热能与动力工程专业英语翻译2.5

合集下载

热能与动力工程专业英语词汇

热能与动力工程专业英语词汇

热能与动力工程专业英语词汇Appendix A Glossaryabatement abattoir abiotic abyssalaccelerometer account for accumulator acid rain acidicactivated sludge process active carbon active power actuate actuatoradaptive-network based fuzzy inference system adjustable blade administration adsorbent aerialaerodynamicaerodynamic lossesAGC(Automatic Generation Control) aggregateair preheater(heater) air register air staging airfoilair-pilot valve algae algorithm alkaline alleviate altitude ameliorate amenity ammonia消除(1.1)屠宰场(4.6)无生命的,非生物的(3.7)深不可测的(1.4)加速度计(测量振动)(3.6)达到(1.1)蓄电池(4.4)酸雨(1.1)酸性的(5.3)活性污泥法(5.3)活性炭(5.3)有功功率(3.5)带动(2.6)激励(3.4)自适应神经模糊推理系统(3.4)可调整叶片(3.2)行政部门,管理,经营(1.2)吸附剂(5.3)空中的(4.4)空气动力学的(4.4)气动损失(2.7)自动发电控制(3.5)数, 总计(3.7)空气预热器(2.3)调风器(2.3)分级送风(1.3)机翼; 螺旋桨(2.7)空气先导阀(2.9)藻类,海藻(1.1)算法(3.4)碱性的(1.4)减轻, 缓解, 缓和(3.1)海拔(4.4)改善,改进(3.7)娱乐设施(3.7)氨,氨水(4.2)263ammonium-based amorphous silicon amplifieran assortment of anaerobic digestion analoganalogue instrument anemometer annular chamber anode anthraciteanticipated apprenticeapproval procedures aquatic aquifer arch dam architecture artifactartificial intelligence ash flushing waterASME(American Society Of Mechanical Engineers) assimilationASTM(American Society for Testing and Materials) astronomerasymmetrical coefficient atmosphere diaphragm valve atomatomized attemperation attenuator austenitic automatism auxiliaryauxiliary lube oil pumpAVC(Automatic Voltage Control) aviational axial-turbineback pressure turbine backbone bag filterbalanced-draft264铵基(1.3)非晶硅(4.3)放大器(3.6)各种各样的(1.2)厌氧消化(4.6)模拟(3.4)模拟仪表(4.1)风速计(4.4)环形室(2.7)阳极(4.2)无烟煤(1.4)预先的,预期的(1.1)学徒,帮工(2.6)批准程序; 审核手续(3.2)水生的, 水产的, 水栖的, 水中的(3.7)地下蓄水层,砂石含水层(5.5)拱坝(3.2)系统结构(3.5)人造物品(3.1)人工智能(3.4)冲灰水(5.3)美工机械工程师学会(2.5)同化,聚集(5.3)美国材料试验协会(2.1)天文学家(2.6)不均匀系数(2.7)排大气薄膜阀(2.8)原子(4.1)雾化的(5.2)减温(2.3)衰减器(4.2)奥氏体的(2.6)自动(3.5)辅机,辅助设备(2.4)辅助润滑油泵(2.9)自动电压控制(3.5)航空的(4.4)轴流式透平,轴流式汽轮机(2.6)背压式汽轮机(2.6)主干,中坚(1.2)布袋除尘器(2.2)平衡通风(2.4)balding barrage basin bbl/dBcf(billion cubic feet) be counted as be divided into bearing pedestal belt conveyor benchmark Betz' Law bias spring binary biodiesel biofuel biogasbiological floc biomass bituminous black liquor blade pitch blade tip blastblowdown BOD5 boilerboiler feed pump bottleneck bottom ash bracket brackishbrittle fractureBtu(British Thermal Unit)Bubbling fluidized bed combustion(BFBC)built-up rotor bulb turbine buoy bureau butanolBWR(Boiling Water Reactor) bypassbypass governing by-productCAA(Clean Air Act)叶片,叶栅(2.6)河上的堰坝(3.2)流域(4.2)桶/天(1.1)十亿立方英尺(1.1)被算作(1.2)被划分为(1.2)轴承座(2.7)带式输送机(2.4)基准(3.4)贝兹理论(4.4)偏置弹簧(2.9)双重的,二元,双的(4.2)生物柴油(4.6)生物燃料(4.2)沼气(4.6)生物絮凝物(5.3)生物质(1.4)烟煤(2.1)黑液(4.6)叶片螺距(4.4)叶顶(2.7)喷射(2.6)排污(2.5)5日生物耗氧量(5.3)锅炉(2.1)锅炉给水泵(2.8)瓶颈路段(4.4)底灰(5.5)支架,托架(2.7)有盐味的(4.2)脆性断裂(2.7)英国热量单位(2.2)鼓泡流化床燃烧(1.3)套装转子(2.7)贯流式水轮机(3.2)航标(4.2)局,办公署(1.2)丁醇(4.6)沸水堆(4.1)旁路(2.9)旁路调节(2.6)副产品(4.2)清洁空气法案(5.4)265cable calandria canal cap nutcarbon brush carbon dioxide carbon monoxide carbon rod heater carrier ring cascade casing cast steelcatchment area categorize cathode cavitationCCS(carbon capture and storage) CCT(Clean Coal Technology) cellulose cementcement works cementitious centrifugal forceCFB(Circulating fluidized bed)CFBC(Circulating fluidized bed combustion) chamber charcheck valve chlorophyllCHNG(China Huaneng Group) chronological sequence circuitrycirculating pump circumference classification classifierclean development mechanism clearanceCMR(continuous maximum rating)CNPC(China National Petroleum Corporation)coagulating sedimentation coal cleaningcoal consumption rate coal mine266电缆(3.5)排管容器(4.1)水渠,河沟(3.3)盖型螺母,盖螺母(2.7)碳刷(4.4)二氧化碳(1.1)一氧化碳(1.4)碳棒加热(2.7)持环,垫圈(2.7)梯级(电站)(3.1)汽缸,气缸,机匣,机壳(2.6)铸钢(2.7)集水面积(3.3)把…归类; 把…列作(3.4)阴极(4.2)空化现象,汽蚀,空化(2.6)碳捕捉和存储(1.3)洁净煤技术(1.3)纤维素(4.6)水泥(1.3)水泥厂(1.4)粘结(性)的, 胶结的, 水泥(质)的(5.5)离心力(2.7)循环流化床(2.1)循环流化床燃烧(1.3)室,腔(1.3)炭(1.3)止回阀,逆止阀(2.9)叶绿素(3.7)中国华能集团(1.4)按时间顺序(2.9)电路,线路(3.4)循环水泵(2.5)周围(3.6)分类(2.1)粗粉分离器(2.4)清洁发展机制(1.3)间隙,空隙,间距(2.7)最大连续出力(2.9)中石油(1.1)混凝澄清(5.3)选煤(1.3)煤耗率(1.2)煤矿(1.2)coal/oil/gas firedCOD(chemical oxygen demand) COE(cost of electricity) co-firing cogeneration coliform colliercombined rotor combustorcome into contact with compensation comprehensive compressor compromise concentrateconcentrating collector concentricity concrete dam condensate pump condensing boiler condensing turbine conglomerate consecutive consoleconsumption containment contra flow controlcontrol stage controllability conventionalconverging nozzleconverging-diverging nozzle conversion convert…into coolantcooling tower correlate with corrosionCOST(Cooperation in Science & Technology)cost-effectiveness counter flow county-levelCPI(corrugated plate interceptor)燃煤/油/气(1.2)化学耗氧量(5.3)发电成本(2.1)混燃(1.3)热电联产(2.4)大肠菌(3.7)运煤船(2.4)组合转子(2.7)燃烧室(1.3)与…接触(2.8)补偿[赔偿]物, 补偿[赔偿]金(3.1)全面的,广泛的(1.2)压缩机(1.3)妥协, 折中方法;连累, 危害, 损害(3.7)集中, 聚集(3.1)集热器(4.3)同轴度,同心度(2.7)混凝土坝(3.2)凝结水泵(2.8)冷凝式锅炉(5.1)凝汽式汽轮机(2.6)聚结体,联合体(1.1)连续的,连贯的(3.6)控制台(3.5)消费,消耗(5.2)安全壳(4.1)对流,逆流(2.8)控制(2.5)调节级(2.6)可控性(3.4)依照惯例的,传统的(3.1)渐缩喷嘴(2.6)超音速喷嘴,缩放喷嘴(2.7)转化(4.4)把…转变成(2.6)冷却剂(4.1)冷却水塔(2.4)有相关性(3.1)腐蚀(1.4)科学技术合作(2.6)成本效用(4.4)逆流(2.8)县级(1.2)波纹板油水分离器(5.3)267感谢您的阅读,祝您生活愉快。

热能与动力工程,内燃机,专业英语,翻译,课件

热能与动力工程,内燃机,专业英语,翻译,课件

2. Four-stage-engine Operation四行程发动机工作过程The action taking place in the engine cylinder can be divided into four stages, or strokes. ―Stroke‖refers to piston movement; as stroke occurs when the piston moves from one limiting position to the other. The upper limit of piston movement is called TDC (top dead center). The lower limit of piston movement is called BDC (bottom dead center). A stroke is piston movement from TDC to BDC or from BDC to TDC. In other words, the piston completes a stroke each time it change its direction of motion.发动机气缸内的工作过程,可以分为四个阶段,或行程。

行程涉及活塞的运动;活塞从某一限定位臵到另一限定位臵的运动称为一行程。

活塞运动的上限称为TDC(上止点),下限称为BDC(下止点)。

一个行程就是活塞从上止点到下止点,或从下止点到上止点的运动。

换句话说,活塞每完成一个行程,就改变一次其运动的方向。

Where the entire cycle of events in the cylinder requires four strokes (or two crankshaft revolutions), the engine is called a four-stroke-cycle engine, or a four-cycle engine. The four piston strokes are intake, compression, power, and exhaust.发动机气缸中的全部工作过程分为四个行程的(或者曲轴旋转两周的),叫做四行程循环发动机,或四循环发动机。

