重大数理统计论文大作业
重庆大学研究生数理统计大作业
NBA球员科比单场总得分与上场时间的线性回归分析摘要篮球运动中,球员的上场时间与球员的场上得分的数学关系将影响到教练对每位球员上场时间的把握,若能得到某位球员的上场时间与场上得分的数据关系,将能更好的把握该名球员的场上时间分配。
本次作业将针对现役NBA球员中影响力最大的球员科比布莱恩特进行研究,对其2012-2013年赛季常规赛的每场得分与出场时间进行线性回归,得到得分与出场时间的一元线性回归直线,并对显著性进行评估和进行区间预测。
正文一、问题描述随着2002年姚明加入NBA,越来越多的中国人开始关注篮球这一项体育运动,并使得篮球运动大范围的普及开来,尤其是青年学生。
本着学以致用的原则,希望将所学理论知识与现实生活与个人兴趣相结合,若能通过建立相应的数理统计模型来做相应的分析,并且从另外一个角度解析篮球,并用以指导篮球这一项运动的更好发展,这也将是一项不同寻常的探索。
篮球运动中,得分是取胜的决定因素,若要赢得比赛,必须将得分超出对手,而影响一位球员的得分的因素是多样的,例如:情绪,状态,体力,伤病,上场时间,防守队员等诸多因素,而上场时间作为最直接最关键的因素,其对球员总得分的影响方式有着重要的研究意义。
倘若知道了其分布规律,则可从数量上掌握得分与上场时间复杂关系的大趋势,就可以利用这种趋势研究球员效率最优化与上场时间的控制问题。
因此,本文针对湖人当家球星科比布莱恩特在2012-2013年赛季常规赛的每场得分与上场时间进行线性回归分析,并对显著性进行评估,以巩固所学知识,并发现自己的不足。
二、数据描述抽出科比布莱恩特2012-2013年常规赛所有82场的数据记录(原始数据见附录),剔除掉其中没有上场的部分数据,得到有参考实用价值的数据如表2.1所示:以上数据由腾讯篮球中心提供,特此说明。
三、模型建立(1)假设条件假定球员每场的发挥均为独立同分布事件, (2)模型构建以上场时间为自变量Xi ,单场得分为应变量Yi ,建立正态线性模型式:()012,1,2,,;0,,,,,i i i ii i i Y x i n N ββεεσεεε=++=⎧⎪⎨⎪⎩且相互独立 其中β0、β1为模型参数。
数理统计第一次大作业——回归分析
北京市农业经济总产值的逐步回归分析姓名:学号:摘要:农业生产和农村经济是国民经济的基础,影响农村经济总产值的因素有多种,主要包括农林牧渔业。
本文以北京市农业生产和农村经济总产值为对象,首先分析了各种因素的线性相关性,建立回归模型,再利用逐步回归法进行回归分析,得到最符合实际情况的回归模型。
以SPSS 17.0为分析工具,给出了实验结果,并用预测值验证了结论的正确性。
关键词:农业生产和农村经济,线性回归模型,逐步回归分析,SPSS1.引言农林牧渔业统计范围包括辖区内全部农林牧渔业生产单位、非农行业单位附属的农林牧渔业生产活动单位以及农户的农业生产活动。
军委系统的农林牧渔业生产(除军马外)也应包括在内,但不包括农业科学试验机构进行的农业生产。
在近几年中国经济快速增长的带动下,各地区农林牧渔业也得到了突飞猛进的发展。
以北京地区为例,2005年的农业总产值为1993年的6倍。
因此用统计方法研究分析农业总产值对指导国民经济生产,合理有效的进行产业布局,提高生产力等有着重要意义。
表1 北京市农业经济产值及各产品产量统计数据本文以北京市农生产为对象,分析了农业经济总产值与粮食产量、棉花产量、油料产量、蔬菜产量、干鲜果品产量、猪牛羊肉产量、禽蛋产量、水产品产量的关系,并建立农业经济总产值的回归模型。
表1中列出了1999年至2008年间的统计数据(数据来源于北京统计信息网)。
2.线性回归模型的建立2.1 线性回归模型的假设为了研究农业经济总产值与各种农生产量的关系,必须要建立二者之间的数学模型。
数学模型可以有多种形式,比如线性模型,二次模型,指数模型,对数模型等等。
而实际生活中,影响农业经济总产值的因素很多,并且这些因素的影响不能简单的用某一种模型来描述,所以要建立农业经济总产值的数学模型往往是很难的。
但是为了便于研究,我们可以先假定一些前提条件,然后在这些条件下得到简化后的近似模型。
以下我们假定两个前提条件:1) 农产品的价格是不变的。
最新重庆大学数理统计大作业
研究生课程考核试卷(适用于课程论文、提交报告)科目:数理统计教师:刘琼荪姓名: xxx 学号: 20150702xxx 专业:机械工程类别:学术上课时间: 2016 年 3 月至 2016 年 4 月考生成绩:卷面成绩平时成绩课程综合成绩阅卷评语:阅卷教师 (签名)我国上世纪70-90年代民航客运量回归分析摘要:中国民航从上实际50年代发展至今已有60多年的历史,这期间中国民航经历了曲折的发展。
随着改革开发以来,中国人民的生活水平日渐提高,出行坐乘飞机逐渐人们可选的交通方式。
我国民航客运量逐年提高,为了研究其历史变化趋势及其成因,现以民航客运量作为因变量y,假设以国民收入x1、消费额x2、铁路客运量x3、民航航线里程x4、来华旅游入境人数x5为影响民航客运量的主要因素。
利用SPSS和excel软件通过建立回归模型分析我国民航客运量主要受到其中哪些因素的影响,并就回归模型分析具体可能的成因。
关键词:民航客运量影响因素回归模型一、问题提出及问题分析2004年,民航行业完成运输总周转量230亿吨公里、旅客运输量1.2亿人、货邮运输量273万吨、通用航空作业7.7万小时。
截止2004年底,我国定期航班航线达到1200条,其中国内航线(包括香港、澳门航线)975条,国际航线225条,境内民航定期航班通航机场133个(不含香港、澳门),形成了以北京、上海、广州机场为中心,以省会、旅游城市机场为枢纽,其它城市机场为支干,联结国内127个城市,联结38个国家80个城市的航空运输网络。
民航机队规模不断扩大,截止至2004年底,中国民航拥有运输飞机754架,其中大中型飞机680架,均为世界上最先进的飞机。
2004年中国民航运输总周转量达到230亿吨公里(不包括香港、澳门特别行政区以及台湾省),在国际民航组织188个缔约国中名列第3位。
从上述事实可以看出我国民航的发展所取得的成果显著。
