1+),sz= (12),sxy=syz=szx=0 3 3 3
d 3 d ij d ij s 2
sij
2 s diΒιβλιοθήκη 3dij dij d p
p p 2d 2 d1p d 3 p d1p d 3
ud p u
• Tresca屈服条件相关联的流动法则 不规定主应力大小顺序,Tresca屈服条件可写成

例2-4: 有一受内水压p和轴向力共同作用的薄壁圆筒,内半径为r,壁 厚为t,若圆筒保持直径不变,只产生轴向伸长,假设材料是不可压缩的,
在忽略弹性变形的情况下,试求圆筒达到塑性状态时需要多大的内水压力。
解∶ 环向应变=0,轴向伸长靠筒壁变薄实现,各应变分量为 =0 z = r 或 e=0 ez = er Levy-Mises流动理论 s=0 sz = sr
ij
0 p (ij ij )d ij 0

弹塑性力学第三章

弹塑性力学第三章

2019/11/23
19
§3-4 主应变、应变方向应变张量的三个不
变量
Ⅰ = 1 1 2 2 3 3 1 2 3 e
——体积应变
Ⅱ = 1 22331
Ⅲ 123
当 1 2 3 时(三个主应变不相等), 三个主方向相互垂直。
2019/11/23
17
§3-3 应变张量和转动张量的坐 标变换式
在 xk 坐标系中,已知变形体内任一点应 变张量 kl 和转动张量 kl ,则在新笛卡尔坐 标系x’i中此点应变张量’ij和 ’ij 均可以通
过二阶张量的坐标转换式求出它们。
即:
' ij
Qi'kQ
j'l
kl
i'j Qi'kQ j'l kl
2019/11/23
7
§3-2 应变张量和转动张量
2. 1 相u对位移u矢ie量i和相对位移张量
du ei
ui x j
d xj
——( a)


r xjej
drdxjej
djxejdr ——(b)
将(b)式代入(a)式,得
2019/11/23
8
§3-2 应变张量和转动张量
2019/11/23
2
§3-1 位移和(工程)应变
1.1位移
x3
P
P
u
P’
o r x2
x1

变形体任意点P的位移矢量 uuiei
u有三个分量。
2019/11/23
3
§3-1 位移和(工程)应变
1.2 (工程)应变
工程应变是通常工程中描述物体局部几何 变化,分为正应变和剪应变。

弹塑性力学本构关系

弹塑性力学本构关系
U 0 ij ij
—— Green公式
U 0 U 0 U 0 U 0 U 0 U 0 x , y , z , xy , yz , zx x y z xy yz zx

同理
x U 0 c12 y x c31 c14 c41
横观各向异性材料,其独立的弹性常数为13个;正应变会 产生切应力,切应变也会产生正应力 工程上,单斜晶体(如正长石)可简化为横观各向异性弹 性体。
二. 正交各向异性材料
z
具有三个相互垂直弹性对 称面的材料称为正交各向异性 材料。 设三个弹性对称面分别为 Oxy、Oyz和Ozx平面,材料沿 x、 y、 z 三方向弹性性质各异。
对 称
1 c22 c33 , c44 c66 , c55 c22 c23 2
0 0 0 0 1 c11 c12 2
x y z 0 xy yz 0 zx 1 c11 c12 2 0 0 0
c12 c21 c15 c51

c56 c65

cmn cnm

x c11 c12 c22 y z xy 对 yz zx
c13 c23 c33

m、n ij、kl 1 11 2 22 3 33 4 12 5 23 6 31
如,c22 c2222 , c56 c2331 广义胡克定律的一般形式最广泛地描述了材料的线弹性性 质,但未能描述物体外部环境条件和内部物理特征。
§4-2 线弹性体的本构关系
如果材料在变形过程中处于等温绝热过程。 根据热力学第一定律和相应数学推导, ij f ij 有势, 其势函数U0(ij) 为物体单位体积的变形能(应变能)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(6)

代入,消去公因子 ( s ) ,得: s E s
即:
H E E H E EE H E E
E E E 1 E
(7)
证毕。显然当E→∞,由上述结论可知
EE lim H lim lim E E E E E

