第一章 整式的乘除单元检测题
第一章整式的乘除单元检测试卷含答案解析
第一章整式的乘除单元检测一、选择题1.PM2.5是指大气中直径小于或等于0.000 002 5 m的颗粒物,将0.000 002 5用科学记数法表示为().A.0.25×10-5B.0.25×10-6 C.2.5×10-5D.2.5×10-6 2.李老师做了个长方形教具,其中一边长为2a+b,另一边长为a-b,则该长方形的面积为().A.6a+b B.2a2-ab-b2 C.3a D.10a-b3.计算:3-2的结果是().A.-9 B.-6 C.-19 D.194.计算(-a-b)2等于().A.a2+b2B.a2-b2 C.a2+2ab+b2D.a2-2ab+b25.下列多项式的乘法中可用平方差公式计算的是().A.(1+x)(x+1) B.(2-1a+b)(b-2-1a)C.(-a+b)(a-b) D.(x2-y)(y2+x)6.一个长方体的长、宽、高分别为3a-4,2a,a,则它的体积等于().A.3a3-4a2B.a2 C.6a3-8a2D.6a3-8a7.计算x2-(x-5)(x+1)的结果,正确的是().A.4x+5 B.x2-4x-5 C.-4x-5 D.x2-4x+58.已知x+y=7,xy=-8,下列各式计算结果正确的是().A.(x-y)2=91 B.x2+y2=65 C.x2+y2=511 D.(x-y)2=567 9.下列各式的计算中不正确的个数是().①100÷10-1=10②10-4×(2×7)0=1 000③(-0.1)0÷(-2-1)-3=8④(-10)-4÷(-10-1)-4=-1A.4 B.3 C.2 D.1二、填空题10.用小数表示1.21×10-4是________.11.自编一个两个单项式相除的题目,使所得的结果为-6a3,你所编写的题目为______________________________________________________________________ __.12.已知(9n)2=38,则n=__________.13.长为3m+2n,宽为5m-n的长方形的面积为__________.14.用小数表示3.14×10-4=__________.15.要使(ax2-3x)(x2-2x-1)的展开式中不含x3项,则a=__________.16.100m·1 000n的计算结果是__________.三、解答题17.计算:1122-113×111.18.先化简,再求值:(a2b-2ab2-b3)÷b-(a+b)(a-b),其中a=12,b=-1.19.先化简,再求值:(3x-y)2-(2x+y)2-5x(x-y),其中x=0.2,y=0.01.20.如图,一块半圆形钢板,从中挖去直径分别为x,y的两个半圆:(1)求剩下钢板的面积;(2)若当x=4,y=2时,剩下钢板的面积是多少?(π取3.14)21.在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算:(1)把这个数加上2后平方;(2)然后再减去4;(3)再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗?22.八年级学生小明是一个喜欢思考问题而又乐于助人的好学生,一天邻居家读小学的小李,请他帮忙检查作业:7×9=63;8×8=64;11×13=143;12×12=144;24×26=624;25×25=625.小明仔细检查后,夸小李聪明,作业全对了!小明还从这几题中发现了一个规律,你知道小明发现了什么规律吗?请用字母表示这一规律,并说明它的正确性.参考答案1.D 点拨:0.000 002 5=2.5×10-6,故选D.2.B 点拨:根据长方形的面积=长×宽可列出代数式为:长方形的面积=(2a +b )·(a -b ),然后计算整理化为最简形式即可.3.D 点拨:3-2=132=19.4.C 点拨:本题主要考查我们对完全平方公式的理解能力,如何确定用哪一个公式,主要看两数的符号是相同还是相反.5.B 点拨:本题主要考查了平方差公式的结构.注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有.6.C 点拨:本题考查了多项式乘单项式的运算法则,要熟练掌握长方体的体积公式.根据长方体的体积=长×宽×高,列出算式,再根据单项式乘多项式的运算法则计算即可.7.A 点拨:x 2-(x -5)(x +1)=x 2-(x 2-4x -5)=4x +5.8.B 点拨:(x -y )2=(x +y )2-4xy =72-4×(-8)=81;x 2+y 2=(x +y )2-2xy =72-2×(-8)=65.9.B 点拨:根据零指数幂、负指数幂和有理数的乘方等知识分别进行计算,然后根据实数的运算法则求得计算结果.10.0.000 121 点拨:根据负指数幂的意义把10的负指数幂转化为小数即可.1.21×10-4=1.21×0.000 1=0.000 121.11.答案不唯一,如-12a 5÷2a 212.2 点拨:先把9n 化为32n ,再根据幂的乘方的运算法则,底数不变,指数相乘,即可得出4n =8,从而求得n 的值.13.15m 2+7mn -2n 2 点拨:本题考查了整式的乘法运算,涉及长方形的面积公式,正确列出代数式是解答本题的关键.14.0.000 31415.-32 点拨:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0,同时要注意各项符号的处理.16.102m +3n 点拨:100m ·1 000n =(102)m ·(103)n =102m ·103n =102m +3n .17.解:原式=1122-(112+1)(112-1)=1122-(1122-1)=1122-1122+1=1.18.解:(a 2b -2ab 2-b 3)÷b -(a +b )(a -b )=a 2-2ab -b 2-(a 2-b 2)=a 2-2ab -b 2-a 2+b 2=-2ab .当a =12,b =-1时,原式=-2×12×(-1)=1.点拨:本题考查多项式除单项式,平方差公式,运算时要注意符号.19.解:原式=9x 2-6xy +y 2-(4x 2+4xy +y 2)-5x 2+5xy =-5xy . 当x =0.2,y =0.01时,原式=-5×0.2×0.01=-0.01.20.解:(1)S 剩=12·π·⎣⎢⎡⎦⎥⎤(x +y )24-x 2+y 24=14πxy . 答:剩下钢板的面积为π4xy .(2)当x =4,y =2时,S 剩=14×3.14×4×2=6.28.点拨:本题考查了完全平方公式,(1)中注意大圆的半径需从图上得出,注意这里都是半圆.21.解:设这个数为x ,据题意得,[(x +2)2-4]÷x=(x 2+4x +4-4)÷x=x +4.如果把这个商告诉主持人,主持人只需减去4就知道你所想的数是多少. 点拨:本题考查了完全平方公式,多项式除单项式,读懂题目信息并列出算式是解题的关键.22.解:n (n +2)=(n +1)2-1.点拨:解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.。
第1章 整式的乘除单元达标测试(含答案)
第一章 整式的乘除知识点:1、都是数与字母的乘积的代数式叫做单项式(单独的一个数或一个字母也是单项式);几个单项式的和叫做多项式;单项式和多项式统称整式。
下列代数式中,单项式共有 个,多项式共有 个。
-231a , 52243b a -, 2, ab ,)(1y x a +, )(21b a +, a ,712+x , y x +, 2、一个单项式中,所有字母的指数和叫做这个单项式的次数;一个多项式中,次数最高的项的次数叫做这个多项式的次数。
(单独一个非零数的次数是0)(1)单项式232zy x -的系数是 ,次数是 ;(2)π的次数是 。
(3)22322--+ab b a c ab 是单项式 和,次数最高的项是 ,它是 次 项式,二次项是 ,常数项是 3、同底数幂的乘法,底数不变,指数相加。
即:nm n m a a a +=⋅(m ,n 都是正整数)。
填空:(1)()()=-⨯-6533 (2)=⋅+12m m b b4、幂的乘方,底数不变,指数相乘。
即:()mn nma a =(m ,n 都是正整数)。
填空:(1)()232= (2)()=55b (3)()=-312n x5、积的乘方等于每一个因数乘方的积。
即:()n n nb a ab =(n 是正整数) 填空:(1)()=23x (2)()=-32b (3)421⎪⎭⎫⎝⎛-xy =6、同底数幂相除,底数不变,指数相减。
即:nm nma a a -=÷(n m n m a >都是正整数,且,,0≠),=0a ,=-p a (是正整数p a ,0≠)填空:(1)=÷47a a (2)()()=-÷-36x x (3)()()=÷xy xy 47、整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
如:()=⎪⎭⎫ ⎝⎛-xy z xy 3122。
七年级数学下册第一章《整式的乘除》测试卷及答案
