九年级数学第二轮专题复习_5

合集下载

专题5:无刻度的直尺作图(四)-人教版九年级数学中考复习专题练

专题5:无刻度的直尺作图(四)-人教版九年级数学中考复习专题练

中考复习专题5:无刻度的直尺作图(四)1.如图,已知四边形ABCD为平行四边形,请仅用无刻度直尺完成下列画图,并回答问题,保留作图痕迹(用虚线画出画图过程,实现表示画图结果)(1)如图1,画一条直线既能平分四边形ABCD的周长,也能平分ABCD的面积;(2)如图2,若AB=AD,点E为AD上的一点,请在CB上截取一点M,使得AE=CM,并说明理由;(3)如图3,在(2)的条件下,若∠ABC=90°,连接BD,点F为BD上的一点,请以AF为边构造一个菱形,并说明理由.【解答】(1)如图,直线l即为所求.(2)如图,连接AC,BD交于点O,连接EO延长EO交BC于M,点M即为所求.理由:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠AEO=∠CMO,∵∠AOE=∠COM,∴△AEO≌△CMO(AAS),∴AE=CM.(3)如图3中,连接AC交BD于O,延长AF交CD于M,连接MO,延长MO交AB于N,连接CN 交BD于K,连接AK,CK,CF,则四边形AKCF是菱形.同法可证:AM=AN,∵AN∥CM,∴四边形ANCM是平行四边形,∴AF∥CK,∴∠AFO=∠CKO,∵OA=OC,∠AOF=∠COK,∴△AOF≌△COK(AAS),∴AF=CK,∵AB=BC,∠ABF=∠CBF=45°,BF=BF,∴△ABF≌△CBF(SAS),∴AF=CF,同法可证:AK=CK,∴AF=FC=CK=AK,∴四边形AKCF是菱形.2.如图,在Rt△OBC中,∠B=90°,∠C=60°,OB与⊙O相交于点A,且OA=BC.(1)请你在图1中,用无刻度的直尺在⊙O上找出一点P,使CP∥OB;(2)请你在图2中,用无刻度的直尺在⊙O上找出一点P,使BP∥OC.【解答】(1)如图1:点P即为所求作的点,使CP∥OB;(2)如图2:点P即为所求作的点,使BP∥OC.3.已知四边形ABCD内接于⊙O,且已知∠ADC=120°;请仅用无刻度直尺完成以下作图(保留作图痕迹,不写作法,写明答案).(1)在图1中,已知AD=CD,在⊙O上求作一个度数为30°的圆周角;(2)在图2中,已知AD≠CD,在⊙O上求作一个度数为30°的圆周角.【解答】(1)如图1所示:∠ABD=30°或∠CBD=30°;(2)如图2所示:∠CAE=30°.4.如图,在△ABC中,已知AB=AC,AD⊥BC于点D.(1)如图①,点P为AB上任意一点,请你用无刻度的直尺在AC上找出一点P′,使AP=AP′.(2)如图②,点P为BD上任意一点,请你用无刻度的直尺在CD上找出一点P′,使BP=CP′.【解答】(1)如图①,点P'为所求作的图形,理由:∵AB=AC,AD⊥BC,∴∠ABC=∠ACB,BD=CD,∴AD是BC的垂直平分线,连接CP,交AD于H,连接BH并延长交AC于P',∴BH=CH,∴∠HBC=∠HCB,∴∠ABP'=∠ACP,∵AB=AC,∠BAP'=∠CAP,∴△ABP'≌△ACP,∴AP'=AP,(2)如图②,点P'为所求作的图形,理由:同(1)的方法即可得出,BP=CP'.5.如图,在▱ABCD中,点E在BC上,AB=BE,BF平分∠ABC交AD于点F,请用无刻度的直尺画图(保留作图痕迹,不写画法).(1)在图1中,过点A画出△ABF中BF边上的高AG;(2)在图2中,过点C画出C到BF的垂线段CH.【解答】(1)如图1,AG即为所求.(2)如图2,连接AC,BD交于点O,作射线EO,交AD于G,连接CG,交BF于H,则CH即为所求.理由是:如图3,连接AE,∵四边形ABCD是平行四边形,∴OA=OC,AG∥CE,∴∠AGO=∠CEO,∵∠AOG=∠COE,∴△AOG≌△COE(AAS),∴OG=OE,∴四边形AECG是平行四边形,∴AE∥CG,∵AE⊥BF,∴CG⊥BF,即CH⊥BF.6.如图,在四边形ABCD中,AD∥BC,AD=2BC,点E是AD的中点,请仅用无刻度的直尺分别按下列要求画图.(不写画法,保留画图痕迹)(1)在图1中,画出△ACD的边AC上的中线DM;(2)在图2中,若AC=AD,画出△ACD的边CD上的高AN.【解答】(1)如图,DM为所作;(2)如图,AN为所作.7.用无刻度的直尺按要求作图,请保留画图痕迹,不需要写作法.(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.(2)如图2,在8×6的正方形网格中,请用无刻度直尺画一个与△ABC面积相等,且以BC为边的平行四边形,顶点在格点上.【解答】(1)连接AB,EF,交点设为P,射线AP即为所求;(2)如图所示,平行四边形MBCN即为所求.8.在正方形ABCD中,E为AB的中点.(1)将线段AB绕点O逆时针旋转一定角度,使点A与点B重合,点B与点C重合,用无刻度直尺作出点O的位置,保留作图痕迹;(2)将△ABD绕点D逆时针旋转某个角度,得到△CFD,使DA与DC重合,用无刻度直尺作出△CFD,保留作图痕迹.【解答】如图所示:(1)连接AC交BD于点O,则点O即为所求的点;(2)连EO并延长交CD于H,连AH,延长AH、BC交于点F,连DF,则△DCF即为所求.9.请仅用无刻度的直尺在下列图1和图2中按要求画菱形.(1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.【解答】(1)如图所示:四边形EFGH即为所求的菱形;(2)如图所示:四边形AECF即为所求的菱形.10.如图,▱ABCD的顶点A、B、D均在⊙O上,请仅用无刻度的直尺按要求作图.(1)AB边经过圆心O,在图(1)中作一条与AD边平行的直径;(2)AB边不经过圆心O,DC与⊙O相切于点D,在图(2)中作一条与AD边平行的弦.【解答】(1)连接AC、BD交于点K,过点O、K作直径EF.EF为所求.(2)连接OD,DO的延长线交AB于T,连接AC、BD交于K,过T、K作弦GH,GH为所求.11.已知矩形ABCD,请仅用无刻度的直尺按下列要求作图(不写作法)(1)如图1,点P为CD的中点,画出AB的垂直平分线l.(2)如图2,在矩形ABCD中,以对角线AC为一边构造一个正方形ACFE,画出EF的中点M.【解答】12.在△ABC中,AB=AC,点A在以BC为直径的半圆内,请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹)(1)在图①中作弦EF,使EF∥BC;(2)在图②中过点A作线段BC的中垂线.【解答】(1)如图①中,线段EF即为所求.(2)如图②中,直线AG即为所求.13.请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(用虚线表示画图过程,实线表示画图结果)(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.(3)如图③,△ABC的外接圆的圆心是点O,D是弧AC的中点,画一条直线把△ABC分成面积相等的两部分.【解答】(1)如图①,对称轴m即为所求;∵AB=AD,∠B=∠D,AC=AC,∴△ABC≌△ABD(SAS),∴AC所在直线为四边形ABCD的对称轴m;(2)如图②,直线n即为所求.四边形ABCD中,∵AD∥BC,∠A=∠D,∴四边形ABCD是等腰梯形,∴AD的垂直平分线n即是BC边的垂直平分线;(3)如图③,BE所在直线把△ABC分成面积相等的两部分.连接OD,交AC于点E,∵△ABC的外接圆的圆心是点O,D是弧AC的中点,∴点E是AC的中点,连接BE,∴BE所在直线把△ABC分成面积相等的两部分.。

中考二轮专题复习:第5课时 开放探索问题

中考二轮专题复习:第5课时 开放探索问题

第6课开放探索问题第一部分讲解部分一、专题诠释开放探究型问题,可分为开放型问题和探究型问题两类.开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类.二、解题策略与解法精讲由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、考点精讲(一)开放型问题考点一:条件开放型:条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1:(2011江苏淮安)在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是.(写出一种即可)分析:已知两组对边相等,如果其对角线相等可得到△ABD≌△ABC≌ADC≌△BCD,进而得到,∠A=∠B=∠C=∠D=90°,使四边形ABCD是矩形.解:若四边形ABCD的对角线相等,则由AB=DC,AD=BC可得.△ABD≌△ABC≌ADC≌△BCD,所以四边形ABCD的四个内角相等分别等于90°即直角,所以四边形ABCD是矩形,故答案为:对角线相等.评注:此题属开放型题,考查的是矩形的判定,根据矩形的判定,关键是是要得到四个内角相等即直角.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2:(2011天津)已知一次函数的图象经过点(0,1),且满足y随x的增大而增大,则该一次函数的解析式可以为.分析:先设出一次函数的解析式,再根据一次函数的图象经过点(0,1)可确定出b的值,再根据y随x的增大而增大确定出k的符号即可.解:设一次函数的解析式为:y=kx+b(k≠0),∵一次函数的图象经过点(0,1),∴b=1,∵y随x的增大而增大,∴k>0,故答案为y=x+1(答案不唯一,可以是形如y=kx+1,k>0的一次函数).评注:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,k>0,y随x的增大而增大,与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上.考点三:条件和结论都开放的问题:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,因此必须认真观察与思考,将已知的信息集中分析,挖掘问题成立的条件或特定条件下的结论,多方面、多角度、多层次探索条件和结论,并进行证明或判断.例3:(2010•玉溪)如图,在平行四边形ABCD中,E是AD的中点,请添加适当条件后,构造出一对全等的三角形,并说明理由.分析:先连接BE,再过D作DF∥BE交BC于F,可构造全等三角形△ABE和△CDF.利用ABCD是平行四边形,可得出两个条件,再结合DE∥BF,BE∥DF,又可得一个平行四边形,那么利用其性质,可得DE=BF,结合AD=BC,等量减等量差相等,可证AE=CF,利用SAS可证三角形全等.解:添加的条件是连接BE,过D作DF∥BE交BC于点F,构造的全等三角形是△ABE 与△CDF.理由:∵平行四边形ABCD,AE=ED,∴在△ABE与△CDF中,AB=CD,∠EAB=∠FCD,又∵DE∥BF,DF∥BE,∴四边形BFDE是平行四边形,∴DE=BF ,又AD=BC ,∴AD ﹣DE=BC ﹣BF ,即AE=CF ,∴△ABE ≌△CDF .(答案不唯一,也可增加其它条件)评注:本题利用了平行四边形的性质和判定、全等三角形的判定、以及等量减等量差相等等知识.考点四:编制开放型:此类问题是指条件、结论、解题方法都不全或未知,而仅提供一种问题情境,需要我们补充条件,设计结论,寻求解法的一类题,它更具有开放性.例4:(2010年江苏盐城中考题)某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程....解决的问题,并写出解题过程. 分析:本题的等量关系是:两班捐款数之和为1800元;2班捐款数-1班捐款数=4元;1班人数=2班人数×90%,从而提问解答即可.解:解法一:求两个班人均捐款各多少元?设1班人均捐款x 元,则2班人均捐款(x +4)元,根据题意得1800x ·90%=1800x +4解得x =36 经检验x =36是原方程的根∴x +4=40答:1班人均捐36元,2班人均捐40元解法二:求两个班人数各多少人?设1班有x 人,则根据题意得1800x +4=180090x %解得x =50 ,经检验x =50是原方程的根∴90x % =45答:1班有50人,2班有45人.评注:对于此类编制开放型问题,是一类新型的开放型问题,它要求学生的思维较发散,写出符合题意的正确答案即可,难度要求不大,但学生容易犯想当然的错误,叙述不够准确,如单位的问题、符合实际等要求,在解题中应该注意防范.(二)探究型问题考点五:动态探索型:此类问题结论明确,而需探究发现使结论成立的条件的题目.例5:(2011•临沂)如图1,将三角板放在正方形ABCD 上,使三角板的直角顶点E 与正方形ABCD 的顶点A 重合,三角扳的一边交CD 于点F .另一边交CB 的延长线于点G .(1)求证:EF=EG ;(2)如图2,移动三角板,使顶点E 始终在正方形ABCD 的对角线AC 上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B ,其他条件不变,若AB=a 、BC=b ,求错误!未找到引用源。

2012年中考数学复习第二轮资料《专题复习精品资料》

2012年中考数学复习第二轮资料《专题复习精品资料》

2012年中考数学复习第二轮资料《专题复习部分》中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。

2).方程x 2+y 2+4x -2y+5=0的解是 。

3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。

例 2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。

例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。

4. 解方程:211()65()11x x +=--77中考数学专题复习之二:待定系数法对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法.【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。

