常微分方程总复习2012

合集下载

常微分方程主要内容复习.ppt

常微分方程主要内容复习.ppt

1.先求
dy dx
P(x)y
0
(2)
的通解:
分离变量后得
dy P(x)dx y
任意常数写成ln C的形式,得
ln y P(x)dx ln C,
化简后,方程(2)的通解为
y Ce , P(x)dx (3)
其中C为任意常数.
2.利用“常数变易法”求线性非齐次方程(1)的通解:
设 y C(x)e P(x)dx,
不包含任意常数的解为微分方程特解.
可分离变量的微分方程
1.定义 形如
dy f x g y (1)
dx
的方程称为可分离变量的方程.
特点 -- 等式右端可以分解成两个函数之积,
其中一个只是x的函数,另一个只是y的函数
2.解法:
分离变量得
1
g y
dy
f
x dx
g y 0
两端积分得通解:
g
是特征方程的单根或是特征方程的重根依次取0、 1或2。
❖ 当 f (x) Pm (x)ex cosx
或 f (x) Pm (x)ex sin x
时,
❖ 由欧拉公式知道,
❖ 分别是
Pm (x)ex cosx
和 Pm (x)ex的sin实x部
和虚部。Pm (x)e(i)x Pm (x)ex (cosx i sinx)
1
y
dy
f
x dx
齐次方程
如果一阶微分方程
dy dx
f
(x,
y)
可以化成
dy dx
y x
的形式,则称此方程为齐次微分方程.
这类方程的求解分三步进行:
(1)将原方程化为方程
dy dx

常微分方程复习

常微分方程复习

y '' P dP dy
特点:左边是一导数,右端只与自变量有关
八、线性微分方程的解的结构
1. 齐次方程解的线性结构
2.齐次线性方程求线性无关特解
设y1是齐次方程的一个非零特解,
令 y2 u( x) y1
y2 y1
1
e
P(
x )dx
dx,
y2 1
齐次方程通解为
刘维尔公式
y C1 y1 C2 y1
常微分方程
复习课
一、恰当方程
定义1.对称形式的一阶微分方程
P(x, y)dx Q(x, y)dy 0
如果存在一个可微函数f(x,y),使得:
df(x, y) P(x, y)dx Q(x, y)dy
称该方程为恰当方程(或全微分方程)
通解:
P(x, y) Q(x, y)
y
x
y(x) Re y *(x)
例 求方程 y y 4sin x 的通解.
解 作辅助方程 y y 4eix ,
i 是单根,
故 y* Axeix ,
代入上式 2Ai 4, A 2i,
y* 2ixeix 2x sin x (2x cos x)i,
设非齐方程特解为
y xkQm (x)ex
0 不是根 k 1 是单根,
2 是重根
2、y py qy ex[Pl (x) cos x Pn (x)sin x]
设有特解:
y(x) xkex[Rm(x)cos x Rm(x)sin x],
其中 Rm(1)( x), Rm(2)( x)是m次多项式,
m maxl,n

常微分方程复习资料

常微分方程复习资料

(16)
2
(18)
1 a2 x2
dx arc sin
x C a
(19) (20)
1 a x
2 2
dx ln( x a 2 x 2 ) C
dx x a
2 2
ln | x x 2 a 2ln | cos x | C (22) cot xdx ln | sin x | C (23) sec xdx ln | sec x tan x | C (24) csc xdx ln | csc x cot x | C 注:1、从导数基本公式可得前 15 个积分公式,(16)-(24)式后几节证。 2、以上公式把 x 换成 u 仍成立, u 是以 x 为自变量的函数。 3、复习三角函数公式:
f ( y, y)型, 例如:yy ( y) 2 0
dp dp , 代入原方程得yp p2 0 dy dy dp dy 当y 0, p 0时,约去p并分离变量得 p y dy p C1 y C1 y dx y C2 eC1x 令y p,则y p
常微分方程复习资料
一.基本概念: 含有一元未知函数一 y(x)(即待求函数)的导数或微分 的方程,称为常微分方程。 显然一个微分方程若有解,则必有无穷多解; 若 n 阶微分方程的解仲含有 n 个独立的附加条件(称为 定解条件)定出了所有任意常数的解称为特解; 微分方程连同定解条件一起,合称为一个定解问题; 当定解条件是初始条件(给出 y, y, y,, y ( n1) 在同一点 x0 处 的值)时,称为初值问题。 二.一阶微分方程 y ( x, y) 的解法
积分类型 1. f (ax b)dx 1 f (ax b)d (ax b) (a 0) a 1 2. f ( x ) x 1 dx f ( x )d ( x ) ( 0)

常微分方程期末复习提纲

常微分方程期末复习提纲

y ce p(x)dx, c为任意常数
20 常数变易法求解
dy P(x) y Q(x) dx
(1)
(将常数c变为x的待定函数 c(x), 使它为(1)的解)
令y c(x)e p(x)dx为(1)的解,则
dy dc(x) e p(x)dx c(x) p(x)e p(x)dx dx dx
代入(1)得
X x Y y ,
则方程化为
dY a1 X b1Y dX a2 X b2Y
为 (1)的情形,可化为变量分离方程求解.
解的步骤:
10
解方程组aa21xx
b1 b2
y y
c1 c2
0 ,
0
得解 yx
,
20
作变换YX
x y
,
方程化为
dY dX
a1 X a2 X
b1Y b2Y
第一章:绪论
一、常微分方程与偏微分方程
定义1: 联系自变量、未知函数及未知函数导数(或微分)的关 系式称为微分方程.
如果在一个微分方程中,自变量的个数只有一个,则这 样的微分方程称为常微分方程.
如果在一个微分方程中,自变量的个数为两个或两个以上,称 为偏微分方程.
二、微分方程的阶
定义2 :微分方程中出现的未知函数的最高阶导数或微分的 阶数称为微分方程的阶数.
方程两边同乘以 1 , 得
( y)
1 dy f (x)dx 0,
( y)
1
( f (x)) 0 ( y)
y
x
是恰当方程.
对一阶线性方程:
dy (P(x) y Q(x))dx 0, 不是恰当方程.
方程两边同乘以e P(x)dx , 得
e
P(