七年级数学下册第一章《整式的乘除》单元测试卷一、选择题(本大题共15小题,共45.0分) 1. 计算−x 2·x 3的结果是( )A. −x 5B. x 5C. −x 6D. x 62. 下列算式中,计算结果等于a 6的是( )A. a 3+a 3B. a 5⋅aC. (a 4)2D. a 12÷a 23. 下列运算正确的是( )A. a 2+a 3=a 5B. (a 2)3=a 5C. a 6÷a 3=a 2D. (ab 2)3=a 3b 64. 下列计算正确的是( )A. 2x +3y =5xyB. (m +3)2=m 2+9C. (xy 2)3=xy 6D. a 10÷a 5=a 55. 已知x +y =2,xy =−2,则(1−x)(1−y)的值为( )A. −1B. 1C. 5D. −36. 已知a +b =2,ab =−2,则a 2+b 2=( )A. 0B. −4C. 4D. 87. 312是96的( )A. 1倍B. 19倍C. (19)6倍D. 36倍8. a 11÷(−a 2)3⋅a 5的值为( )A. 1B. −1C. −a 10D. a 99. 下列计算:①(−1)0=−1;②(−2)−2=14;③用科学记数法表示−0.0000108=1.08×10−5.其中正确的有( )A. 3个B. 2个C. 1个D. 0个10. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A.B. c >b >aC. b >a >cD. b >c >a11. 不论x ,y 为任何实数,x 2+y 2−4x −2y +8的值总是( )A. 正数B. 负数C. 非负数D. 非正数12. 若2x −3y +z −2=0,则16x ÷82y ×4z 的值为( )A. 16B. −16C. 8D. 413.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)914.把0.00091科学记数表示为()A. 91×10−5B. 0.91×10−3C. 9.1×104D. 9.1×10−415.下列运算正确的是()A. 6a−5a=1B. (a2)3=a5C. 3a2+2a3=5a5D. 2a⋅3a2=6a3二、填空题(本大题共5小题,共25.0分)16.一种花瓣的花粉颗粒直径约为0.00065米,0.00065用科学记数法表示为______.17.一个矩形的面积为m2+8m,若一边长为m,则其邻边长为______.18.若a+b=2,a2−b2=6,则a−b=______.19.若x8÷x n=x3,则n=______.20.若x2+2(m−3)x+16是完全平方式,则m的值是_________.三、计算题(本大题共4小题,共32.0分)21.计算:(1)(12a3−6a2+3a)÷3a−1(2)(x+y)2−(x+y)(x−y)22.计算(1)−a6⋅a5÷a3+(−2a2)4−(a2)3⋅(−3a)2;(2)(2x+y)2+(x−y)(x+y)−5x(x−y).23.计算下列各题:(1)−22+(20182−2018)0+(−13)−2−|−3|(2)(−32a2b)2⋅4ab2÷(3a3b)24.计算(1)−14+(−2)÷(−13)−|−9|(2)18×(12−56+23)四、解答题(本大题共5小题,共48.0分)25.已知(x2+mx+n)(x−1)的结果中不含x2项和x项,求m、n的值.26.若x+y=3,且(x−3)(y−3)=2.(1)求xy的值;(2)求x−y的值.27.一位同学在研究多项式除法时,把被除式的二次项系数写成a,而把结果的一次项系数又写成了−b,等式如下:(x3+ax2+1)÷(x+1)=x2−bx+1,现请你帮他求出a,b的值.28.已知x2−x+1=0,求代数式(x+1)2−(x+1)(2x−1)的值.29.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔,纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log a N.比如指数式24=16可以转化为4=log216,对数式2= log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M⋅N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:log a M=m,log a N=n,则M=a m,N=a n∴M⋅N=a m⋅a n=a m+n,由对数的定义得m+n=log a(M⋅N)又∵m+n=log a M+log a N∴log a(M⋅N)=log a M+log a N解决以下问题:(1)将指数式53=125转化为对数式______;(2)log24=______,log381=______,log464______.(直接写出结果)=log a M−log a N(a>0,a≠1,M>0,N>0).(写出证明过程(3)证明:证明log a MN)(4)拓展运用:计算计算log34+log312−log316=______.(直接写出结果)答案1.A2.B3.D4.D5.D6.D7.A8.C9.C10.C11.A12.A13.C14.D15.D16.6.5×10−417.m+818.319.520.7或−121.解:(1)原式=4a2−2a+1−1=4a2−2a;(2)原式=x2+2xy+y2−(x2−y2)=x2+2xy+y2−x2+y2=2xy+2y2.22.解:(1)原式=−a11÷a3+16a8−a6⋅9a2=−a8+16a8−9a8 =6a8;(2)原式=4x2+4xy+y2+x2−y2−5x2+5xy=9xy.23.解:(1)−22+(20182−2018)0+(−13)−2−|−3|=−4+1+9−3 =3;(2)(−32a2b)2⋅4ab2÷(3a3b)=94a4b2⋅4ab2⋅13a3b=3a2b3.24.解:(1)原式=−1+6−9 =−4;(2)原式=18×12−18×56+18×23=9−15+12=6.25.解:(x2+mx+n)(x−1)=x3+(m−1)x2+(n−m)x−n.∵结果中不含x2的项和x项,∴m−1=0且n−m=0,解得:m=1,n=1.26.解:(1)由(x−3)(y−3)=2,整理得:xy−3(x+y)+9=2,把x+y=3代入得:xy=2;(2)∵x+y=3,xy=2,∴(x−y)2=(x+y)2−4xy=9−8=1,则x−y=±1.27.解:原除式变形为x3+ax2+1=(x+1)(x2−bx+1),=x3+(1−b)x2+(1−b)x+1,所以a=1−b,1−b=0,解得a=0,b=1.28.解:∵x2−x+1=0,∴x2−x=−1,原式=x2+2x+1−(2x2−x+2x−1)=x2+2x+1−2x2+x−2x+1=−x2+x+2=−(x2−x)+2=−(−1)+2=3.29.3=log5125 2 4 =3 1【解析】解:(1)∵一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log a N.∴3=log5125,故答案为:3=log5125;(2)∵22=4,34=81,43=64,∴log24=2,log381=4,log464=3,故答案为:2;4;=3;(3)设log a M=m,log a N=n,则M=a m,N=a n,∴MN =a ma n=a m−n,∴由对数的定义得m−n=log a MN,又∵m−n=log a M−log a N,∴log a MN=log a M−log a N;(4)log34+log312−log316=log3(4×12÷16)=log33=1.故答案为:1.(1)根据题意可以把指数式53=125写成对数式;(2)运用对数的定义进行解答便可;(3)先设log a M=m,log a N=n,根据对数的定义可表示为指数式为:M=a m,N=a n,计算MN的结果,同理由所给材料的证明过程可得结论;(4)根据公式:log a(M⋅N)=log a M+log a N和log a MN=log a M−log a N的逆用,将所求式子表示为:log3(4×12÷16),计算可得结论.本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系。
第一章 整式的乘除 单元测试
第一章 整式的乘除 单元测试(能力提升)一、单选题1.下列运算正确的是( )A .235a a a +=B .3412a a a ×=C .()326a a -=D .()230a a a a -¸=¹2.新冠病毒(2019-nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它的直径约60-220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10-6B .10×10-7C .1×10-7D .1×10-63.若(2)(5)M x x =--,(3)(4)N x x =--,则M 与N 的大小关系为()A .M N >B .M N =C .M N<D .由x 的取值而定4.若x ,y 均为正整数,且124128x y +×=,则x +y 的值为()A .3B .5C .4或5D .3或4或55.如图,从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形,然后拼成一个平行四边形,那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .222()a b a b -=-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22()()a b a b a b -=+-6.下列计算中正确的个数为( )①()()2233244=8a b a ab b a b -++- ②(-a -b )2=a 2-2ab +b 2 ③(a +b )(b -a )=-a 2 +b 2 ④(2a +b )2=4a 2+2ab +b 2A .1B .2C .3D .47.已知关于x 的代数式()219x a x -++是完全平方式,则=a ( )A .5B .7-C .5或7-D .无法确定8.如果12x x -=,那么441x x +的值等于( )A .34B .36C .38D .409.计算()()()241002(31)3131311+×+×+++L 的个位数字是( )A .8B .4C .2D .110.如图,长为(cm)y ,宽为(cm)x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长为5cm ,下列说法中正确的是( )①小长方形的较长边为15y -;②阴影A 的较短边和阴影B 的较短边之和为5x y -+;③若x 为定值,则阴影A 和阴影B 的周长和为定值;④当15x =时,阴影A 和阴影B 的面积和为定值.A .①③B .②④C .①③④D .①④二、填空题11.化简()23a a -×=________.12.若m +2n ﹣3=0,则3m •9n =___.13.计算2221(6)(32)x y xy xy =-×-______ .14.