九年级数学中考第二轮复习—方案设计问题冀教版

九年级数学中考第二轮复习—方案设计问题冀教版

初三数学中考第二轮复习—方案设计问题冀教版【本讲教育信息】一. 教学内容:专题四:方案设计问题二. 知识要点:这类问题常常给出问题情景与解决问题的要求,让学生设计解决问题的方案,或给出多种不同方案,让学生判断它们的优劣.解这类问题的关键是寻找相等关系,利用函数的图像和性质解决问题;或列出相关不等式(组),通过寻求不等关系找到问题的答案;或利用图形变换、解直角三角形解决图形的设计方案、测量方案等.三. 考点分析:近年来,在各地的中考试题中,出现了方案设计题.方案设计题可以综合考查学生的阅读理解能力、分析推理能力、数据处理能力、文字概括能力、动手能力等.方案设计题还呈现出创新、新颖、异彩纷呈的新趋势.【典型例题】题型一利用方程(组)进行方案设计例1.一牛奶制品厂现有鲜奶9t.若将这批鲜奶制成酸奶销售,则加工1t鲜奶可获利1200元;若制成奶粉销售,则加工1t鲜奶可获利2000元.该厂的生产能力是:若专门生产酸奶,则每天可用去鲜奶3t;若专门生产奶粉,则每天可用去鲜奶1t.由于受人员和设备的限制,酸奶和奶粉两产品不可能同时生产,为保证产品的质量,这批鲜奶必须在不超过4天的时间内全部加工完毕.假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?分析:要确定哪种方案获利最多,首先应求出每种方案各获得的利润,再比较即可.解:生产方案设计如下:(1)将9t鲜奶全部制成酸奶,则可获利1200×9=10800元.(2)4天内全部生产奶粉,则有5t鲜奶得不到加工而浪费,且利润仅为2000×4=8000元.(3)4天中,用x天生产酸奶,用4-x天生产奶粉,并保证9t鲜奶如期加工完毕.由题意,得3x+(4-x)×1=9.解得x.∴4-x(天).故在4天中,,,则利润为(×3××1×2000)元=12000元.答:按第三种方案组织生产能使该厂获利最大,最大利润是12000元.评析:运用数学知识解决现代经济生产中的实际问题是中考的热点考查对象之一,同学们应多关心商品经济,生活中的规律、规则,把数学与生活有机结合起来.题型二利用不等式进行方案设计例2.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲,乙两种机器供选择,其中每台机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不低于380个,那么为了节约资金应选择哪种购买方案?分析:(1)可设购买甲种机器x 台,然后用x 表示出购买甲、乙两种机器的实际费用,根据“本次购买机器所耗资金不能超过34万元”列不等式求解.(2)分别算出(1)中各方案每天的生产量,根据“日生产能力不低于380个”与“节约资金”两个条件选择购买方案.解:(1)设购买甲种机器x 台,则购买乙种机器(6-x )台, 则:7x +5(6-x )≤34,解得x ≤2, 又x ≥0,∴0≤x ≤2,∴整数x =0、1、2, ∴可得三种购买方案: 方案一:购买乙种机器6台;方案二:购买甲种机器1台,乙种机器5台; 方案三:购买甲种机器2台,乙种机器4台. (2)列表如下:由于方案一的日生产量小于380个,因此不选择方案一;•方案三比方案二多耗资2万元,故选择方案二.评析:①部分实际问题的解通常为整数;②方案的各种情况可以用表格的形式表达;③对关键词“不低于”、“至少”、“不少于”的理解是解本例的关键.题型三 利用函数进行方案设计例3.已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图(2)的坐标系中画出该函数图象;指出金额在什么X 围内,以同样的资金可以批发到较多数量的该种水果.图(1)m (kg )图(2)(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(3)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.图(3)分析:(1)中注意图像中的圆圈表示不包括该点;(2)中金额w (元)与批发量m (kg )之间的函数关系式分两部分,实际是两个函数图像.当240<w ≤300时,批发量m 有两个值,可比较这两者的大小;当w 取其他值时,m 只有一个值.(3)利用二次函数的最值求获得最大利润的进货和销售方案.解:(1)图(1)中①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;②表示批发量高于60kg 的该种水果,可按4元/kg 批发.(2)解:由题意得:w =⎩⎪⎨⎪⎧5m (20≤m ≤60)4m (m >60) ,函数图象如图(4)所示.由图可知资金金额满足240<w ≤300时,以同样的资金可批发到较多数量的该种水果.(3)解法一:设当日零售价为x 元,由图可得日最高销量m =320-40x , 当m >60时,x <6.5,由题意,销售利润为: y =(x -4)(320-40x )=40[-(x -6)2+4], 当x =6时,y 最大=160,此时m =80,即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元. 解法二:设日最高销售量为xkg (x >60),则由图(3)日零售价p 满足:x =320-40p ,于是p =320-x40, 销售利润y =x (320-x 40-4)=-140(x -80)2+160,当x =80时,y 最大=160,此时p =6,即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.m (kg )图(4)评析:本题考查同学们的读图能力,解题关键是数形结合,弄清题目的数量关系.题型四 利用解直角三角形进行方案设计例4. 如图所示,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端A 到水平地面的距离AB . 要求:(1)画出测量示意图.(2)写出测量步骤.(测量数据用字母表示) (3)根据(2)中的数据计算AB .分析:本题是一道开放性问题,设计方案时要注意测角仪有高度,同时还要注意测量所需数据可用a 、b 、c 、d 以及角度α、β来表示.最后还要注意直角三角形的模型.解:(1)测量图(示意图)如图所示.ABCD EFH αβhhm(2)测量步骤:第一步:在地面上选择点C 安装测角仪,测得此时树尖A 的仰角∠AHE =α. 第二步:沿CB 前进到点D ,用皮尺量出C 、D 之间的距离CD =m . 第三步:在点D 安装测角仪,测得此时树尖A 的仰角∠AFE =β. 第四步:用皮尺量出测角仪的高h .(3)AB =αββαtan tan tan tan m -⋅+h .评析:利用解直角三角形进行方案设计时一定要使用题目中所给的测量工具,而不能利用题目以外的测量工具.同时还要关注测量时是否有障碍物,是用具体的数值表示还是用字母表示等.本题的易错点在于同学们容易忽视测角仪的高度.设计测量方案时,结合我们平时在解直角三角形中已经建立的模型来考虑是一条捷径.题型五 利用统计和概率进行方案设计例5. 某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数. 方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.如图所示是这个同学的得分统计图.(1)分别按上述4个方案计算这个同学演讲的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.分析:对于题目中的四种方案我们可以分别计算出结果,只要注意平均数、中位数、众数的概念及三种统计量的意义即可.解:(1)方案1最后得分: 110(3.2+7.0+7.8+3×8.0+3×8.4+9.8)=7.7. 方案2最后得分:18(7.0+7.8+3×8.0+3×8.4)=8.方案3最后得分:8. 方案4最后得分:8或8.4.(2)因为方案1中的平均数受较大或较小数据的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为统计最后得分的方案.因为方案4中的众数有两个,众数没有实际意义,所以方案4不适合作为统计最后得分的方案.评析:本题考查了统计中三个统计量的计算和意义的使用.题型六 实际应用图形方案设计例6. 在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm 的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切) (1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆的半径;若不可行,请说明理由.A BCD ABDC方案一方案二分析:判断方案是否可行,可用反证法,假设方案可行,确定正方形的大小,与所给正方形进行比较得出结论.解:(1)理由如下:假设方案一可行.∵扇形的弧长=2π×16×14=8π,圆锥底面周长=2πr ,则圆的半径为4cm .由于所给正方形纸片的对角线长为162cm ,而制作这样的圆锥实际需要正方形纸片的对角线长为16+4+42=20+42cm ,20+42>162.∴假设不成立,故方案一不可行. (2)方案二可行.求解过程如下:设圆锥底面圆的半径为rcm ,圆锥的母线长为R cm ,则(1+2)r +R =162——①.2πr =2πR4——②.由①②,可得R =6425+2=3202-12823,r =1625+2=802-3223.故所求圆锥的母线长为3202-12823cm ,底面圆的半径为802-3223cm .评析:图形方案设计问题,关键要弄清楚设计要求,图形变化前后变化的量和不变的量.【方法总结】这类试题不仅要求学生要有扎实的数学双基知识,而且要能够把实际问题中所涉及的数学问题转化,抽象成具体的数学问题.从方法上分两类进行概括:(1)方案已知,要求选优;(2)先求方案,再选最优.【预习导学案】(专题五:开放探索性问题)一. 预习导学1. 如图所示,AC 、BD 相交于点O ,∠A =∠D ,请你再添加一个条件__________,使得∠ABC ≌△DCB .ABCDO2. 请同学们写出两个具有轴对称性的汉字__________.3. 已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,下列结论:①abc >0;②2a +b <0;③4a -2b +c <0;④a +c >0.其中正确的个数是( ) A .4个B .3个C .2个D .1个二. 反思1. 开放探索性问题有什么特征?2. 开放探索性问题的解题策略是什么?【模拟试题】(答题时间:50分钟)一. 选择题*1. 一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A. 4种B. 3种C. 2种D. 1种**2. 奥运期间,体育场馆要对观众进行安全检查。

2024年九年级中考数学复习——黄金分割及其应用含参考答案

2024年九年级中考数学复习——黄金分割及其应用含参考答案

2024年新课标中考数学二轮专题黄金分割及其应用1如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,C,D之间的距离为.2在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE⋅AB.已知AB为2米,则线段BE的长为米.3在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是()(结果精确到0.01m.参考数据:2≈1.414,3≈1.732,5≈2.236)A.0.73mB.1.24mC.1.37mD.1.42m4古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12≈0.618,称为黄金比例),如图,著名的“断臂维纳斯”便是如此,此外,最美人体的头顶与咽喉至肚脐的长度之比也是5-12,若某人的身材满足上述两个黄金比例,且头顶至咽喉的长度为26cm,则其身高可能是()A.165cmB.178cmC.185cmD.190cm5人们把5-12这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a=5-12,b=5+12得ab=1,记S1=11+a+11+b,S2=11+a2+11+b2,⋯,S10=11+a10+11+b10,则S1+S2+⋯+S10=.6黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.如图1,我们已经学过,点C将线段AB分成两部分,如果AC:AB=BC:AC,那么称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.7两千多年前,古希数学家欧多克索斯(Eudoxus,约公元前400年一公元前347年)发现;将一条线段AB分割成长、短两条线段AP、PB,若短线段与长线段的长度之比等于长线段的长度与全长之比,即PBAP=APAB,则点P叫做线段AB的黄金分割点.如图,在△ABC中,点D是线段AC的黄金分割点,且AD< CD,AB=CD.(1)求证:∠ABC=∠ADB;(2)若BC=4cm,求BD的长.8以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图所示,(1)求AM,DM的长,(2)试说明AM2=AD·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?2024年新课标中考数学二轮专题黄金分割及其应用1如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,C,D之间的距离为.【答案】(805-160)cm【解析】【分析】黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比.其比值是一个无理数,用分数表示为5-12,由此即可求解.【详解】解:弦AB=80cm,点C是靠近点B的黄金分割点,设BC=x,则AC=80-x,∴80-x80=5-12,解方程得,x=120-405,点D是靠近点A的黄金分割点,设AD=y,则BD=80-y,∴80-y80=5-12,解方程得,y=120-405,∴C,D之间的距离为80-x-y=80-120+405-120+405=805-160,故答案为:(805-160)cm.【点睛】本题主要考查线段成比例,掌握线段成比例,黄金分割点的定义是解题的关键.2在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE⋅AB.已知AB为2米,则线段BE的长为米.【答案】(5-1)或者-1+5【解析】根据点E是AB的黄金分割点,可得AEBE=BEAB=5-12,代入数值得出答案.∵点E是AB的黄金分割点,∴AE BE =BEAB=5-12.∵AB=2米,∴BE=(5-1)米.【点睛】本题主要考查了黄金分割的应用,掌握黄金比是解题的关键.3在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是()(结果精确到0.01m.参考数据:2≈1.414,3≈1.732,5≈2.236)A.0.73mB.1.24mC.1.37mD.1.42m 【答案】B 【解析】设雕像的下部高为x m ,由黄金分割的定义得x 2=5-12,求解即可.设雕像的下部高为x m ,则上部长为(2-x )m ,∵雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,雷锋雕像为2m ,∴x 2=5-12, ∴x =5-1≈1.24,即该雕像的下部设计高度约是1.24m .【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义及黄金比值是解题的关键.4古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12≈0.618,称为黄金比例),如图,著名的“断臂维纳斯”便是如此,此外,最美人体的头顶与咽喉至肚脐的长度之比也是5-12,若某人的身材满足上述两个黄金比例,且头顶至咽喉的长度为26cm ,则其身高可能是()A.165cmB.178cmC.185cmD.190cm【答案】B 【解析】设某人的咽喉至肚脐的长度为xcm ,则26x≈0.618,解得x ≈42.072,设某人的肚脐至足底的长度为ycm ,则26+42.072y≈0.618,解得y ≈110.149,∴其身高可能是110.149÷0.618≈178(cm)。

中考数学二轮专题复习(专题五 开放探索问题)

中考数学二轮专题复习(专题五  开放探索问题)

下 页
返 回
步步高中考简易通
【例题1】 (2012· 浙江义乌)如图,在△ABC中,点D
专 题 解 读
是BC的中点,作射线AD,在线段AD及其延长 线上分别取点E、F,连接CE、BF.添加一个条
件,使得△BDF≌△CDE,并加以证明.你添
加的条件是________.(不添加辅助线).
专 题 突 破
∵点P(x,y)的坐标满足x+y=xy,∴x,y符号相
同,代入数字进行验证,符合条件的点的坐标有
(0,0),(2,2)等.故答案为:(0,0). 答案 (0,0)(答案不唯一)
上 页
下 页
返 回
步步高中考简易通
专 题 解 读
三、综合开放型
这类问题没有明确的条件和结论,并且符合条件的 结论具有多样性,需将已知的信息集中进行分析, 探索问题成立所必须具备的条件或特定的条件应该 有什么结论,通过这一思维活动得出事物内在联 系,从而把握事物的整体性和一般性.
课 时 跟 踪 检 测
专 题 突 破
上 页
下 页
返 回
步步高中考简易通
【例题5】 (2011· 青海)学校在艺术周上,要求学生制
专 题 解 读
作一个精美的轴对称图形,请你用所给出的几何图 形:○○△△ (两个圆,两个等边三角形,
课 时 跟 踪 检 测
两条线段)为构件,构思一个独特,有意义的轴对 称图形,并写上一句简要的解说词.
上 页
下 页
返 回
步步高中考简易通
专 题 解 读
【例题3】 (2012· 浙江丽水)写出一个比-3大的无理 数是________.
解析 根据这个数即要比-3 大又是无理数,解答出
课 时 跟 踪 检 测

人教版2023中考数学二轮复习专题之平面直角坐标系(含答案解析)

人教版2023中考数学二轮复习专题之平面直角坐标系(含答案解析)

人教版2023中考数学二轮复习专题之平面直角坐标系一、单选题1.(2022八上·沈北新期中)在平面直角坐标系中,下列坐标所对应的点位于第三象限的是()A.(﹣1,2)B.(1,2)C.(2,﹣1)D.(-1,-3)2.(2022八上·电白期中)若点P(a,b)在第四象限,则点Q(﹣a,b﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(2022八上·太原期中)在如图所示的平面直角坐标系中,点P的坐标为()A.(2,3)B.(−2,3)C.(3,−2)D.(−2,−3)4.(2022八上·常熟月考)如图,正方形ABCD的边长为4,点A的坐标为(﹣1,1),AB平行于x轴,则点C的坐标为()A.(3,1)B.(﹣1,1)C.(3,5)D.(﹣1,5)5.(2022九上·和平期中)如图,菱形ABCD对角线交点与坐标原点O重合,点A(−2,5),则点C的坐标为()A.(5,−2)B.(2,−5)C.(2,5)D.(−2,−5)6.(2022九上·萧山期中)如图,在正方形网格中,线段AB绕点O旋转一定的角度后与线段CD重合(C、D均为格点,A的对应点是点C),若点A的坐标为(−1,5),点B的坐标为(3,3),则旋转中心O点的坐标为()A.(1,1)B.(4,4)C.(2,1)D.(1,1)或(4,4)7.(2022八上·西安期中)如图,在平面直角坐标系中,点A的坐标是(−3,0),点B的坐标是(0,4),点C是OB上一点,将△ABC沿AC折叠,点B恰好落在x轴上的点B′处,则点C的坐标为()A.(32,0)B.(0,32)C.(52,0)D.(0,52)8.(2022八上·杭州期中)已知点A的坐标为(a+1,3−a),下列说法正确的是()A.若点A在y轴上,则a=3B.若点A在一三象限角平分线上,则a=1C.若点A到x轴的距离是3 ,则a=±6D.若点A在第四象限,则a的值可以为-29.(2022七下·康巴什期末)我们规定:在平面直角坐标系xOy中,任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1−x2|+|y1−y2|,例如图①中,点M(−2,3)与点N(1,−1)之间的折线距离为d(M,N)= |−2−1|+|3−(−1)|=3+4=7.如图②,已知点P(3,−4)若点Q的坐标为(t,2),且d(P,Q)=10,则t的值为()A.−1B.5C.5或−13D.−1或7 10.(2022七下·纳溪期末)在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,…若点A1的坐标为(2,4),点A2021的坐标为()A.(3,﹣1)B.(﹣2,﹣2)C.(﹣3,3)D.(2,4 )二、填空题11.(2022八上·瑞安月考)在平面直角坐标系中,点(1,-2)向左平移2个单位后的坐标为。