热能与动力工程专业英语

热能与动力工程专业英语

steam power plant 蒸汽动力装置auxiliary辅助物;附属机构,辅助的的element 机组,部件,单元reservoir n. 水库;蓄水池heat reservoir热库储热器蓄热器贮热器oil reservoir储油器油罐油层油藏reservoir capacitor存储电容器;充电电容器;petroleum reservoir油贮油层;油气藏heat utilizer 热利用设备thermodynamics 热力学refrigerator 冷源冰箱dispose 处理remainder剩余物halve 二等分turbine cycle 涡轮汽轮机循环generator 发电机condenser 冷凝器聚光器pump 泵economizer 省煤器boiler drum 汽包锅筒reclaim 回收stack/ flue gas 延期thus 因此to be supplied 应该供给dry and saturated steam 干饱和蒸汽superheater 过热器steam turbine 蒸汽轮机bled off 抽出steam-jetair-ejector 射汽抽气器mechanical power机械功shaft 轴alternator 交流发动机regenerative cycle 会热循环distribution 输配throttle 节流阀入口exhaust hood 排气罩whence由此从何处sensible heat 显热latent heat 潜热cooling tower 冷却塔motor 马达vacuum 真空approximately 大约近似的shell 壳体principally主要的nozzle 喷嘴velocity 速率entrain携带传输motive steam 动力蒸汽after-condenser 后部凝汽器compressor压缩机exciter励磁机drain排水排干hotwell pump热井应用泵discharge排放卸货解雇low-pressure heater 低压加热器extraction 抽气drain pump 疏水泵condensate冷凝物浓缩物deaerating heater 除氧加热器contact type接触类型eliminate 消除augment 增大check valve 逆流阀junction 交叉点连接点pipe 管orifice 节流孔板vent 孔缺口有孔排出principle 原理solubility 溶解度boiling point沸点discharge 排放卸货atmospheric大气的气压的atmospheric corrosion[化工] 大气腐蚀atmospheric condenser[制冷] 大气冷凝器usual practice惯例通常办法simultaneously同时的subatmospheri c低于大气的occasion引起机会理由场合installation安装undesirable不受欢迎的不和需要的shifting移动的,移位furnish提供供应装备backflow回流逆流surge tank平衡水箱缓冲槽stored water 积水in parallel with 与平行与同时distilled蒸馏的来的净化的in the event of发生如果万一storage capacity 储存能力flashing闪蒸suction抽吸drain cooler 输水冷却器flashed heater 闪蒸加热器trap 使受限制latent heat of vaporization汽化潜热operational outfit operate运行设备flashing闪蒸steam generator 蒸汽发生器锅炉superheater 过热器reheater 再热器ash removal system除灰系统water-tube boiler 水管锅炉feed pump 给水泵subcool 过冷furnace 炉膛高炉natural circulation 自然循环downcomer circuit下降管回路riser上升管critical 临界的moisture 水分carryover夹带scrub 洗涤清洗气体洗涤rated capacity 额定容量prime mover 原动机blade 叶片centrifugal force离心力waterwall 水冷壁ignition point 燃点heat releaser rate 放热速率ashpit 灰仓灰坑灰池灰斗accretion 增长primary air 一次风secondary air 二次风tertiary air 三次风primary energy初级能源mechanical atomization机械雾化rotary cup burner 转杯燃烧器spinning cup 转杯drool 液滴等流出accommodate 供应调节tangential slot 切向槽calorific热量热量的calorically perfect gas 发热的理想气体combination burner 混合式燃烧器flame-failure device 火焰故障检测设备purge 吹扫erosion 冲蚀腐蚀pulverized coal 煤粉bypass damper旁路挡板desuperheat使过热蒸汽减温desuperheater 减温器longitudinal 经度的纵向的cast iron 铸铁extended surface 扩展表面recuperative 再生的supercritical 超临界firetube boiler 火管锅炉spew 喷涌electrostatic precipitator静电除尘器monotube 单管counterflow regenerator 逆流再生换热器parallel flow 顺流crosswise flow 交叉流baghouse 集尘室袋packaged or shop-assembled(shop-erected)boiler 快装锅炉coal fired power plant 燃煤发电厂piece 部件unit设备term 术语broadly明显的概括的refer to 只是boiler section炉膛boiler proper 锅炉本体integrated to 整合yield 形成combustion 燃烧examine检查trace out追踪noting 注释记录提示pump exit 泵出口steam drum 锅筒saturation temperature饱和温度releasing point 释放的地方relatively 相当的大量的be brought about 产生区分分类illustrated 显示convectively对流的引起对流传递性的convectively stable对流稳定water leg 水柱水侧equilibrium velocity 均衡速率available pressure difference 可利用压差stationary固定的local steam pocket 局部气块burnout 烧毁schematic 原理图图解视图recall 回想resistance阻力tube layout布局安排管子steam water separation汽水分离once-through forced circulation直流强制循环vaporized蒸发as indicated 如文distribute 分配diameter 直径conservative恒定的保守的release rate释放率separation surface 分离面water level水位fluctuating load负荷波动变载荷interior 内部的carryover夹带closely spaced 紧密空间布置Z-shaped 蒸汽清洗装置fin 翅片管wash and scrub清晰到sectionalize 划分分段dryer drier烘干机cartons纸箱the order of 量级installation装置就职rated capacity 满负荷运行standpoint 角度prime mover 原动机maintenance维护deposit沉淀associated 伴随purification 净化as to至于就…而论moisture removal除去水分除湿量impurity 杂质per million 百万分之一remarkable 值得注意的concentration浓度集中浓缩substance 物质commercial商业的distilled water 蒸馏水intolerable 不能容忍的drum桶internal baffli ng内部挡板inertia惯性foam blanket泡沫覆盖层preliminary初步的预备的minute bubbles小气泡undulating plate 波纹板passage 通路droplet液滴小滴cyclones 旋流器scrubber洗涤器涤气器supplement补充附录procedure流程程序spray into喷雾喷射silica二氧化硅硅胶vapor蒸汽烟雾cylindrical baffles圆柱形的挡板circumference圆周周长expedite 加速排除,畅通的快速的lengthwise 沿长度方向的load负荷pickup收集整理拾起fed through连通contrast对比差别trough水槽低压槽uniformly一致的均匀的somewhat有点稍微多少discharge排放temperature shock热震温度突跃温度冲击uniform一致的turbulence湍流紊流residual 剩余的internal feed treatment给水国内处理constitute 组成water-cooled wall水冷壁supplant代替refractory耐火材料slagging 结渣brickwork failure 耐火砖墙失效firmly稳定的严重的adhering附着粘附的accretion增加增加物full extent consistent相容的一致的firing characteristic 燃烧特性in all case 任何情况下refractory 难熔的耐火的maintenance 运行维护heat-absorbing envelope热吸收装置backed with以..背后支持insulation绝缘材料lath板条moderate cooling缓慢冷却adjacent邻近的tangent切向的相切的接触的stagger交错的deflector 导流器tangential 切线的spiral ribs螺旋筋板outlet periphery出口外围outer housing 外围气室adjustable vane 可调节导向叶片rear wall后壁impingement碰撞oil burner guns 燃油燃烧器油枪the tip 出口简短be imparted to给予rim边缘impinge撞击侵犯chamber室房间viscosity粘性粘度virtue功效优点emerge through产生于circumferential圆周的the square of 平方drool口水流下necessitate需要迫使spinning oil 拉丝油旋转的油booster pump增压泵entail必需继承corrosion腐蚀application应用cleanliness清洁度be plugged with被堵塞calorific发热的radiation-sensitive eyes对照射灵敏refinement提纯purge净化carnot theoretical cycle 卡诺理论循环upper temperature 上限温度blade erosion叶片腐蚀failure 失效minimize最小化partially expanded steam 部分膨胀的蒸汽conventional 传统的convection 对流的radiant 辐射式的tubing 管线量把装管heat–release portion部分最高传热点practical matter实际问题dictate支配application应用inherent 内部的incorporated包含bypass damper旁路挡板burner tilt燃烧器摆动gas recirculation干气回注烟气在循环desuperheat 见闻steam drum 汽包fire运转boiler bank管速provision准备供应sulfurous and sulfuric acid 亚硫酸硫酸binder粘合剂deposit沉淀instance例子dew-point露点cold end 冷端duration持续期间longitudinal fin 纵向翅片gilled ring 圆环肋片flowing over 横向冲刷linear现行temperature differential 温差regenerative 回热蓄热Ljungstrom heater荣格斯特朗空气加热器recuperative airheater间壁式空气预热器tubular 管式performance性能outer steel casing 外部护板钢metal lath 金属条plastic insulation 塑性绝热材料chrome铬合金integral积分的完整的整体的supercritical超临界central station steam generator 中心电站dictated 口述的引导的initial初始的physical phenomenon 物理现象specific volume比容working fluid 工资homogeneous 同质均匀的once-though or monotube一次通过或者单管principal首要的最重要的unit 机组size 容量shipment运输tube bank管束排管spew 喷出the stack 炉身fine particle细粒微粒electrostatic precipitation静电沉淀polarity极性baghouse袋式除尘器filter过滤wetback packaged boiler热水快装锅炉hp Horse Power 马力drawings图纸interior lining 内线内部管线sino-us中美之间的rear gas chamber 烟气室后部refractory brick耐火砖partition wall间隔墙integral annealing完整的退火welding焊接prolonging延长ample 充足的insulate隔离绝缘隔热retention保留kilocalorie千卡insulated 绝热的heat-resistance 热阻sealed 密封的covering 覆盖物excellent 极好的retention 保留capacity 能力coal 煤Substance 混合物compound 化合物component 成分,组分hydrogen 氢carbon 碳element 元素contribute 贡献,有助于Heating value 热值mine 开采anthracite 无烟煤bituminous 烟煤Semianthracite 半无烟煤subbituminous 次烟煤organic 有机的volatile matter 挥发分practically 几乎pennsylvania 宾夕法尼亚flame 火焰commonly 普通地heating residence 住宅取暖available 可利用的pea豌豆stove 炉子maximum 最大的diameter 直径content 含量Slag 炉渣by far 到目前为止industry 工业variation 变化consideration 考虑因素operator 经营者composition 构成proximate analysis 工业分析ultimate analysis 元素分析determine 确定moisture 水分volatile matter 挥发分fixed carbon 固定碳ash 灰烬Establish 确立simulate模拟sample 试样,样品procedure 程序,步骤representative 典型的,有代表性的pile 堆,群crush 粉碎sieve 筛子,滤网airtight 密封的resealing 再密封weigh 称重量gram 克Platinum 铂,白金crucible 坩埚combined 结合的oven 烤箱dessicator 干燥器indicate 表明tight-fitting 紧身的Bunsen burner 本生灯V olatile挥发性的plus 加上stir 搅拌powdery mass 粉块previously 预先,以前subtract 减去,扣掉constituent 成分general 大体的,一般的suitability 适合,适当,相配assume假定indicate 表明excess 过量的comply 遵守,遵从Federal Environmental Protection Agency 联邦环境保护署regulation 规定combustible 可燃物nitrogen 氮analytical 分析的description 描述process 过程substituting 代替formula 公式derived 由……推导physicist 物理学家professor 教授director 主任Ecole Polytechnique 巴黎理工大学Specific heat比热immensely 极大地pound 英镑divide 除以percentage value 百分比heating value 热值calorimeter 量热计20-mesh sieve 20目combustion products of fossile fuel化石燃料的燃烧产物Emission 排放物Fossil 化石燃料Combustion unit. 燃烧设备Type and size 类型和功率Composition 作文合成物Maintenance 维护,维修;保持;生活费用Significant amounts ofParticulate 微粒物质;悬浮微粒;粉尘Trace elements 微量元素Waste heat 废热Carbon Dioxide二氧化物monoxide一氧化物trioxide三氧化物Carcmogens 致癌物质producedFrom fuel combustionToxic 有毒的;中毒的Emitted 射出的排放(emit的过去分词)In the absence of 无…时,缺少…时Directly Proportional 正向比例Sulfur Content 硫含量Residual oil渣油Inorganically 无机的Organic 有机的Sulfides硫化物sulfate硫酸盐Present in 存在于Compound 合成搀合化合物;混合物Disulfide 二硫化物(等于disulphide)Mercaptan n. [有化] 硫醇Distinct 明显的;独特的;清楚的;有区别的Odor 气味;味道Oxidize vt. 使氧化;使生锈likewise同样的Approximately 大约Convert 转化Emitted 排放的Excess air 过量空气Individual furnace 单炉膛Profile 断面Individual furnace单炉膛结构overall总体说Chemisorb 化学吸附Fly ash 飞灰Particle 颗粒Flue gas Desulfurization system 脱硫Catalytic hydro-desulfurization 催化湿法脱硫Waxy 蜡质Imposing problem有前途的课题Pyrite 黄铁矿Organically bound有机化合物Gasification n. 气化Throwaway system 一次性系统by-product recovery system副产品回收系统stack gas 烟气be disposed of 被处理Viewpoint n. 观点,看法;视角Fixation 固定Molecular Nitrogen 分子氮气Nitric oxide一氧化氮Thermal NOx 热力型fuel NOx燃料型quick response NOx快速型Presumably 可能marketable可售的Appreciable amounts of 大量的Horizontal firing水平燃烧Tangential firing 切圆燃烧Low excess air operation 低过剩空气燃烧Operating variable运行变量Air-fuel Ratio 空燃比Two Broad categories两大类别Current control techniquesEmission排放Power plants发电厂be divided into被分成Combustion modification燃烧调整Flue gas cleaning烟气净化Two stage combustion 两级燃烧Modification involve reductionPeak gas temperature气体峰温Operating toward操作Reducing atmosphere还原气氛Change in flue gas cleaningField test 现场试验field installation 现场安装设备demonstrate显示出achievable 可以实现的significant impairment of thermal efficieny对热效率明显影响Retrofit热效率Derive来自Mineral impurity矿藏特性Pulverize粉碎Industrial boilers 工业锅炉Particulate 粉尘Derived from 来自于Mineral 矿藏Impurity杂质Cnain grate 链条炉Spreader stoker units 抛煤机炉排单位Cyclone furnace 旋风炉膛Grinding研磨Distribution 分布Exhaust gases 排烟Incompete combustion 不完全燃烧Carbon soot 炭黑Assessment评估Mass median diameter 质量中位直径Flue Gas Desulfurization烟气脱硫SO2 removal efficiency 脱硫效率ICI 帝国化学公司copper oxide 氧化铜worked-out 用过的、废弃的recovering 回收regenerative 再生的concentrate 浓缩、冷凝sulfur dioxide 二氧化硫elemental 单质的、元素的NA TO 北约Under construction 正在建设中circulating fluidized bed CFBCCoal washing gasification liquefaction煤的洗选气化液化Commercial application商业化应用Process utilize工艺使用Thames river泰晤士河alkaline absorbent 碱性吸收剂Settle 沉淀oxidation 氧化作用Temporarily suspend 暂时制止Adverse 不利的、敌对的Discharge scrubber effluent 排放清洗器废水Barge 用船运输dump 倾倒、倾卸Electrolytic zinc company 电解锌公司Tidal water潮汐水smelter gas 冶炼厂烟气commission 投用、交付使用improved V ersion 改进版本a time of laboratory 中试研究and pilot plant investigationpilot 辅助的、实验性的solid sludge 污泥、污渣Lime/limestone 石灰/石灰石dilute acid processes 稀酸工艺sulfite 亚硫酸Scrubbing 擦洗、洗涤carbon absorbption processes碳吸收工艺magnesium oxide 氧化镁iron ore sintering plant 铁矿熔炼厂injection processes喷射工艺Iron ore sinter 铁矿石燃烧plug 阻塞、堵Particulate 颗粒、微粒inadequate 无效的Treat 处理electrostatic precipitators 静电除尘器predominate 占统治地位、统治process Category 工艺种类convenient方便的categorize分类Throwaway process 一次性方法gypsum process石膏工艺eventual product 最终产物Disposed of entirely全部处理Landfill 填土、填地Pond 水池water course河道a worked-out mine 废弃矿井neutralizing the acidly 中和酸Liquor 溶液、使溶解alternative 可选择的、替换物well-defined 好的特性disposal characteristic处理特性Regenerative process再生工艺Reactant反应物concentrate 浓缩sulfuric acid 硫酸Liquefied 液态的principally 主要地Refinery 精炼厂、炼油厂Status 状态、情况principally 主要地Refinery 精炼厂、炼油厂Demonstration purpose 演示用途comparability 可比性Calc ium sulfite 亚硫酸钙calcium sulfate 硫酸钙sulfur contents 含硫量double alkali process 双碱法工艺Whereas 然而availability 有效性、效率Plant 装置scaling缩放结垢plugging 堵塞erosion 腐蚀offset 抵消Plaster 熟石膏Retarder缓凝剂减速器extra process equipment额外的工艺设备maintenance cost维护成本wallboard 墙板cement manufacture 水泥生产sufficient market 足够的市场Coal washing 洗煤Coal gasification 煤气化Coal liquefaction 煤液化Briquette sulfur-capturing 型煤固硫Boiler Control锅炉控制Objective目的Oscillations 振荡hunting 波动significant 象征;重大的,有效的Airflow 气流,空气的流动distribution 分布,分配feedwater 给水flow 流动Flow rate 流量steam drum 蒸汽锅筒parameter 参数,系数instrumentation测试设备检测仪表Utilizes 利用,使用closed loop 闭环,闭合回路measurement 测量度量,尺寸Demand 需求,要求error signal 误差讯号inversely 相反的,倒转的Proportional 比例项比例的dead band 死区,非灵敏区域offset 补偿,偏差Eliminate 消除,排除incorporating 合并;合并的reset 重新设定,重置Integral 积分,部分,完整deviation偏差,误差,背离terminology 术语,用词V ariable 变量,可变因素The band of 从reduce 减少,缩小,降低take over 接管,接收Positioning 定位,配置,布置excessive 过多的,极度的,过分的corrosion 腐蚀Efficiency 效率效能superheated 过热的,过热蒸汽derivative 微分control控制the rate of change改变率excess air 过剩空气soot blowing 吹灰Combustion 燃烧,氧化cleanliness 清洁distribution 分布分配V ariation 变化saturated 使渗透,饱和的soot 烟灰,煤灰Auxiliary 辅助机构base point 基点volumetric flow体积流量Convective 对流的radiant 辐射的parallel 平行线,对比Constant 不变的transfer 转让,传递tilt 倾斜,摆动downward向下的Furnace 火炉,熔炉absorption 吸收minimize 最小化Economizer 省煤器outlet 出口,排放口inlet入口reintroduce 再引入blower鼓风机Ductwork 管道系统diluting 稀释velocity 速率;迅速gas Temper 烟气回火attemperation 温度调节Spray 喷雾;喷射nozzle 喷嘴venturi 文丘里喷管Via 取道,经过element 元素原理damper 挡板Govern管理,支配,控制Presence存在Base point 基点complicate 使恶化Clean coal technologies 洁净煤技术Comply with 服从,遵从Stringent 严格的Environmental Legislation 环境保护法规立法Approach 方法,途径Consist in 在于Existing现有的Pulverized coal(PC)煤粉装置Depolluting devices 去污染设备Act on作用Emission 发出物,排放物。