若(x +3)(x +n )=x 2+mx -21,则m 的值为_______.15.直接写出计算结果:(1)(2x )3÷2x =___;(2)(2xy )2(﹣5x 2y )=___;(3)(﹣0.25)2019×(﹣4)2020=___;(4)(b ﹣3a )(﹣3a ﹣b )=___.16.计算:()23656a x a x -÷()33ax -=_______.17.1111()()2332a b b a ---= ________.18.化简:(a +2)(a 2+4)(a 4+16)(a ﹣2)=___.19.若()()2323x px q x x ++--展开后不含2x ,3x 项,则pq 的值是__________.20.己知(2018)(2021)5a a --=-,求22(2018)(2021)a a -+-=________.三、解答题21.计算:(1)()()()332222223x x x x -+-+×(2)()()423424()()2a a a a a -××--+-22.计算(1)2331()()3x y xy -¸-(2)11(3)(3)44x y x y ---+(3)2(31)(2)(3)x x x -++-(4)3()()2a b a b ab-¸-+23.(1)已知2,3m n a a ==,求23m n a -的值.(2)已知:23n x =,求()()4525n n n x x x +-的值.(3)已知354x y +=,求582x y ×的值.(4)已知2139273m m ´´=,求m 的值.24.化简求值:[(x +2y )2-(x +y )(3x -y )-5y 2]÷(2x ),其中x =-2,y =12.25.如图,某校有一块长为(3a +b)米,宽为(2a+b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像.(1)用含a 、b 的代数式表示绿化面积;(2)求出当a=3米,b=2米时的绿化面积.26.从边长为 a 的正方形剪掉一个边长为 b 的正方形(如图 1),然后将剩余部分拼成一个长方形(如图 2).(1)上述操作能验证的等式是 (请选择正确的一个)A .a 2﹣2ab +b 2=(a ﹣b )2B .a 2﹣b 2=(a +b )(a ﹣b )C .a 2+ab =a (a +b )(2)若 x 2﹣9y 2=12,x +3y =4,求 x ﹣3y 的值;(3)计算:2222211111(1)(1)(1(1)23420192020-----L .27.阅读,学习和解题.(1)阅读和学习下面的材料:比较355,444,533的大小.分析:小刚同学发现55,44,33都是11的倍数,于是把这三个数都转化为指数为11的幂,然后通过比较底数的方法,比较了这三个数的大小.解法如下:解:∵55511113(3)243==,44411114(4)256==,33311115(5)125==,∴335544534<<.学习以上解题思路和方法,然后完成下题:比较34040,43030,52020的大小.(2)阅读和学习下面的材料:已知a m =3,a n =5,求a 3m +2n 的值.分析:小刚同学发现,这些已知的和所求的幂的底数都相同,于是逆用同底数幂和幂的乘方的公式,完成题目的解答.解法如下:解:∵33()m m a a ==34=27,2n a =2()n a =32=25,∴3+232m n m n a a a ×==27×25=675.学习以上解题思路和方法,然后完成下题:已知a m =2,a n =3,求a 2m +3n 的值.(3)计算:(-16)505×(-0.5)2021.28.阅读下列材料:①关于x 的方程2310(0)x x x -+=¹方程两边同时乘以1x 得:1x 30x -+=,即1x 3x +=,故222221111x x 2x x 2x x x x æö+=+××+=++ç÷èø,所以222211x x 2327x x æö+=+-=-=ç÷èø.②()()3322a b a b a ab b +=+-+;()()3322a b a b a ab b -=-++.根据以上材料,解答下列问题:(1)2410(0)x x x -+=¹,则1x x +=______ ;221x x+=______ ;441x x +=______ ;(2)22720x x -+=,求331x x +的值.29.阅读理解,解答下列问题:利用平面图形中面积的等量关系可以得到某些数学公式.(1)例如,根据下图①,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2根据图②能得到的数学公式是__________.(2)如图③,请写出(a +b )、(a ﹣b )、ab 之间的等量关系是__________(3)利用(2)的结论,解决问题:已知x +y =8,xy =2,求(x ﹣y )2的值.(4)根据图④,写出一个等式:__________.(5)小明同学用图⑤中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片,用这些纸片恰好拼出一个面积为(3a +b )(a +3b )长方形,请画出图形,并指出x +y +z 的值.类似地,利用立体图形中体积的等量关系也可以得到某些数学公式.(6)根据图⑥,写出一个等式:___________.。
第一章《整式的乘除》单元测试(含答案)
第一章 整式的乘除单元测试(BJ)(时间:120分钟 满分:150分)一、选择题(本大题共15小题每小题3分,共45分)1.计算a ·a 3的结果是(A )A .a 4B .-a 4C .a -3 D .-a 32.计算(xy 2)3结果正确的是(B )A .xy 5B .x 3y 6C .xy 6D .x 3y 5 3.计算(-2)0+9÷(-3)的结果是(B )A .-1B .-2C .-3D .-4 4.下列运算正确的是(C )A .x 4·x 3=x 12B .(x 3)4=x 81C .x 4÷x 3=x (x ≠0)D .x 3+x 4=x 75.人体中成熟的红细胞的平均直径为0.000 007 7 m ,用科学记数法表示为(D ) A .7.7×10-5 m B .77×10-6 mC .77×10-5 m D .7.7×10-6 m6.若□×3xy =3x 2y ,则□内应填的单项式是(C )A .XyB .3xyC .xD .3x 7.计算a 5·(-a )3-a 8的结果是(B )A .0B .-2a 8C .-a 16D .-2a 16 8.2-3可以表示为(A )A .22÷25B .25÷22C .22×25D .(-2)×(-2)×(-2) 9.下列运算正确的是(C )A .2x (x 2+3x -5)=2x 3+3x -5B .a 6÷a 2=a 3C .(-2)-3=-18 D .(a +b )(a -b )=(a -b )210.已知x +y -3=0,则2y ·2x 的值是(D )A .6B .-6 C.18 D .811.如果x 2+ax +9=(x +3)2,那么a 的值为(C )A .3B .±3C .6D .±612.如果(2x +m )(x -5)展开后的结果中不含x 的一次项,那么m 等于(D ) A .5 B .-10 C .-5 D .10 13.已知a =2 0162,b =2 015×2 017,则(B )A .a =bB .a >bC .a <bD .a ≤b 14.如果3a =5,3b =10,那么9a-b的值为(B )A.12B.14C.18 D .不能确定15.已知(x -2 015)2+(x -2 017)2=34,则(x -2 016)2的值是(D )A .4B .8C .12D .16 提示:把(x -2 015)2+(x -2 017)2=34变形为(x -2 016+1)2+(x -2 016-1)2=34. 二、填空题(本大题共5小题,每小题5分,共25分) 16.若(2x +1)0=1,则x 的取值范围是x ≠-12.17.化简:6a 6÷3a 3=2a 3.18.某班墙上的“学习园地”是一个长方形,它的面积为6a 2-9ab +3a ,已知这个长方形“学习园地”的长为3a ,则宽为2a -3b +1.19.当x =-2时,代数式ax 3+bx +1的值是2 017,那么当x =2时,代数式ax 3+bx +1的值是-2__015. 20.已知a 是-2的相反数,且|b +1|=0,则[-3a 2(ab 2+2a )+4a (-ab )2=÷(-4a )的值为5. 三、解答题(本大题共7小题,共80分) 21.(8分)计算:(1)2x 3·(-x )2-(-x 2)2·(-3x ); (2)(2x -y )2·(2x +y )2. 解:原式=2x 3·x 2-x 4·(-3x ) =2x 5+3x 5=5x 5. 解:原式=[(2x -y )·(2x +y )]2 =(4x 2-y 2)2 =16x 4-8x 2y 2+y 4.22.(8分)计算:(1)(-3)0+(-12)-2÷|-2|; (2)2017×1967.(用简便方法计算)解:原式=1+2 解:原式=(20+17)(20-17)=3. =202-(17)2=3994849.23.(10分)若a(x m y4)3+(3x2y n)2=4x2y2,求a、m、n的值.解:因为a(x m y4)3÷(3x2y n)2=4x2y2,所以ax3m y12÷9x4y2n=4x2y2.所以a÷9=4,3m-4=2,12-2n=2.解得a=36,m=2,n=5.24.(12分)化简求值:[(2x-y)(2x+y)+y(y-6x)+x(6y-2)]÷2x,其中x=1 009.解:原式=(4x2-y2+y2-6xy+6xy-2x)÷2x=(4x2-2x)÷2x=2x-1.当x=1 009时,原式=2×1 009-1=2 017.25.(12分)黄老师在黑板上布置了一道题,小亮和小新展开了下面的讨论:根据上述情景,你认为谁说得对?为什么?解:原式=4x2-y2+2xy-8x2-y2+4xy+2y2-6xy=-4x2,因为这个式子的化简结果与y值无关,所以只要知道了x的值就可以求解,故小新说得对.26.(14分)图1是一个长为2x,宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后按图2所示拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于x-y;(2)试用两种不同的方法求图2中阴影部分的面积.方法1:(x-y)2;方法2:(x+y)2-4xy.(3)根据图2你能写出下列三个代数式之间的等量关系吗?(x+y)2,(x-y)2,4xy:(x-y)2=(x+y)2-4xy.(4)根据(3)题中的等量关系,解决如下问题:若x+y=4,xy=3,求(x-y)2.解:(x-y)2=(x+y)2-4xy=42-12=4.27.(16分)如下数表是由从1开始的连续自然数组成的,观察规律并完成各题的解答.(1)表中第8行的最后一个数是64,它是自然数8的平方,第8行共有15个数;(2)用含n的代数式表示:第n行的第一个数是(n-1)2+1,最后一个数是n2,第n行共有(2n-1)个数;(3)求第n行各数之和.解:第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×13;类似地,第n行各数之和等于(2n-1)(n2-n+1)=2n3-3n2+3n-1.。
