《ANSYS程序应用》上机实验报告

合集下载

(完整版)刘玉实验报告

(完整版)刘玉实验报告

《ANSYS程序应用》上机实验报告学院:机械工程学院专业:机械设计制造及其自动化班级:机设1104姓名:刘玉学号:实验时间:2014.12.24指导教师签字:成绩:A N S Y S程序应用基础一、实验目的和要求1.了解ANSYS软件的界面和基本功能,初步掌握使用ANSYS软件求解问题基本步骤;初步掌握使用ANSYS软件求解杆系结构静力学问题的方法;2. 初步掌握使用ANSYS软件求弹性力学平面问题的方法。

二、实验设备和软件台式计算机,ANSYS10.0 以上软件。

三、实验内容1.应用ANSYS程序求解杆系结构静力问题2.应用ANSYS程序求解平面应力问题——直角支架结构3.应用ANSYS程序求解平面应变问题——厚壁圆筒承受压力四、报告撰写要求:题目一:应用ANSYS程序求解杆系结构静力问题1、建立有限元模型,并将模型以照片形式输出;杆系结构静力模型图2、说明施加约束和载荷的方法和步骤,并求解;施加位移约束菜单路径Main Menu>Preprocessor>solution >Define Loads>Apply>Structural >Displacement>On Keypoints 在弹出的“Apply U,ROT on KPs”选择对话框,选取1,3号点单击【OK】按钮关闭该对话框并打开“Apply U,ROT on KPs”对话框,设定“ALL DOF=0”,完全约束着两个点的位移施加集中载荷菜单路径Main Menu>Preprocessor>solution >Define Loads>Apply>Structural>Force/Moment>On Keypoints 弹出“Apply F/M on KPs”选择对话框,选取2号点,单击【OK】按钮关闭对话框并打开“Apply F/M on KPs”对话框,设定“FY=-1000”,施加方向向下1000N的集中载荷,单击[OK]按钮关闭对话框。

有限元上机实验报告

有限元上机实验报告

有限元ANSYS实验报告
学校:华北水利水电大学
学院:机械学院
专业:机械设计制造及其自动化
姓名:
学号:2010
指导老师:纪占玲
(一)带孔板壳模型静力分析一、新建文件
二、预处理,选择材料模型类型等。

三、建模
四、划分单元
五、施加约束、载荷
六、求解
七、查看结果
(二)内六角扳手静力分析
问题:
一个截面宽度为10mm的内六角扳手,在手柄的顶部施加扭矩为100N,然后在相同的部位施加垂直向下的力20N,分析在两种荷载作用下扳手的应力分布。

尺寸如下:截面宽度10mm、形状为正六边形、手柄长20cm、杆长7.5cm,倒角半径1cm、弹性模量2.1×10¹¹Pa,泊松比0.3 。

一、新建文建,预处理和上面一样,把不同的模型类型选择如下:
二、建模
三、划分单元网格,并生成实体模型
四、施加约束、载荷
五、查看结果
(三)其它练习实例。

中南大学ANSYS上机实验报告

中南大学ANSYS上机实验报告

ANSYS上机实验报告小组成员:郝梦迪、赵云、刘俊一、实验目的和要求本课程上机练习的目的是培养学生利用有限单元法的商业软件进行数值计算分析,重点是了解和熟悉ANSYS的操作界面和步骤,初步掌握利用ANSYS建立有限元模型,学习ANSYS分析实际工程问题的方法,并进行简单点后处理分析,识别和判断有限元分析结果的可靠性和准确性。

二、实验设备和软件台式计算机,ANSYS10.0软件三、基本步骤1)建立实际工程问题的计算模型。

实际的工程问题往往很复杂,需要采用适当的模型在计算精度和计算规模之间取得平衡。

常用的建模方法包括:利用几何、载荷的对称性简化模型,建立等效模型。

2)选择适当的分析单元,确定材料参数。

侧重考虑一下几个方面:是否多物理耦合问题,是否存在大变形,是否需要网格重划分。

3)前处理(Preprocessing)。

前处理的主要工作内容如下:建立几何模型(Geometric Modeling),单元划分(Meshing)与网格控制,给定约束(Constraint)和载荷(Load)。

在多数有限元软件中,不能指定参数的物理单位。

用户在建模时,要确定力、长度、质量及派生量的物理单位。

在建立有限元模型时,最好使用统一的物理单位,这样做不容易弄错计算结果的物理单位。

建议选用kg,N,m,sec;常采用kg,N,mm,sec。

4)求解(Solution)。

选择求解方法,设定相应的计算参数,如计算步长、迭代次数等。

5)后处理(Postprocessing)。

后处理的目的在于确定计算模型是否合理、计算结果是否合理、提取计算结果。

可视化方法(等值线、等值面、色块图)显示计算结果,包括位移、应力、应变、温度等。

分析计算结果的合理性。

确定计算结果的最大最小值,分析特殊部位的应力、应变或温度。

四、实验题目利用ANSYS模拟岩石试样的单轴压缩试验。

分别考虑两种不同岩石试样的几何形状和两种不同岩石试样的材料属性,模拟边界条件为试样长轴方向一端固定,另一端施加100MPa的压力,要求输出该应力条件下的岩石力学响应特性,主要包括岩石试样中心剖面上的应力和应变分布情况。

ANSYS上机实验2

ANSYS上机实验2

受内压作用的球体的有限元建模与分析
1 实验目的:
1、加深有限元理论关于网格划分概念、划分原则等的理解。

2、熟悉有限元建模、求解及结果分析步骤和方法。

3、能利用ANSYS软件对三维球体结构进行静力有限元分析。

2 实验设备:
微机(P4配置),ANSYS软件(教学版)。

3 实验内容:
受内压作用的球体,球体外径0.5m,内径0.3m,承受内压1.0×108 Pa。

材料弹性模量E=2.1×1011Pa,泊松比μ=0.3。

试对其进行有限元分析,得出应力分布和变形分布。

注:可以采用轴对称分析,根据对称性,再将平面模型简化。

计算分析模型如下图所示,
承受内压:1.0e8P a
受均匀内压的球体计算分析模型(截面图)
1.建立有限元模型:
2.网格划分
3.模型施加约束
给水平直边,竖直边,内弧施加分布载荷如下图所示
4.分析计算
5 .结果显示
1)变形前后图
2)应力分布图
由图可以看出最大应力分布面为内球面,最大应力值为188MP. 最大位移分布面也是内球面,最大位移为0.137mm.其结果与给定数据相符合,表明分析结果准确。