当前我国民航客运量相当巨大,而影响我国航运客运量的因素有很多,例如第三产业增加值(亿元),城市居民消费水平(绝对元),定期航班航线里程(万千里)等[1]。
数理统计大作业
数理统计学大作业学院航空航天工程学部专业飞行器设计班级航宇二班学号142103130228 姓名张立指导教师姜永负责教师沈阳航空航天大学2014年12月目录 (2)前言 (3)一、采集样本数据整理及SPSS统计软件的实现 (4)1.1、数据的收集方法及说明 (4)1.2、数据整理:给出频数、频率分布表及偏度和峰度 (4)1.3、画出直方图和折线图 (6)1.4、经验分布函数和图形 (6)1.5、各种概率分布 (7)二、给出总体分布的参数估计 (12)2.1、矩估计法 (12)2.2、最大似然估计 (12)2.3、参数区间估计 (13)三、参数的假设检验 (16)3.1. 样本统计数据的t检验 (16)3.2样本统计数据的2χ检验 (17)四、非参数假设检验(2χ拟合优度检验) (18)4.1、2χ拟合优度检验 (18)五、结论 (20)参考文献 (21)数理统计学是研究有效地运用数据收集与数据处理、多种模型与技术分析、社会调查与统计分析等,对科技前沿和国民经济重大问题和复杂问题,以及社会和政府中的大量问题,如何对数据进行推理,以便对问题进行推断或预测,从而对决策和行动提供依据和建议的应用广泛的基础性学科。
随着科学技术的发展,数理统计的作用在国民生活中越来越重要,特别是现在随着大数据的时代来临,迫切的需要我们对大量数据的处理能力,当然这些大量的数据不可能用人工计算,有很多可以实际应用的数理统计软件,这次大作业我使用的是SPSS软件。
由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义。
了解数理统计能解决那些实际问题。
对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆。
例如估计未知分布的数学期望,就要考虑到:1.如何寻求合适的估计量的途径,2.如何比较多个估计量的优劣。
这样,针对1按不同的统计思想可推出矩估计和极大似然估计,而针对2又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足。
数理统计大作业要求
大作业要求前言 ............................................................ 页码一、采集样本、数据整理及SPSS 统计软件的实现 ..................... 页码 0、掌握采集样本及数据整理的方法;1、学会SPSS 统计软件安装与启动;2、利用SPSS 建立数据文件、并利用数据库导入数据;3、利用SPSS 对数据进行合并与拆分;4、利用SPSS 对数据进行描述性统计分析:给出频数、频率分布表及偏度和峰度,并画出直方图和折线图;5、写出经验分布函数并利用SPSS 画出图形;6、查找藏于文著里的已知的各种概率分布(力求全),并描述其背景,给出 其期望和方差,利用SPSS 或其他软件画出密度函数的图形;注:SPSS 软件版本为SPSS19.0 (中文版或英文版均可),从百度可以下载.二、给出总体分布的参数估计(用SPSS 软件完成) .............................................. 页码1、矩估计;2、最大似然估计;3、若总体是未知分布,应探求其参数的点估计,并写出方案;4、参数区间估计(假设总体是正态分布); .......................... 页码1)、方差2σ未知,求数学期望μ的置信区间; ........................ 页码2)、数学期望μ,2σ均未知,求方差2σ的置信区间; ......................................... 页码 (要求有步骤,有计算结果)三、 参数的假设检验(用SPSS 完成) .............................. 页码1、 样本统计数据的t 检验........................................ 页码2、 样本统计数据的-2χ检验...................................................................................... 页码 注:可先假设总体是正态情况讨论,总体若不是正态的要给出探求方案四、非参数假设检验(2χ拟合优度检验)(用SPSS 完成) .............. 页码1、2χ拟合优度检验2、当上述检验被接受或被拒绝时,请结合实际问题给出说明五、结论 ........................................................ 页码总结、评述和体会参考文献 ..........................................................................................................................................要求:1、大作业内容按上述过程要求完成,不得缺漏;2、由本人认真独立完成,不得抄袭他人;3、样本数据限在本专业范围内寻找,样本容量原则上100个以上;4、大作业格式应参考本科毕业设计格式(如,页面设置,字号小四,插图等)5、字数要求为A4纸20页左右;6、结束课程后一周内提交,上交纸质版和电子版两种;7、大作业成绩占期末总成绩30% 。
重庆大学硕士研究生《数理统计》课程大作业(论文)
一、问题提出和问题分析今天的重庆,肩负着中央赋予的历史重任——着力打造西部地区的重要增长极、长江上游地区的经济中心、成为统筹城乡发展的试验者、在西部地区率先实现全面建设小康社会的目标。
2010年初,又一重要规划将重庆发展提升到国家战略——重庆被确定为国家五大中心城市之一,是中西部地区唯一入选的城市。
这说明,重庆未来的发展不可限量。
自1997年直辖以来,重庆市的经济社会发展极为迅猛。
全市的GDP由1997年的1360.24亿元增长至2010年的7894.2亿元,而整个社会的发展进步也有目共睹。