《常微分方程》知识点整理

《常微分方程》知识点整理

《常微分方程》知识点整理
一、定义与特点
常微分方程(ordinary differential equation)是数学中描述物理、
化学、生物等过程的重要工具,它描述物体状态及其变化的模型,可以用
来研究物体的动力、动力学、物理现象等问题。

它可以从几何角度、分析
角度以及物理角度这三个角度来看待,它是一个研究条件下物体状态和变
化的数学方程。

常微分方程有以下几个特点:
1.常微分方程是一类特殊的未知函数问题,它由一个函数及它的一阶
或多阶导数组成。

2.未知函数有可能是多元函数,也可能是单元函数,可以是实函数也
可以是复函数。

3.常微分方程的形式因微分函数种类而各异,有非线性方程、线性方程、常系数方程、变系数方程等类型。

4.常微分方程的解可以是定状态的、非定状态的、稳定的或不稳定的,它可以有解或得不到解。

5.常微分方程具有很深的理论性,可用来求解物理、化学、力学等问题,可以修正原来结论,使现象更加接近实际情况。

二、种类
1.线性常微分方程:线性微分方程是常微分方程中最简单的类型,它
的特点是多重未知函数的阶和系数形式都是定值,而不依赖于其他函数,
它的解可以直接用几何方法求解(比如可以用函数级数的展开形式求解)。

2.二次可积常微分方程:这类方程中。

常微分方程期末复习

常微分方程期末复习

1.求下列方程的通解。

1sin 4-=-x e dxdyy . 解:方程可化为1sin 4-+-=x e dxde y y令ye z =,得x z dxdzsin 4+-= 由一阶线性方程的求解公式,得[]xx x dx dx ce x x c e x x e c dx xe e z -----+-=+-=+⎰⎰=⎰)cos (sin 2)cos (sin 2)sin 4()1()1(所以原方程为:y e =xcex x -+-)cos (sin 22.求下列方程的通解。

1)(122=⎥⎦⎤⎢⎣⎡-dx dy y .解:设t p dxdysin ==,则有t y sec =, 从而c tgt t tdt c tdt tgt tx +=+=+⋅=⎰⎰2sec sec sin 1,故方程的解为221)(y c x =++, 另外1±=y 也是方程的解 .3.求方程2y x dxdy+=通过)0,0(的第三次近似解. 解:0)(0=x ϕ 20121)(x xdx x x==⎰ϕ5204220121)41()(x x dx x x x x +=+=⎰ϕ dx x x x x dx x x x x x x⎰⎰⎪⎭⎫ ⎝⎛+++=⎥⎦⎤⎢⎣⎡++=0710402523201400141)20121()(ϕ 8115216014400120121x x x x +++=4.求解下列常系数线性方程。

0=+'+''x x x解:对应的特征方程为:012=++λλ, .解得i i 23,23212211--=+-=λλ 所以方程的通解为:)23sin 23cos(2121t c t c ex t +=-5.求解下列常系数线性方程。

t e x x =-'''解:齐线性方程0=-'''x x 的特征方程为013=-λ,解得231,13,21i±-==λλ, 故齐线性方程的基本解组为:i e i ee t23sin ,23cos ,2121--,因为1=λ是特征根,所以原方程有形如t tAe t x =)(,代入原方程得,tt t t e Ate Ate Ae =-+3,所以31=A ,所以原方程的通解为2121-+=e c e c x tt te i e c i 3123sin 23cos 213++-6.试求下列线性方程组的奇点,并通过变换将奇点变为原点,进一步判断奇点的类型及稳定性:5,1--=+--=y x dtdyy x dt dx 解: ⎩⎨⎧=--=+--050!y x y x 解得⎩⎨⎧-==23y x 所以奇点为()2,3-经变换,⎩⎨⎧+=-=33y Y x X方程组化为⎪⎩⎪⎨⎧-=--=Y X dtdy Y X dt dx因为,01111≠---又01)1(11112=++=+-+λλλ 所以i i --=+-=1,121λλ,故奇点为稳定焦点,所对应的零解为渐近稳定的。

常微分方程总结

常微分方程总结

(1) 概念微分方程:一般,凡表示未知函数、未知函数的导数与自变量的之间关系的方程。

微分方程的阶:微分方程中所出现的未知函数的最高阶导数的阶数。

如: 一阶:2dyx dx= 二阶:220.4d sdt=-三阶:32243x y x y xy x ''''''+-= 四阶:()4410125sin 2yy y y y x ''''''-+-+=一般n 阶微分方程的形式:()(),,,,0n F x y y y '=。

这里的()ny 是必须出现。

(2)微分方程的解设函数()y x ϕ=在区间I 上有n 阶连续导数,如果在区间I 上,()()()(),,0n F x x x x ϕϕϕ⎡⎤'≡⎢⎥⎣⎦则()y x ϕ=称为微分方程()(),,,,0n F x y y y '=的解。

注:一个函数有n 阶连续导数→该函数的n 阶导函数也是连续的。

函数连续→函数的图像时连在一起的,中间没有断开(即没有间断点)。

导数→导函数简称导数,导数表示原函数在该点的斜率大小。

导函数连续→原函数的斜率时连续变化的,而并没有在某点发生突变。

函数连续定义:设函数()y f x =在点0x 的某一邻域内有定义,如果()()00lim x x f x f x →=则称函数()f x 在点0x 连续。

左连续:()()()000lim x x f x f x f x --→== 左极限存在且等于该点的函数值。

右连续:()()()000lim x x f x f x f x ++→== 右极限存在且等于该点的函数值。

在区间上每一个点都连续的函数,叫做函数在该区间上连续。

如果是闭区间,包括端点,是指函数在右端点左连续,在左端点右连续。

函数在0x 点连续⇔()()()()00lim lim lim x x x x x x f x f x f x f x -+→→→=== 1、()f x 在点0x 有定义 2、()0lim x x f x →极限存在3、()()00lim x x f x f x →=(3)微分方程的通解如果微分方程中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫微分注:任意常数是相互独立的:它们不能合并使得任意常数的个数减少。