ANSYS上机报告

ANSYS上机报告

目录1 实验目的 (2)2 实验内容 (3)2.1机械构件的静力分析——带孔薄板两端承受均布载荷 (3)2.1.1问题描述 (3)2.1.2问题分析 (3)2.1.3求解步骤 (3)2.2机械构件的动力学分析——模型飞机机翼模态分析 (14)2.2.1问题描述 (14)2.2.2问题分析 (14)2.2.3求解步骤 (14)3 实验结论 (23)1 实验目的1.熟悉有限元分析的基本原理和方法;2.掌握有限元软件ANSYS的静力分析和动力学分析的基本操作;3.对有限元分析结果进行正确评价。

2 实验内容2.1 机械构件的静力分析——带孔薄板两端承受均布载荷2.1.1 问题描述图3.1所示为一中心带有圆孔的薄板承载示意图,薄板平均厚度为0.2mm,两端承受均布载荷pa,求薄板内部的应力场分布。

(薄板材料弹性模量为220GPa,泊松P1000比为0.3)图2.1薄板承载示意图2.1.2 问题分析对于涉及薄板的结构问题,若只承受薄板长度和宽度方向所构成的平面上的载荷时(厚度方向无载荷),一般沿薄板厚度方向上的应力变化可不予考虑,即该问题简化为平面应力问题。

根据平板结构的对称性,选择整体结构的1/4建立几何模型,进行分析求解。

2.1.3求解步骤1. 定义工作文件名和工作标题1)选择Utility Menu | File | Change Jobname 命令,出现Change Jobname对话框,在[/FILNAM] Enter new jobname文本框中输入工作文件名EXERCISE1,并将New log and error files设置为Yes,单击OK按钮关闭该对话框。

2)选择Utility Menu | File | Change Jobname 命令,出现Change Title 对话框,在[/TITLE]Enter new title 文本框中输入ANALYSIS OF PLATE STRESS WITH SMALLCIRCLE, 单击OK按钮关闭该对话框。

ANSYS实验报告

ANSYS实验报告

一、实验目的:综合训练和培养学生利用有限元技术进行机械系统分析和设计的能力,独立解决本专业方向实际问题的能力;进一步提高学生创新设计、动手操作能力,为将来所从事的机械设计打下坚实的基础。

二、实验环境1.硬件:联想计算机1台2.软件:CAE软件ANSYS三、实验内容任务:主要训练学生对机械结构问题分析规划的能力,能正确利用有限元分析软件ANSYS建立结构的有限元模型,合理定义单元、分析系统约束环境,正确加载求解,能够提取系统分析结果。

通过实验分析使学生了解和掌握有限元技术辅助机械系统设计和分析的特点,推动学生进行创新设计。

本组数据:要求:本实验要求学生以高度的责任感,严肃认真、一丝不苟的态度进行设计,充分发挥主观能动性,树立正确的设计思想和良好的工作作风,严禁抄袭和投机取巧。

同时,按以下要求进行设计:1、按照国家标淮和设计规范进行设计:塔式起重机设计规范GB/T 13752-92;起重机设计规范GB/T3811-2008;钢结构设计规范GB 50017-2003;塔式起重机安全规程GB 5144-2006。

2、进行塔式起重机起重臂的设计,额定起重力矩为630 kN⋅m、800 kN⋅m、1000 kN⋅m、1250kN m分别进行最大幅度为40m、45m、50m、55m、60m的起重臂的设计、计算。

(800kN.m 30m)3、综合运用学过的力学知识和有限元理论,设计起重臂的结构及主肢和腹杆的参数,构造起重臂的有限元模型,选择合适的单元,施加合适的载荷和边界条件,对结构进行静力分析,提取结果,进行强度和刚度校核,撰写实验报告并总结。

四、实验步骤:(一)问题分析设计起重臂的结构及主肢和腹杆的参数,构造起重臂的有限元模型,选择合适的单元,施加合适的载荷和边界条件,对结构进行静力分析,提取结果,进行强度和刚度校核模型简化起重臂根部通过销轴与塔机回转节相连,在臂架起升平面可视为铰接(二)实验过程:1、准备工作双击ansys图标,打开软件进入工作环境,选择存储路径Utility Menu-File-Change Directery-桌面;Utility Menu-File-change Jobname点击使复选框处于yes状态-OK设置优选项Menu –preferences选择Structrure复选框OK。