热能与动力工程专业英语-翻译(李瑞扬)

热能与动力工程专业英语-翻译(李瑞扬)

热能与动力工程专业英语-翻译(李瑞扬)1.3 The Characteristics of Fluids 流体的特征constituent:组成的;tangential:切向的;restrain:限制、约束;equilibrium:平衡,均衡;interface:相互关系、分界面;molecule:微小颗粒、分子;continuum:连续体;vessel:容器;tar:焦油、柏油;pitch:树脂;imperceptibly:察觉不到的,细微的;restore:恢复;subside:下沉、沉淀、减退、衰减;hypothetically:假设地、假想地;sphere:球、球体;microvolume:微元体积;rarest:最稀罕的,虽珍贵的A fluid is a substance which may flow; that is, its constituent particles may continuously change their positions relative to one another. Moreover, it offers no lasting resistance tothe displacement, however great, of one layer over another. This means that, if the fluid is at rest, no shear force (that is a force tangential to the surface on which it acts )can exist in it. A solid, on the other hand, can resist a shear force while at rest; the shear force may cause some displacement of one layer over another, but the material does not continue to move indefinitely. In a fluid, however, shear forces are possible only while relative movement between layers is actually taking place. A fluid is further distinguished from a solid in that a given amount of it owes its shape at any particular time to that of a vessel containing it, or to forces which in some way restrain its movement. 流体是可以流动的物质,也就是说,组成流体的质点可以连续的改变它们的相对位置。