常微分方程复习提要全文

常微分方程复习提要全文


dyi (x) dx
fi (x, y1(x),
, yn (x)), (i 1.2
n)
则称 y1(x), , yn (x) 为微分方程组(3.1)在区间 [a,b] 的一个解。
通解及通积分:
含有n个任意常数 c1, cn 的方程组(3.1)的解
y1 1(x, c1, cn )
yn
n (x, c1,
齐次方程组的解组线性相关性的判别法:
推论3.3 方程组(3.8)的n个解在其定义区间I上线性 无关的充要条件是它们的朗斯基行列式W(x)在I上任一点
不为零.
解组
线性相关 W ( x0 )=0 线性无关 W ( x0 ) 0
我们把一阶线性齐次方程组(3.8)的n个线性无关解 称为它的基本解组。其对应的矩阵称为基本解矩阵。
(其中F为已知的函数)
定义(P3) :微分方程中出现的未知函数的 最高阶导数的阶数(或微分的阶数)称为微分方程的 阶数.
定义(P4) :如果一个微分方程关于未知函数 及其各阶导数都是一次的,则称它为线性微分方程, 否则称之为非线性微分方程.
定义(P4): 设函数 y x在区间I上连续,且有
dy1
dx
a11( x) y1
a12 ( x) y2
dy2 dx
a21( x) y1
a22 ( x) y2
dyn dx
an1( x) y1
an2 ( x) y2
a1n ( x) yn f1( x),
a2n ( x) yn f2 ( x), (3.6)
ann ( x) yn fn ( x).
解法:两边除以yn ,得 yn dy p( x) y1n f ( x) dx
令z y1n ,则 dz (1 n) yn dy ,代入方程