ansys实验分析报告

ansys实验分析报告

ANSYS 实验分析报告1. 引言在工程设计和科学研究中,计算机仿真技术的应用越来越广泛。

ANSYS是一种常用的工程仿真软件,它可以帮助工程师和科学家分析和解决各种复杂的问题。

本文将介绍我对ANSYS进行实验分析的过程和结果。

2. 实验目标本次实验的主要目标是使用ANSYS软件对一个特定的工程问题进行仿真分析。

通过这个实验,我希望能够了解ANSYS的基本操作和功能,并在解决工程问题方面获得一定的经验。

3. 实验步骤步骤一:导入模型首先,我需要将要分析的模型导入到ANSYS软件中。

通过ANSYS提供的导入功能,我可以将CAD模型或者其他文件格式的模型导入到软件中进行后续操作。

步骤二:设置边界条件在进行仿真分析之前,我需要设置边界条件。

这些边界条件可以包括约束条件、初始条件和加载条件等。

通过设置边界条件,我可以模拟出真实工程问题中的各种情况。

步骤三:选择分析类型ANSYS提供了多种不同的分析类型,包括结构分析、流体力学分析、热传导分析等。

根据实际情况,我需要选择适合的分析类型来解决我的工程问题。

步骤四:运行仿真设置好边界条件和选择好分析类型后,我可以开始运行仿真了。

ANSYS会根据我所设置的条件,在计算机中进行仿真计算,并生成相应的结果。

步骤五:分析结果仿真计算完成后,我可以对生成的结果进行分析。

通过对结果的分析,我可以得出一些关键的工程参数,如应力分布、温度分布等。

这些参数可以帮助我评估设计的合理性和性能。

4. 实验结果在本次实验中,我成功地使用ANSYS对一个特定的工程问题进行了仿真分析。

通过分析结果,我得出了一些有价值的结论和数据。

这些数据对于进一步改进设计和解决工程问题非常有帮助。

5. 总结与展望通过本次实验,我对ANSYS软件的使用有了更深入的了解,并且积累了一定的实践经验。

在未来的工程设计和科学研究中,我将更加灵活地应用ANSYS软件,以解决更加复杂和挑战性的问题。

同时,我也会继续学习和探索其他相关的仿真软件和工具,以提高自己的技术水平。

ansys实验报告

ansys实验报告

ansys实验报告ANSYS实验报告一、引言ANSYS是一款广泛应用于工程领域的有限元分析软件,它能够模拟和分析各种结构和物理现象。

本实验旨在通过使用ANSYS软件,对一个具体的工程问题进行模拟和分析,以探究其性能和行为。

二、实验目的本次实验的主要目的是通过ANSYS软件对一个简单的悬臂梁进行分析,研究其在不同加载条件下的应力和变形情况,并进一步了解悬臂梁的力学行为。

三、实验步骤1. 准备工作:安装并启动ANSYS软件,并导入悬臂梁的几何模型。

2. 材料定义:选择适当的材料,并设置其力学性质,如弹性模量和泊松比。

3. 约束条件:定义悬臂梁的边界条件,包括支撑点和加载点。

4. 加载条件:施加适当的力或压力到加载点,模拟实际工程中的加载情况。

5. 分析模型:选择适当的分析方法,如静力学分析或模态分析,对悬臂梁进行计算。

6. 结果分析:根据计算结果,分析悬臂梁在不同加载条件下的应力和变形情况,并进行比较和讨论。

四、实验结果经过计算和分析,我们得到了悬臂梁在不同加载条件下的应力和变形情况。

在静力学分析中,我们观察到加载点附近的应力集中现象,并且应力随着加载的增加而增大。

在模态分析中,我们研究了悬臂梁的固有频率和振型,并发现了一些共振现象。

五、讨论与分析根据实验结果,我们可以得出一些结论和讨论。

首先,悬臂梁在加载点附近容易发生应力集中,这可能导致结构的破坏和失效。

因此,在实际工程中,我们需要采取适当的措施来减轻应力集中的影响,如增加结构的刚度或改变加载方式。

其次,悬臂梁的固有频率和振型对结构的稳定性和动态响应有重要影响。

通过模态分析,我们可以确定悬臂梁的主要振动模态,并根据需要进行结构优化。

六、结论通过本次实验,我们成功地使用ANSYS软件对一个悬臂梁进行了模拟和分析。

通过对悬臂梁的应力和变形情况的研究,我们深入了解了悬臂梁的力学行为,并得出了一些有价值的结论和讨论。

在实际工程中,这些研究结果可以为设计和优化结构提供参考和指导。

ANSYS实验分析报告

ANSYS实验分析报告

ANSYS实验分析报告(张刚机电研1005班)ANSYS实验分析报告(张刚机电研1005班)实验一 ANSYS软件环境1.问题描述如图所示,使用ANSYS分析平面带孔平板,分析在均布载荷作用下板内的应力分布。

已知条件:F=20N/mm,L=200mm,b=100mm,圆孔半径r=20,圆心坐标为(100, 50),E=200Gpa。

板的左端固定。

图1-1 带孔平板模型示意图实例类型:ANSYS结构分析分析类型:线性静力分析单元类型:PLANE822.实验内容图1-2 有限元模型图图1-3 载荷与约束图图1-4 模型变形图图1-5 等值线位移图由上图可知模型从左至右位移量逐渐递增,与实际情况符合。

图1-6 等值应力图从上可知,圆孔的上下端点应力最大,与实际情况符合,证明ANSYS分析正确。

3.实验命令记录ANSYS命令流如下:/BATCH/COM,ANSYS RELEASE 12.0.1UP20090415 14:37:48 03/15/2011 /TITLE,plane/PREP7ET,1,PLANE82KEYOPT,1,3,3KEYOPT,1,5,0KEYOPT,1,6,0R,1,20, MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,EX,1,,200000 MPDATA,PRXY,1,,0.3BLC4,0,0,200,100CYL4,100,50,20ASBA, 1, 2FINISH/SOLFINISH/PREP7AESIZE,ALL,20,MSHKEY,0CM,_Y,AREAASEL, , , , 3CM,_Y1,AREACHKMSH,'AREA'CMSEL,S,_YAMESH,_Y1CMDELE,_YCMDELE,_Y1CMDELE,_Y2SAVEFINISH/SOLFLST,2,1,4,ORDE,1FITEM,2,4/GODL,P51X, ,ALL,FLST,2,1,4,ORDE,1FITEM,2,2/GOSFL,P51X,PRES,-1,/STATUS,SOLUSOLVEFINISH/POST1PLDISP,1 PLDISP,0/EFACET,1 PLNSOL, U,SUM, 0,1.0 /EFACET,1 PLNSOL, S,EQV, 0,1.0 PLNSOL,U,X ANCNTR,10,0.5/EFACET,1 PLNSOL, S,EQV, 0,1.0 SAVEFINISH! /EXIT,ALL实验二 坝体的有限元建模及应力应变分析1.问题描述计算分析模型如图所示,分析坝体的应力、应变。

ansys实验报告

ansys实验报告

《ANSYS程序应用》上机实验报告学院机械工程学院系:机械工程及自动化专业:机械设计及自动化年级: 09级姓名:谢小毛学号: 09405700818 组_______ 实验时间:4月30日下午指导教师签字:成绩:A N S Y S程序应用基础一、实验目的和要求1.了解ANSYS软件的界面和基本功能,初步掌握使用ANSYS软件求解问题基本步骤;初步掌握使用ANSYS软件求解杆系结构静力学问题的方法;2. 初步掌握使用ANSYS软件求弹性力学平面问题的方法。

二、实验设备和软件台式计算机,ANSYS11.0软件。

三、实验内容1.应用ANSYS程序求解杆系结构静力问题2.应用ANSYS程序求解平面应力问题——直角支架结构3.应用ANSYS程序求解平面应变问题——厚壁圆筒承受压力要求:(1)建立有限元模型;(2)施加约束和载荷并求解;(3)对计算结果进行分析处理。

1.应用ANSYS程序求解杆系结构静力问题例6-1 在相距a=10m的刚性面之间,有两根等截面杆铰接在2号点,杆件与水平面夹角为300,在铰接处有一向下的集中力F=1000N,杆件材料的弹性模量E=210GPa,泊松比为0.3,截面积A=0.001m2,如图 6.2所示,试利用二维杆单元LINK1确定集中力位置处的位移。