在重庆过去、现在和未来的发展进程中,在重庆的各种发展规划的要求下,建设必将成为山城的另一个符号。
过去十多年中的大规模、大范围的建设成就了现在的重庆,而重庆未来的发展将需要更多的建设。
作为重庆建设中最重要的一环,建筑业在重庆显然有着重要的地位。
建筑业这种专门从事土木工程、房屋建设和设备安装以及工程勘察设计工作的生产部门,为重庆的发展建设提供着众多的基础设施,满足着居住、工业、商业、办公等各种城市需求。
数据显示,在过去的数年中,重庆市建筑业的总产值占全市GDP的7%-8%,是名副其实的支柱产业。
因此建筑业的发展情况,可以从侧面反映出整个重庆社会经济的发展情况,对重庆建筑业的研究就有了很大的现实意义。
建筑企业是建筑业的主体。
众多的建筑企业的良好发展构成了建筑业的良好发展。
对于建筑企业来说,要实现企业的良好经营和发展,必须要有良好的收入来支撑。
在建筑企业收入的众多影响因素中,企业的劳动生产率无疑是值得关注的一个。
企业都在致力于提高自身的劳动生产效率,而不断提高的劳动生产率,可使得企业的生产经营行为更具效率,因而获得更多的收入,实现更好的发展。
所以,研究重庆市建筑企业劳动生产率与企业收入的关系,可从一个角度来了解重庆市建筑企业的发展情况,从而了解到了重庆建筑业的发展以至于重庆市的经济发展情况。
为了找出二者之间的关系或者规律性,本文采用2001-2010这十年中重庆建筑企业劳动生产率和企业平均收入的数据,通过数学分析,找出二者关系。
哈工大-概率论与数理统计大作业(论文)
————————————————————————————————概率论与数理统计大作业xxxxxxxxxxxxxxxxxxxxxxx2012年12月8日概率论与数理统计一点小结1.简介:概率论(probability theory):研究随机现象数量规律的数学分支。
随机现象是相对于决定性现象而言的。
在一定条件下必然发生某一结果的现象称为决定性现象。
例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。
随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。
每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。
例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。
随机现象的实现和对它的观察称为随机试验。
随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。
事件的概率则是衡量该事件发生的可能性的量度。
虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。
例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。
又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。
大数定律及中心极限定理就是描述和论证这些规律的。
在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。
例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。
随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。
数理统计:数理统计是数学系各专业的一门重要课程。
随着研究随机现象规律性的科学—概率论的发展,应用概率论的结果更深入地分析研究统计资料,通过对某些现象的频率的观察来发现该现象的内在规律性,并作出一定精确程度的判断和预测;将这些研究的某些结果加以归纳整理,逐步形成一定的数学概型,这些组成了数理统计的内容。
(完整word版)数理统计大作业1
研究生课程考核试卷科目:数理统计教师: 李寒宇姓名: 蔡亚楠学号:20131102015t 专业:高电压与绝缘技术类别:学术型上课时间: 2014年3月至2014年5月考生成绩:卷面成绩平时成绩课程综合成绩阅卷评语:阅卷教师(签名)相对地过电压数据的统计分析摘要:过电压是指超过正常运行电压并可使电力系统绝缘或保护设备损坏的电压升高。
电力系统的过电压分布情况决定了电气设备的绝缘水平。
变电站过电压由于影响因素的随机性,使得过电压数据复杂且具有随机性。
本文结合电气工程专业的背景,分析了相对地过电压数据的分布规律。
首先对三相的过电压数据分别进行双样本同分布检验,采用两总体分布比较的假设检验方法。
检验结果显示三相的样本具有相同的分布规律,因此将三相的过电压数据合并进行总体的分布规律检验。
文中运用拟合优度2 检验法检验总体分布是否福才能够正态分布。
检验结果表明样本总体分布不服从正态分布,而是服从切断正态分布.针对相对地过电压数据的统计分析有助于确定设备的绝缘水平,具有一定的研究价值.关键词:过电压;假设检验;统计分布一、问题提出过电压是指超过正常运行电压并可使电力系统绝缘或保护设备损坏的电压升高。
电力系统的过电压分布情况决定了电气设备的绝缘水平.由于过电压数据出现的随机性较大,且有明显的统计特征,因此在对单次过电压数据进行统计分析的同时,还可以用数理统计的方法对系统采集的多次样本进行统计分析研究,并预测过电压的概率分布规律,以便将所得结论用于确定设备及线路的绝缘水平,合理解决绝缘配合问题,使设备绝缘故障率或停电故障率降低到经济上和安全运行上可以接受的水平.二、数据描述本次研究以TR2000过电压在线监测装置在某变电站实地运行所采集的过电压数据进行分析。
该变电站的等级为110kV/38.5kV/10。
5kV,以往的运行经验发现,35kV侧事故频繁,属第一、二类等级符合用户较集中,故在35kV侧安装了一台TR2000过电压在线监测装置.通过对监测装置中导出的数据进行进制转换、图形显示、统计分析等手段,分析变电战过电压的规律,由此可以对电力系统设计、改造和故障分析等工作提供可靠的依据.根据现场情况,将暂态过电压记录倍率设定为1。