(完整版)常微分方程复习资料

(完整版)常微分方程复习资料

常微分方程复习资料一、 填空题1.一阶微分方程的通解的图像是 维空间上的一族曲线. 2.方程02=+'-''y y y 的基本解组是 . 3.一个不可延展解的存在在区间一定是 区间.4.方程21d d y x y-=的常数解是 .5.方程22d d y x xy+=满足解的存在唯一性定理条件的区域是 .6.若)(x y ϕ=在),(∞+-∞上连续,则方程y x xy)(d d ϕ=的任一非零解与x 轴相交. 7.在方程0)()(=+'+''y x q y x p y 中,如果)(x p ,)(x q 在),(∞+-∞上连续,那么它的任一非零解在xoy 平面上 与x 轴相切.8.向量函数组)(,),(),(21x x x n Y Y Y Λ在其定义区间I 上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈.9.方程0d )1(1)d (22=-+-y x y x y x 所有常数解是 . 10.方程04=+''y y 的基本解组是 .11.方程1d d +=y xy满足解的存在唯一性定理条件的区域是 .12.若)(),(21x y x y ϕϕ==是二阶线性齐次微分方程的基本解组,则它们 共同零点. 二、单项选择题1.方程y x xy+=-31d d 满足初值问题解存在且唯一定理条件的区域是( ). (A )上半平面 (B )xoy 平面 (C )下半平面 (D )除y 轴外的全平面 2.)(y f 连续可微是保证方程)(d d y f xy=解存在且唯一的( )条件. (A )必要 (B )充分 (C )充分必要 (D )必要非充分 3.二阶线性非齐次微分方程的所有解( ).(A )构成一个2维线性空间(B )构成一个3维线性空间(C )不能构成一个线性空间(D )构成一个无限维线性4.方程323d d y xy=过点(0, 0)有( ).(A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解 5.n 阶线性齐次方程的所有解构成一个( )线性空间.(A )n 维 (B )1+n 维 (C )1-n 维 (D )2+n 维 6. 方程2d d +-=y x xy( )奇解. (A )有三个 (B )无 (C )有一个 (D ) 有两个7.若)(1x y ϕ=,)(2x y ϕ=是一阶线性非齐次微分方程的两个不同特解,则该方程的通解可用这两个解表示为( ).(A ))()(21x x ϕϕ- (B ))()(21x x ϕϕ+ (C ))())()((121x x x C ϕϕϕ+- (D ))()(21x x C ϕϕ+8.),(y x f y '连续是方程),(d d y x f xy=初值解唯一的( )条件. (A )必要 (B )必要非充分 (C )充分必要 (D )充分9.方程y xy=d d 的奇解是( ). (A )x y = (B )1=y (C )1-=y (D )0=y10. 方程21d d y x y -=过点)1,2(π共有( )个解.(A )一 (B )无数 (C )两 (D )三11.n 阶线性齐次微分方程基本解组中解的个数恰好是( )个. (A )n (B )n -1 (C )n +1 (D )n +2 12.一阶线性非齐次微分方程组的任两个非零解之差( ).(A )不是其对应齐次微分方程组的解 (B )是非齐次微分方程组的解 (C )是其对应齐次微分方程组的解 (D )是非齐次微分方程组的通解13.如果),(y x f ,y y x f ∂∂),(都在xoy 平面上连续,那么方程),(d d y x f xy=的任一解的存在区间( ). (A )必为),(∞+-∞ (B )必为),0(∞+ (C )必为)0,(-∞ (D )将因解而定 三、计算题求下列方程的通解或通积分:1.y y xyln d d = 2. x y x y x y +-=2)(1d d 3. 5d d xy y xy += 4.0)d (d 222=-+y y x x xy5.3)(2y y x y '+'= 6. 21d d xxy x y += 7. x y x y 2e 3d d =+ 8. 0)d (d )(3223=+++y y y x x xy x9.0e =-'+'x y y 10.0)(2='+''y y y11. x y x y x y tan d d += 12. 1d d +=x y x y13. 0d d )e (2=+-y x x y x y14.1)ln (='-'y x y15.022=+'+''x y y y 16.求方程255x y y -='-''的通解.17.求下列方程组的通解.⎪⎪⎩⎪⎪⎨⎧-=+=xty ty t x d d sin 1d d 18.求方程x y y e 21=-''的通解.19.求下列方程组的通解⎪⎪⎩⎪⎪⎨⎧+=--=y x ty y x tx43d d 2d d .五、证明题1.设)(x f 在),0[∞+上连续,且0)(lim =+∞→x f x ,求证:方程)(d d x f y xy=+的一切解)(x y ,均有0)(lim =+∞→x y x .2.在方程0)()(=+'+''y x q y x p y 中,)(),(x q x p 在),(∞+-∞上连续,求证:若)(x p 恒不为零,则该方程的任一基本解组的朗斯基行列式)(x W 是),(∞+-∞上的严格单调函数.3.设),(y x f 在整个xoy 平面上连续可微,且0),(0≡y x f .求证:方程),(d d y x f xy= 的非常数解)(x y y =,当0x x →时,有0)(y x y →,那么0x 必为∞-或∞+. 4.设)(1x y ϕ=和)(2x y ϕ=是方程0)(=+''y x q y 的任意两个解,求证:它们的朗斯基行列式C x W ≡)(,其中C 为常数.5.在方程)()(d d y y f xyϕ=中,已知)(y f ,)(x ϕ'在),(∞+-∞上连续,且0)1(=±ϕ.求证:对任意0x 和10<y ,满足初值条件00)(y x y =的解)(x y 的存在区间必为),(∞+-∞.6.在方程0)()(=+'+''y x q y x p y 中,已知)(x p ,)(x q 在),(∞+-∞上连续.求证:该方程的任一非零解在xoy 平面上不能与x 轴相切.参考答案一、填空题1.2 2.xx x e ,e 3.开 4.1±=y 5.xoy 平面 6.不能 7.不能 8.必要 9.1,1±=±=x y10.x x 2cos ,2sin 11.}0),{(2>∈=y R y x D ,(或不含x 轴的上半平面) 12.没有二、单项选择题1.D2.B3.C4.A5.A6.A7.C8.D9.D 10.B 11.A 12.C 13.D三、计算题1.解 当0≠y ,1≠y 时,分离变量取不定积分,得C x yy y+=⎰⎰d ln d 通积分为xC y e ln = 2.解 令xu y =,则xuxu x y d d d d +=,代入原方程,得 21d d u x ux-= 分离变量,取不定积分,得C xxu u ln d 1d 2+=-⎰⎰(0≠C ) 通积分为: Cx xyln arcsin = 3.解方程两端同乘以5-y ,得x y xyy +=--45d d 令 z y=-4,则xzx y y d d d d 45=--,代入上式,得x z xz=--d d 41 通解为41e 4+-=-x C z x原方程通解为 41e 44+-=--x C y x 4.解 因为xNx y M ∂∂==∂∂2,所以原方程是全微分方程. 取)0,0(),(00=y x ,原方程的通积分为C y y x xy yx=-⎰⎰20d d 2即 C y y x =-3231 5.解 原方程是克莱洛方程,通解为 32C Cx y += 6.解 当0≠y 时,分离变量得x x x y y d 1d 2+= 等式两端积分得 C x y ln )1ln(21ln 2++= 即通解为21x C y += 7.解 齐次方程的通解为xC y 3e -= 令非齐次方程的特解为 x x C y 3e)(-=代入原方程,确定出 C x C x+=5e 51)( 原方程的通解为xC y 3e-=+x2e51 8.解 由于xNxy y M ∂∂==∂∂2,所以原方程是全微分方程. 取)0,0(),(00=y x ,原方程的通积分为103023d d )(C y y x xy x yx =++⎰⎰即 C y y x x =++42242 9.解 令t y =',则原方程的参数形式为⎩⎨⎧='+=ty t x te由基本关系式t t x y y td )e 1(d d +='= 积分有C t t y t +-+=)1(e 212得原方程参数形式通解⎪⎩⎪⎨⎧+-+=+=Ct t y t x tt)1(e 21e 2 10.解 原方程为恰当导数方程,可改写为 0)(=''y y 即1C y y =' 分离变量得x C y y d d 1= 积分得通积分21221C x C y +=11.解 令u x y =,则xux u x y d d d d +=,代入原方程,得 u u xuxu tan d d +=+,u x u x tan d d = 当0tan ≠u 时,分离变量,再积分,得C xxu u ln d tan d +=⎰⎰C x u ln ln sin ln +=即通积分为: Cx xy =sin12.解 齐次方程的通解为Cx y = 令非齐次方程的特解为 x x C y )(=代入原方程,确定出 C x x C +=ln )( 原方程的通解为Cx y =+x x ln 13.解 积分因子为 21)(x x =μ 原方程的通积分为1012d d )(e C y x xy y x x =+-⎰⎰即 1e ,e C C C xyx+==+) 14.解 令p y =',则原方程的参数形式为⎪⎩⎪⎨⎧='+=p y p p x ln 1由基本关系式y xy'=d d ,有 p p pp x y y )d 11(d d 2+-⋅='=p p)d 11(-=积分得 C p p y +-=ln得原方程参数形式通解为⎪⎩⎪⎨⎧+-=+=C p p y p p x ln ln 1 15.解 原方程可化为0)(2='+'x y y于是 12d d C x xyy=+ 积分得通积分为23123121C x x C y +-= (6分) 16.解 对应齐次方程的特征方程为052=-λλ,特征根为01=λ,52=λ,齐次方程的通解为 xC C y 521e += 因为0=α是特征根。