杆件变形很小,可以按小变形理论计算。

由030tan 2ab,可得b=2.89m 。

2.应用ANSYS 程序求解平面应力问题6.3.1 直角支架结构问题直角支架结构问题是一个简单的单一载荷步的直角支架结构静力分析例题,图6.57中左侧的孔是被沿圆周完全固定的,一个成锥形的压力施加在下面右端孔的下半圆处大小为由50psi 到150psi 。

已知如图6.57所示的支架两端都是直径为2in 的半圆,支架厚度th =0.5in ,小孔半径为0.4in ,支架拐角是半径为0.4in 的小圆弧,支架是由A36型的钢制成,杨氏模量正=30×106psi ,泊松比为0.27。

ansys上机报告

ansys上机报告

实验一:如图所示,使用ANSYS分析平面带孔平板,分析在均布载荷作用下板内的应力分布。

已知条件:F=20N/mm,L=200mm,b=100mm,圆孔半径r=20,圆心坐标为(100,50),E=200Gpa。

板的左端固定。

图1-1 带孔平板模型1.建立有限元模型1).建立工作目录并添加标题以Interactive 方式进入ANSYS,File菜单中设置工作文件名为Plane、标题为plane。

2).创建实体模型(1)创建矩形通过定义原点、板宽和板高定义矩形,其操作如下:GUI:PreProcessor > Modeling > Create > Areas > Rectangle > By 2Corners弹出Rectangle by 2 corners对话框(如图1-2所示),如图填写。

WPX 和WP Y表示左下角点坐标。

生成矩形如图1-3所示图1-2 生成矩形图1-3 矩形图1-5 生成圆面(2)生成圆面首先在矩形面上生成圆,然后挖去生成圆孔。

生成圆面得操作如下:GUI:PreProcessor > Modeling > Create > Areas > Circle > Solid Circle弹出Solid Circular Area对话框(如图1-4所示),依图输入圆面几何参数。

得到圆面如上图1-5所示。

下面通过布尔“减”操作生成圆孔,其操作如下:GUI:PreProcessor > Modeling > Operate > Booleans > Subtract > Areas先选择矩形面为Base Area ,单击OK 按钮,然后选择圆,单击OK 按钮。

布尔操作完毕之后,实体模型为带孔平板。

如图1-6所示图1-6 实体模型3).定义材料属性材料属性是与几何模型无关的本构关系,如弹性模量、密度等。

ansys第一次上机报告

ansys第一次上机报告

实验一实验报告一、题目图示折板上端固定,右侧受力F=1000N,该力均匀分布在边缘各节点上;板厚t=2mm,材料选用低碳钢,弹性模量E=210Gpa,μ=0.33.二、有限元分析的目的1、利用ANSYS构造实体模型;2、根据结构的特点及所受载荷的情况,确定所用单元类型;正确剖分网格并施加外界条件;3、绘制结构的应力和变形图,给出最大应力和变形的位置及大小;并确定折板角点A处的应力和位移;4、研究网格密度对A处角点应力的影响;5、若在A处可用过渡圆角,研究A处圆角半径对A处角点应力的影响。

三、有限元模型的特点1.作业类型本作业属于平面应力分析类型2.单位制选择本作业选择N(牛),mm(毫米),MPa(兆帕)。

3.建模方法采用自顶向下的实体建模方法。

4.定义单元1)材料属性:EX=2.10E5MPa, PRXY=0.332)单元类型:在Preferences选Structural,Preprocessor>ElemmentType>Add/Edit/Delete中定义单元类型为Plane-82,K3设置为Plane strs w/thk3)实常数:THK=2mm5.划分网格在MeshTool下选SmartSize,拖动工具条进行网格密度设置,再用Mesh进行网格划分。

6.加载和约束过程四、以下网格划分用智能网格进行对比1、网格密度设置为“4”(单元数:200;节点数:981)时应力和位移图如下:2、网格密度设置为“3”(单元数:512;节点数:1641)时应力和位移图如下:应力图3、网格密度设置为“2”(单元数:769;节点数:2436)时应力和位移图如下:应力图对于不同网格尺寸下A点的应力和位移数据如下:由此表中数据可以看出:随着网格密度的增大,A点处应力也增大。

有限元的解出现了大的偏差,属于不正常情况,因A点是一个折点,属于应力奇异点。

六、A处圆角半径对A处角点应力的影响当A处圆角半径为4mm(智能网格划分的网格密度为“3”)时,A点应力图如下:当A处圆角半径为6mm(智能网格划分的网格密度为“3”)时,A点应力图如下:当A处圆角半径为7mm(智能网格划分的网格密度为“3”)时,A点应力图如下:对于不同圆角半径下A点的应力数据如下由此表中数据可以看出:随着A处圆角半径的增大,A点处的角点应力随着减小。

(完整word版)ansys实验报告

(完整word版)ansys实验报告

有限元上机实验报告姓名柏小娜学号0901510401实验一一 已知条件简支梁如图所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚度t=10mm 。

上边承受均布载荷,集度q=1N/mm 2,材料的E=206GPa ,μ=0.29。

平面应力模型。

X 方向正应力的弹性力学理论解如下:)534()4(622223-+-=h y h y q y x L h q x σ二 实验目的和要求(1)在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。

(2)计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。

(3)针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。

三 实验过程概述(1) 定义文件名(2) 根据要求建立模型:建立长度为1m ,外径为0.2m ,平行四边行区域 (3) 设置单元类型、属性及厚度,选择材料属性: (4) 离散几何模型,进行网格划分 (5) 施加位移约束 (6) 施加载荷(7) 提交计算求解及后处理 (8) 分析结果四 实验内容分析(1)根据计算得到应力云图,分析本简支梁模型应力分布情况和规律。

主要考察x σ和y σ,并分析有限元解与理论解的差异。

由图1看出沿X 方向的应力呈带状分布,大小由中间向上下底面递增,上下底面应力方向相反。

由图2看出应力大小是由两侧向中间递增的,得到X 方向上最大应力就在下部中点,为0.1868 MPa 。

根据理论公式求的的最大应力值为0.1895MPa 。

由结果可知,有限元解与理论值非常接近。

由图3看出Y 的方向应力基本相等,应力主要分布在两侧节点处。

图 1 以矩形单元为有限元模型时计算得出的X 方向应力云图图 2 以矩形单元为有限元模型时计算得出的底线上各点x 方向应力图(2)对照理论解,对最大应力点的x σ应力收敛过程进行分析。