固体材料在一定条件下,应力与应变之间各自 有着确定的关系,这一关系反映着固体材料的 客观特性。
1、弹性变形特点
① 弹性变形是可逆的。物体在变形过程中,外力所做 的功以能量(应变能)的形式贮存在物体内,当卸 载时,弹性应变能将全部释放出来,物体的变形得 以完全恢复;
② 无论材料是处于单向应力状态,还是复杂应力状态, 在线弹性变形阶段,应力和应变成线性比例关系;
U 0 ( ij ) ij
ij
(3—17)
3、弹性常数间的关系
⑴、极端各向异性体
c mn c nm ; (m, n 1, 2 6)
对极端各向异性体,独立的弹性常数只有21个。
变形过程中,积累在单位体积内的应变能为:
{σ}=[D]{ε}
{σ}称为应力列阵;{ε}称为应变列阵;[D]称为弹 性矩阵。
2、弹性应变能函数
⑴ 弹性体的实功原理:若对于静荷载作用下产生弹性变形
过程中不计能量耗散,则据功能原理:产生此变形的外力在 加载过程中所作的功将以一种能量的形式被积累在物体内, 此能量称为弹性应变能,或称弹性变形能。并且物体的弹性 应变能在数值上等于外力功。这就是实功原理,也称变形能 原理。若弹性应变能用U 表示,外力功用 We 表示,则有:
则弹性体由零应变状态加载至某一应变状态 程中,弹性体整个体积的内力功为:
(3—12)
ij 的过
ij
(3—13)
A

0
ij
V
A
V

ij
0
U0dV U0dV U
V
U 0 ij d ij
于是从零应变状态到达某一应变状态的过程中,积累 在弹性ຫໍສະໝຸດ 单位体积内的应变能为: ij ij
第三章 弹性变形、塑性变形、本构方程
§3—1 概 述 §3—2 弹性变形与塑性变形的特点、塑性力
学的附加假设
§3—3 弹塑性力学中常用的简化力学模型 §3—4 弹性本构方程、弹性应变能函数 §3—5 应力张量和应变张量分解的物理意义 §3—6 弹性势能公式、弹性势能的分解
§3—7 塑性应力偏量状态与Lode应力参数
(3)
由上式(3)可解得:

s H
H 1 E
(4)
考虑强化阶段,式(1)及(2)中取同样 值时,有:
s E ( s ) s H
H 1 E
(5)
H H E s s E ( s ) ( s ) s H E E
③ 对材料加载或卸载,其应力应变曲线路径相同。因 此,应力与应变是一一对应的关系。
2、塑性变形特点
① 塑性变形不可恢复,所以外力功不可逆,塑性变形的产生必 定要耗散能量(称耗散能或形变功)。 ② 在塑性变形阶段,其应力应变关系是非线性的。由于本构方 程的非线性,所以不能使用叠加原理。又因为加载与卸载的 规律不同, 应力与应变之间不再存在一一对应的关系,即 应力与相应的应变不能唯一地确定,而应当考虑到加载路径 (或加载历史)。 ③ 在载荷作用下,变形体有的部分仍处于弹性状态称弹性区, 有的部分已进入了塑性状态称塑性区。在弹性区,加载与卸 载都服从广义虎克定律。但在塑性区,加载过程服从塑性规 律,而在卸载过程中则服从弹性的虎克定律。并且随着载荷 的变化,两区域的分界面也会产生变化。 ④ 依据屈服条件,判断材料是否处于塑性变形状态。
式中Cmn称为弹性常数,与位臵坐标无关。
◆ 广义虎克定律张量表达式:
ij cijkl kl
(i,j,k,l 1 2, ) , 3
(3-9)
◆ 广义虎克定律式(3-8)中36个弹性常数是否彼 此无关? ◆ 弹性常数针对各种不同的研究对象;它们之间的 关系是什么? ◆ 式(3-8)若用矩阵表达式则为:
U 0 U 0 U 0 U 0 U 0 U 0 x ; y ; z ; xy ; xz ; zx x y z xy yz zx
上式表明:应力分量等于弹性势函数对相应的应变分 量的一阶偏导数。适用于一般弹性体。其缩写式为:
◆ 具强化性质的固体材料,随着塑性变形的增加, 屈服极限在一个方向上提高,而在相反的方向上 降低的效应,称为包辛格效应。
◆ 包辛格效应导致材 料物理力学性质具 有各向异性。 ◆ 由于这一效应的数学 描述比较复杂,一般 塑性理论(在本教 程)中都忽略它的影 响。
3、塑性力学附加假设
为研究塑性力学需要,对材料提出如下附加假设:
§3—8 §3—9 §3—10
屈服函数、主应力空间常用屈服条件 加载准则、加载曲面、加载方式 弹塑性应变增量、应变偏量增量间
的关系
§3—11 塑性本构方程(增量理论)
§3—13
§3—17
塑性本构方程(全量理论)
岩土材料的变形模型与强度准则
§3—18 本章小结、关于余能的概念
§3—1 概