哈工大研究生数理统计小论文大作业
数理统计大作业一、100个男同学身高样本统计分析本例通过对100个男同学的身高测量,得到了男同学身高的统计样本,身高样本从小到大排列如下表所示:表1. 身高样本表1、身高样本直方图的绘制把身高区段分成了10段,每段所含的人数进行列表如下:表2. 身高样本分段表根据上表画出容量为100的身高样本直方图如下图所示:图1. 身高样本直方图由身高样本分布直方图可以看出,身高分布大致呈正态分布,以下将给出证明。
2、箱型图的绘制由100个男同学的身高统计样本可以得到,样本中位数为cm 45.1752/)5.1754.175(=+样本第第一四分位数为172.83cm 172.8)/4-(172.972.81=+ 样本第三四分位数为178.35cm 3/4178.2)-(178.478.21=⨯+ 根据以上数据画样本分布箱型图为:图2. 身高样本箱型图由箱型图可以看出,样本基本相对于中位数对称,分布范围处于165-185之间,没有离群点,符合正态分布的特征。
二、利用2χ拟合优度检验法检验样本的分布函数根据样本直方图和箱型图,试猜想总体分布符合正态分布,设样本身高为X ,则),(2σμN X -,则要检验假设⎪⎪⎭⎫⎝⎛--=2202)(exp 21)(:σμσπx X P H 150160170180190155165175185身高(cm )μ的最大似然估计为45.175=X ,2σ的最大似然估计为98.15)(100121001*2=-=∑=X X Mii上面已经把抽样得到的容量为100的样本分为10个互不相容的区间,由于2χ拟合优度检验法要求每个互不相容的事件至少有4-6个事件所以分为8个事件如下表表3.其中每个事件的概率i P 可根据标准正态分布的计算结果查表取得,样本频率即每个区间的样本数除以样本总数100得到。
则检验统计量392.1ˆ)ˆ(ˆ122=-=∑=mi i i i p n p n νχ,由于)218(ˆ22---χχ即)5(ˆ22χχ-,若05.0=α,则75.16)5(205.0=χ,由于75.16392.1<,故接受⎪⎪⎭⎫⎝⎛--=2202)(exp 21)(:σμσπx X P H即样本服从正态分布。
数理统计大作业
数理统计大作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII应用数理统计(论文)国家财政收入的逐步回归分析指导教师院系名称学号学生姓名2012年11月18日摘要财政收入是国民经济基础,是实现国家职能的财力保证。
本文采用SPSS统计软件中的逐步回归分析方法,得出影响我国财政收入的显著性变量,建立国家财政收入回归模型,并将所得的模型给予合理的经济解释。
关键字:国家财政收入,逐步回归,SPSS1 引言财政收入是指国家财政参与社会产品分配所取得到的收入,是实现国家职能的财力保证。
影响财政收入的因素有很多,包括工业总产值、农业总产值、建筑业总产值、社会商品零售总额、人口数、受灾面积等等。
在经济模型的建立中,其中有些自变量对问题的研究可能并不重要,有些自变量数据的质量可能很差,有些变量可能和其它变量有很大程度的重叠。
如果用回归模型把这些变量都包含进来不但会使模型计算复杂,而且往往会扩大估计方差,降低模型精度,直接影响到回归方程的应用。
另外,选进太多的自变量又会造成共线性的存在。
因此,本文采用线性回归中的逐步回归方法,利用SPSS多元统计软件得出影响我国财政收入的显著性变量,剔除了不显著的变量,并且克服了变量间的多重共线性,得出了一个较合理的财政回归模型。
2初始模型的建立及数据分析2.1 自变量与因变量的提出本模型是研究1997年至2011年国家财政收入与主要影响因素之间的定量关系。
本文选取财政收入Y(亿元)为因变量,自变量选取如下:第一产业国内生产总值X1(亿元),第二产业国内生产总值X2(亿元,第三产业国内生产总值X3(亿元),社会消费品零售总额X4(亿元),人口数X5(万人),受灾面积X6(万公顷)。
根据《中国统计年鉴》获取1997-2011年共十五年的统计数据,见表1。
表11997-2011年财政收入与部分项目的统计数据财政收入(亿元)第一产业国内生产总值(亿元)第二产业国内生产总值(亿元)第三产业国内生产总值(亿元)社会商品零售总额(亿元)人口总数(万人)受灾面积(万公顷)1997 8651.14 14441.89 37543.00 26988.15 31252.90 123626.00 5342.70 1998 9875.95 14817.63 39004.19 30580.47 33378.10 124761.00 5014.50 1999 11444.08 14770.03 41033.58 33873.44 35647.90 125786.00 4998.00 2000 13395.23 14944.72 45555.88 38713.95 39105.70 126743.00 5468.80 2001 16386.04 15781.27 49512.29 44361.61 43055.40 127627.00 5221.50 2002 18903.64 16537.02 53896.77 49898.90 48135.90 128453.00 4694.60 2003 21715.25 17381.72 62436.31 56004.73 52516.30 129227.00 5450.60 2004 26396.47 21412.73 73904.31 64561.29 59501.00 129988.00 3710.60 2005 31649.29 22420.00 87598.09 74919.28 67176.60 130756.00 3881.80 2006 38760.20 24040.00 103719.54 88554.88 76410.00 131448.00 4109.10 2007 51321.78 28627.00 125831.36 111351.95 89210.00 132129.00 4899.20 2008 61330.35 33702.00 149003.44 131339.99 114830.10 132802.00 3999.00 2009 68518.30 35226.00 157638.78 148038.04 132678.40 133450.00 4721.40 2010 83101.51 40533.60 187383.21 173595.98 156998.40 134091.00 3742.60 2011 103874.43 47486.20 220412.80 204982.50 183918.60 134735.00 3247.10 2.2 做散点图,设定理论模型作数据散点图,并进行线性拟合,观察因变量与自变量之间关系是否有线性特点。