列出各次计算应力及其误差的表格,绘制误差-计算次数曲线,并进行分析说明。

ansys上机作业

ansys上机作业

实验一坝体的有限元建模及应力应变分析一、实验目的:1、掌握ANSYS软件基本的几何形体构造方法、网格划分方法、边界条件施加方法及各种载荷施加方法。

2、熟悉有限元建模、求解及结果分析步骤和方法。

3、能利用ANSYS软件对结构进行有限元分析。

二、实验设备:微机,ANSYS软件。

三、实验内容:计算分析模型如图所示,分析坝体的应力、应变。

四、实验步骤:1 进入ANSYS程序→ANSYS →change the working directory into yours →input Initial jobname: dam2设置计算类型ANSYS Main Menu: Preferences →select Structural → OK3选择单元类型ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→Options… →select K3: Plane Strain →OK→Close (the Element Type window) 4定义材料参数ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:, PRXY:→ OK5生成几何模型✓生成特征点ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS→依次输入四个点的坐标:input:1(0,0),2(1,0),3(1,5),4,5)→OK ✓生成坝体截面ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS→依次连接四个特征点,1(0,0),2(1,0),3(1,5),4,5) →OK 生成坝体截面如图一图一6 网格划分ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →依次拾取两条横边:OK→input NDIV: 15 →Apply→依次拾取两条纵边:OK →input NDIV: 40 →OK →(back to the mesh tool window)Mesh: Areas, Shape: Quad, Mapped →Mesh →Pick All(in Picking Menu) → Close( the Mesh Tool window)图二7 模型施加约束✓分别给下底边和竖直的纵边施加x和y方向的约束ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Displacement→ On lines→pick the lines →OK→select Lab2:UX, UY →OK✓给斜边施加x方向的分布载荷ANSYS 命令菜单栏: Parameters→Functions →Define/Edit→1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result窗口中出现{X},写入所施加的载荷函数:1000*{X};3) File>Save(文件扩展名:func) →返回:Parameters →Functions →Read from file:将需要的.func文件打开,任给一个参数名,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Pressure →On Lines →拾取斜边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷参数名→OK图三8 分析计算ANSYS Main Menu: Solution →Solve →Current LS→OK(to close the solve Current Load Step window) →OK9 结果显示(1)变形情况ANSYS Main Menu: General Postproc →Plot Results→Deformed Shape…→select Def + Undeformed→OK (back to Plot Results window)如图四;图四(2)位移情况General Postproc →Plot Results→Contour Plot→Nodal Solu…→select: DOF solution, UX,UY, Def + Undeformed , 如图五、六、七所示图五 X方向位移图图六 Y方向位移图图七总的位移图(3)压力结果图General Postproc →Plot Results→Contour Plot→Nodal Solu→Stress ,SX,SY,SZ, Def + Undeformed→OK 如图八、九、十所示:图八 X方向应力图图九Y方向应力图图十 Z方向的应力图10 结果分析由以上实验的变形和位移的云图可知,坝体最上边的变形量最明显,最大,主要是因为最上边所受载荷最大,故最大位移量发生在坝体的顶部。

ANSYS的实验报告

ANSYS的实验报告

实验一:/FILNAME,EXERCISE3 !定义工作文件名/TITLE,STRESS ANAL YSIS IN A SHEET !定义工作标题/PREP7 !进入前处理ET,1,PLANE82 !选择单元类型MP, EX, 1, 6.9E10 !输入弹性模量MP, PRXY, 0.3 !输入泊松比RECTNG,0,0.5,0,0.3 !生成矩阵形面PCIRC, 0.1,0,0,90 !生成圆面ASBA,1,2 !面相减NUMCMP,ALL !压缩编码ESIZE,0.02 !设置单元尺寸AMAP,1,1,4,5,3 !映射网络划分FINISH/SOLU !进入求解器ANTYPE,STATIC !指定求解类型LSEL,S,,, 4 !选择线段NSLL,S,,,1 !选择线段上所有节点D,ALL,UY !施加位移载荷LSEL,S,,,5NSLL,S,1D,ALL,UXLSEL, S,,,1NSLL,S,1SF,ALL,PRES,-5E5ALLSEL !施加压力载荷SOLVE !选择所有实体FINISH !开始求解计算/POST1 !进入后处理器PLNSOL, U,SUM !绘制位移等值线图PLNSOL, S,EQV !绘制等效应力等值线图FINISH!如果你要看到最终的结果就把下面这句删除/EXIT !退出实验三:/FILNAME, EXERCISE1 !定义工作文件名/TITLE, THE ANAL YSIS OF TRUSS/PREP7ET,1,LINK1R,1,6E-4R,2,9E-4R,3,4E-4MP,EX,1,2.2E11MP,PRXY,1,0.3MP,EX,2,6.8E10MP,PRXY,2,0.26MP,EX,3,2.0E11MP,PRXY,3,0.26K,1,0,0,0K,2,0.8,0,0K,3,0,0.6,0/PNUM,KP,1/PNUM,LINK,1L,1,2L,2,3L,3,1/TITLE,GEOMETRIC MODEL LPLOTESIZE,,1MA T,1REAL,1LMESH,1LPLOTMA T,2REAL,2LMESH,2LPLOTMA T,3REAL,3LMESH,3FINISH/SOLUANTYPE,STATIC/PNUM,NODE,1EPLOTD,1,ALLD,3,ALLF,2,FX,3000F,2,FY,-2000SOLVEFINISH/POST1PLDISP,1PLNSOL,U,SUMPRNSOL,U,COMPPRRSOLFINISH第四个实验的源代码:/FILNAM,EX2-5/TITLE,CANTILERVER BEAM DEFLECTION/UNITS,SI/PREP7!进入前处理器ET,1, BEAM3 ! 梁单元MP, EX,1, 200E9 ! 弹性模量E=200E9 N/ m2R,1,3E-4, 2.5E-9, 0.01 ! A=3E-4 m2, I=2.5E-9 m4, H=0.01 m N,1,0,0 $ N,2, 1, 0 ! 定义节点坐标N,3, 2, 0 $ N,4,3,0 $ N,5,4,0E, 1,2 $ E,2,3 $E, 3, 4 $ E,4,5 ! 定义单元FINISH/SOLU !进入求解处理器ANTYPE, STATICD,1,ALL,0 !全固约束节点(边界处理)F,3,FY,-2 ! 施加集中载荷SFBEAM,3,1,PRES,0.05,0.05!施加均布载荷SFBEAM,4,1,PRES,0.05,0.05SOLVEFINISH/POST1!进入一般后处理器SET,1,1 !读取阶段负载答案PLDISP !显示数据列表(列出变形资料)PRDISP !显示图形列表(检查变形图)FINISH第一个实验输出的结果图:实验三的结果:第四个实验的结果:。