热能与动力工程专业外文翻译、中英对照、英汉互译

热能与动力工程专业外文翻译、中英对照、英汉互译

毕业设计外文翻译原文标题:Proposal for a high efficiency LNGpower-generation System utilizing wasteheat from the combined cycle中文标题:一个高效的利用液化天然气联合循环余热的发电系统学院名称:能源与动力工程学院专业名称:热能与动力工程Proposal for a high efficiency LNG power-generation system utilizing waste heat from the combined cycleY. Hisazumi*, Y. Yamasaki, S. SugiyamaEngineering Department, Osaka Gas Co., 1-2 Hiranomachi 4-chome Chuo-ku, Osaka 541, Japan Accepted 9 September 1998AbstractHigh-efficiency power-generation with an LNG vaporizing system isproposed: it utilizesthe LNG's cold energy to the best potential limit. This system can be applied to LNG vaporizers in gas companies or electric power companies and recovers the LNG's cold energy as electric power. The system consists of a Rankine cycle using a Freon mixture, natural-gas. Rankine cycle and a combined cycle with gas and steam turbines. The heat sources for this system are the latent heat from the steam-turbine's condenser and the sensible heat of exhaust gas from the waste-heat recovery boiler. In order to find out the optimal condition of the system, several factors, such as gas turbine combustion pressure, steam pressure, condensing temperature in combined cycle, composition of mixture Freon, and natural gas vaporizing pressure are evaluated by simulation. The results of these studies show that in the total system, about 400 kWh can be generated by vaporizing 1 ton of LNG, including about 60 kWh/LNG ton recovered from the LNG cold energy when supplying NG in 3.6 MPa.. About 8.2MWh can be produced by using 1 ton of LNG as fuel, compared with about 7 MWh by the conventional combined system. A net efficiency of over 53%HHV could be achieved by the proposed system. In the case of the LNG terminal receiving 5 million tons of LNG per year, this system can generate 240 MW and reduce the power of the sea water pump by more than 2MW. 1998 Elsevier Science Ltd. All rights reserved.1. IntroductionIn the fiscal year 1994, the amount of LNG imported to Japan reached about 43 million tons; of this 31 million tons were used as fuel for power generation. As shown in Fig. 1, about 20% of the LNG imported was used for power generation [2]. Fig. 2 shows the major LNG power generation systems now in operation and their outputs. Several commercial LNG power generation plants have been constructed since 1979, and their total output has reached approximately 73 MW. Among the new power-generation plants without CO2 emission, this value of 73 MW is second to the 450 MW input of geo-thermal power generation plants in Japan, with the exception of power generation by refuse incinerators, and is much larger compared with the 35 MW output of solar-power plants and the 14 MW output of wind-power stations.Table 1 shows the LNG power generation plants constructed in Japan. The economics of LNG power generation became worse as the appreciation of the yen madethe cost of energy kept constant but while raising the construction cost; the adoption of the combined cycle utilizing gas-turbine and steam turbine (hereafter called combined cycle) increased the gas send-out pressure and lowered the power output per ton of LNG. Therefore, no LNG powergeneration plants were constructed in the 1990s due to lower cost effectiveness of the systems.As for the thermal power plant using natural gas as fuel, the steam turbine produced only about 6 MWh of power output per ton of LNG. But recently, improvement in blade-cooling technology and materials of the gas turbine enabled a 1400℃class turbine to be designed and increased the combustion pressure up to 3 MPa. Therefore, as shown in Fig. 3, the heat efficiency of the combined cycle has been improved and the electrical output from 1 ton of LNG has reached about 7MWh.In this paper, a proposal is made for the high-efficiency LNG power generation system based on a new concept which fully utilizes the cold energy without discarding it into the sea. The system is composed of the combined cycle and the LNG power-generation plant.2. High-efficiency LNG power-generation system2.1. Basic componentsFig.4 shows the process flow diagram of the high-efficiency LNG power-generation system. This complex system consists of the combined cycle and the LNG power generation cycle. The combined cycle is composed of a gas turbine (GAS-T) and a steam turbine (ST-T) using natural gas (NG) as fuel, while the LNG power generation cycle is composed of a Freon (uorocarbon) mixture turbine (FR-T) and a natural-gas turbine (NG-HT, NG-LT) using the latent heat of condensation from the exhaust steam and the sensible heat of the exhaust gas as heat sources. The plate fin type heat exchanger can be used for the LNG/natural gas (LNG-CON) and LNG/ Freon mixture (FR-CON). The shell-and-tube type can be selected as exchangers for exhaust steam/natural gas (LNG-VAP),exhaust steam/Freon mixture(FR-VAP), and exhaust gas/natural gas (NG-SH) applications according to the operating conditions.Ice thickness on the surface of the heat-exchanger tubes becomes a problem as heat is exchanged between exhaust gas and cold natural gas or Freon mixture. The ice thickness can be estimated by the technology of heat transfer between LNG and sea water, thus enabling one to avoid blockages due to ice inside the tubes.In addition, stable and continuous send-out of gas is made possible by using a bypass system, even if turbines and pumps for the Freon mixture and natural gas circulating systems (FR-RP, LNG-RP) stop.2.2. Features of the systemThe practical use of the following existing technologies in combination shows the high feasibility of the proposed system:. Power generation using Freon or hydrocarbon type Rankine cycle,. Power generation by natural-gas direct expansion],. TRI-EX type vaporizer which vaporizes LNG by using an intermediate medium or vacuum type LNG vaporizer.The Freon mixture is made up of the HFC type, which is a fluorocarbon consisting of H, F, and C and has no adverse influence on the ozone layer; it enables reduction in exergy loss at the heat exchanger and increases itscirculating flow rate to be achieved.The effective recovery of cold exergy and pressure exergy is made possible by the combined system using natural gas and Freon mixture Rankine cycle.Fig. 5 shows the temperature-heat duty relation when vaporizing 1 kg of LNG in the system shown in Fig. 4. Separation of the condensed natural-gas in two sections enables an increase in the heat duty between Freon (FR) and LNG, and a reduction of difference in temperature of LNG and natural gas between the inlet and outlet of the heat exchanger.3. Evaluation of the characteristics of the proposed system3.1. Process simulationThe characteristics of this system were evaluated by using process simulator. The followings are the conditions used for the calculation:Effciencies of rotating machines LNG compositionGas turbine (GAS-T) 88% CH4 89.39%Steam turbine (ST-T) 85% C2H6 8.65%Natural-gas turbine (NG-HT, LT) 88% C3H8 1.55%Freon turbine (FR-T) 88% iC4H10 0.20%Air compressor (AIR-C) 85% nC4H10 0.15%LNG pump (LNG-MP, RP) 70% iC5H12 0.01%Freon pump (FR-RP) 70% N2 0.05%Natural gas gross heat-value: 10,510 kcal/Nm3AIR/NG flow ratio of gas turbine: 323.2. Effects of send-out pressure of the natural gasWhen natural-gas is sent out at 3.5 or 1.8 MPa, evaluations were made of the effects of send-out pressure of the LNG and change in superheating temperature of the natural gas on the total output of the high pressure (NG-HT) and the low pressure (NG-LT) natural-gas expansion-turbines. Fig. 6 shows the results of this calculation, where self consumption of power is calculated from the power, raising the pressure of the LNG up to the inlet pressure of the turbine minus the power required for the original send-out pressure. In both cases, the inlet pressure rise for the turbine causes an increase of self consumption power, but brings about a greater out-put. About 7 MPa of the inlet pressure of the turbine is appropriate considering the pressure tolerance of the heat exchangers.When the superheating temperature of the natural gas at the inlet to the turbine becomes high, the recovery of power increases, but the temperature of the exhaust gas from the outlet of the natural-gas super heater (NG-SH) declines, thus indicating that there is a limitation to superheating gas.3.3. Effects of combustion pressure of the gas turbineThe outputs of the gas turbine and the steam turbine, and the efficiency per gross heating value were evaluated by changing the combustion pressure of the gas turbine operating at 1300℃turbine-inlet temperature - see Fig. 7.If the combustion pressure of the gas turbine becomes high, the output of the gas turbine increases, but the output of the steam turbine decreases because the rise in combustion pressure causes a lowering of the exhaust-gas temperature at the outlet of the gas turbine and consequently a decline in the steam temperature at the inlet of the steam turbine. However, the overall efficiency of the turbines increases upon increasing the combustion pressure because the increment of gas-turbine output exceeds the decrement of steam turbine output. As a result, taking the pressure loss into account, it is appropriate to set the send-out pressure of the natural gas at the LNG terminal at 3.5 MPa.(FR-vap),3.4. Effects of Inlet pressure of the steam turbineFig. 8 shows the relations between the steam-turbines output and exhaust gas temperatures by changing the steam pressure in the range of 3-7 MPa. As the steam pressure increases, the output of the steam turbine rises and the temperature of the exhaust gases also increase. Besides, the power required for the water-supply pump increases with a rise in the steam pressure. Therefore, the current combined cycles operate at steam pressure of 7 MPa or more because the increment of the output of steam turbine exceeds the additional power required for the water-supply pump.3.5. Rankine cycle using a Freon-mixture refrigerant.The Freon refrigerant was selected from the HFC refrigerants on the basis of marketability, boiling point and freezing-point. Table 2 shows the physical properties of HFC Freon.When only HFC-23 is used as the medium, because of its low freezing-point it never freezes even if heat is exchanged between the LNG and HFC-23. But if HFC-23 is heated by the exhaust steam of the steam turbine, the pressure rises approximately up to the critical pressure. Therefore, the use of HFC-23 is not cost effective, because it is then necessary to set a high design pressure. To cope with this problem, we evaluated the compound refrigerant composed of HFC-134a (with high boiling point) and HFC-23.Fig. 9 shows saturated vapor pressure at various temperatures, the boiling point and the dew point at atmospheric pressure for mixtures of HFC-23 andHFC-134a of various compositions. The saturated pressure at each temperature rises with the increasing mole ratio of HFC-23: Hence, 40-45% of the mole ratio of HFC-23 is the optimal value considering the design pressure of the equipment.Fig. 10 shows the plots of the output of the Freon turbine versus the condensing temperature of the steam turbine when changing the composition of the HFC-23. In this figure, the turbine outlet pressure is determined in such a way that thedifference in temperature between the LNG and Freon mixture is not less than 5℃in the Freon condenser (FR-CON). The Freon turbine's inlet-pressure is set to the saturatedtemperature of the Freon mixture, i.e. less than 2℃from the steam-condensing temperature.This figure indicates that the output of the turbine scarcely correlates with the mole ratio of HFC-23. The higher the steam-condensing temperature becomes, the greater the output per ton of LNG the turbine produces, but in such a case, it is necessary to evaluate the system as a whole because more fuel is required, as described below. The result indicates that the optimal mole composition of HFC-23 and HFC-134a is 40%/60% considering both design pressure and the output of the turbine.3.6. Comprehensive evaluation from the viewpoint of the steam-condensing Temperature.As the dew point of the exhaust gas is 42℃, it is wise to set the exit temperature of the exhaust gas from the natural-gas super heater (NG-SH) to 80℃or more in order to prevent white smoke from the smoke stack. Table 3 shows the effect of the steam-condensing temperature on the generated output of the total system. The lower steam-condensing temperature brings about a higher efficiency of the total system, but also causes a lowering in the inlet temperature of natural-gas turbine. Therefore, it is appropriate to set the steam-condensing temperature at approximately 30℃.When the condensing temperature is 30C, the generated outputs per ton of LNG of the combined cycle and LNG power generation plant are 342.83 and67.55 kWh, respectively, resulting in 402.64 kWh of total generated output aftersubtracting the self-use power. As 48.94 kg of fuel is used for operating the system, the generated outputs of the combined cycle and the total system reach about 7 and 8.2 MWh, per ton of fuel respectively.3.7. Evaluation of exergyNatural-gas is liquefied at an LNG liquefaction terminal, with the consumption of about 380 kWh/LNG-ton: 1 ton of LNG having about 250 kWh of physical exergy as cold exergy and 13.5 MWh of chemical exergy. Fig. 11 shows the result of evaluating the exergy of the system shown in Fig. 4 under the optimal condition. The total output of Freon and natural gas turbines is 67.5 kWh, and the effective recovery percentage of cold exergy is 56%. As 90 kWh out of the pressure exergy can be recovered as output, about 157 kWh of net recovery can be obtained, which indicates the recovery percentage reaches about 63% for 250 kWh of LNG cold exergy. This conversion efficiency is higher than that achieved from chemical exergy to electric power.Most of the exergy loss occurs in the heat exchanger and the turbine, and in mixing with re-condensed LNG. As for the turbines, the loss of energy may be improved by using high-efficiency turbines. On the other hand, modification of the heat exchanger to reduce the energy loss may cause increased complexity of the system and is difficult to be done from the economic viewpoint. Though the recovery.percentage of cold energy in this system is low compared with the 80% in air-separation equipment, this system has the advantage of recovering a large amount of the available cold energy.4. ConclusionThe paper has proposed a high-efficiency LNG power generation system in combination with a combined-cycle power generation system fueled by natural-gas. The system utilizes LNG cold energy and it requires no sea water as a heat source.This system can be applied to LNG vaporization and send-out processes of gas companies or electric-power companies. The system recovers LNG coldenergy as an electric-power output without wasting it into sea water. The system consists of Rankine cycle with Freon mixture and a natural-gas Rankine cycle using the latent heat of exhaust steam from the steam turbine and the sensible heat of exhaust gas from the waste-heat recovery boiler. To improve the total efficiency of the system, a simulation was conducted to evaluate several factors, such as the composition of the Freon mixture, natural gas send-out pressure, as well as the combustion pressure steam inlet pressure, and steam-condensing temperature of the combined cycle. As a result, not less than 60 kWh/LNG-ton of output was generated even at a high natural-gas send-out pressure of 3.5 MPa. This value is considerably higher than the output generated at a LNG send-out pressure of 3 or 4 MPa, as given in Table 2.The system can produce about 400 kWh of net output when vaporizing 1 ton of LNG. While the conventional combined-cycle system in operation generates about 7 MWh when 1 ton of LNG is used as fuel, the system using the same amount of fuel generates about 8.2 MWh with a high degree of efficiency: a not-less-than 53% conversion efficiency was achieved per gross heat value.In the case of an LNG terminal receiving 5 million tons of LNG per year, this system can generate a power of about 240 MW when 600 t of LNG is used in an hour. With the elimination of about 24,000 tons per hour of sea water, which has been used for vaporizing 600 t/h of LNG in the conventional system, no less than 2 MW of electric power for operating sea water pumps can be saved.The proposed system emits no CO2, and can generate a large amount of electricity with high cost efficiency when incorporated into a combined cycle, with no use of sea water. Therefore, we consider that installation of this system is the one of the most favorable means of investment to put a new energy source or energy-saving equipment to practical use.To realize the full potential of this system, it is necessary to understand the heat characteristics of the Freon mixture, the icing and heat transfer characteristics of exhaust steam, the controllability of total system and the characteristics against partial load.References[1] The Center for Promotion of Natural gas Foundation. Research and development report of cold energy utilizing system, 1994[2] Japan's Energy and Economy Research Center. Energy and economy statistical data in 1995[3] Abe. Operating results and future prospect of a recent combined-cycle power generation plant. Thermal and Nuclear Power 1995;46(6):33-41[4] Maertens J. Design of Rankine cycles for power generation. Int. Refrig. 1986;9:137-43[5] Terada, Nakamoto. Power generation utilizing LNG cold. Thermal and Nuclear Power Generation 1986;37(10):66-71[6] Ooka, Ueda, Akasaka. Advanced LNG vaporizer and power generation utilizing LNG cold. Chemical Engineering 1981;45(3):187-90[7] Miura. The development of LNG vaporizer using vacuum steam heat (VSV). Journal of Japan Gas Society 1992;45:34-6[8] Nagai. Software-package and the usage. Chemical Equipment1994;August:31-7[9] Daikin Co. Ltd. Freon Data Sheet of HFC23一个高效的利用液化天然气联合循环余热的发电系统日本大阪541燃气有限公司工程部1-2平野町4肖梅中央谷,1998年9月概述本文提出了一个高效液化天然气气化发电系统,它是利用液化天然气冷能的最佳潜能极限。