完整版第一章整式的乘除单元测试题
第一章《整式的乘除》单元测试题一、选择题(每题 3 分,共 30 分)1.以下运算中,错误的选项是()A. 201B. 313C. a2 a 3 a 5D. ( a 2 ) 3a6 2.化简( a2)3的结果是()A .a5B.a5C.a6D.a63.以下计算正确的选项是()A .a3+a4=a7B. a3·a4=a7C.(a3)4=a7D. a6÷a3=a24.设 a m =8,a n =16,则 a m n =()A.245.PM2.5 是指大气中直径小于或等于0.000 002 5 m 的颗粒物,将0.000 002 5 用科学记数法表示为 ()-5B.0.25 ×10-6C.×-5D.×-6A . 0.25 ×10 2.5 10 2.5 106.李老师做了个长方形教具,此中一边长为2a+ b,另一边长为 a-b,则该长方形的面积为 ()A . 6a+b B.2a 2-ab-b2C.3a D.10a-b7. 计算( x- 3y)(x+3y)的结果是()x2y2Bx2y2Cx2y2Dx2y2A .-3.-6.-9. + 98. 以下计算结果正确的选项是()A .(3 xy )2 3 x2 y 2.B.2x2y32xy2x3y4.C. 28x4y27x3y 4xy.D.( 3a2)(3a2) 9a249.计算x2x5x 1 的结果,正确的选项是().A .4x5 B. x24x5 C.4x5 D. x24x510.如图,表示暗影部分面积的代数式是()A . ab bc B.ad c(b d)二、填空题(每空 3 分,共 18 分)1.所表示的小数是 ________________.2.若 x 2 2x24x m,则 m=_____.3.计算: (2a3a2 )a2______________.4.假如x y4, x y8 ,那么代数式x2y2的值是.5.一台电子计算机每秒可运转4×109 次运算,则它工作5×10 2秒可作的运算是________________________次 .6.任意给定一个非零数,按以下程序计算,最后输出的结果是(用含 m 的代数式表示)三、计算题(每题 6 分,共 36 分)(1)( 1)20141)2(3.14 )0()( 2 899 901 1 2(3)2a (3a2 a 3)(4)24x2y6xy(5) (xy 4)( xy 4)(6)(a3)(a 1) a(a 2)四、解答题(每题 8 分,共 16 分)1、( 8 分)先化简,再求值:(a b)(a b) (a b)22a2,此中a3,b 1 .32212、( 8 分)化简求值:xy 2 xy 2 2x y 4 xy,此中x 10, y5附带题:(10 分)小明想把一长是 60cm,宽为 40cm 的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形的四个角各剪去一个同样小正方形(如图)。
第一章整式的乘除单元测试卷及答案
整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+ B. 33333a a a a =⋅⋅ C. 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( ) A. 1- B. 1 C. 0 D. 19973.设()()A b a b a +-=+223535,则A=( )A. 30ab B. 60ab C. 15ab D. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( ) A. 25. B 25- C 19 D 、19-5.已知,5,3==bax x 则=-ba x23( ) A 、2527 B 、109 C 、53D 、526. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn ,你认为其中正确的有A 、①② B 、③④ C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a ²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。
第一章 整式的乘除 单元测试
第一章整式的乘除单元测试(基础过关)一、单选题1.下列计算正确的是()A.2a+3b=5ab B.x8÷x2=x6C.(ab3)2=ab6D.(x+2)2=x2+4【答案】B【分析】由相关运算法则计算判断即可.【解析】2a和3b不是同类项,无法计算,与题意不符,故错误;x8÷x2=x6,与题意相符,故正确;(ab3)2=a2b6,与题意不符,故错误;(x+2)2=x2+2x+4,与题意不符,故错误.故选:B.【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键.2.下列计算正确的是( )A.(﹣p2q)3=﹣p5q3B.12a2b3c÷6ab2=2abC.(x2﹣4x)÷x=x﹣4D.(a+3b)2=a2+9b2【答案】C根据积的乘方运算,整式除法运算以及完全平方公式分别求解验证即可.【解析】解:A、原式=﹣p6q3,原计算错误,不符合题意;B、原式=2abc,原计算错误,不符合题意;C、原式=x﹣4,原计算正确,符合题意;D、原式=a2+6ab+9b2,原计算错误,不符合题意;故选:C.【点睛】本题考查积的乘方运算,整式的除法运算以及完全平方公式,熟记和熟练运用基本公式和法则是解题关键.3.郑州市“旧城改造”中,计划在市内一块长方形空地上种植草皮,以美化环境.已知长方形空地的面积为(3ab+b)平方米,宽为b米,则这块空地的长为( )A.3a米B.(3a+1)米C.(3a+2b)米D.(3ab2+b2)米【答案】B【分析】直接利用整式的除法运算法则计算得出答案.【解析】解:∵长方形空地的面积为(3ab+b)平方米,宽为b米,∴这块空地的长为:(3ab+b)÷b=(3a+1)米.【点睛】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.4.计算2202120192023-´的结果为()A .4B .3C .2D .1【答案】A【分析】根据2019=2021-2,2023=2021+2可把原式变形,然后根据平方差公式进行计算即可.【解析】解:2202120192023-´=()()220212*********-´+-=22202120214-+=4;故选A .【点睛】本题主要考查平方差公式,熟练掌握平方差公式是解题的关键.5.小明在做作业的时候,不小心把墨水滴到了作业本上,▄×2ab =4a 2b +2ab 3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是( )A .(2a +b 2)B .(a +2b )C .(3ab +2b 2)D .(2ab +b 2)【答案】A【分析】根据多项式除单项式的运算法则计算即可.【解析】∵(4a 2b +2ab 3)÷2ab =2a +b 2,∴被墨汁遮住的一项是2a +b 2.故选:A .【点睛】本题考查了多项式除以单项式,一般地,多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.6.已知2m +3n =4,则48m n ´的值为()A .8B .12C .16D .20【答案】C【分析】根据()()2323234822222m n m n m n m n +´=´=´=进行求解即可.【解析】解:∵234m n +=,∴()()23232344822222216m n m n m n m n +´=´=´===,故选C .【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,熟知相关计算法则是解题的关键.7.若2223a b -=,12a b +=,则-a b 的值为( )A .12-B .43C .32D .2【答案】B【分析】根据平方差公式计算即可得到答案【解析】解:∵()()22a b a b a b +-=-,∴()1223a b ´-=,∴()43a b -=.故选B .【点睛】此题考查平方差公式,熟记公式并熟练应用是解题的关键.8.如图所示,有三种卡片,其中边长为a 的正方形卡片有1张,长为a 、宽为b 的矩形卡片有4张,边长为b 的正方形卡片有4张,用这9张卡片刚好能拼成一个大正方形,则这个大正方形的边长为( )A .2+a bB .22a b +C .2a b +D .a b+【答案】A 【分析】可根据拼前与拼后面积不变,求出正方形的边长.【解析】解:设拼成后大正方形的边长为x,则a2+4ab+4b2=x2,则(a+2b)2=x2,∴x=a+2b,故选A.【点睛】本题考查了完全平方公式的几何背景以及整式的混合运算,解题的关键是依据面积相等列方程.9.