ANSYS上机实验1任务书资料

ANSYS上机实验1任务书资料

上机实验1 实体建模实验目的:练习用ANSYS进行实体建模。

实验环境与设备:已安装ANSYS 7.0以上版本软件的计算机。

实验内容:使用ANSYS软件对皮带轮进行实体建模。

皮带轮的形状、尺寸如图1到图3所示。

图1 皮带轮的立体视图图2 构建皮带轮的基本图圆(a) 形状及尺寸(b) 关键点编号图3 未倒圆角时的基本图元图4 基本图元倒圆角实验考核:完成实验报告。

内容包括:各主要中间步骤的结果截图及其简要说明。

实验步骤:(1)清除内存:选择菜单Utility Menu>File>Clear & Start New,单击“OK”按钮。

(2)指定新工作文件名:选择菜单Utilityn Menu > File > Change Jobname ,输入字符串:CAD2,点击“OK”按钮(3)指定新的工作目录:选择菜单Utilityn Menu > File > Change Directory ,将目录定位到自己已建立过的文件夹,比如“D:\Learn”等,然后点击“OK”按钮即可。

(4)进入前处理器:选择菜单Main Menu > Preprocessor。

(5)创建关键点:选择菜单Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS,弹出Create Keypoints in Active Coordinate System对话框,在Keypoint number项输入1,在X,Y,Z Location in Active CS项依次输入2,0,0,如图5所示。

单击“Apply”键再次弹出该对话框,同理你次定义关键点2-8,要输入的数据如表1所示。

图5 创建一个关键点的对话框(6) 创建线:选择菜单Main Menu > Preprossor > Modeling >Create >Lines > Lines > Straight Line,弹出拾取关键点对话框,依次拾取关键点1与2,然后点击“Apply”键定义线1后再次弹出拾取关键点对话框,成对选取表2中的关键点,定义其它7条直线。

Ansys上机报告1

Ansys上机报告1

上机报告一姓名:王辉班级:T1143-2 学号:20110430202 作业一:图示折板上端固定,右侧受力F=1000N,该力均匀分布在边缘各节点上;板厚t=2mm,材料选用低碳钢,弹性模量E=210GPa,μ=0.33。

1、本实验属于平面应力问题单元分析类型。

2、本实验采用的单位制是mm、N、Mpa3、单元:Structural/Solid/Quad-8node(Plane82)Optains/Elementbehavior K3/Plane strs w/thk材料:低碳钢,弹性模量E=210GPa,泊松比u=0.33实常数:板厚t=2mm4、网格划分设置:Element edge length:2单元数:Element/ Maximum:652节点数:Nodes/ Maximum:20775、加载描述:设置固定端:Solution/Define Loads-Apply/Structural-Displacement/On Lines然后用箭头选中最上面的那条线。

施加载荷:Solution/Define Loads-Apply/ForceMoment/On Nodes然后用plot/nodes显示出所有的点,用Box选中要加载荷的那排点,共31个,在弹出的窗口中VALUE填入数值1000/31。

6、后处理A点MISIS应力:52.317 A点位移:0.0288最大MISIS应力:232.47(左上角顶点)最大位移:0.0818(右下角顶点)应力图:变形图:7、研究网格密度对MISIS应力和变形的影响(一)网格划分设置:Element edge length:2单元数:Element/ Maximum:652节点数:Nodes/ Maximum:2077A点MISIS应力:52.317 A点位移:0.02885 最大MISIS应力:232.47 最大位移:0.0818 应力图:变形图:(二)网格划分设置:Element edge length:4 单元数:Element/ Maximum:183节点数:Nodes/ Maximum:612A点MISIS应力:50.249 A点位移:0.02884 最大MISIS应力:200.273 最大位移:0.0817应力图:变形图:总结:随着网格的加密,最大应力和A点的应力变大,但对位移的影响不大。

ansys实验报告

ansys实验报告

引言概述:正文内容:大点一:ANSYS软件介绍1.ANSYS软件的背景和特点1.1ANSYS公司的历史和影响力1.2ANSYS软件的模块和功能2.ANSYS软件的安装和设置2.1安装步骤和要求2.2ANSYS的环境设置和优化3.ANSYS软件的界面和操作3.1ANSYS的用户界面和工作区域3.2ANSYS的常用工具和操作技巧大点二:ANSYS流体力学分析1.流体力学基础和原理1.1流体力学的定义和应用领域1.2流体力学方程和模型2.ANSYS流体力学分析的方法2.1流体网格的建立和划分2.2边界条件和求解器的设置3.ANSYS流体力学实验案例3.1空气动力学模拟实验3.2水流动分析实验大点三:ANSYS结构力学分析1.结构力学基础和原理1.1结构的定义和分类1.2结构力学方程和模型2.ANSYS结构力学分析的方法2.1结构的几何建模2.2边界条件和材料属性设置3.ANSYS结构力学实验案例3.1简支梁的应力分析3.2压力容器的变形分析大点四:ANSYS热传导分析1.热传导基础和原理1.1热传导的定义和描述1.2热传导方程和模型2.ANSYS热传导分析的方法2.1热传导模型的建立2.2边界条件和热源的设置3.ANSYS热传导实验案例3.1金属材料的热传导分析3.2电子设备的温度分布模拟大点五:ANSYS优化设计1.优化设计的基本概念和方法1.1优化设计的定义和分类1.2优化设计中的变量和目标函数2.ANSYS优化设计方法2.1ANSYS中的参数化建模技术2.2ANSYS中的优化算法和工具3.ANSYS优化设计案例3.1结构优化设计实验3.2流体优化设计实验总结:本文对ANSYS软件进行了全面的实验和分析,涵盖了流体力学分析、结构力学分析、热传导分析以及优化设计等领域。