热能与动力工程专业英语

热能与动力工程专业英语

Chapter 1 Introduction to ThermalScience第一章热科学基础Acoustic flow meter 声波流量计Corrugated fin 波状散热片Adiabatic[]绝热的Cross product 矢量积Aerodynamics 空气动力学Denominator 分母Affiliation 联系Developed flow 充分发展流Airfoil 机翼,螺旋桨Diffusion 扩散Alternative 替代燃料Doppler effect 多普勒效应Anemometer 风速计Double-pipe heat exchanger 套管式换热器Angular speed 角速度Dry saturated vapor 干饱和蒸汽Area density 表面密度Electrode 电极Baffle 挡板Electrolyte 电解,电解液Bifurcation 分形Electrostatic 静电的Blackbody 黑体Emissivity 发射率Blade 浆叶,叶片Equilibrium 平衡Boiler 锅炉Fluid mechanics 流体力学Boundary layer 边界层Forced convection 强制对流Carnot Cycle 卡诺循环Free convection 自然对流Cartesian coordinates 笛卡尔坐标系Friction loss 摩擦损失Celsius Degree 摄氏度Glass ceramic 微晶玻璃,玻璃陶瓷Compact heat exchanger 紧凑式换热器Heat engine 热机Composition 成分,合成物Heat pump 热泵Compressed liquid 压缩液体Hydrofoil 水翼Compressibility 可压缩性,压缩率Hypersonic speed 高超音速Condensation 凝结Infinitesimal 无穷小的Condenser 冷凝器Inflating/deflating 充气/压缩Conduction 导热Internal combustion engine 内燃机Control volume 控制体Isentropic 等熵的Convection 对流Isobaric 等压的Isolated system 孤立体系的Coriolis-accelaration flowmeter 科氏加速流量计Isometric 等容的Rough-wall tube 粗糙管Isothermal 等温的Saturation 饱和Kinematic viscosity 运动黏度Shear stress 剪切力、切应力Laminar 层流Shell-and-tube heat exchanger管壳式换热器Manuscript 手稿,原稿Specific volume 比容Moisture 湿度,水分Steady 稳态的,定常的Molecule (化学)分子Stifling engine 斯特林机Molten polymer 熔融聚合物Strain rate 变形速度,应变率Muti-disciplinary 多学科的Streamline 流线Newtonian Fluid 牛顿流体Strut 支撑,支柱Subcooled liquid过冷液体Nominal temperature gradient 法向温度梯度Numerator (数学)分子Superheated vapor 过热蒸汽Parallel flow 平行流动,并流Surrounding 环境,外界Pathline迹线Thermal conductivity 热传导率Phase change 相变Thermal efficiency 热效率Plane flow 平面流,二元流Thermodynamics 热力学Plate and flame heat exchangerTorsional 扭力的,扭转的板式换热器Polymer solution 胶浆Trailing edge 机翼后缘、尾缘Proof 校样Transmitter 传送装置、发送器Propeller 螺旋桨,推进器Turbine meter 涡轮流量计Pump泵Turbulent 湍流的Qulity 干度Ultrosonic 超声波的Qusi-equilibrium 准平衡、准静态Uniform flow 均匀刘Radiation 辐射Vacuum 真空Rankin Cycle 朗肯循环View factor 角系数Viscous 黏性的Regenerative heat exchanger蓄热/再生式换热器Reservoir 水库,蓄水池Cortex shedding 漩涡脱落Reversible 可逆的Water faucet 水龙头,水嘴Rotameter 转子流量计Bi Biot number 比澳数NPSH 汽蚀余量CFD 计算流体力学NTU 传热单元数CHF 临界热流量Nu 努谢尔特数COP 制冷系数PE 势能Eu 欧拉数Pr 普朗特数Fo 富立叶数Ra 瑞利数Fr 弗劳德数Re 雷诺数Gr 格拉晓夫数Sc 施密特数KE 动能St 斯坦顿数,斯特劳哈数LMTD对数平均温差We 韦伯数1.1Fundamental of Engineering Thermodynamics1.1工程热力学基础Thermodynamics is a science in which the storage, transformation and transfer of energy are studied. Energy is stored as internal energy (associated with temperature), kinetic energy (du to motion), potential energy (due to elevation) and chemical energy (due to chemical composition); it is transformed from one of these forms to another; and it is transferred across a boundary as either heat or work.热力学是一门研究能量储存、转换及传递的科学。