常微分方程复习提纲

常微分方程复习提纲

2012-2013第二学期常微分方程期末复习提纲第一章绪论掌握微分方程的概念, 能正确判断微分方程的阶数以及是否线性方程.第二章一阶微分方程的解法1 掌握变量分离方程的解法.2 掌握恰当方程的判定以及求解方法. 对于非恰当方程, 重点掌握如何求只与x或y有关的积分因子, 并由此求解方程.3 了解一些常见的能够化为变量分离方程的类型以及所用的变换. 例如齐次方程ddy ygx x⎛⎫= ⎪⎝⎭, 111222dda xb y cyx a x b y c++=++, ()ddyf ax by cx=++等类型.重点掌握形如111222d da xb y cyx a x b y c++=++的方程的求解方法.第三章一阶微分方程的解的存在定理1 简要理解解的存在性定理.2 了解利普希兹(Lipschitz)条件与偏导连续的关系.第四章高阶微分方程1 熟悉齐次与非齐次线性方程的解的结构以及性质定理2 掌握Wronsky行列式与线性相关或无关的关系.3 掌握基本解组相关概念.4 重点掌握常系数高阶非齐次线性微分方程的求法.特征根法和比较系数法.5 了解常见的可以降阶的高阶方程的类型, 重点掌握不显含未知函数的高阶方程的降阶求解法.第五章方程组1 熟悉基解矩阵的概念.2 掌握Atexp与基解矩阵的关系.3 重点掌握利用特征值求基解矩阵以及标准基解矩阵Atexp的方法.(只考虑有n个特征值的情形即可)。

常微分方程知识点

常微分方程知识点

第一章 绪论什么是线性微分方程:形如)()()()(y 1)1(1)(x f y x a y x a y x a n n n n =+'+++--Λ的微分方程,即y 及y 的各阶导数都是一次有理整式,即不含y 及y 的各阶导数的乘积的微分方程叫:线性微分方程。

第二章 一阶微分方程的初等解法§ 2.1 变量分离方程1、形式:)()(y x f dxdy ϕ= 做题步骤:① 0)(≠y ϕ 可将方程改写为:dx x f y dy )()(=ϕ,这样对两边积分:⎰⎰+=c dx x f y dy )()(ϕ,得出方程的通解,但c 要保证积分式有意义 ② 0)(=y ϕ时,求出0y y = 也是方程的解2、y x P dxdy )(=得dx x P ce y ⎰=)( (2.4) 而0=y 也是方程的解,而若(2.4)允许c=0,则y=0也在(2.4)中,故(2.4)是原方程的通解,其中c=0。

3、齐次方程:)(xy g dx dy = (2.5) 做变量变换x y u =,即ux y =,则u dx du x dx dy +=,整理后为:x u u g dx du -=)(,即为变量分离方程。

同时要注意:将一个方程转化为齐次方程求解时,两个方程是否同解(c 的范围是否相同)4、222111c y b x a c y b x a dx dy ++++= (2.13) 做题步骤:①k c c b b a a ===212121(常数),通解:c kx y += (c 为任意常数) ② 212121c c k b b a a ≠==,令y b x a u 22+=,有212222c u c ku b a dx dy b a dx du ++++=+=,为变量分离方程 ③ 2121b b a a ≠,如果没有常数21c c 、,则很容易变成齐次方程做,(体会:)让分子分母都为零,则为两条曲线⎩⎨⎧=++=++00222111c y b x a c y b x a (2.14),两条曲线相交的交点为),(βα,而没有那两个常数时方程为都过原点的形式,因此过原点的这两直线可视为原坐标系平移后原直线在新坐标系下的坐标,令⎩⎨⎧-=-=βαy Y x X ,(2.14) 变为⎩⎨⎧=+=+002211Y b X a Y b X a ,从而 (2.13) 变为)(2211X Y g Y b X a Y b X a dX dY =++=,§ 2.2 线性微分方程与常数变易法1、)()(x Q y x P dxdy += (2.28) 做题步骤:① 考虑y x P dxdy )(=,求出它的通解为:⎰=dx x P ce y )(;② 常数变易变为:⎰=dx x P e x c y )()((2.29) ③ 求微分得:⎰+⎰=dx x P dx x P e x P x c e dxx dc dx dy )()()()()( (2.30) ,④ 将(2.29)和(2.30)代入(2.28),得到: ⎰=-dx x P e x Q dx x dc )()()(,⑤ 积分后得到⎰'+⎰=-c dx e x Q x c dx x P )()()(,于是得到方程(2.28)的通解为: ))(()()(⎰'+⎰⎰=-c dx e x Q e y dx x P dx x P2、伯努利微分方程n y x Q y x P dxdy )()(+= 做题步骤:① 两边同除以n y ,得到)()(1x Q x P y dx dy yn n +=--,② 设n y z -=1,得dx dy y n dx dz n --=)1( ③ 于是原方程变为:)()1()()1(x Q n z x P n dxdz -+-=,即为线性微分方程 § 2.3 恰当微分方程与积分因子1、恰当方程形式:0),(),(=+dy y x N dx y x M (M 、N 在已知区域上连续且具有一阶连续偏导数)推理过程:① 若已知此微分方程是恰当方程能推出什么?先设原函数为),(y x u yx u y N x y u y M ∂∂∂=∂∂∂∂∂=∂∂22、 由条件得:yx u x y u ∂∂∂=∂∂∂22即x N y M ∂∂=∂∂ ② 那么反过来若由它俩相等能否推出方程是恰当方程? 从x u M ∂∂=出发,两边同时求积分:⎰⎰∂∂==x u Mdx u +c ,但c 若是常数那么?则应为:⎰⎰+=∂∂=)(y Mdx dx x u u ϕ ③ 对u 关于y 求偏导:),()(y x N y Mdx y y u ='+∂∂=∂∂⎰ϕ,如何证明等式左边等于右边(方程有意义),即右边也与x 无关即只与y 有关? 对右边关于x 求偏导0=∂∂-∂∂=∂∂∂∂-∂∂⎰y M x N dx y M x x N (因为证充分,则y M x N ∂∂=∂∂为已知)④ 两端积分:dy Mdx y N y ⎰⎰∂∂-=)()(ϕ,于是⎰⎰⎰∂∂-+=)(dy y M N Mdx u 做题步骤:① 先设u(x,y),② 证明xN y M ∂∂=∂∂,③ 从M 出发对方程两端同时求积分得)(),(),(y dx y x M y x u ϕ+=⎰,④ 对u 求偏导:),()(y x N y Mdx y y u ='+∂∂=∂∂⎰ϕ,⑤ 两边积分得dy dx y M N y ⎰⎰∂∂-=)()(ϕ,⑥ 得⎰⎰⎰∂∂-+=dy dx y M N Mdx u )(。