专题05 二次函数的图象与性质(解析版)-2020-2021学年九年级数学上册期末综合复习专题提优

专题05 二次函数的图象与性质(解析版)-2020-2021学年九年级数学上册期末综合复习专题提优

2020-2021学年九年级数学上册期末综合复习专题提优训练(人教版)专题05 二次函数的图象与性质【典型例题】1.(2020·福建省连江第三中学初三月考)在同一坐标系内,函数y =kx 2和y =kx +2(k ≠0)的图象大致如图( ) A . B . C . D .【答案】D2.(2020·上海市静安区实验中学初三课时练习)抛物线()232y x =-+3可以看作把抛物线23y x =向_______平移_______个单位,向_______平移_______个单位得到. 【答案】右 2 上 33.(2020·湖南长沙·初三开学考试)已知一个二次函数的图象经过点()1,0A -、()3,0B 和()0,3C -三点. (1)求此二次函数的解析式;(2)求此二次函数的图象的对称轴和顶点坐标.【答案】(1)设二次函数解析式为()()13y a x x =+-,∵抛物线过点()0,3C -,∴()()30103a -=+-,解得1a =,∴()()21323y x x x x =+-=--.(2)由(1)可知:223y x x =--, ∵a =1,b =-2,c =-3, ∴对称轴是直线12b x a =-=,244ac ba -=-4,顶点坐标是()1,4-.4.(2020·浙江杭州外国语学校初三月考)已知一条抛物线分别过点(3,2)-和(0,1),且它的对称轴为直线2x=,试求这条抛物线的解析式.【答案】解:∵抛物线的对称轴为2x =,∴可设抛物线的解析式为2(2)y a x b =-+把(3,2)-,(0,1)代入解析式得()()2232=202=1a b a b ⎧-+-⎪⎨-+⎪⎩, 解得1a =,3b =-,∴所求抛物线的解析式为2(2)3y x =-- 【专题训练】一、选择题1.(2020·竹溪县蒋家堰镇中心学校期末)函数()221y x ++=-的顶点坐标是() A .(2,-1) B .(-2,1) C .(-2,-1) D .(2,1)【答案】B2.(2020·江苏崇川·期末)抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( ) A .y =(x +1)2+3 B .y =(x +1)2﹣3 C .y =(x ﹣1)2﹣3 D .y =(x ﹣1)2+3【答案】D3.(2020·福建省连江第三中学初三月考)二次函数y =﹣(x -2)2+1的图象中,若y 随x 的增大而减小,则x 的取值范围是( )A .x <2B .x >2C .x <﹣2D .x >﹣2【答案】B4.(2020·竹溪县蒋家堰镇中心学校期末)若函数y =(a ﹣1)x 2﹣4x +2a 的图象与x 轴有且只有一个交点,则a 的值为( ). A .-1 B .2 C .-1或2 D .-1或2或1【答案】D5.(2021·福建学业考试)若二次函数2(0)y ax bx c a =++<的图像对称轴为直线12x =-经过不同的5点(),A p q ,()00,B y ,()12,C y ,)2D y ,()1,E p q --,则0y ,1y ,2y 的大小关系( )A .012y y y >>B .012y y y <<C .021y y y >>D .102y y y >>【答案】C6.(2020·竹溪县蒋家堰镇中心学校期末)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①a +b +c <0;②b 2﹣4ac >0;③b >0;④4a ﹣2b +c <0;⑤a +c <23,其中正确结论的个数是( )A .②③④B .①②⑤C .①②④D .②③⑤【答案】B7.(2020·台州市椒江区前所中学月考)关于x 的一元二次方程2102ax bx ++=有一个根是﹣1,若二次函数212y ax bx =++的图象的顶点在第一象限,设2t a b =+,则t 的取值范围是( )A.1142t<<B.114t-<≤C.1122t-≤<D.112t-<<【答案】D8.(2020·湖南长沙·初三开学考试)已知二次函数y=﹣x2+mx+m(m为常数),当﹣2≤x≤4时,y的最大值是15,则m 的值是()A.﹣19或315B.6或315或-10C.﹣19或6D.6或315或-19【答案】C9.(2020·湖南长沙·初三开学考试)二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是()A.B.C.D.【答案】D10.(2020·浙江杭州外国语学校初三月考)已知直线x=1是二次函数y=ax2+bx+c(a,b,c是实数,且a≠0)的图象的对称轴,点A(x1,y1)和点B(x2,y2)为其图象上的两点,且y1<y2,()A.若x1<x2,则x1+x2﹣2<0B.若x1<x2,则x1+x2﹣2>0C.若x1>x2,则a(x1+x2-2)>0D.若x1>x2,则a(x1+x2-2)<0【答案】D二、填空题11.(2020·湖南隆回·初三一模)二次函数243y x x =--+的最大值为_________.【答案】712.(2020·湖南广益实验中学开学考试)二次函数223y x x =-+-图象的顶点坐标是 .【答案】(1,﹣2).13.(2020·上海市静安区实验中学初三课时练习)抛物线(2)(3)y x x =+-的开口______,对称轴是_____________,顶点是_______. 【答案】向下 直线x =12 11(,6)2414.(2020·上海市静安区实验中学初三课时练习)已知抛物线22y x mx =+-的对称轴为x =1,则m =______. 【答案】-215.(2020·上海市静安区实验中学初三课时练习)某广告公司设计一幅周长为20米的矩形广告牌,设矩形的一边长为x 米,广告牌的面积为S 平方米,则S 与x 的函数关系式为________________.【答案】210S x x =-+16.(2020·浙江杭州外国语学校初三月考)抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是_____.【答案】﹣3<x <117.(2020·湖南广益实验中学开学考试)在平面直角坐标系中,若点P (a ,b )的坐标满足a =b ≠0,则称点P 为“对等点”.已知二次函数y =x 2+mx ﹣m 的图象上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m 的值为_____.【答案】118.(2020·湖南长沙·初三开学考试)如图,二次函数2(0)y ax bx c a =++≠的图象经过点1(,0)2-,对称轴为直线1,x =下列5个结论:0abc <①;240a b c -+=②;20a b +>③;230c b -<④;()a b m am b +≤+⑤.其中正确的结论为_________________. (注:只填写正确结论的序号)【答案】②⑤三、解答题19.(2020·呼和浩特市敬业学校初二期末)直线33y x =-+与x 轴y 轴分别交于点A ,B ,抛物线2(2)y a x k =-+经过点A ,B ,并与x 轴交于另一点C ,其顶点为P , (1)求,a k 的值;(2)抛物线的对称轴上有一点Q ,使ABQ ∆是以AB 为底边的等腰三角形,求点Q 的坐标;【答案】解:(1)∵直线y=-3x+3与x轴、y轴分别交于点A、B,∴A(1,0),B(0,3).又∵抛物线y=a(x-2)2+k经过点A(1,0),B(0,3),∴43a ka k+=⎧⎨+=⎩,解得11ak=⎧⎨=-⎩,故a,k的值分别为1,-1;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF中,AQ2=AF2+QF2=1+m2,在Rt△BQE中,BQ2=BE2+EQ2=4+(3-m)2,∵AQ=BQ,∴1+m2=4+(3-m)2,∴m=2,∴Q点的坐标为(2,2).20.(2020·云南昆明·初三学业考试)如图,抛物线y =ax 2+bx 过点P (﹣1,5),A (4,0).(1)求抛物线的解析式;(2)在第一象限内的抛物线上有一点B ,当P A ⊥PB 时,求点B 的坐标.【答案】(1)由题意,把点(1,5),(4,0)P A -代入2y ax bx =+得51640a b a b -=⎧⎨+=⎩,解得14a b =⎧⎨=-⎩,则抛物线的解析式为24y x x =-;(2)如图,过P 点作PD x ⊥轴于D ,BE PD ⊥于E , ∵(1,5),(4,0)P A -,∴5,1,4PD OD OA ===,∴145AD OD OA =+=+=,∴5PD AD ==, 45APD DAP ∴∠=∠=︒,设2(,4)B m m m -,则21,45BE m PE m m =-=+-,点B 在第一象限内的抛物线上,4m ∴>,∵PA PB ⊥,即90APB ∠=︒,∴18045BPE APD APB ∠=︒-∠-∠=︒,∴PBE △是等腰直角三角形,∴BE PE =,即2145m m m -+=-,整理得:2560m m --=,解得6m =或14m =-<(舍去),此时22464612m m --=⨯=,故点B 的坐标为(6,12)B .21.(2020·上海市静安区实验中学初三课时练习)已知二次函数的图像过抛物线223y x x =++的顶点和坐标原点.(1)求二次函数的解析式(2)判断点A (-2,5)是否在这个二次函数的图像上 .【答案】解:(1)2223(1)2y x x x =++=++,∴顶点坐标为(-1,2)设2(1)2(0)y a x a =++≠,代入(0,0)得,02a =+,解得,2a =-∴二次函数的解析式为22(1)2y x =-++(2)当x =-2时,y =0,∴点A (-2,5)不在这个二次函数的图像上22.(2020·江苏如东·初三二模)已知抛物线y =ax 2+bx +c (a ,b ,c 为常数,a >0)的对称轴为直线x =1,且与x 轴只有一个公共点.(1)试用含a 的式子表示b 和c ;(2)若(x 1,y 1),(3,y 2)是该抛物线上的两点,y 2<y 1,求x 1的取值范围;(3)若将该抛物线向上平移2个单位长度所得新抛物线经过点(3,6),且当p ≤x ≤q 时,新抛物线对应的函数有最小值2p ,最大值2q ,求p ﹣q 的值.【答案】(1)∵抛物线y =ax 2+bx +c (a ,b ,c 为常数,a >0)的对称轴为直线x =1, ∴﹣2b a=1, ∴b =﹣2a ,∵抛物线与x轴只有一个公共点.∴b2﹣4ac=0,即(﹣2a)2﹣4ac=0,∴c=a;(2)∵(x1,y1),(3,y2)是该抛物线上的两点,对称轴为x=1,∴(3,y2)关于对称轴的对称点为(﹣1,y2),∵a>0,抛物线开口向上,∴y2<y1时,x1的取值范围是x1>3或x1<﹣1;(3)由(1)知:抛物线y=ax2﹣2ax+a=a(x﹣1)2(a>0),将该抛物线向上平移2个单位长度所得新抛物线为y=a(x﹣1)2+2,∵经过点(3,6),∴6=4a+2,解得a=1,∴新抛物线为y=(x﹣1)2+2,∴当x=1时,抛物线有最小值为2,∴2p=2,解得p=1,∴1≤x≤q,∵对称轴为x=1,∴当x=q时,在p≤x≤q范围内有最大值2q,∴2q=(q﹣1)2+2,解得q=3或1(舍去),∴p﹣q=1﹣3=﹣2.23.(2020·浙江金华·初三其他)已知:等腰△ABC的底边在x轴上,其中点C与平面直角坐标系原点重合,点A为(4,0),点B,点D是AB边的中点.抛物线y=ax2+bx+c始终经过A,C两点,(1)当△ABC是正三角形时,点B在抛物线上(如图).求抛物线的函数表达式;个单位后,发现抛物线经过点D,求n的值;(2)若将(1)中抛物线向下平移4(3)若将△ABC ABC n的值.【答案】解:(1)∵△ABC是正三角形,∴AC=BC=AB=4,∴点B(2,),设抛物线y=ax(x﹣4)且过(2,),∴=2a (2﹣4),∴a∴抛物线的解析式为y =﹣2x 2+; (2)∵AB =AC ,点A 为(4,0),点C (0,0),∴点B (2 n ), ∵点D 是AB 边的中点,∴点D (3n ),个单位,∴平移后的抛物线解析式为:y =﹣2x 2+﹣4, ∵平移后的抛物线经过点D ,∴2n =﹣2×9+3﹣4, ∴n =32;(3)∵△ABC 的重心坐标为(2),∴△ABC 向上平移3个单位后,重心坐标为(2,3 n +3),∵y2+x﹣2)2+∴顶点坐标为(2,,个单位,∵平移后△ABC的重心与抛物线顶点也相距3∴|∴n=4或6.24.(2020·浙江杭州外国语学校初三月考)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【答案】解:(1)∵抛物线y =ax 2+bx +c (a ≠0)的图象经过A (1,0),B (3,0),∴设抛物线解析式为:y =a (x ﹣1)(x ﹣3),∵抛物线y =a (x ﹣1)(x ﹣3)(a ≠0)的图象经过点C (0,6),∴6=a (0﹣1)(0﹣3),∴a =2,∴抛物线解析式为:y =2(x ﹣1)(x ﹣3)=2x 2﹣8x +6;(2)∵y =2x 2﹣8x +6=2(x ﹣2)2﹣2,∴顶点M 的坐标为(2,﹣2),∵抛物线的顶点M 与对称轴l 上的点N 关于x 轴对称,∴点N (2,2),设直线AN 解析式为:y =kx +b ,由题意可得:022=+⎧⎨=+⎩k b k b , 解得:22k b ==-⎧⎨⎩, ∴直线AN 解析式为:y =2x ﹣2,联立方程组得:222286=-⎧⎨=-+⎩y x y x x , 解得:1110x y =⎧⎨=⎩,2246=⎧⎨=⎩x y ,∴点D (4,6),∴S △ABD =12×2×6=6, 设点E (m ,2m ﹣2),∵直线BE 将△ABD 的面积分为1:2两部分,∴S △ABE =13S △ABD =2或S △ABE =23S △ABD =4, ∴12×2×(2m ﹣2)=2或12×2×(2m ﹣2)=4, ∴m =2或3,∴点E (2,2)或(3,4);(3)若AD 为平行四边形的边,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∴AD =PQ ,∴x D ﹣x A =x P ﹣x Q 或x D ﹣x A =x Q ﹣x P ,∴x P =4﹣1+2=5或x P =2﹣4+1=﹣1,∴点P 坐标为(5,16)或(﹣1,16);若AD 为平行四边形的对角线,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∴AD 与PQ 互相平分, ∴22++=P Q A D x x x x ,∴x P =3,∴点P 坐标为(3,0),综上所述:当点P 坐标为(5,16)或(﹣1,16)或(3,0)时,使A 、D 、P 、Q 为顶点的四边形为平行四边形.25.(2020·竹溪县蒋家堰镇中心学校期末)如图1,抛物线()21y x a x a -++=与x 轴交于A ,B 两点(点A 位于点B的左侧),与y 轴负半轴交于点C ,若AB =4. (1)求抛物线的解析式;(2)如图2,E 是第三象限内抛物线上的动点,过点E 作EF ∥AC 交抛物线于点F ,过E 作EG ⊥x 轴交AC 于点M ,过F 作FH ⊥x 轴交AC 于点N ,当四边形EMNF 的周长最大值时,求点E 的横坐标;(3)在x 轴下方的抛物线上是否存在一点Q ,使得以Q 、C 、B 、O 为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q 的坐标;如果不存在,请说明理由.【答案】解:(1)依题意得:()21x a x a ++-=0,则12121,x x a x x a +=+=,则AB 4==,解得:a =5或﹣3,抛物线与y 轴负半轴交于点C ,故a =5舍去,则a =﹣3,则抛物线的表达式为:223y x x +=﹣…①;(2)由223y x x +=﹣得:点A 、B 、C 的坐标分别为:()3,0-、()()1,00-3、,, 设点E ()2,23m m m +﹣,OA =OC ,故直线AC 的倾斜角为45°,EF ∥AC ,直线AC 的表达式为:y =﹣x ﹣3,则设直线EF 的表达式为:y =﹣x +b ,将点E 的坐标代入上式并解得:直线EF 的表达式为:y =﹣x +()233m m +﹣…②,联立①②并解得:x =m 或﹣3﹣m ,故点F ()23,4m m m --+,点M 、N 的坐标分别为:(),3m m --、()33m m --+,,则EF ))23F E x x m MN -=--=,四边形EMNF 的周长C =ME +MN +EF +FN =(226m m --+-∵﹣2<0,故S 有最大值,此时m =32+-,故点E 的横坐标为:32+-; (3)①当点Q 在第三象限时,当QC 平分四边形面积时, 则1Q B x x ==,故点Q ()1,4--;当BQ 平分四边形面积时, 则1111,133222OBQ Q Q QCBO S y S x =⨯⨯=⨯⨯+⨯⨯四边形,则11121133222Q Q y x ⎛⎫⨯⨯=⨯⨯+⨯⨯ ⎪⎝⎭, 解得:32Q x =-,故点Q 315,24⎛⎫-- ⎪⎝⎭; ②当点Q 在第四象限时,同理可得:点Q ⎝⎭;综上,点Q 的坐标为:()1,4--或315,24⎛⎫-- ⎪⎝⎭或⎝⎭.。