从边长为a的正方形中剪掉一个边长为b的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是( )A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.b(a-b)=ab-b2D.a2-b2=(a+b)(a-b)【答案】D【分析】观察图1与图2,根据两图形阴影部分面积相等,即可写出一个正确的等式.【解析】解:根据图形得:图1中阴影部分面积=a2-b2,图2中阴影部分面积=(a+b)(a-b),∴a2-b2=(a+b)(a-b),故选D.【点睛】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.10.我国宋代数学家杨辉发现了()nn=,1,2,3,…)展开式系数的规律:a b+(0以上系数三角表称为“杨辉三角”,根据上述规律,()8+展开式的系数和是()a bA.64B.128C.256D.612【答案】C【分析】由“杨辉三角”的规律可知,(a+b)8所有项的系数和为28,即可得出答案.【解析】解:由“杨辉三角”的规律可知,()0+展开式中所有项的系数和为1,a b()1+展开式中所有项的系数和为2,a b()2+展开式中所有项的系数和为4,a b()3a b +展开式中所有项的系数和为8,……()n a b +展开式中所有项的系数和为2n ,()8a b +展开式中所有项的系数和为82256=.故选:C .【点睛】本题考查了“杨辉三角”展开式中所有项的系数和的求法,解题关键是通过观察得出系数和的规律.二、填空题11.计算22-的结果是______.【答案】14【分析】根据负整数指数幂的运算法则计算即可.【解析】解:2211224-==,故答案为:14.【点睛】本题考查了负整数指数幂,熟知运算法则是解题的关键.12.计算:(xy )2=_____.(﹣m 2)3=_____.2a •(﹣3b )=_____.(a 6﹣2a 3)÷a 3=_____.【答案】x2y2﹣m6-6ab a3﹣2a3【分析】根据单项式的乘法,积的乘方、幂的乘方的性质,多项式除以单项式分别计算求解即可.【解析】解:(xy)2=x2y2;(﹣m2)3=﹣m6;2a•(﹣3b)=-6ab;(a6﹣2a3)÷a3=a6÷a3﹣2a3÷a3= a3﹣2.故答案为:x2y2;﹣m6;-6ab;a3﹣2.【点睛】本题考查了单项式的乘法,积的乘方、幂的乘方,多项式除以单项式,熟练掌握运算法则和性质是解题的关键.13.用科学记数法表示0.00000012为________.【答案】71.210-´【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解析】解:0.00000012=1.2×10-7.故答案为:1.2×10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.若式子x2+16x+k是一个完全平方式,则k=______.【答案】64【分析】根据完全平方公式解答即可.【解析】解:∵(x+8)2=x2+16x+64=x2+16x+k,∴k=64.故填64.【点睛】本题主要考查了完全平方公式,掌握完全平方公式的结构特点成为解答本题的关键.15.(8x2+4x)(-8x2+4x)=_______.【答案】16x2 - 64x4x4+16x2【分析】利用平方差公式进行计算.【解析】解:原式=(4x)2-(8x2)2=16x2 - 64x4,故答案为:16x2 - 64x4.【点睛】本题考查平方差公式,掌握平方差公式(a +b )(a -b )=a 2-b 2的结构是解题关键.16.(23)(23)a b c a b c -++-=______.【答案】2224129a b bc c -+-【分析】根据整式的乘法运算法则,平方差公式以及完全平方公式计算求解即可.【解析】解:(23)(23)a b c a b c -++-,[(23)][(23)]a b c a b c =--+-,22(23)a b c =--,()2224129a b bc c =--+,2224129a b bc c =-+-.故答案为:2224129a b bc c -+-.【点睛】此题考查了整式的乘法运算和平方差公式,解题的关键是熟练掌握整式的乘法运算法则,平方差公式和完全平方公式.17.若x m -与23x +的乘积中不含一次项,则m 的值为____________.【答案】32【分析】先计算()()()2232323x m x x m x m -+=+--,再由乘积中不含x 的一次项,可得320m -=从而可得答案.【解析】解:∵()()()222322332323x m x x mx x m x m x m -+=-+-=+--且2x m +与2x +的乘积中不含x 的一次项,∴320m -= ∴32m = 故答案为:32.【点睛】本题考查的是多项式的乘法运算,多项式中不含某项,掌握以上知识是解题的关键.18.对a ,b ,c ,d 定义一种新运算:a c ad bcb d =-,如232413514=´-´=,计算2x y x x y=+_________.【答案】22x xy+【分析】根据新定义规则把行列式化为常规乘法,利用多项式乘法法则展开,合并同类项即可.【解析】解:()2222222xy x x y xy x xy xy x xy x x y=+-=+-=++.故答案为:22x xy +.【点睛】本题考查新定义,整式的乘法混合运算,掌握新定义规则,整式的乘法混合运算法则是解题关键.19.1921年伟大的中国共产党成立,2021年中国共产党迎来了百年华诞,若()()19212021520a a ++=,则()()2219212021a a +++的值为 _____.【答案】11040【分析】利用完全平方公式列出关系式,把各自的值代入计算即可求出所求.【解析】解:∵()()19212021520a a ++=,()()2021192120211921100a a a a +-+=+--=,∴()()()()()()2222021192119212021219212021a a a a a a +-++++++éëû=-ù,∴()()2210000192120211040a a +-=++,则()()221921202111040a a =+++.故答案为:11040.【点睛】本题考查完全平方公式的变形运用,理解并熟练运用完全平方公式,运用整体思想是解题关键.20.已知23,32a b ==,则1111a b +=++_______.【答案】1.【分析】利用幂的乘方与同底数幂相乘,得到2a +1=2a ×2=6,3b +1=3b ×3=6,进而得到111111116666a b a b +++++×==,求出答案即可.【解析】解:∵2a +1=2a ×2=3×2=6,3b +1=3b ×3=2×3=6,∴11111(2)62a a a +++==,11111(3)63b b b +++==,∴11111111666236a b a b +++++×==´=,∴11111a b +=++.故答案为:1.【点睛】本题考查幂的乘方与同底数幂相乘,掌握幂的乘方与同底数幂相乘的运算法则是解题关键.三、解答题21.计算:(1)()()22012011 3.142p -æö-+---ç÷èø(2)32332(2)(2)(2)(2)x y xy x y x ×-+-¸(3)()()222226633m n m n m m --¸-【答案】(1)4;(2)7312x y -;(3)2221-++n n 【分析】(1)利用-1的偶次幂的法则、负指数幂法则、零指数幂法则即可得到答案;(2)根据乘方法则再利用单项式乘除单项式法则即可得到答案;(3)根据多项式除以单项式法则计算即可得到答案;【解析】解:(1)()()22012011 3.142p -æö-+---ç÷èø1414=+-=;(2)32332(2)(2)(2)(2)x y xy x y x ×-+-¸629324(2)(8)2x y xy x y x =×-+-¸7373(8)(4)x y x y -+-=7312x y =-;(3)()()222226633m n m n m m --¸-=()()222221(3)3n n m m -++-¸-2221n n =-++;【点睛】本题考查了整式的混合运算,知识点有:-1的偶次幂的法则、负指数幂法则、零指数幂法则、单项式乘除单项式、多项式除以单项式,熟练掌握公式及法则是做题的关键.22.先化简,再求值.()()()()25222232m n n m n m n n n m éùæö--+++-¸ç÷êúèøëû,其中2m =,1n =-.【答案】−2n−m ;0【分析】先根据整式的混合运算的法则化简,再把2m =,1n =-代入即可【解析】解:()()()()25222232m n n m n m n n m m éùæö--+++-¸ç÷êúèøëû()22222442543m mn n mn n n m m éù=-+--+-¸ëû()26332mn m m n méù=--¸=--ëû当2m =,1n =-时,原式=2-2=0【点睛】本题考查了整式的化简求值,熟练掌握相关的法则是解题的关键23.①先化简,再求值:(4x +3)(x -2)-2(x -1)(2x -3),x =-2;②若(x 2+px +q )(x 2-3x +2)的结果中不含x 3和x 2项,求p 和q 的值.【答案】①512x -,22-;②p =3,q =7.【分析】①先去括号再合并同类项,将x=-2代入化简后的结果计算;②先按照多项式乘以多项式将括号打开,再根据不含项的系数为0得到方程,解方程即可得到答案.【解析】①(4x +3)(x -2)-2(x -1)(2x -3),=2248362(2323)x x x x x x -+----+ ,=224564106x x x x ---+-,=512x -∵x =-2,∴原式=-10-12=-22;②(x 2+px +q )(x 2-3x +2),=432322323232x x x px px px qx qx q -++-++-+,=432(3)(23)(2)2x p x p q x p q x q +-+-++-+,∵结果中不含x 3和x 2项,∴30-=p ,230p q -+=,∴p=3,∴q=7.