常微分方程知识点总结

常微分方程知识点总结

常微分方程知识点总结1. 常微分方程的定义:常微分方程是指包含未知函数及其导数的方程。

一般形式为:dy/dx=f(x,y)。

其中,y为未知函数,x为自变量,f为已知函数。

2.常微分方程的分类:常微分方程可分为一阶常微分方程和高阶常微分方程。

一阶常微分方程包含未知函数的一阶导数,高阶常微分方程则包含未知函数的高阶导数。

3.一阶常微分方程的解法:一阶常微分方程的解法有几种常见的方法。

一种是分离变量法,即将方程两边进行变量分离,然后进行积分。

另一种是齐次方程法,将方程进行变量替换后化为齐次方程,然后进行求解。

还有一种是线性方程法,将方程化为线性方程,然后进行求解。

4.高阶常微分方程的解法:对于高阶常微分方程,常用的方法是特征根法。

通过求解其特征方程得到特征根,然后根据特征根的个数和重数,确定齐次线性微分方程的通解形式。

再根据待定系数法确定非齐次线性微分方程的一个特解,进而得到非齐次线性微分方程的通解。

5.常微分方程的初值问题:常微分方程的初值问题指的是给定一个初始条件,求解满足该条件的函数。

在求解过程中,需要将初始条件代入方程,得到特定的常数,从而确定唯一的解。

6.常微分方程的数值解法:对于一些难以求解的常微分方程,可以采用数值解法进行求解。

常见的数值解法包括欧拉法、龙格-库塔法、亚当斯法等。

这些方法通过将微分方程转化为差分方程,然后进行迭代计算,逼近微分方程的解。

7.常微分方程的稳定性分析:稳定性分析是研究常微分方程解的长期行为。

可以通过线性化理论、相图等方法进行稳定性分析。

线性化理论通过线性化方程,判断非线性常微分方程解的稳定性。

相图是一种可视化的方法,通过绘制解的轨迹图,观察解的长期行为。

8.常微分方程的应用:常微分方程在各个领域都有广泛的应用。

在物理学中,常微分方程可以描述运动学问题、电路问题等。

在工程学中,可以应用于控制系统、电力系统等。

在生物学中,可以用于建立生物模型、研究生物过程等。

总结起来,常微分方程是数学中的一门重要学科,研究的是包含未知函数及其导数的方程。

常微分方程-总复习

常微分方程-总复习

dy a1 x b1 y c1 dx a2 x b2 y c2
dx
x
2.3 恰当方程和积分因子 2.3.1 恰当方程 定义、判别方法、求解方法 2.3.2 积分因子 定义、特殊类型方程的积分因子的求法 2.4 一阶隐方程和参数表示
第三章 一阶微分方程解的存在定理
解的存在唯一性定理的内容及证明过程。
近似计算和误差估计;
解对初值的可微性
第四章 高阶微分方程
4.1 线性微分方程的一般理论 4.1.1 齐线性方程解的性质与结构 定理2-定理6 4.1.2 非齐线性方程与常数变易法 定理7 常数变易法 4.2 常系数线性方程的解法 4.2.2 复值函数与复值解 复值函数的运算性质、定理8、定理9
4.2.2 常系数齐线性方程和欧拉方程 欧拉待定指数函数法、根据特征根的性质确定 方程的基本解组、欧拉方程的求解 4.2.3 非齐线性方程-比较系数法
第五章 线性微分方程组
5.1 解的存在唯一性定理 5.1.1 记号和定义 将n阶线性微分方程的初值问题化为等价的微分 方程组的初值问题 5.1.2 存在唯一性定理 5.2 线性微分方程组的一般理论 5.2.1 齐线性微分方程组
定理2-定理6 定理1*定理2* 5.2.2 非齐线性微分方程组 定理7 定理8 常数变易公式
常微分方程
总复习
第一章 绪论
基本概念 常微分方程、偏微分方程、微分方程的阶 线性和非线性微分方程 解:隐式解、通解、特解 积分曲线
第二章 一阶微分方程
2.1 变量分离方程和变量变换 2.1.1 变量分离方程 2.1.2 可化为变量分离方程的类型 y 1) dy g
2) 2.2 线性方程与常数变易法 一阶齐线性微分方程、一阶非齐线性微分方程、 伯努利方程

常微分方程总复习

常微分方程总复习

常微分方程复习总结初等积分法一、主要概念常微分方程:未知函数是一个变元的函数,由这样的函数及其导数(或微分)构成的等式。

方程的阶:在微分方程中,未知函数最高阶导数的阶数,称为方程的阶。

微分方程的解:一个函数代入微分方程中去,使得它成为关于自变量的恒等式,称此函数为微分方程的解。

通解:n 阶方程,其解中含有n 个(独立的)任意常数,此解称为方程的通解。

由隐式表出的通解称为通积分。

特解:给通解中的任意常数以定值,所得到的解称为特解,由隐式给出的特解称为特积分。

初值问题:求微分方程满足初值条件的解的问题。

变量可分离方程: 形如 )()(d d y g x f xy=或 y y N x M x y N x M d )()(d )()(2211= 的方程称为变量可分离方程。