2020--2021学年九年级数学中考二轮复习 专题 三角形辅助线作法攻略

2020--2021学年九年级数学中考二轮复习 专题 三角形辅助线作法攻略

《三角形辅助线作法攻略》➢考点考向1. 与角平分线有关的辅助线2. 与线段长度相关的辅助线3. 与等腰、等边三角形相关的辅助线4. 与中点相关的辅助线5. 构造一线三垂直(等角)6. 等面积法✧考点一:与角平分线有关的辅助线(1)可向两边作垂线。

(2)可构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形【例1】已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM 上滑动,两直角边分别与OA、OB交于C、D,PC和PD有怎样的数量关系,请说明理由.【例2】如图,在△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于D,过C作CE ⊥BD交BD延长线于E.求证:CE=BD.【例3】如图,AC平分∠BAD,CD=CB,AB>AD,求证:∠B+∠D=180°.考点二:与线段长度有关的辅助线(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

【例4】如图,在△ABC中,AD平分∠BAC,∠C=2∠B,求证:AB=AC+CD.✧考点三:与等腰、等边三角形相关的辅助线(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °【例5】如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.✧考点四:与中点有关的辅助线遇到中点,考虑中位线或等腰等边中的三线合一。

【例6】如图1,在四边形ABCD中,AB=CD,E,F分别是AD,BC的中点,连接FE并延长,分别与BA,CD的延长线交于点M,N.求证:∠BME=∠CNE;(提示:取BD的中点H,连接FH,HE作辅助线)(2)如图2,在△ABC中,F是BC边的中点,D是AC边上一点,E是AD的中点,直线FE 交BA的延长线于点G,若AB=DC=2,∠FEC=45°,求FE的长度.考点五:构造一线三垂直(等角)【例7】(1)观察猜想:如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE =90°,AD=AE,则BC、BD、CE之间的数量关系为;(2)问题解决:如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;(3)拓展延伸:如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.考点六:等面积法(1)利用连线将一个大的三角形的面积切割为几个小三角形的面积和;(2)连线后得到等底等高的三角形面积相等。

初三数学复习计划(最新)

初三数学复习计划(最新)

最新初三数学复习计划(精选5篇)一、第一轮复习:系统复习1、第一轮复习的形式。

第一轮复习的目的是要“过三关”:(1)过记忆关。

必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。

(2)过基本方法关。

如,待定系数法求函数解析式。

(3)过基本技能关。

如,给你一个习题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。

基本宗旨:知识系统化,练习专题化,专题规律化。

在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构,可将代数部分分为:实数、代数式、方程、不等式、函数、统计与概率等;将几何部分分为:几何基本概念,相交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆等。

配套练习以《中考复习指南》为主,复习完每个单元进行一次单元测试,重视补缺工作。

2、第一轮复习应该注意的几个问题。

(1)必须扎扎实实地夯实基础。

今年中考试题按难:中:易=1:2:7的比例,基础分占总分(120分)的80%,因此使每个学生对知识都能达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。

(2)中考有些基础题是课本上的原题或改造,必须深钻教材,绝不能脱离课本。

(3)不搞题海战术,精讲精练,举一反三、触类旁通。

“大练习量”是相对而言的,它不是盲目的大,也不是盲目的练。

而是有针对性的、典型性、层次性、切中要害的强化练习。

(4)检查学生完成的作业,及时反馈。

教师对于作业、练习、测验中的问题,应采用集中讲授和个别辅导相结合,或将问题渗透在以后的教学过程中等手办法进行反馈、矫正和强化,有利于大面积提高教学质量。

(5)从实际出发,面向全体学生,因材施教,即分层次开展教学工作,全面提高复习效率。

课堂复习教学实行“低起点、多归纳、快反馈”的方法。

(6)注重思想教育,断激发他们学好数学的自信心,并创造条件,让学困生体验成功。

(7)注重对优生的培养。

在他们解题过程中,要求他们尽量走捷径、出奇招、有创意,注重逻辑关系,力求解题完整、完美,使其冒“尖”。

中考数学二轮专题复习试卷:统计与概率(含答案)

中考数学二轮专题复习试卷:统计与概率(含答案)

中考数学二轮专题复习试卷:统计与概率(时间:120分钟 满分:120分)一、选择题(本大题共15个小题,每小题3分,共45分) 1.(四川遂宁)以下问题,不适合用全面调查的是( ) A.了解全班同学每周体育锻炼的时间 B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.(山东菏泽)在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如表所示:这些运动员跳高的中位数和众数分别是( )A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,4 3.(山东济宁)下列说法正确的是( ) A.中位数就是一组数据中最中间的一个数 B.8,9,9,10,10,11这组数据的众数是9 C.如果x 1,x 2,x 3,…,x n 的平均数是x,那么()12n x x (x x x x 0-+-+⋯+-=())D.一组数据的方差是这组数据的极差的平方4.(山东青岛)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有( )个.A.45B.48C.50D.555.(四川内江)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1 000名考生的数学成绩进行统计分析,以下说法正确的是( ) A.这1 000名考生是总体的一个样本 B.近4万名考生是总体C.每位考生的数学成绩是个体D.1 000名学生是样本容量6.(重庆)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽出50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是 3.5、10.9,则下列说法正确的是( ) A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐7.(浙江温州)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是( )A.羽毛球B.乒乓球C.排球D.篮球8.(山东日照)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是( )A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占该学校全体教职工总人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组9.(陕西)我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是( )A.71.8B.77C.82D.95.710.(山东枣庄)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球为白球的概率是23,则黄球的个数为( )A.16B.12C.8D.411.(福建漳州)某日福建省九地市的最高气温统计如下表:针对这组数据,下列说法正确的是( )A.众数是30B.极差是1C.中位数是31D.平均数是2812.(山东泰安)某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选出20名同学统计了各自家庭一个月的节水情况,见表:请你估计这400名同学的家庭一个月节约用水的总量大约是( )A.130 m3B.135 m3C.65 m3D.260 m313.(甘肃天水)一组数据:3,2,1,2,2的众数,中位数,方差分别是( )A.2,1,0.4B.2,2,0.4C.3,1,2 D.2,1,0.214.(山东淄博)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是( )1352A. B. C. D.688315.(辽宁铁岭)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.16个B.15个C.13个D.12个二、填空题(本大题共6个小题,每小题3分,共18分)16.(浙江湖州)某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如表,则这20户家庭这个月的平均用水量是_______t.17.(山东青岛)某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:,,,2===x1.69 m x1.69 m s0.000 6甲乙甲,则这两名运动员中________的成绩更稳定.2s0.003 15=乙18.(浙江宁波)如图是七(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的是12人,那么参加绘画兴趣小组的人数是______人.19.(湖南株州)市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如表.请你根据表中数据选一人参加比赛,最合适的人选是_______.20.甲乙丙丁平均数8.28.08.08.2方差2.11.81.61.420.(湖南岳阳)如图所示的3×3方格形地面上,阴影部分是草地,其余部分是空地,一只自由飞翔的小鸟飞下来落在草地上的概率为______.21.(浙江温州)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有________人.三、解答题(本大题共5个小题,共57分)22.(本小题满分10分)(浙江嘉兴)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.23.(本小题满分10分)(宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.24.(本小题满分10分)(浙江温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现在袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于1.3问至少取出了多少黑球?25.(本小题满分12分)(四川雅安)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有_____人;(2)请你将条形统计图(2) 补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率( 用树状图或列表法解答).26.(本小题满分15分)(浙江衢州)据衢州市国民经济和社会发展统计公报显示,衢州市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生,如果对新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果新开工廉租房建设的套数比增长10%,那么新开工廉租房有多少套?参考答案1.D2.A3.C4.A5.C6.A7.D8.D9.C10.D 11.A 12.A 13.B 14.B 15.D16.5.8 17.甲 18.5 19.丁 20.1321.2722.解:(1)∵扇形图中空气质量为良所占比例为64%,条形图中空气质量为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天);(2)轻微污染天数是50-32-8-3-1=5天,表示优的圆心角度数为:850×360°=57.6°. 补全条形统计图,如图所示:(3)∵样本中优和良的天数分别为8和32天, ∴一年(365天)达到优和良的总天数:832365292().50+⨯=天 23.解:(1)一班的方差=110[(168-168)2+(167-168)2+(170-168)2+…+(170-168)2]=3.2; 二班的极差为171-165=6; 二班的中位数为168; 补全表格如下:(2)选择方差做标准,∵一班方差<二班方差, ∴一班可能被选取.24.解:(1)摸出一个球是黄球的概率:51P .513228==++(2)设取出x 个黑球.由题意,得:5x 1,403+≥ 解得:25x ,3≥∴x 的最小正整数解是x=9. 答:至少取出9个黑球. 25.解:(1)200 (2)C:60人(3) 所有情况如表所示:由上表可知, 所有结果为 12 种, 其中符合要求的只有2种, ∴P(恰好选中甲、乙)=21.126=26.解:(1)根据题意得:住房总数为1 500÷24%=6 250(套),则经济适用房的数量为6 250×7.6%=475(套),所以经济适用房共有475套.补全直方图(2)老王被摇中的概率为:4751.9502(3)廉租房共有6 250×8%=500(套). 500(1+10%)=550, 所以新开工廉租房550套.。

人教版初中数学九年级(下)中考二轮专题复习在线教学案例

人教版初中数学九年级(下)中考二轮专题复习在线教学案例

初中数学九年级(下)中考二轮专题复习在线教学案例——《通过一道几何动点问题复习相关知识点》孟村回族自治县宋庄子中学王凯一.教学课程:通过一道几何动点问题复习相关知识点二.主题分析:几何动点问题是中考中常见的一种题型,它是以几何知识和具体的几何图形为背景,渗透运动变化的观点,通过点、线、形的运动,图形的平移、翻折、旋转等把图形的有关性质和图形之间的数量关系位置关系看作是在变化的、相互依存的状态之中,要求对运动变化过程伴随的数量关系的图形的位置关系等进行探究。

着重培养学生分析问题的能力,对图形的想象能力,还有动态思维能力。

解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

常用到的不同几何图形的性质,以三角形、四边形为主,主要运用方程、函数、数形结合、分类讨论等数学思想。

三.教学目标:1.知识与技能:掌握菱形的性质,全等和相似的性质及判定,中心对称图形的相关知识和最短距离问题的实际应用,并能应用相关知识解决问题。

2.数学思考:在几何动点问题的探究过程中,让学生经历观察、联想、分析、猜想、归纳的全过程。

3.解决问题:通过几何动点问题的探究,使学生形成数形结合、分类讨论的数学思想方法,以及建模能力、创新意识和创新精神。

4.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。

四.教学重、难点:1.重点:对菱形性质、全等三角形、相似三角形、最短距离问题的掌握与应用。

2.难点:如何正确的做出辅助线帮助解决问题。

五.线上教学平台:钉钉(直播、答疑)+微信群(留作业)+百度云网盘(交作业)六.线上教学工具:笔记本电脑(直播、答疑)+iPad+Apple Pencil(批改作业)七.课程类型:第二轮专题复习课八.授课对象:九年级三班、四班共89名学生九.教学设计:《通过一道几何动点问题复习相关知识点》教学设计教学内容分析1.对课程教学目标、教学要求、线上教学平台使用方法等前置内容进行介绍,让学生了解课程及授课的相关要求,适应网络学习方式;2.带领学生回顾菱形的性质、全等三角形和相似三角形的性质及判定定理、中心对称图形的性质以及最短距离问题这些解决问题所需的知识点。