【点睛】此题考查整式的混合运算,整式的不含某项的化简求值,将整式正确化简计算是解题的关键.24.若m n a a =(0a >且1a ¹,m 、n 是正整数),则m n =.你能利用上面的结论解决下面两个问题吗?试试看,相信你一定行!(1)若228x ´=,求x 的值;(2)若()2893x =,求x 的值.【答案】(1)2;(2)2【分析】(1)根据a m =a n (a >0且a≠1,m 、n 是正整数),则m=n ,对方程变形可得答案;(2)根据a m =a n (a >0且a≠1,m 、n 是正整数),则m=n ,对方程变形可得答案.【解析】解:(1)原方程等价于2x+1=23,∴x+1=3,解得x=2;(2)原方程等价于34x =38,∴4x=8,解得x=2.【点睛】此题考查了同底数幂乘法与幂的乘方,利用相关运算法则化成底数相同的幂是解题关键.25.如图1,在一个边长为a 的正方形木板上锯掉一个边长为b 的正方形, 并把余下的部分沿虚线剪开拼成图2的形状.(1)请用两种方法表示阴影部分的面积图1得: ; 图2得 ;(2)由图1与图2 面积关系,可以得到一个等式: ;(3)利用(2)中的等式,已知2216a b -=,且a+b=8,则a-b= .【答案】(1)22a b -,()()a b a b +-;(2)()()22a b a b a b -=+-;(3)2.【分析】(1)图1用大正方形的面积减去小正方形的面积表示阴影部分的面积;图2根据梯形的面积公式表示阴影部分的面积;(2)根据阴影部分的面积相等,可直接得出等式;(3)利用(2)中的等式,代入数据求解即可【解析】解:(1)图1得:22a b -;图2得:()()()()222b a a b a b a b +×-=+-;故答案为:22a b -,()()a b a b +-;(2)由图1与图2阴影部分的面积相等可得:()()22a b a b a b -=+-;故答案为:()()22a b a b a b -=+-;(3)∵2216a b -=,8a b +=,()()22a b a b a b -=+-,∴()168a b =-,∴2a b -=,故答案为:2.【点睛】本题考查了平方差公式的几何意义,正确的表示出阴影部分的面积是解题关键.26.如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分如图剪开,拼成图②的长方形(1)比较两图的阴影部分面积,可以得到乘法公式: (用字母表示)(2)请应用这个公式完成下列各题①计算:(2)a b c +- (2)a b c -+②计算:222222221009998974321-+-+¼¼+-+-【答案】(1)22()()a b a b a b -=-+;(2)①22242a b bc c -+-;②5050.【分析】(1)分别由图①、②求出阴影部分的面积,即可得出结论;(2)①利用添括号法则将b-c 看成一个整体,然后利用平方差公式和完全平方公式计算即可;②利用平方差公式计算即可.【解析】解:(1)由图①可知:阴影部分的面积为22a b -;由图②可知:阴影部分的面积为()()a b a b -+∴22()()a b a b a b -=-+故答案为:22()()a b a b a b -=-+;(2)①(2)(2)a b c a b c +--+22(2)()a b c =--22242a b bc c =-+-;②原式(10099)(10099)(9897)(9897)(21)(21)=+-++-+¼¼++-1009998974321=++++¼¼++++5050=.【点睛】此题考查的是平方差公式的几何意义和平方差公式的应用,掌握平方差公式和完全平方公式是解决此题的关键.27.如图,将边长为x 的正方形分割成两个正方形和两个长方形.两个正方形的面积分别为y 和25,仔细观察图形.(1)用x 的代数式表示y(2)若(1)得到的算式中,x 、y 表示任何非负数,求满足下列条件的x 、y 的值:①用x 、y 、5、6组成4个连续的整数;②当x 为何值时,y 有最小值?【答案】(1)()()255y x x =-³;(2)①3x =,4y =或7x =,4y =.②当5x =时,y 最小值是0【分析】(1)根据图形中的面积关系,即可得到答案;(2)①对“6”分3类讨论:“当6为最大的数”或“当6为较大的数”或“当6为较小的数”分别求出满足条件的x ,y 的值,即可.②根据()250y x =-³,即可求出y 的最小值和对应的x 的值.【解析】(1)()()255y x x =-³(2)①当6为最大的数时,3x =,4y =,符合21025y x x =-+;当6为较大的数时,7x =,4y =,21025y x x =-+;当6为较小的数时,8x =,7y =,不符合21025y x x =-+;3x \=,4y =或7x =,4y =.②()2210255y x x x =-+=-Q ,\当5x =时,y 最小值是0.【点睛】本题主要考查根据图形列等式,用代数式表示图形各个相关的量,是解题的关键.28.探索题:()()2111x x x -+=-;()()23111x x x x -++=-;()()324111x x x x x -+++=-;()()4325111x x x x x x -++++=-…根据前面的规律,回答下列问题:(1)()()4123211n n x x x x x x x ---+++++++=L ______.(2)当3x =时,()()20192018201732313333331-+++++++=L ______.(3)求:202020192018322222221+++++++L 的值(请写出解题过程).【答案】(1)11x x +-;(2)202031-;(3)见解析,202121-.【分析】(1)根据所给的四个等式归纳规律解答即可;(2)把x=3,n=20119代入(1)中的等式求值即可;(3)根据(1)中得到的规律,在所求的代数式前添加(2-1),然后再计算即可.【解析】解:(1)由所给的四个等式,可归纳出:()()12321111n n n n x x x x x x x x --+-+++++++=-L ;故答案为:11x x +-;(2)当3x =时,()()20152018201732202031333333131-+++++++=-L ;故答案为:202031-;(3)当2x =时,()()20202019201832202121222222121-+++++++=-L ,∴202020192018322021222222121+++++++=-L .【点睛】本题考查了平方差公式,乘方的末位数字的规律,根据所给等式归纳出规律是解答本题的关键.29.(探究)如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图① 图② ;(2)比较两图的阴影部分面积,可以得到乘法公式: (用字母a 、b 表示);(应用)请应用这个公式完成下列各题:①已知2m ﹣n =3,2m +n =4,则4m 2﹣n 2的值为 ;②计算:(x ﹣3)(x +3)(x 2+9).(拓展)计算()()()()()248322121212121+++++L 的结果为 .【答案】探究:(1)22a b -,()()a b a b +-;(2)22()()a b a b a b +-=-;应用:①12;②481x -;拓展:6421-.【分析】探究:(1)图①阴影部分的面积等于两个正方形的面积差,图②阴影部分的面积等于一个大长方形的面积;(2)根据图①与图②的面积相等即可得;应用:①根据上述得到的乘法公式(平方差公式)即可得;②利用两次平方差公式即可得;拓展:将原式改写成()()()()()()24832212121221211+++-++L ,再多次利用平方差公式即可得.【解析】探究:(1)图①阴影部分的面积为两个正方形的面积差,即22a b -,图②的阴影部分为长为()a b +,宽为()-a b 的矩形,则其面积为()()a b a b +-,故答案为:22a b -,()()a b a b +-;(2)由图①与图②的面积相等可得到乘法公式:22()()a b a b a b +-=-,故答案为:22()()a b a b a b +-=-;应用:①22()(422342)1m n m n m n -+=´=-=,故答案为:12;②原式22(9)(9)x x =-+,222()9x =-,481x =-;拓展:原式()()()()()()24832212121212211+++=-++L ,()()()()()2248322121212121++=-++L ,()()()()4348221212121=++-+L ,()()()8328212121=-++L ,()()32322121=-+,6421=-.【点睛】本题考查了平方差公式与几何图形、以及应用,熟练掌握平方差公式是解题关键.。
第一章整式的乘除单元检测试题(含答案)
第一章 整式的乘除单元检测试题班级:__________姓名:__________ 一、单选题(共10题;共30分)1.下列计算错误的是( )A. =4 B. 32×3﹣1=3 C. 20÷2﹣2= D. (﹣(﹣3×3×10102)3=﹣2.7×2.7×101072.已知则 ( ) A. B. 50 C. 500 D. 无法计算无法计算3.若(x ﹣2)(x +3)=x 2+ax +b ,则a 、b 的值分别为(的值分别为( ) A.a =5,b =6 B.a =1,b =﹣6 C.a =1,b =6 D.a =5,b =﹣6 4.已知4y 2+my +9是完全平方式,则m 为( )A. 6 B. ±6 C. ±12 D. 12 5.如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为(a +1)cm 的正方形(a >0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ) A. (2a 2+5a )cm 2 B. (3a +15)cm 2 C. (6a +9)cm 2 D. (6a +15)cm 26.下列计算正确的一项是( )A. a 5+a 5=2a 10 B. (a +2)(a ﹣2)=a 2﹣4 ;C. (a ﹣b )2=a 2﹣b 2 ;D. 4a ﹣2a =2 7.若x n =2,则x 3n 的值为(的值为( )A. 6 B. 8 C. 9 D. 12 8.如果(a -1)0=1成立,则(成立,则( )A. a ≠1≠1 B. a =0 C. a =2 D. a =0或a =2 9.若 , ,且满足,且满足 ,则,则 的值为( ). ). A. 1 B. 2 C. C. D. 10.请你观察图形,依据图形面积之间的关系,不需要添加辅助线,便可以得到一个你熟悉的公式,这个公式是( )A. (x +y )(x ﹣y )=x 2﹣y 2=________。