概率论与数理统计大作业
概率论与数理统计大作业一、选题背景概率论与数理统计是现代科学中的重要分支,具有广泛的应用领域。
在实际问题中,我们经常需要通过数据分析来了解事物的规律性和趋势,而概率论与数理统计正是提供了一种科学的方法来处理这些数据。
因此,在学习概率论与数理统计时进行一次大作业,不仅能够加深对知识点的理解,还能够提高自己的数据分析能力和实际问题解决能力。
二、选题内容本次概率论与数理统计大作业选题为“某超市销售数据分析”。
主要内容包括以下几个方面:1. 数据收集首先需要收集某超市近两年来各种商品的销售数据,并将其整理成表格形式。
表格中应包含商品名称、销售量、销售额等信息。
2. 数据处理在收集到数据后,需要对其进行初步处理。
可以使用Excel等工具进行数据清洗、去重、排序等操作,并计算出每种商品的年销售量、年销售额以及平均单价等指标。
3. 数据分析在完成数据处理后,可以开始进行数据分析。
可以从以下几个方面入手:(1)商品销售情况分析通过统计每种商品的销售量、销售额等指标,分析各种商品的销售情况,找出畅销商品和滞销商品,并探究其原因。
(2)季节性分析通过比较不同季节或不同月份的销售数据,分析商品在不同季节或月份的销售情况,找出季节性规律。
(3)地域性分析通过比较不同门店或不同城市的销售数据,分析商品在不同地域的销售情况,找出地域性规律。
(4)用户行为分析通过统计用户购买行为数据,如购买时间、购买频率、购买金额等指标,分析用户行为特点,并提出相应的营销策略。
4. 数据可视化为了更直观地展示数据分析结果,可以使用图表等工具进行数据可视化。
例如可以绘制柱状图、折线图、饼图等来展示各种商品的年销售量和年销售额;也可以使用热力图来展示不同城市或门店的销售情况。
三、选题意义本次概率论与数理统计大作业选题有以下几个意义:1. 提高数据处理能力在进行本次大作业时,需要进行数据收集、处理和分析等操作,这将有助于提高自己的数据处理能力和实际问题解决能力。
重庆大学研究生数理统计课程设计大作业(化学化工类)
β-葡聚糖对乳酸菌生长状况的影响一元线性回归模型分析摘要:在人们生活水平不断提高的今天,由于人们的饮食结构和生活环境的变化,一些营养素缺乏而引起的疾病相对减少,而冠心病,糖尿病等发病率则越来越高。
因此,对于这些疾病的预防和治疗受人们的关注,已成为医药和食品工作者研究的热点。
β-葡聚糖是用独特的工艺开发的一种新的产品,其来源于新鲜的食品啤酒酵母。
它是一种多糖,主要化学结构β-1,3 葡聚糖和β-1,6葡聚糖,其中前者具有抗肿瘤性质,而且能够极大地提高人体自然免疫力。
本文应用紫外-可见分光光度计测定加入不同量的β-葡聚糖标准溶液的吸光度。
在建立β-葡聚糖与吸光度之间的线性方程中,采用一元线性回归分析的分析方法,并建立分析β-葡聚糖对乳酸菌生长状况曲线模型。
关键字:β-葡聚糖吸光度一元线性回归分析生长状况曲线模型一、问题提出,问题分析设置对照实验,在实验“β-葡聚糖对乳酸菌生长状况的影响”中,实验通过设置不同的β-葡聚糖浓度,研究相同浓度不同量对乳酸菌生长的影响。
在实验中,由于加入的β-葡聚糖的量不同,通过测定培养基溶液吸光度不同,反映不同培养基中的乳酸菌的生长状况是不同的,通过各实验组的对照,加入的β-葡聚糖浓度与乳酸菌的生长是有关系的。
实验中β-葡聚糖的浓度为75g/L,加入的量设置依次为:0μL、10μL、30μL、45μL、60μL、75μL。
培养12h后,用752紫外可见分光光度计进行检测,测定结果对应的吸光度-加入量关系表(如表1所示)已知朗伯——比尔定律的数学表达式为A=kn, k为摩尔吸收系数,A为吸光度,n为吸光物质的量。
根据此定律设想铬离子浓度与其吸光度存在线性相关关系。
二、数据描述表2.1 β-葡聚糖加入量与其吸光度(β-葡聚糖浓度:75g/L ,培养时间12h )以上数据来自重庆大学本科生马晶晶在做毕业论文《β-葡聚糖对乳酸菌生长状况的影响》数据,实验数据利用用752紫外可见分光光度计测定,真实可靠。
北航-数理统计大作业
对中国各地财政收入情况的聚类分析和判别分析应用数理统计第二次大作业学院名称学号学生姓名摘要我国幅员辽阔,由于人才、地理位置、自然资源等条件的不同,各地区的财政收入类型各自呈现出不一样的发展趋势,通过准确定位中国各地区财政收入情况对于正确认识我国财政收入具有重要的意义。
本文以中国各地财政收入情况为研究对象,从《中国统计年鉴》中选取2011年期间中国各地财政收入情况为因变量,选取国内增值税、营业税、企业所得税、个人所得税、城市维护建设税、土地增值税、契税、专项收入、行政事业性收费收入、国有资本经营收入和国有资源(资产)有偿使用收入11个可能影响中国各地财政收入的因素为自变量,利用统计软件SPSS,对27个地区的财政收入进行了聚类分析,并对另外4个地区的财政收入进行了判别分析,并最终确定了中国各地区根据财政收入类型的分类情况。
关键词:聚类分析,判别分析,SPSS,中国各地财政收入类型1、引言财政收入,是指政府为履行其职能、实施公共政策和提供公共物品与服务需要而筹集的一切资金的总和。
财政收入表现为政府部门在一定时期内(一般为一个财政年度)所取得的货币收入。
财政收入是衡量一国政府财力的重要指标,政府在社会经济活动中提供公共物品和服务的范围和数量,在很大程度上决定于财政收入的充裕状况。
通过准确定位中国各地区财政收入情况对于正确认识我国财政收入具有重要的意义。
本文利用统计软件SPSS,根据各地区的财政收入情况,对北京、天津、河北等27个地区进行聚类分析,并对青海、重庆、四川、贵州4个省市进行判别分析,判断属于聚类分析结果中的哪种财政收入类型。