齐次微分方程:形如)(d d xyx y ϕ=的方程,称为齐次微分方程。

线性微分方程:未知函数和它的导数都是一次的微分方程。

一阶线性微分方程:一阶线性微分方程的形式是 )()(d d x f y x p x y =+ 如果0)(≡x f ,即0)(d d =+y x p xy称为一阶线性齐次方程。

如果)(x f 不恒为零,则称)()(d d x f y x p x y=+为一阶线性非齐次方程。

伯努利(Bernoulli )方程:形如 n y x f y x p xy)()(d d =+ (1,0≠n ) 的方程,称为伯努利方程。

全微分方程:如果微分形式的一阶方程0d ),(d ),(=+y y x N x y x M (1.1)的左端恰好是一个二元函数),(y x U 的全微分,即y y x N x y x M y x U d ),(d ),(),(d += (1.2)则称方程(1.1)是全微分方程或恰当方程,而函数),(y x U 称为微分式(1.2)的原函数。

积分因子:假如存在这样的连续可微函数0),(≠y x μ,使方程0d ),(),(d ),(),(=+y y x N y x x y x M y x μμ成为全微分方程,我们就把),(y x μ称为方程(1.1)的一个积分因子。

常微分方程常考知识点总结

常微分方程常考知识点总结

常微分方程常考知识点总结一、基本概念。

1. 常微分方程的定义。

- 含有一个自变量和它的未知函数以及未知函数的导数(或微分)的等式称为常微分方程。

例如:y' + 2y = 0,这里y = y(x)是未知函数,x是自变量,y'是y对x的一阶导数。

2. 阶数。

- 方程中未知函数导数的最高阶数称为方程的阶。

如y''+3y' - 2y = x是二阶常微分方程,因为方程中未知函数y的最高阶导数是二阶导数y''。

3. 解、通解、特解。

- 解:如果函数y = φ(x)代入常微分方程后,使方程成为恒等式,那么y=φ(x)就称为该常微分方程的解。

- 通解:如果常微分方程的解中含有独立的任意常数,且任意常数的个数与方程的阶数相同,这样的解称为通解。

例如,对于一阶常微分方程y'=y,其通解为y = Ce^x(C为任意常数)。

- 特解:在通解中给任意常数以确定的值而得到的解称为特解。

比如在y = Ce^x中,当C = 1时,y = e^x就是一个特解。

二、一阶常微分方程。

1. 可分离变量方程。

- 形式为g(y)dy = f(x)dx的方程称为可分离变量方程。

- 求解方法:将方程两边同时积分,即∫ g(y)dy=∫ f(x)dx + C,得到方程的通解。

例如,对于方程y'=(y)/(x),可化为(dy)/(y)=(dx)/(x),积分得lny=lnx+C,即y = Cx (C≠0)。

2. 齐次方程。

- 形式为y'=φ((y)/(x))的方程称为齐次方程。

- 求解方法:令u = (y)/(x),则y = ux,y'=u + xu',原方程化为u+xu'=φ(u),这是一个可分离变量方程,按照可分离变量方程的方法求解。

例如,对于方程y'=(y)/(x)+tan(y)/(x),令u=(y)/(x),方程化为u + xu'=u+tan u,即xu'=tan u,然后分离变量求解。

常微分方程主要内容复习PPT文档共21页

常微分方程主要内容复习PPT文档共21页
常微分方程主要内容复习
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。

Hale Waihona Puke 30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
21

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、需要掌握的初等解法
1.变量分离的微分方程
dy f ( x) g ( y ) dx
dy f ( x)dx ( g ( y ) 0) g ( y)
g ( y ) 0 的常数解
2.齐次方程
+
dy g ( y) f ( x)dx C
dy y f( ) dx x dy
若存在某二元函数 u ( x, y ) ,使得上式左端恰 为其全微分形式
du( x , y ) P ( x , y )dx Q( x , y )dy
二元函数 u ( x, y ) 称为微分式的原函数。 6.全微分方程的判别法则:
P Q 全微分方程 y x
(充分必要条件)
7.积分因子:
.
当b1 0时, a1与b中必至少有一个为零.
dy ax c f( ) 若 b 0, 可分离变量的微分方程 dx a1 x c1
dy 1 dz 若 b 0, a1 0, 令 z ax by, ( a ), dx b dx 1 dz zc ( a) f ( ) 可分离变量的微分方程 b dx c1 . a1 b1 ab1 a1b 0, 当b1 0时, 令 , a b
( x, y ) 0连续可微函数,使方程
( x , y ) P ( x , y )dx ( x , y )Q( x , y )dy 0成为全微
分方程.
8. 存在一条特殊的积分曲线,它不属于方程的 积分曲线族。但是,该积分曲线上的每一点处, 都有积分曲线族中的一条曲线和它在此点相切。 在几何学上,该特殊曲线称为包络,微分方程 里称为奇解。
7.积分因子法:
求积分因子的公式法:
a . 当只与x有关时;
f ( x ) dx ( x) e .
1 P Q f ( x) ( ) Q y x
1 Q P ) b. 当只与y有关时; g ( y) ( P x y
g ( y ) dy ( y) e .
dy P ( x ) y Q( x ) y n dx
( n 0,1)
解法: 经过变量代换化为线性微分方程. dz 1 n 令z y , 则 (1 n) P ( x ) z (1 n)Q( x ), dx
1 n z y 求出通解后,将 代入即得。
6.微分形式的一阶方程
xdy ydx y d 2 x x
xdy ydx d ln xy xy
xdx ydy 1 2 2 d ln( x y ) 2 2 x y 2
xdy ydx 1 x y d ln 2 2 x y 2 x y
6.常系数线性微分方程:微分方程中的每一个微分 方程都是常系数线性微分方程叫做常系数线性微 分方程.
第二章 一阶微分方程的初等解法
一、基本概念
1. 变量分离方程:对于一个一阶微分方程,如果 是变量分离方程,那么它的右端函数是两个因式 的乘积,一个仅含x,另一个仅含y。 dy f ( x) ( y ) dx
P ( x , y )dx Q( x , y )dy 0
利用公式法求解的一般步骤: P Q . 验证是否全微分方程: y x u u 利用全微分公式: P, Q. x y 积分第一式:u ( x, y)