通过实验案例的呈现和详细的解释,我们发现ANSYS软件在解决工程问题、优化设计和预测系统行为方面具有显著的优势。

希望本文能为读者提供一些关于ANSYS软件的基础知识和应用方法,并激发对工程领域中模拟和分析的兴趣。

ANSYS上机实践(教材用)

ANSYS上机实践(教材用)

ANSYS上机实践ANSYS公司是美国著名力学专家、美国匹兹堡大学力学系教授John Swanson博士于1970年创建发展起来的,总部设在美国匹兹堡,目前是世界CAE行业最大的公司。

近30年来,ANSYS公司一直致力于分析设计软件的开发、维护和售后服务,不断吸取当今世界最新计算方法和计算机技术,现已被全球工业界所广泛接受,并拥有着全球最大的用户群。

1ANSYS简介1.1ANSYS的主要技术特点z强大的图形化建模和前后处理功能,并支持命令流编程方式输入;z多场及多场耦合功能;z前后处理、分析求解及多场分析统一数据库;z结构优化功能;z强大的非线性分析功能;z并行计算技术;z支持从PC到工作站乃至巨型机的所有硬件平台,且所有硬件平台全部数据兼容、用户界面统一;z智能网格划分;z可与大多数CAD软件集成并有接口。

1.2软件功能简介软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。

前处理模块提供了一个强大的实体建模和网格划分工具,用户可以很方便地构造有限元模型:分析计算模块包括结构分析(线性分析与非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析的能力:后处理模块可将计算结果用彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明或半透明显示等图形方式显示出来,也可以将计算结果已图表、曲线或动画方式显示或输出。

软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。

启动ANSYS后,从主菜单(main menu)可以进入各处理模块:通用前处理模块(Preprocessor)、加载及求解模块(solution)、通用后处理模块(General Postprocessor)以及时间历程后处理模块(Time history Processor)。

用户指令可以通过鼠标点击菜单项选取和执行,也可以在命令输入窗口通过键盘输入。

ansys实例应用实验报告

ansys实例应用实验报告

结构线性静力分析一、问题描述分析如下图所示具有圆孔的矩形板在拉伸状态下的应力分布。

1.0 m×2.0 m的矩形板,厚度为0.03 m,中心圆孔直径为0.25 m,弹性模量为207GPa,泊松比0.3,端部受拉伸载荷600 N。

二、有限元分析步骤1)选用solid45单元。

2)定义材料系数。

弹性模量为207e9Pa,泊松比为0.3。

3)建立模型。

Modeling>create>volumes>block>by dimensions。

X1,x2;y1,y2;z1,z2分别取-1,1;-0.5,0.5;0,0.03,得到矩形板。

创建圆柱体:Modeling>create>volumes>cylinder>by dimensions,半径为0.125m,深度为0.03m。

进行布尔操作:Modeling>operate>booleans>subtruct>volumes,选择矩形板,点击apply,选择圆柱体,点击ok。

4)划分网格。

选择Utility Menu>WorkPlane>Display Working Plane,然后选择Utility>WorkPlane>Offset WP by Increments,在Offset WP对话框的Degrees框中输入:0,-90,0然后点击OK确定。

Modeling>Operate>Booleans>Divide>Volu byWrkPlane,选择Pick All,图形窗口中将显示模型被工作平面一分为二。

类似地,通过移动工作平面的位置,最后将几何模型剖分。

选择Modeling>Operate>Booleans> Glue>Volumes,在对话框中选择Pick All,将剖分开的各部分模型粘接在一起。

选择Size control>Lines>set,将圆孔周边的线段和中线小正方型的线段都设定为10段,厚度方向的线段设定为6段,然后选择Mesh处下拉菜单为volume,shape设定为sweep,点击sweep,然后点击select all,然后点击OK确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《ANSYS程序应用》上机实验报告学院:机械工程学院专业:机工1005班年级:大三姓名:周晖钰学号: 10405701017 实验时间:2013.6.14 指导教师签字:成绩:A N S Y S程序应用基础一、实验目的和要求1.了解ANSYS软件的界面和基本功能,初步掌握使用ANSYS软件求解问题基本步骤;初步掌握使用ANSYS软件求解杆系结构静力学问题的方法;2. 初步掌握使用ANSYS软件求弹性力学平面问题的方法。

二、实验设备和软件台式计算机,ANSYS11.0软件。

三、实验内容1.应用ANSYS程序求解杆系结构静力问题2.应用ANSYS程序求解平面应力问题——直角支架结构3.应用ANSYS程序求解平面应变问题——厚壁圆筒承受压力要求:(1)建立有限元模型;(2)施加约束和载荷并求解;(3)对计算结果进行分析处理。

四、实验结果1.应用ANSYS程序求解杆系结构静力问题例6-1 在相距a=10m的刚性面之间,有两根等截面杆铰接在2号点,杆件与水平面夹角为300,在铰接处有一向下的集中力F=1000N,杆件材料的弹性模量E=210GPa,泊松比为0.3,截面积A=0.001m2,如图6.2所示,试利用二维杆单元LINK1确定集中力位置处的位移。

杆件变形很小,可以按小变形理论计算。

由030tan 2ab ,可得b=2.89m 。

结果:1、变形图:2、点位移矢量值列表:PRINT U NODAL SOLUTION PER NODELOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEMNODE UX UY UZ USUM 1 0.0000 0.0000 0.0000 0.0000 2 0.0000 -0.54909E-04 0.0000 0.54909E-04 3 0.0000 0.0000 0.0000 0.0000MAXIMUM ABSOLUTE VALUESNODE 0 2 0 2 VALUE 0.0000 -0.54909E-04 0.0000 0.54909E-042.应用ANSYS程序求解平面应力问题6.3.1 直角支架结构问题直角支架结构问题是一个简单的单一载荷步的直角支架结构静力分析例题,图6.57中左侧的孔是被沿圆周完全固定的,一个成锥形的压力施加在下面右端孔的下半圆处大小为由50psi到150psi。

已知如图6.57所示的支架两端都是直径为2in的半圆,支架厚度th=0.5in,小孔半径为0.4in,支架拐角是半径为0.4in的小圆弧,支架是由A36型的钢制成,杨氏模量正=30×106psi,泊松比为0.27。