1.1 聚类分析聚类分析是根据研究对象的特征对研究对象进行分类的多元统计分析技术的总称,它直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类。
本文采用的是系统聚类分析,它又称集群分析,是聚类分析中应用最广的一种方法,其基本思想是:首先将每个聚类对象看作一类,然后根据对象间的相似程度,将相似程度最高的两类进行合并,并计算合并后的类与其他类之间的距离,再选择相近者进行合并,每合并一次减少一类,直至所有的对象都并为一类为止。
重庆大学硕士研究生数理统计课外大作业
重庆大学硕士研究生“数理统计”课外作业学生:学号:201510****专业:动力工程专业重庆大学动力工程学院二O一五年十二月学号201510******* 姓名**** 学院****学院专业****专业成绩一元线性回归分析在风力发电中的应用摘要:能源短缺和环境恶化日益严重,风能作为一种可再生的清洁能源,越来越受到世界各国的重视,风力发电的装机容量也越来越大。
风力机是风力发电机组重要的组成部分,实现风能向机械能的转化,机械能再通过直流发电机转发为电能,其中直流发电机输出的直流电压和风速紧密相关。
本文以课题研究中测得的实验数据为基础,对风力发电直流电输出和风速的线性相关关系进行计算分析,运用数理统计中一元线性回归分析及假设检验的相关知识,采用EXCEL软件进行辅助计算,最终得到了风力发电的直流电输出和风速的线性关系显著,对以后的课题研究具有一定的借鉴作用。
1 问题提出与分析在能源短缺和环境趋向恶化的今天,风能作为一种可再生的清洁能源,越来越受到世界各国的重视,也越来越多地被应用到风力发电中。
风力机和发电机是风力发电机组中将风能转化为电能的重要装置,它们不仅直接关系到输出电能的质量和效率,也影响着整电量输出和风速的相关性。
风力机是风力发电机组重要的组成部分,其实现了风动能到风轮机轴机械能的转化,机械能通过直流电动机转发为电能,其中直流电动机产生的直流电压和风力紧密相关。
风力发电的设计和评价和电量输出与风速的关系密不可分,其中对于数学知识要求很高。
本文以课题研究中实验测得的数据为基础,对风力发电直流电输出和风速是否存在线性关系进行分析,运用数理统计中一元线性回归及非参数检验的相关知识,结合EXCEL软件进行辅助计算分析,最终得到了风力发电的直流电输出和风速关系,为以后科研工作和风力发电的应用具有指导意义。
综上所述,对风力发电的直流电输出和风速的研究,具有理论与实践的重要意义。
2 数据描述本文以风力发电的直流输出和风速的关系为研究对象,采用实验中观察得出的直流电输出和风速的部分数值进行计算分析,风力发电的直流电输出y(单位:MW)和风速x(单位:nmile/h)的数据如表1所示。
应用数理统计大作业
应用数理统计大作业In statistics, the central limit theorem plays a crucial role in understanding the distribution of sample means. By stating that, regardless of the shape of the underlying population distribution, the distribution of sample means approaches a normal distribution as the sample size increases, the central limit theorem provides a powerful tool for making inferences about population parameters based on sample data. 统计学中,中心极限定理在理解样本均值的分布方面扮演着关键角色。
通过表明,无论底层人群分布的形状如何,随着样本量的增加,样本均值的分布会逼近正态分布,中心极限定理为根据样本数据对人群参数进行推断提供了一个强大的工具。
Another important concept in statistical inference is confidence intervals, which provide a range within which the true population parameter is estimated to lie with a certain level of confidence. Confidence intervals are essential in interpreting the results of hypothesis tests, as they indicate the precision of the estimate and allow for an assessment of the uncertainty associated with the sample data. 统计推断中的另一个重要概念是置信区间,它提供了一个范围,真实人群参数被估计在其中的概率。
重庆大学数理统计课程大作业上证指数与多因素的多元线性回归分析解析
上证指数与多因素的多元线性回归分析摘要中国的股票市场自1990年成立以来发展迅速,对我国经济的各个方面都产生了深远的影响,从1990年的100点到2007年的6124.17点,增长了60倍,平均年增长3.5倍,以及从2008年到2014年的3234.7点降低了1倍,可见虚拟经济增长和降低速度之快已经超出了人们的想象,为了研究指数增长与股票的一些基本因素的关系,建立了多元线性回归模型,来分析影响上证指数的因素的影响程度大小。
一、问题描述为探究影响上证指数的主要因素,文章选取十一个最具代表性经济指标。
股票市场作为金融市场的重要组成部分,不仅承担着融资和资源配置的资本媒介职能,同时作为经济发展的“晴雨表”也发挥着经济预测等功能。
金融危机过后,我国资本市场正处在关键的转型阶段,我国股票市场的走向都吸引了无数注视目光,甚至在世界范围内目光。
在实际经济运行中,影响股票指数的因素非常复杂。