第一章 整式的乘除 单元练习卷及答案
第一章整式的乘除单元练习一、单选题1.化简(a3)2的结果是()A. a6B. a5C. a9D. 2a32.下列运算正确的是()A. a3+a2=2a5B. 2a(1﹣a)=2a﹣2a2C. (﹣ab2)3=a3b6D. (a+b)2=a2+b23.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占为7×10-7平方毫米,这个数用小数表示为()A. 0.000007B. 0.000070C. 0.0000700D. 0.00000074.下列运算正确的是()A. x2+x3=x6B. (x3)2=x6C. 2x+3y=5xyD. x6÷x3=x25.计算b2•b3正确的结果是()A. 2b6B. 2b5C. b6D. b56.如果x2﹣6x+k是完全平方式,则k的值为()A. ±9B. ±36C. 36D. 97.下列运算中正确的是()A. a3·a4=a12B. (-a2)3=-a6C. (ab)2=ab2D. a8÷a4=a28.若a+b=﹣3,ab=1,则a2+b2=()A. -11B. 11C. -7D. 79. 计算3﹣1等于()A. 3B. ﹣C. ﹣3D.10.要使(x2+ax+1)(﹣6x3)的展开式中不含x4项,则a应等于()A. 6B. -1C. D. 011.下列计算中,错误的是()A. 3a﹣2a=aB. ﹣2a(3a﹣1)=﹣6a2﹣1C. ﹣8a2÷2a=﹣4aD. (a+3b)2=a2+6ab+9b212.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A. 0.25×10﹣5B. 0.25×10﹣6C. 2.5×10﹣5D. 2.5×10﹣613.不论x、y取任何实数,x2﹣4x+9y2+6y+5总是()A. 非负数B. 正数C. 负数D. 非正数14.已知a+ =3,则a2+ 的值是()A. 9B. 7C. 5D. 315.人体中红细胞的直径约为0.0000077m,将数0.0000077m用科学记数法表示为( )A. 7.7B. 0.77C. 77D. 7.7二、填空题16.(-a5)4•(-a2)3=________.17.计算:﹣2x(x﹣2)=________18.若a﹣b=﹣3,ab=2,则a2+b2的值为________19.图a是一个长为2m,宽为2n的长方形,沿图a中虚线用剪刀把它均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)请用两种不同的方法求图b中阴影部分的面积:方法1:________ (只列式,不化简)方法2:________ (只列式,不化简)(2)观察图b,写出代数式(m+n)2,(m﹣n)2,mn之间的等量关系:________ ;(3)根据(2)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a﹣b)2=________ .20.已知(x+1)(x﹣2)=x2+mx+n,则m+n=________三、解答题21. ()如果,求的值.22.已知10x=5,10y=6,求:(1)102x+y;(2)103x﹣2y.四、综合题23.已知a+b=1,ab=-6,求下列各式的值.(1)a2+b2;(2)a2-ab+b2.24.计算:(1)(2)(2a﹣b﹣3)(2a+b﹣3)25.21.(10分)先化简,再求值:(1)(1+a)(1-a)+(a-2)2,其中a=12;(2)[x2+y2-(x+y)2+2x(x-y)]÷4x,其中x-2y=2.答案解析部分一、单选题1.【答案】A【解析】【分析】(a3)2=a2×3=a6.故选:A .问题解析:根据幂的乘方的性质可解.即(a m)n=a mn.2.【答案】B【解析】【解答】解:A、原式不能合并,不符合题意;B、原式=2a﹣2a2,符合题意;C、原式=﹣a3b6,不符合题意;D、原式=a2+2ab+b2,不符合题意,故选B【分析】各项计算得到结果,即可作出判断.3.【答案】D【解析】【分析】根据科学记数法的表示方法,指数是负几,小数点向左移动几位,可得答案.【解答】7×10-7=0.0000007,故选:D.【点评】本题考查了科学计数法,指数是负几,小数点向左移动几位.4.【答案】B【解析】【解答】解:A、x2与x3不是同类项,不能合并,错误;B、(x3)2=x6,正确;C、2x与3y不是同类项,不能合并,错误;D、x6÷x3=x3,错误;故选B【分析】根据同类项、幂的乘方和同底数幂的除法计算判断即可.5.【答案】D【解析】【解答】b2•b3=b2+3=b5.【分析】根据同底数幂的乘法法则计算.6.【答案】D【解析】【解答】解:∵x2﹣6x+k是完全平方式,∴k=9,故选D.【分析】利用完全平方公式的结构特征判断即可.7.【答案】B【解析】【解答】解:A a3·a4=a7,故A不符合题意;B(-a2)3=-a6故B符合题意;C(ab)2=a2b2 故C不符合题意;Da8÷a4=a4故D不符合题意,故应选B。
《整式的乘除》单元考试题及答案
整式的乘除单元测验数学试卷 班级: 姓名: 得分: 一、填空题:(每小题3分,共30分)1、()()235a a a ⋅-⋅-= ;()()2232x x -÷-= 。
2、()()()()32223282y x x yx -⋅-⋅--= ;3、()()ac abc c 241223-⋅⎪⎭⎫ ⎝⎛⋅= ;()xx 2223÷= ; 4、⎪⎭⎫ ⎝⎛+-⋅⎪⎭⎫⎝⎛-3125121232xy x y x = ;5、()()301214.3221-----+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-π= 。
6、()()xy y x xy 8124_______________2-=-⋅= 。
7、()()71022+-a a = ;若0132=+-x x ,则xx 1+= 。
8、若22=nx,则()232n x = ;若n286432=⨯,则n = 。
9、()()20052004125.08⨯-= 。
10、已知32-=ab ,则()b ab b a ab ---352= 。
二、选择题:(每小题2分,共20分)11、下列各式计算正确的是( )A 、()()2442a a = B 、6231052x x x=⋅C 、()()268c c c -=-÷- D 、()623ab ab =12、下列各式计算正确的是( )A 、()22242y x y x +=+ B 、()()10252-=-+x x xC 、()()22y x y x -=+- D 、()()22222y x y x y x -=-+13、用科学记数法表示的各数正确的是( )A 、34500=3.45×102B 、0.000043=4.3×105C 、-0.00048=-4.8×10-4D 、-340000=3.4×10514、当31=a 时,代数式()()()()3134-----a a a a 的值为( ) A 、334B 、-6C 、0D 、8 15、已知2=+b a ,3-=ab ,则22b ab a +-的值为( )A 、11B 、12C 、13D 、14 16、已知2227428b b a b a nm=÷,那么m 、n 的值为( )A 、4=m ,2=nB 、4=m ,1=nC 、1=m ,2=nD 、2=m ,2=n 17、一个正方形边长增加3cm ,它的面积就增加39cm 2,这个正方形边长是( )A 、8 cmB 、5 cmC 、6cmD 、10 cm18、若31=+x x ,则221xx +的值为( )A 、9B 、7C 、11D 、6 19、若229y mxy x +-是一个完全平方式,则m 的值是( )A 、8B 、6C 、±8D 、±620、()()20032005200416.185-÷-⨯⎪⎭⎫⎝⎛=( )A 、85B 、85-C 、58D 、58-三、计算题:(每小题4分,共16分) 21、()2221241254.0⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛-⋅-+b a b a b a n n nn 22、⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛-+2242332432433121x a x a x a x a23、()()123123--+-y x y x 24、()()()()22222222y x y x y x y x -+--+四、先化简,再求值:( 8分)26、()()()222224y x y x y x ---+,其中2=x ,5-=y 。
第1章 整式的乘除单元测试题