P( x, y)dx ( y)
将该曲线方程表示成另一种等价的参数方程形式
x (t ), (t为参数) p (t ).
dy (t ) (t )dt
dy p dy pdx dx
y (t ) (t )dt C , C为任意常数.
原方程的参数形式的通解为
x (t ), (C为任意常数) (t )dt C , y ( t ) dy 4). 形如 F ( y, )=0的方程的解法. dx dy 令 p ,则有 F ( y, p) 0 dx 可将该曲线表示成另一种适当的参数形式
y (t ), (t为参数) p (t ). dy (t ) p dx dt dx (t )
(t ) x dt C (t )
方程的参数形式的通解为
(t ) dt C , x (t ) y (t ),
总复习
北京理工大学
第一章 绪论
一、基本概念
1. 微分方程:含有未知函数的导数或微分的方程.
常微分方程:自变量的个数只有一个;
偏微分方程:自变量的个数为两个或以上。 2. 微分方程的阶: 微分方程中出现的未知函数 的最高阶导数的阶数.
3. 线性微分方程
dny d n 1 y dy a1 ( x) n 1 an1 ( x) an ( x) y f ( x) n dx dx dx
dy 2). 形如 x f ( y, )的方程的解法,这里假设 dx dy 函数 f ( y, )有连续的偏导数。 dx
dy dx 1 令 p ,则有 dy p dx
3). 形如
1 f f dp p y p dy
dy F ( x, )=0的方程的解法. dx
dy 令 p ,则有 F ( x, p) 0 dx
将h,k就取为这一组解,于是原方程就化为下 列关于X,Y的齐次方程
dY aX bY X x h, f( ) 得通解代回 dX a1 X b1Y Y y k, (2) ab1 a1b 0, 未必有解, 上述方法不能用
dy ax by c f( ) dx a1 x b1 y c1
y Y k, dx dX , dy dY
dY aX bY ah bk c f( ) dX a1 X b1Y a1h b1k c1
ah bk c 0, a1h b1k c1 0,
(1)
a b a1 b1
0, 有唯一一组解.
第三章 一阶微分方程的解的存在 定理
一、基本概念
1.存在唯一性定理
定理1 (存在唯一性定理)如果函数 f ( x, y ) 在矩形域
R : x x0 a, y y0 b 上满足如下条件:
① 在R上连续; ② 在R上关于变量y满足利普希茨(Lipschitz)条件, 即存在常数 L 0 ,使对R上任何一对点 ( x, y1 ) 和 ( x, y2 )
常数变易法:把线性齐次方程通解中的常数变易为待定函数 . P ( x ) dx
作变换,设非齐次方程的解为 y C ( x)e
将其代入非齐次方程得到关于待定函数的一阶微 分方程,积分后得到待定函数的形式:
P ( x ) dx C ( x) Q( x)e dx C
5. 伯努力方程的解法
4.微分方程的解:代入微分方程能使方程成为恒等 式的函数. 5.微分方程的解的分类: (1)通解: n阶微分方程的解中含有n个独立的任意 常数,即 y ( x, c1 , c2 ,, cn ). (2)特解: 确定了通解中任意常数以后的解. 初值问题: 求微分方程满足初始条件的解的问题. 把满足初值条件的解称为微分方程的特解。
注: (1)利普希茨条件能够用一个较强的,但 却易于验证的条件来代替。
f y( x, y ) L
(2)定理中的两个条件是保证初值问题的 解存在唯一的充分条件,而非必要条件。 故当定理条件不满足时,不能得出解不存 在唯一的结论。
二、需要掌握的计算方法
1. 近似计算和误差估计
Ln h n1 y n ( x) ( x) M (n 1)!
dy y f ( ) 的微分方程. 2.齐次方程:形如 dx x
3.一阶线性微分方程:
dy P ( x ) y Q( x ) dx
当Q( x ) 0, 称为一阶齐次线性微分方程.
当Q( x ) 0, 称为一阶非齐次线性微分方程.
dy dx 2 2 例如 y x , x sin t t , dx dt
一阶非齐次线性方程;
dy n P ( x ) y Q ( x ) y 4. 伯努利方程: dx
( n 0,1)
当n 0,1时, 方程为线性微分方程. 当n 0,1时, 方程为非线性微分方程.
5.全微分方程: 对于微分形式的一阶方程
P ( x , y )dx Q( x , y )dy 0
y( n) p1 ( x) y(n 1) ( x) pn 1 ( x) y pn ( x) y f ( x) 在 [a, b] 上每一点和初始条件 y( x0 ) y0 ( n1) ( n1) y ( x0 ) y0 ,, y ( x0 ) y0 存在唯一解.
满足不等式:
f ( x, y1 ) f ( x, y2 ) L y1 y2
(1.3)
dy f ( x, y ) 在区间 x x0 h 上存在唯一的解 则方程 dx
y ( x) 连续且满足初值条件 ( x0 ) y0 ,其中
h min(a, b ), M max f ( x, y ) . ( x , y )R M
n-阶线性(齐次)微分方程:
y
( n)
p1 ( x) y
( n 1)
( x) pn 1 ( x) y pn ( x) y 0
2. n-阶线性微分方程解的存在唯一性定理 : 定理1 若 pk ( x) (k 1,2,, n) 以及 f ( x) 在 [a, b]
上连续;则对线性微分方程
观察法:
凭观察凑微分得到 ( x , y )
8.一般隐式微分方程 dy 1). 形如 y f ( x, )的方程的解法,这里假设 dx dy 函数f ( x, )有连续的偏导数。 dx dy f f dp 令 p ,则有 dy f f dp p dx dx x p dx x p dx
相关文档
最新文档