2020中考数学二轮复习专题二解答重难点题型突破题型5-几何图形探究题试题

2020中考数学二轮复习专题二解答重难点题型突破题型5-几何图形探究题试题

题型五 几何图形探究题类型一 几何图形静态探究1.(2017·成都)问题背景:如图①,等腰△ABC 中,AB =AC ,∠BAC =120°,作AD⊥BC 于点D ,则D 为BC 的中点,∠BAD =12∠BAC=60°,于是BC AB =2BDAB=3;迁移应用:如图②,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE=120°,D ,E ,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD ,BD ,CD 之间的等量关系式;拓展延伸:如图③,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF.①证明△CEF 是等边三角形; ②若AE =5,CE =2,求BF 的长.2.(2017·许昌模拟)在正方形ABCD 中,对角线AC 、BD 交于点O ,动点P 在线段BC 上(不含点B),∠BPE =12∠ACB,PE 交BO 于点E ,过点B 作BF⊥PE,垂足为F ,交AC 于点G.(1)当点P 与点C 重合时(如图①),求证:△BOG≌△POE; (2)通过观察、测量、猜想:BFPE=__________,并结合图②证明你的猜想; (3)把正方形ABCD 改为菱形,其他条件不变(如图③),若∠ACB=α,求BFPE的值.(用含α的式子表示)3.(2014·河南)(1)问题发现如图①,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为__________;②线段AD,BE之间的数量关系为__________.(2) 拓展探究如图②,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE 之间的数量关系,并说明理由.(3)解决问题如图③,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.4.(2017·长春改编)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=12BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明;【应用】(1)在【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:__________.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,求阴影部分图形的面积.5.(2016·新乡模拟)问题背景:已知在△ABC 中,AB 边上的动点D 由A 向B 运动(与A ,B 不重合),同时,点E 由点C 沿BC 的延长线方向运动(E 不与C 重合),连接DE 交AC 于点F ,点H 是线段AF 上一点,求ACHF的值.(1)初步尝试如图①,若△ABC 是等边三角形,DH ⊥AC ,且D ,E 的运动速度相等,小王同学发现可以过点D 做DG∥BC,交AC 于点G ,先证GH =AH.再证GF =CF ,从而求得ACHF的值为__________;(2)类比探究如图②,若在△ABC 中,∠ABC =90°,∠ADH =∠BAC=30°,且点D ,E 的运动速度之比是3∶1,求ACHF的值;(3)延伸拓展如图③,若在△ABC 中,AB =AC ,∠ADH =∠BAC=36°,记BCAC =m ,且点D ,E 的运动速度相等,试用含m 的代数式表示ACHF的值(直接写出结果,不必写解答过程) .类型二 几何图形动态探究1.(2015·河南)如图①,在Rt △ABC 中,∠B =90°,BC =2AB =8,点D 、E 分别是边BC 、AC 的中点,连接DE ,将△EDC 绕点C 按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,AE BD =__________;②当α=180°时,AEBD =__________;(2)拓展探究试判断:当0°≤α<360°时,AEBD 的大小有无变化?请仅就图②的情形给出证明.(3)问题解决当△EDC 旋转至A ,D ,E 三点共线时,直接写出线段BD 的长.2.已知,点O 是等边△ABC 内的任一点,连接OA ,OB ,OC. (1)如图①,已知∠AOB=150°,∠BOC =120°,将△BOC 绕点C 按顺时针方向旋转60°得△ADC.①∠DAO 的度数是__________;②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明; (2)设∠AOB=α,∠BOC =β. ①当α,β满足什么关系时,OA +OB +OC 有最小值?请在图②中画出符合条件的图形,并说明理由;②若等边△ABC 的边长为1,直接写出OA +OB +OC 的最小值.3.(2013· 河南)如图①,将两个完全相同的三角形纸片和重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图②,固定△ABC,使△DCE绕点C旋转.当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是__________;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是__________;(2) 猜想论证当△DEC绕点C旋转到图③所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想;(3) 拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图④),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长.4.(2017·郑州模拟)【问题情境】数学课上,李老师提出了如下问题:在△ABC中,∠ABC=∠ACB=α,点D是AB边上任意一点,将射线DC绕点D逆时针旋转α与过点A且平行于BC边的直线交于点E.请判断线段BD与AE之间的数量关系.小颖在小组合作交流中,发表自己的意见:“我们不妨从特殊情况下获得解决问题的思路,然后类比到一般情况.”小颖的想法获得了其他成员一致的赞成.【问题解决】(1)如图①,当α=60°时,判断BD与AE之间的数量关系;解法如下:过D点作AC的平行线交BC于F,构造全等三角形,通过推理使问题得到解决,请你直接写出线段BD与AE之间的数量关系:__________.【类比探究】(2)如图②,当α=45°时,请判断线段BD与AE之间的数量关系,并进行证明;(3)如图③,当α为任意锐角时,请直接写出线段BD与AE之间的数量关系:__________.(用含α的式子表示,其中0°<α<90°)5.(2017·烟台)【操作发现】(1)如图①,△ABC为等边三角形,现将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;【类比探究】(2)如图②,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF,请直接写出探究结果:①求∠EAF的度数;②线段AE,ED,DB之间的数量关系.题型五 第22题几何图形探究题类型一 几何图形静态探究1.迁移应用:①证明:∵∠BAC =∠DAE =120°, ∴∠DAB =∠CAE ,在△DAB 和△EAC 中,⎩⎪⎨⎪⎧DA =EA ∠DAB =∠EAC AB =AC,∴△DAB ≌△EAC;,图②)②解:结论:CD =3AD +BD.理由:如解图①,作AH ⊥CD 于H. ∵△DAB ≌△EAC ,∴BD =CE , 在Rt △ADH 中,DH =AD·cos 30°=32AD , ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∵CD =DE +EC =2DH +BD =3AD +BD ;拓展延伸:①证明:如解图②,作BH ⊥AE 于H ,连接BE.∵四边形ABCD 是菱形,∠ABC =120°,∴△ABD ,△BDC 是等边三角形,∴BA =BD =BC , ∵E 、C 关于BM 对称,∴BC =BE =BD =BA ,FE =FC ,∴A 、D 、E 、C 四点共圆, ∴∠ADC =∠AEC =120°,∴∠FEC =60°, ∴△EFC 是等边三角形,②解:∵AE =5,EC =EF =2, ∴AH =HE =2.5,FH =4.5,在Rt △BHF 中,∵∠BFH =30°, ∴HF BF =cos 30°,∴BF =4.532=3 3. 2.(1)证明:∵四边形ABCD 是正方形,P 与C 重合,∴OB =OP ,∠BOC =∠BOG =90°, ∵PF ⊥BG ,∠PFB =90°,∴∠GBO =90°-∠BGO ,∠EPO =90°-∠BGO ,∴∠GBO =∠EPO , 在△BOG 和△POE 中,⎩⎪⎨⎪⎧∠GBO =∠EPO OB =OP ∠BOG =∠POE ,∴△BOG ≌△POE(ASA );(2)解:猜想BF PE =12.证明:如解图①,过P 作PM ∥AC 交BG 于M ,交BO 于N , ∴∠PNE =∠BOC =90°,∠BPN =∠OCB.∵∠OBC =∠OCB =45°,∴∠NBP =∠NPB ,∴NB =NP.∵∠MBN =90°-∠BMN ,∠NPE =90°-∠BMN ,∴∠MBN =∠NPE , 在△BMN 和△PEN 中,⎩⎪⎨⎪⎧∠MBN =∠NPE NB =NP ∠MNB =∠PNE ,∴△BMN ≌△PEN(ASA ),∴BM =PE.∵∠BPE =12∠ACB ,∠BPN =∠ACB ,∴∠BPF =∠MPF.∵PF ⊥BM ,∴∠BFP =∠MFP =90°. 在△BPF 和△MPF 中,⎩⎪⎨⎪⎧∠BPF =∠MPE PF =PF∠PFB =∠PFM,∴△BPF ≌△MPF(ASA ). ∴BF =MF. 即BF =12BM.∴BF =12PE.即BF PE =12;(3)解:如解图②,过P 作PM ∥AC 交BG 于点M ,交BO 于点N ,∴∠BPN =∠ACB =α,∠PNE =∠BOC =90°. 由(2)同理可得BF =12BM ,∠MBN =∠EPN ,∴△BMN ∽△PEN ,∴BM PE =BNPN .在Rt △BNP 中,tan α=BNPN,∴BM PE =tan α,即2BF PE =tan α,∴BF PE =tan α2. 3.解:(1)∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD =∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧AC =BC ∠ACD =∠BCE CD =CE, ∴△ACD ≌△BCE(SAS ).∴∠ADC =∠BEC.∵△DCE 为等边三角形,∴∠CDE =∠CED =60°.∵点A ,D ,E 在同一直线上,∴∠ADC =120°,∴∠BEC =120°,∴∠AEB =∠BEC -∠CED =60°;②∴AD =BE ;(2)∠AEB =90°,AE =BE +2CM.理由:∵△ACB 和△DCE 均为等腰直角三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACD =∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧CA =CB ∠ACD =∠BCE CD =CE, ∴△ACD ≌△BCE(SAS ).∴AD =BE ,∠ADC =∠BEC. ∵△DCE 为等腰直角三角形,∴∠CDE =∠CED =45°. ∵点A ,D ,E 在同一直线上,∴∠ADC =135°,∴∠BEC =135°,∴∠AEB =∠BEC -∠CED =90°. ∵CD =CE ,CM ⊥DE ,∴DM =ME. ∵∠DCE =90°,∴DM =ME =CM , ∴AE =AD +DE =BE +2CM ; (3)点A 到BP 的距离为3-12或3+12. 理由如下:∵PD =1,∴点P 在以点D 为圆心,1为半径的圆上.∵∠BPD =90°,∴点P 在以BD 为直径的圆上.∴点P 是这两圆的交点. ①当点P 在如解图①所示位置时,连接PD 、PB 、PA ,作AH ⊥BP ,垂足为H , 过点A 作AE ⊥AP ,交BP 于点E , ∵四边形ABCD 是正方形,∴∠ADB =45°.AB=AD =DC =BC =2,∠BAD =90°.∴BD =2. ∵DP =1,∴BP = 3.∵∠BPD =∠BAD =90°,∴A 、P 、D 、B 在以BD 为直径的圆上, ∴∠APB =∠ADB =45°.∴△PAE 是等腰直角三角形.又∵△BAD 是等腰直角三角形,点B 、E 、P 共线,AH ⊥BP , ∴由(2)中的结论可得:BP =2AH +PD. ∴3=2AH +1.∴AH =3-12;②当点P 在如解图②所示位置时,连接PD 、PB 、PA ,作AH ⊥BP ,垂足为H , 过点A 作AE ⊥AP ,交PB 的延长线于点E , 同理可得:BP =2AH -PD.∴3=2AH -1.∴AH =3+12. 综上所述:点A 到BP 的距离为3-12或3+12.4.解:【探究】平行四边形. 理由:如解图①,连接AC ,∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC ,EF =12AC ,同理HG ∥AC ,HG =12AC ,综上可得:EF ∥HG ,EF =HG , 故四边形EFGH 是平行四边形. 【应用】(1)添加AC =BD ,理由:连接AC ,BD ,同(1)知,EF =12AC ,同【探究】的方法得,FG =12BD ,∵AC =BD ,∴EF =FG ,∵四边形EFGH 是平行四边形,∴▱EFGH 是菱形;(2)如解图②,由【探究】得,四边形EFGH 是平行四边形, ∵F ,G 是BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴△CFG ∽△CBD ,∴S △CFG S △BCD =14,∴S △BCD =4S △CFG ,同理:S △ABD =4S △AEH ,∵四边形ABCD 面积为5,∴S △BCD +S △ABD =5,∴S △CFG +S △AEH =54,同理:S △DHG +S △BEF =54,∴S 四边形EFGH =S 四边形ABCD -(S △CFG +S △AEH +S △DHG +S △BEF )=5-52=52,设AC 与FG ,EH 相交于M ,N ,EF 与BD 相交于P ,∵FG ∥BD ,FG =12BD ,∴CM =OM =12OC ,同理:AN =ON =12OA ,∵OA =OC ,∴OM =ON ,易知,四边形ENOP ,FMOP 是平行四边形,S ▱EPON =S ▱FMOP , ∴S 阴影=12S 四边形EFGH =54.5.解:(1)∵△ABC 是等边三角形,∴△AGD 是等边三角形,∴AD =GD ,由题意知:CE =AD ,∴CE =GD , ∵DG ∥BC ,∴∠GDF =∠CEF ,在△GDF 与△CEF 中,⎩⎪⎨⎪⎧∠GDF =∠CEF ∠GFD =∠EFC ,GD =CE∴△GDF ≌△CEF(AAS ),∴CF =GF , ∵DH ⊥AG ,∴AH =GH ,∴AC =AG +CG =2GH +2GF =2(GH +GF)=2HF , ∴ACHF=2; (2)如解图①,过点D 作DG ∥BC 交AC 于点G , 则∠ADG =∠ABC =90°.∵∠BAC =∠ADH =30°,∴AH =DH ,∠GHD =∠BAC +∠ADH =60°, ∠HDG =∠ADG -∠ADH =60°,∴△DGH 为等边三角形. ∴GD =GH =DH =AH ,AD =GD·tan 60°=3GD. 由题意可知,AD =3CE.∴GD =CE. ∵DG ∥BC ,∴∠GDF =∠CEF.在△GDF 与△CEF 中,⎩⎪⎨⎪⎧∠GDF =∠CEF ∠GFD =∠EFC CE =GD ,∴△GDF ≌△CEF(AAS ),∴GF =CF.GH +GF =AH +CF ,即HF =AH +CF ,∴HF =12AC ,即ACHF =2;(3)AC HF =m +1m.理由如下: 如解图②,过点D 作DG ∥BC 交AC 于点G , 易得AD =AG ,AD =EC ,∠AGD =∠ACB.在△ABC 中,∵∠BAC =∠ADH =36°,AB =AC ,∴AH =DH ,∠ACB =∠B =72°,∠GHD =∠HAD +∠ADH =72°. ∴∠AGD =∠GHD =72°,∵∠GHD =∠B =∠HGD =∠ACB ,∴△ABC ∽△DGH.∴GH DH =BCAC =m ,∴GH =mDH =mAH.由△ADG ∽△ABC 可得DG AD =BC AB =BCAC =m.∵DG ∥BC ,∴FG FC =GDEC=m.∴FG =mFC.∴GH +FG =m(AH +FC)=m(AC -HF),即HF =m(AC -HF).∴AC HF =m +1m.类型二 几何图形动态探究1.解:(1)①当α=0°时, ∵Rt △ABC 中,∠B =90°,∴AC =AB 2+BC 2=(8÷2)2+82=45,∵点D 、E 分别是边BC、AC 的中点,∴AE =45÷2=25,BD =8÷2=4,∴AE BD =254=52.②如解图①,当α=180°时,可得AB ∥DE , ∵AC AE =BC BD ,∴AE BD =AC BC =458=52;(2)当0°≤α<360°时,AEBD 的大小没有变化,∵∠ECD =∠ACB ,∴∠ECA =∠DCB , 又∵EC DC =AC BC =52,∴△ECA ∽△DCB ,∴AE BD =EC DC =52;(3)①当D 在AE 上时,如解图②,∵AC =45,CD =4,CD ⊥AD , ∴AD =AC 2-CD 2=(45)2-42=80-16=8, ∵AD =BC ,AB =DC ,∠B =90°,∴四边形ABCD 是矩形,∴BD =AC =45;②当D 在AE 延长线上时,如解图③,连接BD ,过点D 作AC 的垂线交AC 于点Q ,过点B 作AC 的垂线交AC 于点P ,∵AC =45,CD =4,CD ⊥AD ,∴AD =AC 2-CD 2=(45)2-42=80-16=8, ∵原图中点D 、E 分别是边BC 、AC 的中点,∴DE =12AB =12×(8÷2)=12×4=2,∴AE =AD -DE =8-2=6,由(2)可得AE BD =52,∴BD=652=1255.综上所述,BD 的长为45或1255. 2.解:(1)①∵∠AOB =150°,∠BOC =120°,∴∠AOC =90°, 由旋转的性质可知,∠OCD =60°,∠ADC =∠BOC =120°, ∴∠DAO =360°-60°-90°-120°=90°;②线段OA ,OB ,OC 之间的数量关系是OA 2+OB 2=OC 2.如解图①,连接OD.∵△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴△ADC ≌△BOC ,∠OCD =60°. ∴CD =OC ,∴△OCD 是等边三角形,∴OC =OD =CD ,∠COD =∠CDO =60°,∵∠AOB =150°,∠BOC =120°,∴∠AOC =90°, ∴∠AOD =30°,∠ADO =60°.∴∠DAO =90°.在Rt △ADO 中,∠DAO =90°,∴OA 2+AD 2=OD 2,∴OA 2+OB 2=OC 2;(2)①当α=β=120°时,OA +OB +OC 有最小值.作图如解图②, 将△AOC 绕点C 按顺时针方向旋转60°得△A′O′C,连接OO′. ∴△A ′O ′C ≌△AOC ,∠OCO ′=∠ACA′=60°.∴O′C=OC ,O ′A ′=OA ,A ′C =AC ,∠A ′O ′C =∠AOC.∴△OCO′是等边三角形. ∴OC =O′C=OO′,∠COO ′=∠CO′O=60°.∵∠AOB =∠BOC =120°,∴∠AOC =∠A′O′C=120°.∴∠BOO ′=∠OO′A′=180°.∴B ,O ,O ′,A ′四点共线. ∴OA +OB +OC =O′A′+OB +OO′=BA′时值最小;②当等边△ABC 的边长为1时,OA +OB +OC 的最小值为A′B= 3.3.解:(1)①∵△DEC 绕点C 旋转使点D 恰好落在AB 边上,∴AC =CD , ∵∠BAC =90°-∠B =90°-30°=60°, ∴△ACD 是等边三角形,∴∠ACD =60°, 又∵∠CDE =∠BAC =60°,∴∠ACD =∠CDE , ∴DE ∥AC ;②∵∠B =30°,∠C =90°,∴CD =AC =12AB ,∴BD =AD =AC ,根据等边三角形的性质,△ACD 的边AC 、AD 上的高相等,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等), 即S 1=S 2;(2)∵△DEC 是由△ABC 绕点C 旋转得到,∴BC =CE ,AC =CD , ∵∠ACN +∠BCN =90°,∠DCM +∠BCN =180°-90°=90°,∴∠ACN =∠DCM ,∵在△ACN 和△DCM 中,⎩⎪⎨⎪⎧∠ACN =∠DCM ∠CMD =∠N =90°AC =DC,∴△ACN ≌△DCM(AAS ),∴AN =DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等), 即S 1=S 2;(3)如解图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形, ∴BE =DF 1,且BE 、DF 1上的高相等,此时S △DCF 1=S △BDE ; 过点D 作DF 2⊥BD ,∵∠ABC =60°,F 1D ∥BE ,∴∠F 2F 1D =∠ABC =60°,∵BF 1=DF 1,∠F 1BD =12∠ABC =30°,∠F 2DB =90°,∴∠F 1DF 2=∠ABC =60°,∴△DF 1F 2是等边三角形,∴DF 1=DF 2,∵BD =CD ,∠ABC =60°,点D 是角平分线上一点, ∴∠DBC =∠DCB =12×60°=30°,∴∠CDF 1=180°-∠BCD =180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2, ∵在△CDF 1和△CDF 2中,⎩⎪⎨⎪⎧DF 1=DF 2∠CDF 1=∠CDF 2CD =CD ,∴△CDF 1≌△CDF 2(SAS ),∴点F 2也是所求的点,∵∠ABC =60°,点D 是角平分线上一点,DE ∥AB , ∴∠DBC =∠BDE =∠ABD =12×60°=30°,又∵BD =4,∴BE =ED =12×4÷cos 30°=2÷32=433,∴BF 1=433,BF 2=BF 1+F 1F 2=433+433=833,故BF 的长为433或833.4.解:(1)当α=60°时,△ABC 、△DCE 是等边三角形,∴EC =DC ,AC =BC ,∠ACB =∠DCE =60°,∴∠ACB -∠ACD =∠DCE -∠ACD , 即∠BCD =∠ACE ,在△BDC 和△AEC 中,⎩⎪⎨⎪⎧EC =DC ∠BCD =∠ACE AC =BC ,∴△BDC ≌△AEC(SAS ),∴BD =AE ; (2)BD =2AE ;理由如下:如解图①,过点D 作DF ∥AC ,交BC 于F. ∵DF ∥AC ,∴∠ACB =∠DFB.∵∠ABC =∠ACB =α,α=45°,∴∠ABC =∠ACB =∠DFB =45°. ∴△DFB 是等腰直角三角形∴BD =DF =22BF. ∵AE ∥BC ,∴∠ABC +∠BAE =180°.∵∠DFB +∠DFC =180°,∴∠BAE =∠DFC.∵∠ABC +∠BCD =∠ADC ,∠ABC =∠CDE =α,∴∠ADE =∠BCD. ∴△ADE ∽△FCD.∴AE FD =ADFC.∵DF ∥AC ,∴BD BF =AD CF .∴AE BD =BD BF =22.∴BD =2AE.(3)补全图形如解图②,∵AE ∥BC ,∠EAC =∠ACB =α,∴∠EAC =∠EDC =α,∴A 、D 、C 、E 四点共圆,∴∠ADE =∠ACE ,∵∠ADE +∠EDC =∠ADC =∠ABC +∠BCD ,∠ABC =∠EDC =α, ∴∠ADE =∠BCD ,∴∠ACE =∠BCD ,∵∠ABC =∠EAC =α,∴△BDC ∽△AEC ,∴BD AE =BCAC ,又∵BCAC=2cos α,∴BD =2cos α·AE.5.解:(1)①∵△ABC 是等边三角形,∴AC =BC ,∠BAC =∠B =60°, ∵∠DCF =60°,∴∠ACF =∠BCD ,在△ACF 和△BCD 中,⎩⎪⎨⎪⎧AC =BC ∠ACF =∠BCD CF =CD ,∴△ACF ≌△BCD(SAS ),∴∠CAF =∠B =60°,∴∠EAF =∠BAC +∠CAF =120°;②相等;理由如下:∵∠DCF =60°,∠DCE =30°,∴∠FCE =60°-30°=30°,∴∠DCE =∠FCE , 在△DCE 和△FCE 中,⎩⎪⎨⎪⎧CD =CF ∠DCE =∠FCE CE =CE,∴△DCE ≌△FCE(SAS ),∴DE =EF ;(2)①∵△ABC 是等腰直角三角形,∠ACB =90°, ∴AC =BC ,∠BAC =∠B =45°, ∵∠DCF =90°,∴∠ACF =∠BCD ,在△ACF 和△BCD 中,⎩⎪⎨⎪⎧AC =BC ∠ACF =∠BCD CF =CD,∴△ACF ≌△BCD(SAS ),∴∠CAF =∠B =45°,AF =BD ,∴∠EAF =∠BAC +∠CAF =90°;②AE 2+DB 2=DE 2;理由如下:∵∠DCF =90°,∠DCE =45°,∴∠FCE =90°-45°=45°,∴∠DCE =∠FCE , 在△DCE 和△FCE 中,⎩⎪⎨⎪⎧CD =CF ∠DCE =∠FCE CE =CE ,∴△DCE ≌△FCE(SAS ),∴DE =EF , 在Rt △AEF 中,AE 2+AF 2=EF 2,又∵AF =DB ,∴AE 2+DB 2=DE 2.。