弹塑性力学研究的问题一般都是静不定问题。
§3—3 弹塑性力学力学模型
◆ 变形力学模型是在大量实验的基础上,将各种反映 材料力学性质的应力应变曲线,进行分析归类抽象 总结后提出的。 ◆ 对不同的固体材料,不同的应用领域,可采用不同 的变形体力学模型。
★ 确定力学模型时应注意:
① 必须符合材料的实际情况;
② 模型的数学表达式应足够简单。
1、理想弹塑性力学模型
(8)
弹塑线性强化模型转化为刚塑性线性强化模型。
§3—4 弹性本构方程、弹性应变能函数
1、广义虎克定律一般表达式:
◆ 广义虎克定律一般表达式:假设物体中没有初应力,对于均 匀的理想弹性体的应力应变关系下:
x c11 x c12 y c13 z c14 xy c15 yz c16 zx y c 21 x c 22 y c 23 z c 24 xy c 25 yz c 26 zx z c 31 x c 32 y c 33 z c 34 xy c 35 yz c 36 zx (3-8) xy c 41 x c 42 y c 43 z c 44 xy c 45 yz c 46 zx yz c 51 x c 52 y c 53 z c 54 xy c 55 yz c 56 zx zx c 61 x c 62 y c 63 z c 64 xy c 65 yz c 66 zx
A ( x x y y z z xy xy yz yz zx zx )dxdydz
(b)
U0 x x y y z z xy xy yz yz zx zx
◆静不定问题的解答

1、静力平衡分析——平衡微分方程 2、几何变形分析——几何方程 3、物理关系分析——物理方程
◆ 此即弹塑性力学分析解决问题的基本思路。
◆ 表明固体材料产生弹性变形或塑性变形时 应力与应变,以及应力率与应变率之间关 系的物性方程,称为本构方程(关系)。
§3-2 弹性变形、塑性变形、塑性力学的附加假设 ◆ 大量实 验证实, 固体受力 变形时, 应力与应 变间的关 系是相辅 相成的。
U We
若以 Wi 表示内力功,则有:
(3--10)
We Wi 0
且:
(3--11)
U We Wi
(b)
⑵、弹性体中的内力功和应变能
物体内代表一点的微分体,在变形时存在有刚 性位移与变形位移两部分。 由于内力是平衡力系,在微分体的刚体(性) 位移上不作功,则只须讨论应力在微分体变形时, 应变增量所对应的变形位移上作的内力功(亦称形 变功)。 首先考察 微分体受到 x dydz 在x 轴方向 产生的内力 功,见图 3—9(a):
U0

0
U0

0
ijd ij
(3—14)
⑶、弹性势能函数 有势力在势力场(弹性体)中,由于质点位臵的改 变(变形)有做功的能力,这种能称为势能。这种势能 显然就是上述应变能。 势能是质点坐标的连续函数,故我们把应变能亦称 为应变能函数,或弹性势能函数。 对于理想弹性体,在每一确定的应变状态下,都具 有确定的应变值。弹性势能函数与应变过程无关。在加、 卸载的过程中:
于是拉力 x dydz 所作的内力功为:
xε x dxdydz
同理可得:
y y dxdydz, z z dxdydz
同理可得:
xy yzdxdydz
yz yz dxdydz, zx zx dxdydz
dxdydz, zx zx dxdydz
理想弹塑性力 学模型亦称为弹 性完全塑性力学 模型,该模型抓 住了韧性材料的 主要变形特征。 其表达式为:
E E s s
(当 s时) (当 s时)
(3-2)
2、理想线性强化弹塑性力学模型
理想线性强 化弹塑性力学 模型亦称为弹 塑性线性强化 材料或双线性 强化模型。其 数学表达式为:

U 0 0
(f)
因而弹性势(能)函数是物体的状态函数。
0 弹性势能函数是坐标的单值连续函数,故 U 0 必为全 微分,即:
U 0 U 0 U 0 U 0 U 0 U 0 U 0 x y z xy yz zx x y z xy yz zx
E s E1 ( s )
相关文档
最新文档