宏观经济因素是股价波动的大环境,只有从分析宏观经济发展的大方向着手,才能把握住股票市场的总体变动趋势。
虽然现实生活中存在许多不可预测或无法量化的因素,统计模型也不能百分之百地预测指标的下跌或上涨,但可以提供一个基本的预测趋势。
如果将模型的定量分析和市场的定性分析相结合,一定会帮助股民更好地分析股市做出相对明智的决定,还能帮助人们及时发现我国经济的发展中出现的问题解决问题从而实现我国经济又快又好发展。
自2014年底上证指数从2200点到2015年5月底的5000点,涨速可谓迅速,股民数量呈指数形式上涨,人们在大街小巷谈论股票,在这一时段里,中国股市最受世界关注,但是2015年5月底上证指数跌幅巨大,致使大部分股民亏损严重,与上一段时间形成鲜明的对比。
股民亏损的原因有很多方面,其中一个很重要的方面是对股票的基本情况不够了解,不能区分哪些因素是主要的,哪些因素是次要的,同时股票指数可以反映经济发展的状况。
本文选取的数据是1993年到2014年的数据,来进行多元线性回归分析,一方面分析上证指数与相关因素的相关关系,另一方面,巩固老师讲的基本知识。
应用数理统计大作业
一、非参数假设检验数据来自《2009中国卫生统计年鉴》8-1-2各地区人口出生率和死亡率:北京市的人口出生率服从正态分布。
检验假设H由上表可知,假设不成立,即北京市的人口出生率不符合正态分布,应用同种方法可以得到北京市的人口死亡率同样不符合正态分布。
二、多元线性回归分析改革开放以来,我国城乡居民收入分配制度发生了很大的变化。
随着城乡居民收入水平的不断提高,其差距也在逐渐扩大,如果不采取相应的经济政策,任其发展,有可能会影响社会生产力的发展和社会的稳定,因此,需要分析影响城乡居民收入差距的主要因素。
以城乡居民收入比(Y )作为被解释变量,而第一产业增加值占GDP 的比重(X 1)、国家财政对农业支出的增长率(X 2)、乡镇企业职工增长率(X 3)、城镇居民人均年生活费收入增长率(X 4)、第一产业增加值指数(X 5)作为解释变量。
本模型采用时间序列数据,数据来自《中国统计年鉴》(1982—1998)。
模型的理论方程为:Y=0β+1βX 1+2βX 2+3βX 3+4βX 4+5βX 5 城乡居民收入比模型样本观测值数据obs 城乡居民收入比Y 第一产业增加值占GDP 的比重X1 国家财政对农业支出的增长率X2 乡镇企业职工增长率X3 城镇居民人均年生活费收入增长率X4 第一产业增加值指数X51981 2.05 31.73 -26.50 -1.00 4.33 7.00 1982 1.83 33.31 9.33 4.83 8.08 11.50 1983 1.70 32.90 10.27 3.91 6.26 8.30 1984 1.71 32.47 6.34 61.01 15.59 12.90 1985 1.72 28.35 8.73 34.00 12.66 1.80 1986 1.95 27.09 19.91 13.73 20.88 3.30 1987 1.98 26.79 6.25 10.94 10.63 4.70 1988 2.05 25.66 9.38 8.41 22.16 2.50 1989 2.09 25.00 24.23 -1.87 12.69 3.10 1990 2.02 27.05 15.76 -1.09 9.99 7.30 1991 2.18 24.46 12.91 3.72 11.32 2.40 1992 2.33 21.77 8.19 10.12 18.26 4.70 1993 2.53 19.87 17.13 16.67 27.98 4.70 1994 2.60 20.23 21.01 -2.65 36.03 4.00 1995 2.47 20.51 7.93 7.02 22.46 5.00 1996 2.27 20.45 21.83 5.02 12.43 5.10 19972.2318.6810.01-3.396.633.50(以上内容是从网上找的资料)用SPSS进行线性回归分析,结果如下:上表说明了因变量和自变量进入方程的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
城镇居民人均可支配收入与当地商品房价格的相关性研究
摘要:一个城市或地区的商品房销售价格与当地居民的收入,社会经济发展水平和宏观政策有关。
为此,本文仅选取城镇居民可支配收入这一项因素,研究其与商品房销售价格的关系。
在假设全国主要城市的城镇居民人均可支配收入与当地住房价格不存在线性关系的情况下,根据一元线性回归模型研究居民可支配收入与房价之间的关系,运用EXCEL表格中的回归分析功能,求解出商品房销售价格与当地居民的收入的线性模型,以及相关系数,检验其显著性,发现居民可支配收入与房价之间存在线性关系,但商品房价格不完全由居民收入水平决定。
关键词:居民收入、商品房价格、线性回归分析
1问题提出与分析
自我国进行住房改革以来,住房市场蓬勃发展,越来越多的城镇居民通过购买普通商品房和其他政策性住房等市场方式改善了居住条件。
但我国商品房价格的连续上涨己经使越来越多的居民感到了购房的压力,引起的社会各界的广泛重视。
对于影响房价的诸多因素如国家经济发展水平、经济增长状况、就业状况、居民收入水平等进行选择,主要研究居民收入水平与房价的关系。
通常来说,一个国家或地区经济发展水平越高,经济增长越快,居民的收入水平也越高,房价相对也越高。
但是一个城市的城镇居民人均可支配收入与当地商品房平均价格是否有线性关系,需进行线性回归分析。
2数据描述
本文分析全国主要城市的城镇居民人均可支配收入(元/年)与当地的商品房平均销售价格(元/m2)的数据是2011年全国主要城市的城镇居民人均可支配收入[1]和2012年1月当地商品房平均价格[2]的数据,样本总数为41。
表2.1给出了我国主要城市的城镇居民人均可支配收入和当地同时期的商品房平均价格。
表1 各城市人均可支配收入与商品房价格
城市城镇人均可支配
收入(元)
商品房平均价格
(元/㎡)