热能与动力工程专业英语

热能与动力工程专业英语

热能与动力工程专业英语集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#Chapter 1 Introduction to Thermal Science第一章热科学基础Acoustic flow meter 声波流量计Corrugated fin 波状散热片Adiabatic []绝热的Cross product 矢量积Aerodynamics 空气动力学Denominator 分母Affiliation 联系Developed flow 充分发展流Airfoil 机翼,螺旋桨Diffusion 扩散Alternative 替代燃料Doppler effect 多普勒效应Anemometer 风速计Double-pipe heat exchanger 套管式换热器Angular speed 角速度Dry saturated vapor 干饱和蒸汽Area density 表面密度Electrode 电极Baffle 挡板Electrolyte 电解,电解液Bifurcation 分形Electrostatic 静电的Blackbody 黑体Emissivity 发射率Blade 浆叶,叶片Equilibrium 平衡Boiler 锅炉Fluid mechanics 流体力学Boundary layer 边界层Forced convection 强制对流Carnot Cycle 卡诺循环Free convection 自然对流Cartesian coordinates 笛卡尔坐标系Friction loss 摩擦损失Celsius Degree 摄氏度Glass ceramic 微晶玻璃,玻璃陶瓷Compact heat exchanger 紧凑式换热器Heat engine 热机Composition 成分,合成物Heat pump 热泵Compressed liquid 压缩液体Hydrofoil 水翼Compressibility 可压缩性,压缩率Hypersonic speed 高超音速Condensation 凝结Infinitesimal 无穷小的Condenser 冷凝器Inflating/deflating 充气/压缩Conduction 导热Internal combustion engine 内燃机Control volume 控制体Isentropic 等熵的Convection 对流Isobaric 等压的Coriolis-accelaration flowmeter 科氏加Isolated system 孤立体系的速流量计Isometric 等容的Rough-wall tube 粗糙管Isothermal 等温的Saturation 饱和Kinematic viscosity 运动黏度Shear stress 剪切力、切应力Laminar 层流Shell-and-tube heat exchanger管壳式换热器Manuscript 手稿,原稿Specific volume 比容Moisture 湿度,水分Steady 稳态的,定常的Molecule (化学)分子Stifling engine 斯特林机Molten polymer 熔融聚合物Strain rate 变形速度,应变率Muti-disciplinary 多学科的Streamline 流线Newtonian Fluid 牛顿流体Strut 支撑,支柱Subcooled liquid过冷液体Nominal temperature gradient 法向温度梯度Numerator (数学)分子Superheated vapor 过热蒸汽Parallel flow 平行流动,并流Surrounding 环境,外界Pathline迹线Thermal conductivity 热传导率Phase change 相变Thermal efficiency 热效率Plane flow 平面流,二元流Thermodynamics 热力学Torsional 扭力的,扭转的Plate and flame heat exchanger板式换热器Polymer solution 胶浆Trailing edge 机翼后缘、尾缘Proof 校样Transmitter 传送装置、发送器Propeller 螺旋桨,推进器Turbine meter 涡轮流量计Pump泵Turbulent 湍流的Qulity 干度Ultrosonic 超声波的Qusi-equilibrium 准平衡、准静态Uniform flow 均匀刘Radiation 辐射Vacuum 真空Rankin Cycle 朗肯循环View factor 角系数Viscous 黏性的Regenerative heat exchanger蓄热/再生式换热器Reservoir 水库,蓄水池Cortex shedding 漩涡脱落Reversible 可逆的Water faucet 水龙头,水嘴Rotameter 转子流量计Bi Biot number 比澳数NPSH 汽蚀余量CFD 计算流体力学NTU 传热单元数CHF 临界热流量Nu 努谢尔特数COP 制冷系数PE 势能Eu 欧拉数Pr 普朗特数Fo 富立叶数Ra 瑞利数Fr 弗劳德数Re 雷诺数Gr 格拉晓夫数Sc 施密特数KE 动能St 斯坦顿数,斯特劳哈数LMTD对数平均温差We 韦伯数1.1Fundamental of Engineering Thermodynamics1.1工程热力学基础Thermodynamics is a science in which the storage, transformation and transfer of energy are studied. Energy is stored as internal energy (associated with temperature), kinetic energy (du to motion), potential energy (due to elevation) and chemical energy (due to chemical composition); it is transformed from one of these forms to another;and it is transferred across a boundary as either heat or work.热力学是一门研究能量储存、转换及传递的科学。

热能与动力工程专业英语翻译2.5

热能与动力工程专业英语翻译2.5

2.5 Natural Convection自然对流Heat transfer involving motion in a fluid caused by the difference in density and the action of gravity is called natural or free convection. Heat transfer coefficients for natural convection are generally much lower than for forced convection, and it is therefore important not to ignore radiation in calculating the total heat loss or gain. Radiant transfer may be of the same order of magnitude as natural convection, even at room temperatures, since wall temperatures in a room can affect human comfort.传热流体中涉及运动所引起的密度和不同的重力作用称为自然或自由对流。

对自然对流传热系数通常远远低于强迫对流,因此,重要的不是忽略辐射总散热量的计算或利益。

辐射传递可能是同一个数量级的自然对流,即使在室温下,因为壁温度在一个房间里会让人安慰。

Natural convection is important in a variety of heating and refrigeration equipment:(1)gravity coils used in high humidity cold storage rooms and in roof-mounted refrigerant condensers,(2)the evaporator and condenser of household refrigerators, (3) baseboard radiators and convectors for space heating and(4)cooling panels for air conditioning. Natural convection is also involved in heat loss or gain to equipment casings and interconnecting ducts and pipes.自然对流是重要的多种加热和制冷设备:(1)应用于高湿度下重力线圈在车顶安置房、冷藏冷冻冷凝器、(2)家用电冰箱蒸发器和冷凝器,(3)脚板散热器和提出对于空间供热;(4)冷却板,空调。

热能与动力工程专业英语

热能与动力工程专业英语

Chapter 1 Introduction to Thermal Science第一章热科学基础Acoustic flow meter 声波流量计Corrugated fin 波状散热片Adiabatic[]绝热的Cross product 矢量积Aerodynamics 空气动力学Denominator 分母Affiliation 联系Developed flow 充分发展流Airfoil 机翼,螺旋桨Diffusion 扩散Alternative 替代燃料Doppler effect 多普勒效应Anemometer 风速计Double-pipe heat exchanger 套管式换热器Angular speed 角速度Dry saturated vapor 干饱和蒸汽Area density 表面密度Electrode 电极Baffle 挡板Electrolyte 电解,电解液Bifurcation 分形Electrostatic 静电的Blackbody 黑体Emissivity 发射率Blade 浆叶,叶片Equilibrium 平衡Boiler 锅炉Fluid mechanics 流体力学Boundary layer 边界层Forced convection 强制对流Carnot Cycle 卡诺循环Free convection 自然对流Cartesian coordinates 笛卡尔坐标系Friction loss 摩擦损失Celsius Degree 摄氏度Glass ceramic 微晶玻璃,玻璃陶瓷Compact heat exchanger 紧凑式换热器Heat engine 热机Composition 成分,合成物Heat pump 热泵Compressed liquid 压缩液体Hydrofoil 水翼Compressibility 可压缩性,压缩率Hypersonic speed 高超音速Condensation 凝结Infinitesimal 无穷小的Condenser 冷凝器Inflating/deflating 充气/压缩Conduction 导热Internal combustion engine 内燃机Control volume 控制体Isentropic 等熵的Convection 对流Isobaric 等压的Coriolis-accelaration flowmeter 科氏加速流量计Isolated system 孤立体系的Isometric 等容的Rough-wall tube 粗糙管Isothermal 等温的Saturation 饱和Kinematic viscosity 运动黏度Shear stress 剪切力、切应力Laminar 层流Shell-and-tube heat exchanger管壳式换热器Manuscript 手稿,原稿Specific volume 比容Moisture 湿度,水分Steady 稳态的,定常的Molecule (化学)分子Stifling engine 斯特林机Molten polymer 熔融聚合物Strain rate 变形速度,应变率Muti-disciplinary 多学科的Streamline 流线Newtonian Fluid 牛顿流体Strut 支撑,支柱Nominal temperature gradient 法向温度Subcooled liquid过冷液体梯度Numerator (数学)分子Superheated vapor 过热蒸汽Parallel flow 平行流动,并流Surrounding 环境,外界Pathline迹线Thermal conductivity 热传导率Phase change 相变Thermal efficiency 热效率Plane flow 平面流,二元流Thermodynamics 热力学Torsional 扭力的,扭转的Plate and flame heat exchanger板式换热器Polymer solution 胶浆Trailing edge 机翼后缘、尾缘Proof 校样Transmitter 传送装置、发送器Propeller 螺旋桨,推进器Turbine meter 涡轮流量计Pump泵Turbulent 湍流的Qulity 干度Ultrosonic 超声波的Qusi-equilibrium 准平衡、准静态Uniform flow 均匀刘Radiation 辐射Vacuum 真空Rankin Cycle 朗肯循环View factor 角系数Viscous 黏性的Regenerative heat exchanger蓄热/再生式换热器Reservoir 水库,蓄水池Cortex shedding 漩涡脱落Reversible 可逆的Water faucet 水龙头,水嘴Rotameter 转子流量计Bi Biot number 比澳数NPSH 汽蚀余量CFD 计算流体力学NTU 传热单元数CHF 临界热流量Nu 努谢尔特数COP 制冷系数PE 势能Eu 欧拉数Pr 普朗特数Fo 富立叶数Ra 瑞利数Fr 弗劳德数Re 雷诺数Gr 格拉晓夫数Sc 施密特数KE 动能St 斯坦顿数,斯特劳哈数LMTD对数平均温差We 韦伯数1.1Fundamental of Engineering Thermodynamics1.1工程热力学基础Thermodynamics is a science in which the storage, transformation and transfer of energy are studied. Energy is stored as internal energy (associated with temperature), kinetic energy (du to motion), potential energy (due to elevation) and chemical energy (due to chemical composition); it is transformed from one of these forms to another; and it is transferred across a boundary as either heat or work.热力学是一门研究能量储存、转换及传递的科学。