中考数学二轮专题复习资料

中考数学二轮专题复习资料

中考二轮复习资料数学专题一填空压轴题探究1.(2017天水中考)如图是抛物线y 1=ax 2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y 2=mx+n(m≠0)与抛物线交于A,B 两点,下列结论:①abc>0;②方程ax 2+bx+c=3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x<4时,有y 2>y 1;⑤x(ax+b)≤a+b,其中正确的结论是__②⑤__.(只填写序号)2.(2017安徽中考)在三角形纸片ABC 中,∠A=90°,∠C=30°,AC=30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD(如图①),剪去△CDE 后得到双层△BDE(如图②),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为__40或8033__cm .,(第2题图)),(第3题图))3.(2017宁波中考)如图,在菱形纸片ABCD 中,AB=2,∠A=60°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG,点F,G 分别在边AB,AD 上,则cos ∠EFG 的值为__217__.4.(2017温州中考)如图,矩形OABC 的边O A,OC 分别在x 轴、y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A,B′和B 分别对应).若AB=1,反比例函数y=k x (k≠0)的图象恰好经过点A′,B,则k 的值为__433__.5.(2017温州中考)小明家的洗手盆上装有一种抬启式水龙头(如图①),完全开启后,水流路线呈抛物线,把手端点A,出水口B 和落水点C 恰好在同一直线上,点A 至出水管BD 的距离为12cm ,洗手盆及水龙头的相关数据如图②所示,现用高10.2cm 的圆柱形水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E,则点E 到洗手盆内侧的距离EH 为__(24-82)__cm .图①图②6.(2017绍兴中考)如图,∠AOB=45°,点M,N 在边OA 上,OM=x,ON=x+4,点P 是边OB 上的点,若使点P,M,N 构成等腰三角形的点P 恰好有三个,则x 的值是__x=0或x=42-4或4<x<42__.7.(2017金华中考)在一空旷场地上设计一落地为矩形ABCD 的小屋,AB+BC=10m ,拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m 2).(1)如图①,若BC=4m ,则S=__88π__m 2;(2)如图②,现考虑在(1)中矩形ABCD 小屋的右侧以CD 为边拓展一正△CDE 区域,使之变成落地为五边形ABCED 的小屋,其他条件不变,则在BC 的变化过程中,当S 取得最小值时,边BC 的长为__52__m .8.(2017舟山中考)一副含30°和45°角的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,BC=EF =12cm (如图①),点G 为边BC(EF)的中点,边FD 与AB 相交于点H,此时线段BH 的长是__(123-12)__cm .现将三角板DEF 绕点G 按顺时针方向旋转(如图②),在∠CGF 从0°到60°的变化过程中,点H 相应移动的路径长共为__(123-18)__cm .(结果保留根号)图①图②9.(2017上海中考)我们规定:一个正n 边形(n 为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为λn ,那么λ6=__32__.10.(2017河南中考)如图,在Rt △ABC 中,∠A=90°,AB=AC,BC=2+1,点M,N 分别是边BC,AB 上的动点,沿MN 所在的直线折叠∠B,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为__1或2+12__.11.(2017江西中考)已知点A(0,4),B(7,0),C(7,4),连结AC,BC 得到矩形AOBC,点D 在边AC 上,将边OA 沿OD 折叠,点A 的对应点为A′.若点A′到矩形较长两对边的距离之比为1∶3,则点A′的坐标为__(7,3)或(15,1)或(23,-2)__.12.(2017重庆中考)A,B 两地之间的路程为2380m ,甲,乙两人分别从A,B 两地出发,相向而行,已知甲先出发5min 后,乙才出发,他们两人在A,B 之间的C 地相遇,相遇后,甲立即返回A 地,乙继续向A 地前行.甲到达A 地时停止行走,乙到达A 地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(m )与甲出发的时间x(min )之间的关系如图所示,则乙到达A 地时,甲与A 地相距的路程是__180__m .,(第12题图)),(第13题图))13.(2017长春中考)如图,在平面直角坐标系中,△ABC 的顶点A 在第一象限,点B,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB 交x 轴于点P.若△ABC 与△A′B′C′关于点P 成中心对称,则点A′的坐标为__(-2,-3)__.14.(2017大连中考)在平面直角坐标系xOy 中,点A,B 的坐标分别为(3,m),(3,m+2),直线y=2x+b 与线段AB 有公共点,则b 的取值范围为__m-6≤b≤m-4__.(用含m 的代数式表示)15.(2017东营中考)如图,在平面直角坐标系中,直线l:y=33x-33与x 轴交于点B 1,以OB 1为边长作等边三角形A 1OB 1,过点A 1作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为边长作等边三角形A 2A 1B 2,过点A 2作A 2B 3平行于x 轴,交直线l 于点B 3,以A 2B 3为边长作等边三角形A 3A 2B 3,…,则点A 2017的横坐标是__22017-12__.16.在一条笔直的公路上有A,B,C 三地,C 地位于A,B 两地之间,甲、乙两车分别从A,B 两地出发,沿这条公路匀速行驶至C 地停止.从甲车出发至甲车到达C 地的过程,甲、乙两车各自与C 地的距离y(km )与甲车行驶时间t(h )之间的函数关系如图所示,当甲车出发__32__h 时,两车相距350km .,(第16题图)),(第17题图))17.(2017南京中考)函数y 1=x 与y 2=4x 的图象如图所示,下列关于函数y=y 1+y 2的结论:①函数的图象关于原点中心对称;②当x<2时,y 随x 的增大而减小;③当x>0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是__①③__.专题二应用性问题探究1.(2017宜宾中考模拟)某大型企业为了保护环境,准备购买A,B两种型号的污水处理设备共8台,用于同时治理不同成分的污水.已知购买A型设备2台、B型设备3台需54万元;购买A型设备4台、B型设备2台需68万元.(1)求出A型,B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220t,一台B型设备一个月可处理污水190t.如果该企业每月的污水处理量不低于1565t,请你为该企业设计一种最省钱的购买方案.解:(1)设A型污水处理设备的单价为x万元,B型污水处理设备的单价为y万元.根据题意,得答:A型污水处理设备的单价为12万元,B型污水处理设备的单价为10万元;(2)设购进a台A型污水处理器.根据题意,得220a+190(8-a)≥1565,解得a≥1.5,∵A型污水处理设备单价比B型污水处理设备单价高,∴A型污水处理设备买越少,越省钱,∴购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.2.(2016宜宾中考模拟)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14t(含14t),则每吨按政府补贴优惠价m元收费;若每月用水量超过14t,则超过部分每吨按市场价n 元收费.小明家3月份用水20t,交水费49元;4月份用水18t,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x t,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26t,则他家应交水费多少元?解:(1)已知每吨水的政府补贴优惠价为m元,市场调节价为n元,根据题意,答:每吨水的政府补贴优惠价为2元,市场调节价为3.5元;(2)当0≤x≤14时,y=2x;当x>14时,y=14×2+(x-14)×3.5=3.5x-21.2x(0≤x≤14),;(3)∵26>14,∴3.5×26-21=70(元).答:小明家5月份应交水费70元.3.(2017宜宾中考模拟)宜宾黄桷庄游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元;暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x 次时,所需总费用为y 元.(1)分别写出选择银卡、普通票消费时,y 与x 之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C 的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.解:(1)由题意,得银卡消费y=10x+150,普通消费y=20x;(2)由题意,得当10x+150=20x,解得x=15,则y=300,∴B(15,300),当y=10x+150,x=0时,y=150,∴A(0,150),当y=10x+150=600,解得x=45,∴C(45,600);(3)由A,B,C 的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.4.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如表:价格x(元/个)…30405060…销售量y(万个)…5432…同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y 与x 之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数表达式;(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数表达式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?解:(1)根据表格中数据可知y 与x 是一次函数关系,设表达式为k=-110,∴函数表达式为y=-110x+8;(2)根据题意,得z=(x-20)y-40=(x-20)(-110x+8)-40=-110x 2+10x-200=-110(x-50)2+50,∴销售价格定为50元/个时净得利润最大,最大值是50万元;(3)当公司要求净得利润为40万元时,即-110(x-50)2+50=40,解得x 1=40,x 2=60.如图,通过观察二次函数z=-110(x-50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y 与x 的函数关系式为:y=-110x+8,y 随x 的增大而减少;因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.5.(2017襄阳中考)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m 2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m 2),种草所需费用y 1(元)与x(m 2)的函数关系式为y 11x(0≤x<600),2x+b(600≤x≤1000).其图象如图所示;栽花所需费用y 2(元)与x(m 2)的函数关系式y 2=-0.01x 2-20x+30000(0≤x≤1000).(1)请直接写出k 1,k 2和b 的值;(2)设这块1000m 2空地的绿化总费用为W(元),请利用W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700m 2,栽花部分的面积不少于100m 2,请求出绿化总费用W 的最小值.解:(1)k 1=30,k 2=20,b=6000;(2)当0≤x<600时,W=30x+(-0.01x 2-20x+30000)=-0.01x 2+10x+30000.∵-0.01<0,W=-0.01(x-500)2+32500,∴当x=500时,W 取最大值为32500元.当600≤x≤1000时,W=20x+6000+(-0.01x 2-20x+30000)=-0.01x 2+36000.∵-0.01<0,∴当600≤x≤1000时,W 随x 的增大而减小,∴当x=600时,W 取最大值为32400元.∵32400<32500,∴W 的最大值为32500元;(3)由题意,得1000-x≥100,解得x≤900.又x≥700,∴700≤x≤900.∵当700≤x≤900时,W 随x 的增大而减小,∴当x=900时,W 取最小值为27900元.专题三三角形、四边形综合问题探究1.(2017宜宾中考模拟)如图,在△ABC 中,∠ACB=90°,M,N 分别是AB,AC 的中点,延长BC 至点D,使CD=13BD,连结DM,DN,MN.若AB=6,则DN=__3__.2.(2016宜宾中考改编)如图,BD 是△ABC 的角平分线,它的垂直平分线EG 分别交AB,BD,BC 于点E,F,G,连结ED,DG.(1)请判断四边形EBGD 的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=210,点H 是BD 上的一个动点,求HG+HC 的最小值.解:(1)四边形EBGD 是菱形.理由:∵EG 垂直平分BD,∴EB=ED,GB=GD,DF=BF,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF.在△EFD 和△GFB 中,∠EDF=∠GBF,DF=BF,∠EFD=∠GFB,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD 是菱形;(2)作EM⊥BC 于M,DN⊥BC 于N,连结EC 交BD 于点H,此时HG+HC 最小.在Rt △EBM 中,∵∠EMB=90°,∠E BM=30°,EB=ED=210,∴E M=12BE=10.∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=10,MN=DE=210.在Rt △DNC 中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=10,∴MC=310,在Rt △EMC 中,∵∠EMC=90°,EM=10,MC=310,∴EC=EM 2+MC 2=(10)2+(310)2=10.∵HG+HC=EH+HC=EC,∴HG+HC 的最小值为10.3.如图,点O 是△ABC 内一点,连结OB,OC,并将AB,OB,OC,AC 的中点D,E,F,G 依次连结,得到四边形DEFG.(1)求证:四边形DEFG 是平行四边形;(2)若M 为EF 的中点,O M=3,∠OBC 和∠OCB 互余,求DG 的长度.解:(1)∵D,G 分别是AB,AC 的中点,∴DG∥BC,DG=12BC.∵E,F 分别是OB,OC 的中点,∴EF∥BC,EF=12BC ,∴DG=EF,DG∥EF,∴四边形DEFG 是平行四边形;(2)∵∠OBC 和∠OCB 互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°.∵M 为EF 的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG 是平行四边形,∴DG=EF=6.4.(2016宜宾中考模拟)(1)如图①,在Rt △ABC 中,∠ABC=90°,以点B 为中心,把△ABC 逆时针旋转90°,得到△A 1BC 1;再以点C 为中心,把△ABC 顺时针旋转90°,得到△A 2B 1C,连结C 1B 1,则C 1B 1与BC 的位置关系为________;(2)如图②,当△ABC 是锐角三角形,∠ABC=α(α≠60°)时,将△ABC 按照(1)中的方式旋转α,连结C 1B 1,探究C 1B 1与BC 的位置关系,写出你的探究结论,并加以证明;(3)如图③,在图②的基础上,连结B 1B,若C 1B 1=23BC,△C 1BB 1的面积为4,则△B 1BC 的面积为________.