东莞39,513 6,875 深圳36,500 18,245 上海36,230 24,547 温州35,431 23,326 广州34,300 15,100 苏州34,617 9,781 杭州34,065 17,790 宁波34,058 14,997 绍兴31,368 10,451 厦门33,565 15,061 北京32,903 24,828 南京32,200 13,859 台州32,127 10,711 无锡31,638 8,241 嘉兴31,520 7,170 佛山30,705 7,645 常州29,829 7,477 金华29,729 10,561 包头29,628 5,269 呼和浩特28,877 6,312 济南28,866 8,110 泉州28,703 7,580 珠海28,690 10,788 青岛28,567 12,526 中山27,699 5,208 天津26,921 13,172 南通26,778 8,912 惠州26,500 5,621 烟台26,431 6,864 长沙26,235 6,528 福州26,050 11,208
1
西安 25,981 7,675 威海 25,280 4,909 淄博 24,955 5,278 扬州 24,700 6,975 大连 24,300 11,272 成都 23,932 8,808 武汉 23,738 7,793 徐州 23,600 6,993 沈阳 23,320 7,663 重庆
20,250
7,071
3 模型建立
3.1提出假设
在城镇居民人均可支配收入与当地商品房平均价格的关系中,可假设城镇居民的人均可支配收入为自变量,用X 表示;当地商品房平均价格为因变量,用Y 表示。
并且假设Y 与X 线性相关。
3.2模型构建
根据中国统计年鉴的资料整理出2011年全国主要城市城镇人均可支配收入和当地商品房平均价格的相关数据,运用一元线性回归模型:
012
,
~(0,),
Y x N ββεεσ=++⎧⎨⎩ (1)
其中,0β、1β称为回归系数,常数0β、1β、2σ均未知[3]。
3.3模型求解
运用EXCEl 表格中的回归分析工具对城镇人均可支配收入和当地商品房平均价格的
关系建立线性回归模型,其结果为0ˆ10089.8β=-,1
ˆ0.702225β=。
所以其线性回归方程为:
01
ˆˆˆ10089.80.702225y x x
ββ=+-+= (2)
根据统计数据,将节点传输数据包成功率与该节点自身功率的分布情况绘制于图3.1中,图中菱形点即为统计数据,正方形点为预测值。
图3.1 商品房平均价格与城镇人均可支配收入的拟合曲线
4 计算方法设计和计算机实现
4.1 线性回归分析的计算方法设计
回归参数0β、1β的求解,运用最小二乘估计,设(,)i i x y (1,2,,41)i =为取得的一组实验数据,如表2.1所示。
那么得到回归参数的最小二乘估计[3]为:
101ˆ,
ˆˆ,
xy
xx l l y x βββ⎧=⎪⎨
⎪=-⎩ (3)
其中,11
11,n n
i i i i x x y y n n ====∑∑,且记
()()1
n
xy i i i l x x y y ==--∑
(4)
()2
1n
xx i i l x x ==-∑
(5)
()2
1
n
y y i
i l y y ==-∑ (6) 因此,当X x =时,Y 的预测值为
01
ˆˆˆy x ββ=+ (7)
4.2线性回归分析的计算机实现
运用EXCEl2007表格中的回归分析工具对城镇人均可支配收入和当地商品房平均价格的关系建立线性回归模型。
本文采用EXCEL2007的数据分析工具。
如果EXCEL 表格中的“数据”没有“数据分析”这一功能项,则需加载分析工具库。
加载步骤如下:
(1)单击“Microsoft Office 按钮”,然后单击“Excel 选项”。
(2)单击“加载项”,然后在“管理”框中,选择“Excel 加载宏”,单击“转到”。
(3)在“可用加载宏”框中,选中“分析工具库”复选框,然后单击“确定”。
如果“可用加载宏”框中未列出“分析工具库”,请单击“浏览”以找到它。
如果系统提示计算机当前未安装分析工具库,请单击“是”以安装它。
加载分析工具库之后,“数据分析”命令将出现在“数据”选项卡上的“分析”组中。
最小二乘估计的计算机实现步骤:
(1)在EXCEL 表格中选择“数据”选项卡上的“分析”组中的“数据分析”命令
图4.1 EXCEL 表格数据分析
(2)点击“数据分析”会出现数据分析对话框,在菜单中选择“回归”,点击确定。
图4.2 数据分析对话框
(3)在回归分析对话框里选择Y值的输入区域,在这里选择各主要城市商品房的每平方米平均价格,选择X值的输入区域,在本文中选择各主要城市居民每年的可支配收入。
置信度选择0.95,勾选“线性拟合图”。
最后点击“确定”,得到最小二乘估计的结果,线性拟合图,采样样本相关系数等内容。
图4.3 回归分析对话框
5主要的结论或发现
通过线性回归分析过的数据拟合曲线,可以发现商品房价格与当地居民的人均可支配收入存在一定的线性关系,但是这种关系很弱。
可以推知商品房价格并不是完全由居民收入这一项因素所决定,必然存在其他因素,如这个城市或地区的地理位置,社会经济发展情况以及国家的宏观政策有关系。
6结果分析与检验
6.1 线性回归显著性检验
设统计假设为
(1)0H :Y 与X 线性无关;1H :Y 与X 线性相关 (2)选择统计量为R ,拒绝域
(){}
00.0539K r r => (7) (3)查表得0.050.05(39)(40)0.304r r ≈=,计算出0.348r =,落在拒绝域之内,拒绝原假设,认为商品房价格Y 与当地居民可支配收入X 线性相关。
6.2 结果分析
在显著性水平0.05下,城镇居民可支配收入与当地商品房平均价格成弱的线性关系。
参考文献
[1] 2011年全国城市城镇居民人均可支配收入前50强排名[DB/OL]. [2012,5,7]. /view/xiaocainiaohenry/blog_170620490.html ;
[2] 2012年1月全国城市住宅房价排行榜[DB/OL]. [2012,5,7]. /view/cde7cd1afc4ffe473368ab97.html ;
[3] 杨虎,刘琼荪.数理统计[M].北京:高等教育出版社 2005。