热能与动力工程专业英语翻译3

热能与动力工程专业英语翻译3

Unit2:An atom’s nucleus can be……原子核可以分裂,当这种分裂发生时,巨大的能量就会释放出来。

这是一股发热发光的能量。

爱因斯坦曾说过微小质量的物体包含巨大的能量。

当这种能量缓慢释放时,就可以利用它产生动力发电。

当这种能量瞬间释放时,就如原子弹一样产生巨大的爆炸。

A nuclear power plant……核电站用铀作为燃料。

铀是一种能从世界上的许多地方挖出的元素。

它被加工成小丸装入伸进核反应堆的长棒中。

The word fission means to……裂变一词意思就是分裂。

在核电站的反应堆内部,铀原子以可拉链式反应进行分裂。

In a chain reaction……在链式反应中,原子分裂释放的粒子离开并且撞击正在分裂的其它铀原子。

在核电站的链式反应中,那些分裂产生的粒子继续分裂其它的原子,控制棒用来使这种分裂受控因此这种分裂就不会进行得太快。

Unit3Continued research has made renewable……不断的研究使现在可再生能源的利用比25年前更能支付得起。

但是对于可再生能源的利用仍有一些缺点。

For example, solar thermal energy……例如,通过收集器收集太阳光来得到太阳能需要大量的占地面积来安装收集器。

这会影响生态环境,也就是会影响当地的动植物。

当建筑物、道路、输电线和变压器建造时,环境也会受到影响。

通常太阳能电站所用的流体大多数是有毒的而且泄露可能会发生。

Solar or PV cells……太阳能或光伏电池使用相同的技术生产电脑硅芯片。

生产过程使用了有毒的化学药品。

有毒的化学药品用来制造电池储存太阳电能来渡过黑夜和阴天。

制造这种装置也会有环境影响。

Also,even if we……即使我们想马上转换太阳能,仍然存在很大的问题。

世界上所有的太阳能生产设备使太阳能电池满载也只能产生大约350MW,大约够一个300000人口的城市使用,相对我们的需求而言那是微不足道的。

热能与动力工程专业英语

热能与动力工程专业英语

Chapter 1 In troductio n to ThermalScie nee第一章Acoustic flow meter 声波流量计Adiabatic [住d I m L 王11 k ]绝热的Aerodynamics空气动力学Affiliation 联系Airfoil 机翼,螺旋桨Alternative 替代燃料An emometer 风速计An gular speed 角速度Area den sity 表面密度Baffle 挡板Bifurcati on 分形Blackbody 黑体Blade浆叶,叶片Boiler 锅炉Boun dary layer 边界层Carnot Cycle 卡诺循环Cartesia n coord in ates 笛卡尔坐标系Celsius Degree 摄氏度Compact heat excha nger 紧凑式换热器Composition 成分,合成物Compressed liquid 压缩液体Compressibility 可压缩性,压缩率Condensation 凝结Condenser冷凝器Conduction 导热Con trol volume 控制体热科学基础Corrugated fin 波状散热片Cross product 矢量积Denominator 分母Developed flow 充分发展流Diffusion 扩散Doppler effect 多普勒效应Double-pipe heat excha nger 套管式换热器Dry saturated vapor 干饱与蒸汽Electrode 电极Electrolyte 电解,电解液Electrostatic 静电的Emissivity 发射率Equilibrium 平衡Fluid mecha nics 流体力学Forced convection 强制对流Free conv ecti on 自然对流Friction loss 摩擦损失Glass ceramic 微晶玻璃,玻璃陶瓷Heat engine 热机Heat pump 热泵Hydrofoil 水翼Hypers onic speed 高超音速Infini tesimal 无穷小的In flati ng/deflati ng 充气/ 压缩Internal combusti on engine 内燃机Ise ntropic 等熵的Convection 对流Coriolis-accelaration 氏加速流量计Isometric 等容的Isothermal 等温的Kinematic viscosity 运动黏度Laminar 层流Manuscript 手稿, 原稿Moisture 湿度, 水分Molecule (化学)分子Molten polymer 熔融聚合物Muti-disciplinary 多学科的Newtonian Fluid 牛顿流体Nominal temperature gradient 法向温度梯度Numerator (数学)分子Parallel flow 平行流动, 并流Pathline 迹线Phase change 相变Plane flow 平面流, 二元流Plate and flame heat exchanger 板式换热器Polymer solution 胶浆Proof 校样Propeller 螺旋桨, 推进器Pump泵Qulity 干度Qusi-equilibrium 准平衡、准静态Radiation 辐射Rankin Cycle 朗肯循环Regenerative heat exchanger Rough-wall tube 粗糙管Saturation 饱与Shear stress 剪切力、切应力Shell-and-tube heat exchanger 管壳式换热器Specific volume 比容Steady 稳态的, 定常的Stifling engine 斯特林机Strain rate 变形速度, 应变率Streamline 流线Strut 支撑, 支柱Subcooled liquid 过冷液体Superheated vapor 过热蒸汽Surrounding 环境, 外界Thermal conductivity 热传导率Thermal efficiency 热效率Thermodynamics 热力学Torsional 扭力的, 扭转的Trailing edge 机翼后缘、尾缘Transmitter 传送装置、发送器Turbine meter 涡轮流量计Turbulent 湍流的Ultrosonic 超声波的Uniform flow 均匀刘Vacuum真空View factor 角系数Viscous 黏性的蓄热/ 再生式换热器Isobaric 等压的flowmeter 科Isolated system 孤立体系的1.1 Fundamental of Engineering Thermodynamics1.1 工程热力学基础Thermodynamics is a science in which the storage, transformation and transferof energy are studied 、 Energy is stored as internal energy (associated withtemperature), kinetic energy (du to motion), potential energy (due to elevation) and chemical energy (due to chemical composition); it is transformed from one of these forms to another; and it is transferred across a boundary as either heat or work 、热力学就是一门研究能量储存、 转换及传递的科学。

最新热能与动力工程专业英语(整理版)

最新热能与动力工程专业英语(整理版)

热能与动力工程Thermal Energy and Power Engineering材料与能源学院:Institute of Materials and Energy空调制冷:refrigeration and air conditioning热传导:thermol conduction学生毕业后能胜任现代火力发电厂,制冷与低温工程及相关的热能与动力工程专业的技术与管理工作,并能从事其它能源动力领域的专门技术工作.The graduates may find employment of technology and management in the fields of the Thermal Energy &Power Engineering (TEPE) and its relevance, such as modern power plant or the Refrigeration and Cryogenics Engineering (RCE), the graduates may also engaged in the special technique in the fields related to TEPE.现代空气动力学、流体力学、热力学、水力学以及航空航天工程、水利水电工程、热能工程、流体机械工程都提出了一系列复杂流动问题,其中包括高速流、低速流、管道流、燃烧流、冲击流、振荡流、涡流、湍流、旋转流、多相流等等A series of complicated flow problems have been posed in modern fluid mechanics, aero dynamics, thermodynamics, and aeronautical and aerospace engineering, water conservancy and hydropower engineering, heat energy engineering, fluid machinery engineering, and so on, and they cover high-speed flow, low-speed flow, eddy flow, turbulent flow, burning flow, impact flow, oscillating flow, backflow, and two-phase flow, etc.In the thermal engineering, the studied objects normally are isolated from one another and then we try to analysis the change and interaction, the studied objects isolated is named thermodynamic system.在热力工程中,通常将研究对象分离出来再分析其变化及(与外界)的相互作用,该对象即热力系统。

热能动力工程专业英语

热能动力工程专业英语
Professional English for Thermal Power Engineering
contents
目录
• Overview of Thermal Power Engineering
• Fundamentals of Thermal Power Engineering
• Professional vocabulary for thermal power engineering
Application fields of thermal power engineering
Power generation
Thermal power plants are the main way of power generation, accounting for a large promotion of global electricity production
• Integration with information technology: The integration of thermal power engineering with information technology allows for more effective monitoring, control, and optimization of thermal power plants
• Radiation Heat Transfer: Radiation heat transfer occurs when electromagnetic waves transfer energy between objects Understanding radiation heat transfer is important for designing heat exchanges and other thermal systems

大学热动专业英语1-2章翻译

大学热动专业英语1-2章翻译

Specialized English for Thermal Energy & Power EngineeringCOURSE OUTLINETextbook: 热能与动力工程专业英语(Specialized English for Thermal Energy & Power Engineering)(3th) 阎维平,中国电力出版社(第三版)COURSE OUTLINECourse Goals:1.To understand the basic characteristics of Specialized English.2.To recognize some technical words in thermal energy and power engineering.3.To know how to write the abstract for a paper or a thesis (P155).Grading:Exercises in the class 20%Final exam 80%ContentsChapter 1 Introduction to Thermal Sciences1.1 Fundamental of engineering thermodynamics1.2 Fundamental of fluid mechanics1.3 Fundamental of heat transferChapter 2 Boiler2.1 Introduction2.2 Development of utility boiler2.3 Fuel and combustion2.4 Pulverizing system2.5 System arrangement and key components2.6 On-load cleaning of boilers2.7 Energy balanceChapter 1 Introduction to Thermal Sciences1.1 Fundamental of engineering thermodynamics•Thermodynamics is a science in which the storage, transformation, and transfer of energy are studied. Energy is stored as internal energy( associated with temperature), kinetic energy( due to motion), potential energy (due to elevation) and chemical energy( due tochemical composition); it is transformed from one of these forms to another; and it is transferred across a boundary as either heat or work.第一章热科学介绍1.1 工程热力学基础热力学是一门研究能量储存、转换及传递的科学。

热能与动力工程专业英语..