结果:1、划分模型网络变形图:2、应力场分布图:3、节点应力值列表:PRINT F REACTION SOLUTIONS PER NODELOAD STEP= 1 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING X,Y,Z SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEMNODE FX FY11 -5.1603 42.88012 -44.384 -4.898413 -0.52634E-01 -20.11414 41.776 -2.139787 -12.686 54.03888 -31.972 44.00189 -86.977 64.61890 -48.022 22.10591 -81.430 23.23792 -48.552 7.093193 -77.558 3.954394 -61.654 -6.771995 -37.781 -11.48896 -59.845 -39.19897 -20.673 -14.38298 -25.315 -33.50099 -8.4494 -18.803100 -7.8577 -35.848101 7.3819 -33.524102 13.547 -26.925103 28.464 -37.323104 25.103 -18.709105 56.007 -22.991106 27.731 -9.7810107 65.734 -12.190108 78.651 2.9088109 53.344 8.6766110 108.10 35.228111 46.492 28.057112 59.848 49.984113 22.683 34.687114 23.508 61.710TOTAL VALUESVALUE 0.13412E-03 134.593.应用ANSYS程序求解平面应变问题6.4.1 厚壁圆筒承受压力问题某厚壁圆筒承受压力载荷如图6.78所示,压力P=10Mpa,圆筒内径R1= 1400mm,圆筒外径R。

=1500mm,材料的弹性模量E=2.1×105MPa,泊松比μ=0.3。

要求:(1)建立有限元模型;(2)施加约束和载荷并求解;(3)对计算结果进行分析处理。

1、有限元网格图:2、位移数值云台图3、第一主应力云图:4、节点位移表:PRINT U NODAL SOLUTION PER NODELOAD STEP= 1 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEMNODE UX UY UZ USUM1 0.51877 0.74940 0.0000 0.911442 -0.74785 1.4140 0.0000 1.59963 -1.4122 0.14723 0.0000 1.41994 -0.14547 -0.51750 0.0000 0.537555 -0.16557 -0.53983 0.0000 0.564656 0.54107 0.72931 0.0000 0.908107 -1.4345 0.16732 0.0000 1.44438 -0.72778 1.4363 0.0000 1.61019 0.49699 0.81193 0.0000 0.9519610 0.47118 0.87289 0.0000 0.9919411 0.45115 0.91376 0.0000 1.019112 0.42931 0.95367 0.0000 1.045813 0.40570 0.99256 0.0000 1.072314 0.38035 1.0304 0.0000 1.098315 0.35333 1.0670 0.0000 1.123916 0.32469 1.1023 0.0000 1.149217 0.29448 1.1364 0.0000 1.173918 0.26277 1.1690 0.0000 1.198219 0.22963 1.2002 0.0000 1.222020 0.19512 1.2299 0.0000 1.245221 0.15931 1.2579 0.0000 1.268022 0.12226 1.2844 0.0000 1.290223 0.84077E-01 1.3091 0.0000 1.311824 0.44807E-01 1.3321 0.0000 1.332925 0.45548E-02 1.3533 0.0000 1.353326 -0.36622E-01 1.3727 0.0000 1.373227 -0.78615E-01 1.3902 0.0000 1.392428 -0.12135 1.4058 0.0000 1.411029 -0.16476 1.4195 0.0000 1.429030 -0.20872 1.4312 0.0000 1.446331 -0.25317 1.4409 0.0000 1.463032 -0.29800 1.4486 0.0000 1.479033 -0.34314 1.4543 0.0000 1.494334 -0.38847 1.4580 0.0000 1.508935 -0.43395 1.4596 0.0000 1.522836 -0.47943 1.4592 0.0000 1.536037 -0.52480 1.4568 0.0000 1.54845、节点平均应力分量表:PowerGraphics Is Currently EnabledLOAD STEP= 1 SUBSTEP= 1TIME= 1.0000 LOAD CASE= 0NODAL RESULTS ARE FOR MATERIAL 1NODE S1 S2 S3 SINT SEQV69 135.34 0.0000 -0.33008 135.67 135.5071 135.63 0.0000 -0.22180 135.85 135.7473 135.26 0.0000 -0.84999E-01 135.35 135.3176 135.28 0.0000 -0.94517E-01 135.38 135.3378 135.18 0.0000 -0.43871E-02 135.19 135.1980 135.19 0.0000 -0.10570E-01 135.20 135.1982 135.19 0.0000 -0.13406E-01 135.20 135.2084 135.20 0.0000 -0.22353E-01 135.22 135.2186 135.21 0.0000 -0.33474E-01 135.24 135.2288 135.22 0.0000 -0.47923E-01 135.27 135.2490 135.23 0.0000 -0.65833E-01 135.30 135.2792 135.25 0.0000 -0.86830E-01 135.34 135.3094 135.27 0.0000 -0.11087 135.39 135.3396 135.30 0.0000 -0.13812 135.44 135.3798 135.33 0.0000 -0.16860 135.50 135.41100 135.35 0.0000 -0.20458 135.55 135.45 102 135.40 0.0000 -0.23335 135.64 135.52 104 135.36 0.0000 -0.29281 135.65 135.51 106 135.71 0.0000 -0.41142 136.12 135.91 109 135.29 0.0000 -0.10011 135.39 135.34 111 135.18 0.0000 -0.54980E-02 135.19 135.19 113 135.18 0.0000 -0.51519E-02 135.19 135.19 115 135.19 0.0000 -0.26499E-01 135.22 135.20 117 135.20 0.21540E-01 0.0000 135.20 135.19 119 135.24 0.0000 -0.37453E-01 135.28 135.26 121 135.44 0.0000 -0.24800 135.69 135.57 123 135.28 0.0000 -0.12941 135.41 135.35 125 135.28 0.0000 -0.11369 135.39 135.34 127 135.25 0.0000 -0.85852E-01 135.34 135.29 129 135.23 0.0000 -0.66133E-01 135.30 135.27 131 135.22 0.0000 -0.47890E-01 135.27 135.24 133 135.21 0.0000 -0.33495E-01 135.24 135.22 135 135.20 0.0000 -0.21381E-01 135.22 135.21 137 135.19 0.0000 -0.16612E-01 135.21 135.20 139 135.19 0.0000 -0.36864E-05 135.19 135.19 142 145.31 0.0000 -10.144 155.46 150.64 144 145.23 0.0000 -10.067 155.30 150.52 ***** POST1 NODAL STRESS LISTING *****PowerGraphics Is Currently Enabled。

相关文档
最新文档