解:(1)平行;(2)C 1B 1∥BC.理由如下:过点C 1,作C 1E∥B 1C 交BC 于点E,则∠C 1EB=∠B 1CB.由旋转性质可知,BC 1=BC=B 1C,∠C 1BC=∠B 1CB,∴∠C 1B C=∠C 1EB,∴C 1B=C 1E.∵BC 1=BC=B 1C,∴C 1E=B 1C.又∵C 1E∥B 1C,∴四边形C 1ECB 是平行四边形,∴C 1B 1∥BC.5.(2017沈阳中考)四边形ABCD 是边长为4的正方形,点E 在边AD 所在的直线上,连结CE,以CE 为边,作正方形CEFG(点D,点F 在直线CE 的同侧),连结BF.(1)如图①,当点E 与点A 重合时,请直接写出BF 的长;(2)如图②,当点E 在线段AD 上时,AE=1,①求点F 到AD 的距离;②求BF 的长;(3)若BF=310,请直接写出此时AE 的长.解:(1)BF=45;(2)①过点F 作FH⊥AD 交AD 的延长线于点H.∵四边形CEFG 是正方形,∴EC=EF,∠FEC=90°,∴∠DEC+∠FEH=90°.又∵四边形ABCD是正方形,∴∠ADC=90°,∴∠DEC+∠ECD=90°,∴∠ECD=∠FEH.又∵∠EDC=∠EHF=90°,∴△ECD≌△FEH,∴FH=ED.∵AD=4,AE=1,∴ED=AD-AE=4-1=3,∴FH=3,即点F到AD的距离为3;②延长FH交BC的延长线于点K,∴∠DHK=∠HDC=∠DCK=90°,∴四边形CDHK为矩形,∴HK=CD=4,∴FK=FH+HK=3+4=7.∵△ECD≌△FEH,∴EH=CD=AD=4,∴AE=DH=CK=1,∴BK=BC+CK=4+1=5.在Rt△BFK中,BF=FK2+BK2=72+52=74;(3)AE=2+41或AE=1.6.(2017福建中考)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC,BC上的点,且四边形PEFD为矩形.(1)若△PCD是等腰三角形,求AP的长;(2)若AP=2,求CF的长.解:(1)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,AC=AD2+DC2=10.要使△PCD 是等腰三角形,有如下三种情况:①当CP=CD 时,CP=6,∴AP=AC-CP=4,②当PD=PC 时,∠PDC=∠PCD.∵∠PC D+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC2=5;③当DP=DC 时,过D 作DQ⊥AC 于Q,则PQ=CQ.∵S △ADC =12AD·DC=12AC·DQ,∴DQ=AD·DC AC =245,∴CQ=DC 2-DQ 2=185,∴PC=2CQ=365,∴AP=AC-PC=145.综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(2)连结PF,DE,记PF 与DE 的交点为O,连结OC.∵四边形ABCD 和PEFD 都是矩形,∴∠ADC=∠PDF=90°,即∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF.∵∠BC D=90°,OE=OD,∴OC=12ED.在矩形PEFD 中,PF=DE,∴OC=12PF.∵OP=OF=12PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC.又∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,即∠PCD+∠FCD=90°.在Rt △ADC 中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴CF AP =CD AD =34.∵AP=2,∴CF=324.专题四圆的综合1.已知:如图,⊙O 是△ABC 的外接圆,AB ︵=AC ︵,点D 在边BC 上,AE∥BC,AE=B D .(1)求证:AD=CE;(2)如果点G 在线段DC 上(不与点D 重合),且AG=AD,求证:四边形AGCE 是平行四边形.证明:(1)在⊙O 中,∵AB ︵=AC ︵,∴AB=AC,∴∠B=∠ACB.∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC.在△ABD 和△CAE 中,,∴△ABD≌△CAE(S .A .S .),∴AD=CE;(2)连结AO 并延长,交边BC 于点H.∵AB ︵=AC ︵,OA 为半径,∴AH⊥BC,∴BH=CH.∵AD=AG,∴DH=HG,∴BH-DH=CH-GH,即BD=CG.∵BD=AE,∴CG=AE.∵CG∥AE.∴四边形AGCE 是平行四边形.2.已知:如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=43,以AC 为直径的⊙O 交AB 于点D,点E 是BC 的中点,连结OD,OB,DE 相交于点F.(1)求证:DE 是⊙O 的切线;(2)求EF∶FD 的值.解:(1)连结CD.∵∠ACB=90°,AC=4,BC=43,∴AB=AC 2+BC 2=42+(43)2=8,∴∠ABC=30°,∠BAC=60°,∴∠ODA=60°.又∵AC 为直径,∴∠CDA=90°,即△CDB 为直角三角形,而E 点为斜边BC 的中点,∴DE=BE=EC,∴∠BDE=∠DBE=30°,∴∠ODE=180°-∠BDE-∠ADO=90°,∴DE 是O 的切线;(2)连结OE.∵△OAD 为等边三角形,∴AD=OA=2,∴BD=AB-AD=8-2=6.在Rt △OEC 中,OE=EC 2+OC 2=4,又∵OE 为△CBA 的中位线,∴OE∥AB,∴EF∶FD=OE∶BD=4∶6=2∶3.3.如图,AB 是⊙O 的直径,BP 是⊙O 的弦,弦CD⊥AB 于点F,交BP 于点G,E 在DC 的延长线上,EP =EG.(1)求证:直线EP 为⊙O 的切线;(2)点P 在劣弧AC 上运动,其他条件不变,若BG 2=BF·BO,试证明:BG=PG;(3)在满足(2)的条件下,已知⊙O 的半径为3,sin B=33,求弦CD 的长.解:(1)连结OP.∵EP=EG,∴∠EPG=∠EGP.又∵∠EGP=∠BGF,∴∠EPG=∠BGF.∵OP=OB,∴∠OPB=∠OBP.∵CD⊥AB,∴∠B FG=∠BGF+∠OBP=90°,∴∠EPG+∠OPB=90°,即OP⊥EP,∴直线EP 为⊙O 的切线;(2)连结OG.∵BG 2=BF·BO,∴BG BO =BFBG,∴△BFG∽△BGO,∴∠BGO=∠BFG=90°,∴BG=PG;(3)连结AC,BC.∵sin ∠GBO=33,∴OG OB =33.∵OB=r=3,∴OG=3,由(2)得∠GBO+∠BGF=∠OGF+∠B GF=90°,∴∠GBO=∠OGF ,∴sin ∠OGF=33=OF OG,∴OF=1,∴BF=BO-OF=3-1=2,FA=OF+OA=1+3=4.∵AB 为⊙O 的直径,∴∠ACB=∠ACF+∠BCF=90°.∵∠ACF+∠A=90°,∴∠BCF=∠A,∴△BCF∽△CAF,∴CF AF =BF CF ,∴CF 2=BF·FA,∴CF=BF·FA=2×4=22,∴CD=2CF=4 2.4.如图,AB 为半圆的直径,O 为圆心,AB=6,延长BA 到F,使FA=AB.若P 为线段AF 上一个动点(P 点与A 点不重合),过P 点作半圆的切线,切点为C,作CD⊥AB,垂足为D.过B 点作BE⊥PC,交PC 的延长线于点E,连结AC,DE.(1)判断线段AC,DE 所在直线是否平行,并证明你的结论;(2)设AC 为x,AC+B E 为y,求y 与x 的函数关系式,并写出自变量x 的取值范围.解:(1)线段AC,DE 所在的直线平行.证明:∵CD⊥AB,BE⊥PE,∠CPD=∠BPE,∴Rt △PCD∽Rt △PBE,∴PC PB =PD PE.∵PC 与⊙O 相切于C 点,PAB 为⊙O 的割线,∴PC 2=PA×PB,∴PC PB =PA PC,∴PA PC =PDPE.∵∠CPA=∠EPD,∴△CPA∽△EPD,∴∠PCA=∠PED,∴AC∥DE;(2)连结BC.∵AB 是半圆的直径,∴∠ACB=90°,∴AC 2+BC 2=AB 2.∵AC=x,AB=6,∴BC 2=62-x 2=36-x 2.∵PC 与半圆相切于点C,∴∠BAC=∠BCE.∵∠ACB=∠BEC=90°,∴Rt △ABC∽Rt △CBE,∴AB BC =CB BE,∴BE=BC 2AB =36-x 26.∵y=AC+BE,∴y=x+36-x 26,y=-16x 2+x+6.∵P 点与A 点不重合,∴AC>0.当点P 与点F 重合时,AC 的值最大,此时PC=PA·PB=6 2.又∵∠P=∠P,∠PBC=∠PCA,∴△PCA∽△PBC,∴AC CB =PC PB ,∴BC=AC·PB PC =2AC.又∵AC 2+B C 2=AB 2,∴AC 2+(2AC)2=36,∴AC=23,∴y=-16x 2+x+6(0<x≤23).5.如图,在△AOB 中,∠AOB 为直角,OA=6,OB=8,半径为2的动圆圆心Q 从点O 出发,沿着OA 方向以1个单位/s 的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位/s 的速度匀速运动,设运动时间为t s (0<t≤5),以P 为圆心、PA 长为半径的⊙P 与AB,OA 的另一个交点分别为C,D,连结CD,QC.(1)当t 为何值时,点Q 与点D 重合?(2)当⊙Q 经过点A 时,求⊙P 被OB 截得的弦长;(3)若⊙P 与线段QC 只有一个公共点,求t 的取值范围.解:(1)∵OA=6,OB=8,∴由勾股定理得AB=10.由题意知OQ=AP=t,∴AC=2t.∵AC 是⊙P 的直径,∴∠CDA=90°,∴CD∥OB,∴△ACD∽△ABO,∴AC AB =ADOA ,∴AD=1.2t.当Q 与D 重合时,AD+OQ=OA,∴1.2t +t=6,解得t=3011∴t 为3011s 时,点Q 与点D 重合;(2)当⊙Q 经过A 点时,如图①,图①OQ=OA-QA=4,∴t=41=4s ,∴PA=4,∴BP=AB-PA=6.过点P 作PE⊥OB 于点E,⊙P 与OB 相交于点F,G,连结PF,∴PE∥OA,∴△PEB∽△AO B,∴PE OA =BPAB,∴PE=3.6,∴由勾股定理得EF=2195,由垂径定理知FG=2EF=4195;图②(3)当QC 与⊙P 相切时,如图②,此时∠QCA=90°.∵OQ=AP=t,∴AQ=6-t,AC=2t.∵∠A=∠A,∠QCA=∠ABO,∴△AQC∽△ABO,∴AQ AB =ACOA,∴6-t 10=2t 6,∴t=1813,∴当0<t≤1813时,⊙P 与QC 只有一个交点,当QC⊥OA 时,此时Q 与D 重合,由(1)可知t=3011,∴当3011<t≤5时,⊙P 与QC 只有一个交点.综上所述,当⊙P 与线段QC 只有一个公共点,t 的取值范围为:0<t≤1811或3011<t≤5.专题五压轴题探究1.(2017常德中考)如图,已知抛物线的对称轴是y P 是抛物线上不与顶点N 重合的一动点,过P 作PA⊥x 轴于A,PC⊥y 轴于C,延长PC 交抛物线于E,设M 是O 关于抛物线顶点N 的对称点,D 是C 点关于N 的对称点.(1)求抛物线的表达式及顶点N 的坐标;(2)求证:四边形PMDA 是平行四边形;(3)求证:△DPE∽△PAM,并求出当它们的相似比为3时的点P 的坐标.解:(1)∵抛物线的对称轴是y 轴,∴可设抛物线表达式为y=ax 2+c.在抛物线上,a+c=54,a=14,∴抛物线表达式为y=14x 2+1,∴N 点坐标为(0,1);(2)设t,14t 2,则0,14t 2PA=14t 2+1.∵M 是O 关于抛物线顶点N 的对称点,D 是C 点关于N 的对称点,且N(0,1),∴M(0,2).∵OC=14t 2+1,ON=1,∴CN=14t 2+1-1=14t 2,∴OD=14t 2-1,0,-14t 2-14t 2=14t 2+1=PA.又∵PA∥DM,∴四边形PMDA 为平行四边形;(3)同(2)设t,14t 2则0,14t 2,PA=14t 2+1,PC=|t|.∵M(0,2),∴CM=14t 2+1-2=14t 2-1.在Rt △PMC 中,由勾股定理可得PM=PC 2+CM 2=14t 2+1=PA.且四边形PMDA 为平行四边形,∴四边形PMDA 为菱形,∴∠APM=∠ADM=2∠PDM.∵PE⊥y 轴,抛物线对称轴为y 轴,∴DP=DE,且∠PDE=2∠PDM,∴∠PDE=∠APM,又∵PD PA =DEPM,∴△DPE∽△PAM.∵OA=|t|,OM =2,∴AM=t 2+4,又∵PE=2PC=2|t|,当相似比为3时,则PEAM=3,即2|t|t 2+4=3,解得t=23或t=-23,∴P 点坐标为(23,4)或(-23,4).2.(2017永州中考)如图,已知抛物线y=ax 2+bx+1经过A(-1,0),B(1,1)两点.(1)求该抛物线的表达式;(2)阅读理解:在同一平面直角坐标系中,直线l 1:y=k 1x+b 1(k 1,b 1为常数,且k 1≠0),直线l 2:y =k 2x+b 2(k 2,b 2为常数,且k 2≠0),若l 1⊥l 2,则k 1·k 2=-1.解决问题:①若直线y=3x-1与直线y=mx+2互相垂直,求m 的值;②抛物线上是否存在点P,使得△PAB 是以AB 为直角边的直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)M 是抛物线上一动点,且在直线AB 的上方(不与A,B 重合),求点M 到直线AB 的距离的最大值.解:(1)根据题意,得解得a=-12,b=12.∴y=-12x 2+12x+1;(2)①由题意,得3m=-1,∴m=-13;②设PA 的表达式为y=kx+c,过A(-1,0),B(1,1)两点的直线表达式为y=12x+12.∵过点P 的直角边与AB 垂直,∴k=-2,∴y=-2x+c.若∠PAB=90°,把A(-1,0)代入得0=-2×(-1)+c,解得c=-2,∴y=-2x-2,点P 是直线PA y=-12x 2+12x+1,解得11=0,2=6,2=-14.∴P(6,-14);若∠PBA=90°,把B(1,1)代入y=-2x+c ,得1=-2×1+c,解得c=3,∴y=-2x+3,点P 是直线PB 与抛物线的交点,联立方程组y=-12x 2+12x+1,解得112=4,2=-5.∴P(4,-5).综上所述,存在点P(6,-14)或(4,-5),使得△PAB 是以AB 为直角边的直角三角形;(3)设n,-12n 2+12n+1M 作MQ∥y 轴,交AB 于点Q,则n,12n+∴S △ABM -12n 2+12n+112n 2+12.当n=0时,最大面积为12,AB=22+12=5,设点M 到直线AB 距离最大为h,则12×5×h=12,∴h=55.即点M 到直线AB 的距离的最大值是55.3.(六盘水中考)如图,抛物线y=ax 2+bx+c 的图象与x 轴交于A(-1,0),B(3,0)两点,与y 轴交于点C(0,-3),顶点为D.(1)求此抛物线的表达式;(2)求此抛物线顶点D的坐标和对称轴;(3)探究对称轴上是否存在一点P,使得以点P,D,A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),2+b×(-1)+c=0,2+3b+c=0∴抛物线的表达式为y=x2-2x-3;(2)∵y=x2-2x-3=(x-1)2-4,∴抛物线顶点D的坐标为(1,-4),对称轴为直线x=1;(3)存在一点P,使得以点P,D,A为顶点的三角形是等腰三角形,设点P的坐标为(1,y).当PA=PD时,(-1-1)2+(0-y)2=(1-1)2+(-4-y)2,解得y=-32,即点P当DA=DP时,(-1-1)2+[0-(-4)]2=(1-1)2+(-4-y)2,解得y=-4±25,即点P的坐标为(1,-4-25)或(1,-4+25);当AD=AP时,(-1-1)2+[0-(-4)2]=(-1-1)2+(0-y)2,解得y=±4,即点P的坐标是(1,4)或(1,-4),当点P为(1,-4)时与点D重合,故不符合题意,综上所述,以点P,D,A为顶点的三角形是等腰三角形时,点P的坐标为错误!或(1,-4-25)或(1,-4+25)或(1,4).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学第二轮专题复习-----二次函数综合问题内容概要:二次函数是在初中阶段学习的 一个重要的初等函数,通过这一内容的复习,同学们要能够掌握二次函数的性质,会用描点法画出二次函数的图象,并能通过图象看出二次函数所具有的 性质,能够了解二次函数与二次方程的内在联系,形成数形结合的 数学思想。