热能与动力工程专业英语..

Chapter 1 Introduction to Thermal Science第一章热科学基础Acoustic flow meter 声波流量计Corrugated fin 波状散热片Adiabatic[]绝热的Cross product 矢量积Aerodynamics 空气动力学Denominator 分母Affiliation 联系Developed flow 充分发展流Airfoil 机翼,螺旋桨Diffusion 扩散Alternative 替代燃料Doppler effect 多普勒效应Anemometer 风速计Double-pipe heat exchanger 套管式换热器Angular speed 角速度Dry saturated vapor 干饱和蒸汽Area density 表面密度Electrode 电极Baffle 挡板Electrolyte 电解,电解液Bifurcation 分形Electrostatic 静电的Blackbody 黑体Emissivity 发射率Blade 浆叶,叶片Equilibrium 平衡Boiler 锅炉Fluid mechanics 流体力学Boundary layer 边界层Forced convection 强制对流Carnot Cycle 卡诺循环Free convection 自然对流Cartesian coordinates 笛卡尔坐标系Friction loss 摩擦损失Celsius Degree 摄氏度Glass ceramic 微晶玻璃,玻璃陶瓷Compact heat exchanger 紧凑式换热器Heat engine 热机Composition 成分,合成物Heat pump 热泵Compressed liquid 压缩液体Hydrofoil 水翼Compressibility 可压缩性,压缩率Hypersonic speed 高超音速Condensation 凝结Infinitesimal 无穷小的Condenser 冷凝器Inflating/deflating 充气/压缩Conduction 导热Internal combustion engine 内燃机Control volume 控制体Isentropic 等熵的Convection 对流Isobaric 等压的Coriolis-accelaration flowmeter 科氏加速流量计Isolated system 孤立体系的Isometric 等容的Rough-wall tube 粗糙管Isothermal 等温的Saturation 饱和Kinematic viscosity 运动黏度Shear stress 剪切力、切应力Laminar 层流Shell-and-tube heat exchanger管壳式换热器Manuscript 手稿,原稿Specific volume 比容Moisture 湿度,水分Steady 稳态的,定常的Molecule (化学)分子Stifling engine 斯特林机Molten polymer 熔融聚合物Strain rate 变形速度,应变率Muti-disciplinary 多学科的Streamline 流线Newtonian Fluid 牛顿流体Strut 支撑,支柱Subcooled liquid过冷液体Nominal temperature gradient 法向温度梯度Numerator (数学)分子Superheated vapor 过热蒸汽Parallel flow 平行流动,并流Surrounding 环境,外界Pathline迹线Thermal conductivity 热传导率Phase change 相变Thermal efficiency 热效率Plane flow 平面流,二元流Thermodynamics 热力学Torsional 扭力的,扭转的Plate and flame heat exchanger板式换热器Polymer solution 胶浆Trailing edge 机翼后缘、尾缘Proof 校样Transmitter 传送装置、发送器Propeller 螺旋桨,推进器Turbine meter 涡轮流量计Pump泵Turbulent 湍流的Qulity 干度Ultrosonic 超声波的Qusi-equilibrium 准平衡、准静态Uniform flow 均匀刘Radiation 辐射Vacuum 真空Rankin Cycle 朗肯循环View factor 角系数Viscous 黏性的Regenerative heat exchanger蓄热/再生式换热器Reservoir 水库,蓄水池Cortex shedding 漩涡脱落Reversible 可逆的Water faucet 水龙头,水嘴Rotameter 转子流量计Bi Biot number 比澳数NPSH 汽蚀余量CFD 计算流体力学NTU 传热单元数CHF 临界热流量Nu 努谢尔特数COP 制冷系数PE 势能Eu 欧拉数Pr 普朗特数Fo 富立叶数Ra 瑞利数Fr 弗劳德数Re 雷诺数Gr 格拉晓夫数Sc 施密特数KE 动能St 斯坦顿数,斯特劳哈数LMTD对数平均温差We 韦伯数1.1Fundamental of Engineering Thermodynamics1.1工程热力学基础Thermodynamics is a science in which the storage, transformation and transfer of energy are studied. Energy is stored as internal energy (associated with temperature), kinetic energy (du to motion), potential energy (due to elevation) and chemical energy (due to chemical composition); it is transformed from one of these forms to another; and it is transferred across a boundary as either heat or work.热力学是一门研究能量储存、转换及传递的科学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.5Natural Convection 自然对流Heat transfer involving motion in a fluid caused by the difference in density and the action ofgravity is called natural or free convection. Heat transfer coefficients for natural convection are generally much lower than for forced convection, and it is therefore important not to ignore radiationin calculating the total heat loss or gain. Radiant transfer may be of the same order of magnitude as natural convection, even at room temperatures, since wall temperatures in a room can affect human comfort. 由于密度差和重力作用引起流体运动而产生的热传递称为自然对流或自由对流。

自然对流的传热系数一般远低于强迫对流,因此在计算总的吸热量或放热量时,主要的一点就是不要忽略辐射热。

辐射热传递与自然对流可以有相同的数量级,甚至在室温下也如此,因为室内墙体温度影响人体的舒适感。

Natural convection is important in a variety of heating and refrigeration equipment: (1) gravitycoils used in high humidity cold storage rooms and in roof-mounted refrigerant condensers, (2) the evaporator and condenser of household refrigerators, (3) baseboard radiators and convectors for space heating and (4) cooling panels for air conditioning. Natural convection is also involved in heat loss or gain to equipment casings and interconnecting ducts and pipes. 在各种供热和制冷设备中自然对流是非常重要的:(1)在高湿度冷藏室内及室内安装的制冷剂冷凝器内使用的重力盘管;(2)家用冰箱的蒸发器和冷凝器;(3)空间采暖用的踢脚板散热器和对流器;(4)空调用辐射对流护壁板。

设备外壳及其连接风道和管道的放热量和吸热量中也包含自然对流。

Consider heat transfer by natural convection between a cold fluid and a hot surface. The fluid in immediate contact with the surface is heated by conduction, becomes lighter and rises because of the difference in density of the adjacent fluid. The motion is resisted by the viscosity of the fluid. The heat transfer is influenced by: (1) gravitational force due to thermal expansion, (2) viscous drag and (3) thermal diffusion. It may be expected to depend on the gravitational acceleration g, the coefficient of thermal expansion β, the kinematic viscosity υ(=μ/ρ), and the thermal diffusivity α=(k /ρc p ). These variables can be expressed in terms of dimensionless numbers: the Nusselt number, Nu, is afunction of the product of the Prandtl number, Pr, and Grashof number, Gr, which, when combined, depend on the fluid properties, the temperature difference between the surface and the fluid, △t, and the characteristic length of the surface, L. The constant c and exponent n depend on the physical configuration and nature of flow. 现在我们来考虑冷流体和热表面间由自然对流引起的热传递。

与表面直接接触的流体由于导热而被加热、变轻,并且由于与相邻流体的密度差而上升。

这种运动由于流体粘性而受到阻碍。

热传递受下列因素影响:(1)因热膨胀而引起的重力作用;(2)粘性阻滞;(3)热扩散。

这种热传递被认为取决于重力加速度g、热膨胀系数β、运动粘滞系数υ(=μ/ρ),以及导热系数α=( k /ρc p )。

这些变量可以用无因次数的形式给出:努谢尔特数Nu,它是普朗特数Pr和格拉晓夫数Gr乘积的函数,Pr与Gr的乘积,取决于流体特性、表面与流体间的温差△t和表面特征长度L。

常数c和指数n取决于物体外形和流动性质。

The entire process of natural convection cannot be represented by a single value of exponent n, but can be divided into three regions: (1) turbulent natural convection for which n equals 0.33, (2) laminar natural convection, for which n equals 0.25 and (3) a region that has (Gr·Pr) less than for laminar natural convection, for which the exponent n gradually diminishes from 0.25 to lower values. Note that, for wires, the (Gr·Pr) is likely to be very small, so that the exponent n is 0.1.自然对流的全部过程不能由单一的指数n表示,但可以分成三个区域:(1)紊流自然对流,n等于0.33;(2)层流自然对流,n等于0.25;(3)(Gr·Pr)小于层流自然对流的区域,指数n从0.25逐渐减小到更低的值。

注意,对金属线,(Gr·Pr)可能会很小,所以n是0.1。

To calculate the natural convection heat transfer coefficient, determine (Gr·Pr) to find whetherthe boundary layer is laminar of turbulent, then apply the appropriate equation. The correct characteristic length indicated must be used. Since the exponent n is 0.33 for a turbulent boundary layer, the characteristic length cancels out, and the heat transfer coefficient is independent of the characteristic length. Turbulence occurs when length or temperature difference is large. Since thelength of a pipe is generally greater than its diameter, the heat transfer coefficient for verticalpipes is larger than for horizontal pipes. 为了计算自然对流传热系数,先算出(Gr·Pr),确定边界是层流还是紊流,然后应用合适的方程。

必须使用已指出的正确的特征长度。

由于紊流边界层的指数n是0.33,特征长度消去,传热系数与特征长度无关。

当长度或温差大时就产生紊流。

由于管道的长度一般大于它的直径,竖管的传热系数大于横管的传热系数。

Convection from horizontal plates facing downward when heated (or upward when cooled ) is a special case. Since the hot air is above the colder air, there is no theoretical reason for convection. Some convection is caused, however, by secondary influences such as temperature differences on the edges ofthe plate. As an approximation, a coefficient of somewhat less than half of the coefficient for a heated horizontal plate facing upward can be used. 热面朝下(冷面朝上)的水平板对流是个特例。

相关文档
最新文档