第1章整式的乘除单元测试题一.选择题(共10小题)1.已知一粒米的质量是0.0000021千克,这个数字用科学记数法表示为()A.21×10﹣4千克B.2.1×10﹣5千克C.2.1×10﹣6千克D.2.1×10﹣4千克2.若a m=3,a n=5,则a m+n的值是()A.B.C.8D.153.墨迹覆盖了等式“x2x=x3(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷4.下列计算正确的是()A.﹣(a﹣b)=﹣a﹣b B.a2×a2=a4C.a2+a2=a4D.(ab2)2=ab45.下列计算正确的是()A.(a3)2=a5B.(2a)2=2a3C.a•a3=a4D.2a﹣a=26.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6B.10×10﹣7C.0.1×10﹣5D.1×106 7.2020年,引发疫情的冠状病毒被命名为SARS﹣CoV﹣2的新型冠状病毒.形态结构冠状病毒粒子呈不规则形状,直径约0.00000022m,用科学记数法表示为()A.2.2×107B.2.2×10﹣7C.0.22×106D.0.22×10﹣6 8.下列运算正确的是()A.3a+2a=5B.a2•a3=a6C.(2a2)3=6a6D.a4÷(﹣a)2=a29.下列说法正确的是()A.(π﹣3.14)0没有意义B.任何数的0次幂都等于1C.a2•(2a)3=8a6D.若(x+4)0=1,则x≠﹣410.与(﹣3)2互为倒数的是()A.(﹣3)2B.3﹣2C.﹣3﹣2D.﹣32二.填空题(共5小题)11.新型冠状病毒直径平均为100纳米,也就是大约0.0000001米,该直径用科学记数法表示为米.12.a m=2,a n=3,则a m+n=.13.已知a n=9,a m=4,则a m+n=.14.已知a m=4,a n=16,则a2m+n的值为.15.若25m×2×10n=57×24,则mn=.三.解答题(共5小题)16.一粒米微不足道,平时总会在饭桌上不经意地掉下几粒米饭,甚至有些挑食的同学会把吃剩的米饭倒掉.针对这种浪费粮食的现象,老师组织同学们进行了实际测算,称得500粒大米重约10克.现在请你来计算:(1)一粒大米重约克?(2)按我国现有人口14亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(结果用科学记数法表示)(3)若贫困地区每名儿童每天需0.4千克大米,则(2)节约下来的大米供多少名贫困地区儿童生活一年?(结果用科学记数法表示)17.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=,(﹣2,4)=,(﹣2,1)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,7)+(4,8)=(4,56).18.a4•a3+a•a2•a4+a6.19.我们规定一种运算,如果a c=b,则(a,b)=c,例如若23=8,则(2,8)=3.(1)根据上述规定填空(3,27)=,(﹣2,)=5.(2)小明在研究这种运算时发现一种现象:(3n,4n)=(3,4),小明给出了如下证明过程:解:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,所以(3,4)=x,所以(3n,4n)=(3,4),请你用这种方法证明(3,4)+(3,5)=(3,20).20.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=,(﹣2,4)=,(﹣2,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30)。
第一章-整式的乘除单元测试卷及答案
整式的乘除单元测试卷(第10周.)班级 姓名 分数一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+ B. 33333a a a a =⋅⋅ C. 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( ) A. 1- B. 1 C. 0 D. 19973.设()()A b a b a +-=+223535,则A=( )A. 30ab B. 60ab C. 15ab D. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( ) A. 25. B 25- C 19 D 、19-5.已知,5,3==ba x x 则=-ba x23( ) A 、2527 B 、109C 、53D 、526. .如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a2+b 2的值等于( )A 、84 B 、78 C 、12 D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8 10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 二、填空题(共6小题,每小题3分,共18分)11.设12142++mx x 是一个完全平方式,则m =_______。
第一章 整式的乘除单元测试卷及答案
整式的乘除单元测试卷(一)一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+ B. 33333a a a a =⋅⋅ C. 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( ) A. 1- B. 1 C. 0 D. 19973.设()()A b a b a +-=+223535,则A=( )A. 30ab B. 60ab C. 15ab D. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( ) A. 25. B 25- C 19 D 、19-5.已知,5,3==ba x x 则=-ba x 23( ) A 、2527 B 、109 C 、53D 、526. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式: ①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a²+b 2的值等于( )A 、84B 、78C 、12D 、69.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8 10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 整式的乘除单元检测题
班级 姓名 成绩
(满分120分,考试时间70分钟)
一、选择题(3分×10=30分)
1.(-6x n y)2·3x n-1y 的计算结果是( )
A .18x 3n-1y 2;
B .-36x 2n-1y 3;
C .-108x 3n-1y ;
D .108x 3n-1y 3.
2.下列计算正确的是( )
A. 8421262x x x =⋅
B. ()()m m m y y y =÷34
C. ()222
y x y x +=+ D. 3422=-a a 3.计算()()b a b a +-+的结果是 ( )
A. 22a b -
B. 22b a -
C. 222b ab a +--
D. 222b ab a ++-
4.两整式相乘的结果为122--a a 的是 ( )
A 、()()43-+a a
B 、()()43+-a a
C 、()()26-+a a
D 、()()26+-a a
5. 若()682b a b a n m =,那么n m 22-的值是
A. 10
B. 52
C. 20
D. 32
6.林老师做了个长方形教具,一边长为2a b +,另一边为a b -,则该长方形周长为( )
A .6a b +
B .6a
C .3a
D .10a b - 7.下列式子可用平方差公式计算的是:( )
A .()()a b b a --
B .(1)(1)x x -+-
C .()()a b a b ---+
D .(1)(1)x x --+
8.下列等式能成立的是( ).
A.(a-b)2=a 2-ab+b 2
B.(a+3b)2=a 2+9b 2
C.(a+b)2=a 2+2ab+b 2
D.(x+9)(x-9)=x 2-9
9.25a 3b 2÷5(ab)2=( ).
A .a ;
B .5a ;
C .5a 2b ;
D .5
10.形如222a ab b ++和222a ab b -+的式子称为完全平方式,若812++ax x 是一个完全 平方式,则a 等于
A .9
B .18
C .9±
D .18±
二、填空题(3分×5=15分)
11.①=-32)2(a ;②=÷)5()10(3234bc a c b a ;③=-)3(22y x x x
12.① 4x 4y 2÷(-2xy)2=______.② (16a 3-24a 2)÷(-8a 2)=______.
③=⨯⋅⨯)105()104(45
13.用科学计数法表示:(1)3 201 000 000= ,(2)-0.000 002 05= 。
14.已知2210, 5, x y xy x y +==+=则 。
15.下图是某同学在沙滩上用石于摆成的小房子:
观察图形的变化规律,写出第n 个小房子用了 块石子.
三、计算题(4分×12=48分)
1、2
35414141⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛⋅⎪⎭
⎫ ⎝⎛- 2、()()()752t s s t t s -⋅-⋅-
3、)(5)21(22222ab b a a b ab a -++-
4、)1)(32(--x x
5.)1)(1()2(2-+-+x x x 6、()()532532-+++y x y x
7.()2532++y x ; 8、(x+3)(x-3)(x 2+9)
9、)2()246(22ab ab ab b a -÷+- 10、))a 3(}4-23({22-÷-b b a
11、()18283279-÷⨯ 12、3240)2
1()21()21()2(----⨯-÷-+-
四、利用乘法公式计算(4分×3=12分)
(1)1241221232⨯- (2)296
(3)()()()24212121+++
五、化简再求值:(5分) ()()x x y x x 2122++-+,其中251=x ,25-=y 。
六、提高题(5分×2=10分)
1、已知105,106a b ==, 求(1)231010a b +的值; (2)2310a b +的值
2、已知10y -x =,5xy =,求(1) 22y x +的值; (2) 2y x )(+的值。