能够熟练地对二次函数 进行配方,将其转化为顶点的形式, 即为 会据已知条件,利用待定系数法求出二次函数的解析式,能够灵活运用所学过的代数、几何方面的知识解决二次函数的有关综合问题。

1、如图,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点且在x 轴上方,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; 解:(1)设抛物线的解析式为 代入三点的坐标得: 解得: 所以抛物线的解析式为:(2)设点P 的坐标为如图,由题意得1<x<4 , 如果 ,那么 ,解得x=5不合题意.如果 ,那么 ,解得x=2,此时点P 的坐标为(2,1).考点归纳:待定系数法求二次函数解析式;二次函数性质;相似三角形的判定;要求会用字母表示线段长度、点的坐标,会对代数式进行合理变形;结合图形考查分类讨论思想。

2、直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.(1) 写出点A 、B 、C 、D 的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标; (3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.2(0)y ax bx c a =++≠224()(0)24b ac by a x a a a -=++≠2(0)y ax bx c a =++≠164002a b c a b c c ++=⎧⎪++=⎨⎪=-⎩12522a b c ⎧=-⎪⎪⎪=⎨⎪=-⎪⎪⎩215222y x x =-+-215(,2)22x x x -+-215222PM x x =-+-x AM -=42==COAO PM AM 21522224x x x-+-=-21==CO AO PM AM 215212242x x x -+-=-解:(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4).(3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG .因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°. 因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么BQ ==. Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况: ①当3BQ BA =3=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --. ②当13BQ BA =13=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3另解:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH中,sin 1∠=,cos 1∠=①当3BQBA=时,BQ = 在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=. 当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --. ②当13BQ BA =时,BQ =31(,2)3Q ,41(,0)3Q -.考点归纳:图形旋转的性质;求二次函数解析式;动点问题中确定两个三角形相似的基本解题思路;考查数学分类讨论思想。

3、如图,平面直角坐标系中,已知抛物线经过A (-4,0)、B (0,-4)二点,且对称轴为直线x =-1。

(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△MAB 的面积为S ,求S 关于m 的函数关系式;(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能使以点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.解:(1)设抛物线的解析式为 ,有过A (-4,0)和B (0,-4),得:解得:则抛物线的解析式为: (2)如图2,直线AB 的解析式为y =-x -4.过点M 作x 轴的垂线交AB 于D ,那么2211(4)(4)222MD m m m m m =---+-=--.所以2142MDA MDB S S S MD OA m m ∆∆=+=⋅=--2(2)4m =-++.(3) 当OB 为平行四边形的一边时,则PQ //OB ,PQ =OB =4 。

设点Q 的坐标为(,)x x -,点P 的坐标为21(,4)2x x x +-. ①当点P 在点Q 上方时,21(4)()42x x x +---=.解得2x =-±此时点Q的坐标为(2-+-(如图3),或(2--+(如图4). ②当点Q 在点P 上方时,21()(4)42x x x --+-=.解得4x =-或0x =(与点O 重合,舍去).此时点Q 的坐标为(-4,4) (如图5).图3 图4 图5当OB 为平行四边形的对角线时,由图形的中心对称易得Q 的坐标为(4,-4)考点归纳:求二次函数解析式;坐标系中图形面积的求法;平行四边形的判定;数学分类讨论思想。

4、如图,经过原点的抛物线 与x 轴的另一个交点为A .过点P(1,m)作直线PM x ⊥轴k x a y ++=2)1(⎩⎨⎧-=+=+409k a k a ⎪⎪⎩⎪⎪⎨⎧-==2921k a 42129)1(2122-+=-+=x x x y )1(22>+-=m mx x y于点M ,交抛物线于点B .记点B 关于抛物线对称轴的对称点为C (B 、C 不重合).连结CB ,CP 。

(1)当m =3时,求点A 的坐标及BC 的长; (2)连结CA ,问m 为何值时CA ⊥CP ?(3)过点P 作PE ⊥PC 且PE =PC ,问是否存在m ,使得点E 落在x 的正半轴上?若存在,求出m 的值,并写出相对应的点E 坐标;若不存在,请说明理由解:(1)当m =3时,y =-x 2+6x 。

令y =0得-x 2+6x =0,解得,x 1=0,x 2=6。

∴A (6,0)。

当x =1时,y =5。

∴B (1,5)。

∵抛物线y =-x 2+6x 的对称轴为直线x =3,且B ,C 关于对称轴对称, ∴BC =4。

(2)过点C 作CH ⊥x 轴于点H (如图1)由已知得,∠ACP =∠BCH =90°,∴∠ACH =∠PCB 。

又∵∠AHC =∠PBC =90°,∴△AGH ∽△PCB 。

∴AH PBCH BC=。

∵抛物线y =-x 2+2mx 的对称轴为直线x =m ,其中m>1,且B ,C 关于对称轴对称,∴BC =2(m -1)。

∵B (1,2m -1),P (1,m ),∴BP =m -1。

又∵A (2m ,0),C (2m -1,2m -1),∴H (2m -1,0)。

∴AH =1,CH =2m -1,∴()1m 12m 12m 1-=--,解得m =32(3)存在。

由题意得:BC =2(m -1),PM =m ,BP =m -1,∵∠CPE =90°,∴∠MPE +∠BPC =∠MPE +∠MEP =90°,PC =EP 。

∴△BPC ≌△MEP ,∴BC =PM ,即2(m -1)=m ,解得m =2。

此时点E 的坐标是(2,0)。

考点归纳:二次函数解析式的确定;轴对称图形的性质;相似三角形的判定和性质;全等三角形的判定和性质;会运用点的坐标表示线段的长。

5、已知二次函数 的图象经过点A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶212y x bx c =++点为P 。

(1)求:这个二次函数的解析式;(2)设D 为线段OC 上的一点,满足∠DPC =∠BAC ,求点D 的坐标。

解:(1)因为函数的图象经过点A (-3,6),B (-1,0),所以有,解得,因此所求的二次函数的解析式是。

(2)∵,∴顶点P 的坐标是(1,-2),由方程,解得,∴点C 的坐标是(3,0)。

作AE 、PF 垂直于轴,垂足分别为E 、F ,那么AE ==6,EC =EO +OC =3+3=6,∴AE =CE ,即△AEC 是等腰直角三角形,∴∠ACE =45°。

同理可得△PFC 是等腰直角三角形,∠PCF =45°。

设点D =3-,∵∠PCD=∠ACB ,∠DPC =∠BAC ,∴△DPC∽△,即,解得,∴点D 的坐标为。

抛物线与x 轴交点和顶点坐标;相似三角形的判定与性质;在函数中善于把角的问题转化为边的问题;数形结合的数学思想。

相关文档
最新文档