初三数学模拟考试试卷二
初三数学模拟试卷卷二答案
一、选择题(每题3分,共30分)1. 若a > 0,b < 0,则以下选项中正确的是()A. a > bB. a < bC. a ≥ bD. a ≤ b答案:A解析:由题意知a > 0,b < 0,根据有理数大小比较的法则,可得a > b。
2. 若x^2 - 5x + 6 = 0,则x的值是()A. 2B. 3C. 2或3D. 1或4答案:C解析:由题意知x^2 - 5x + 6 = 0,可分解因式得(x - 2)(x - 3) = 0,解得x = 2或x = 3。
3. 已知函数f(x) = 2x - 1,若f(2) = 3,则x的值是()A. 2B. 1C. 3D. 0答案:B解析:由题意知f(2) = 22 - 1 = 3,所以x = 2。
4. 若sin(α + β) = 1/2,sinα = 3/5,cosβ = 4/5,则cosα的值是()A. 3/5B. 4/5C. 1/2D. -1/2答案:D解析:由题意知sin(α + β) = sinαcosβ + cosαsinβ = 1/2,代入sinα = 3/5,cosβ = 4/5,得3/5 4/5 + cosα 1/2 = 1/2,解得cosα = -1/2。
5. 在等腰三角形ABC中,AB = AC,角A的度数是()A. 30°B. 45°C. 60°D. 90°答案:C解析:由题意知AB = AC,所以三角形ABC是等腰三角形,根据等腰三角形的性质,底角相等,所以角A的度数是60°。
6. 若|a| = 3,|b| = 4,则|a + b|的值是()A. 7B. 5C. 1D. 0答案:A解析:由题意知|a| = 3,|b| = 4,根据绝对值的性质,可得 a = ±3,b = ±4,所以|a + b| = |3 + 4| = 7。
初三模拟二数学试卷答案
一、选择题(每题5分,共50分)1. 若m+n=2,m^2+n^2=5,则m-n的值为()A. 1B. -1C. 3D. -3答案:B解析:根据平方差公式,(m+n)^2 = m^2 + 2mn + n^2,代入m+n=2和m^2+n^2=5,得4 = 5 + 2mn,解得mn=-0.5。
再根据完全平方公式,(m-n)^2 = m^2 - 2mn +n^2,代入mn=-0.5,得(m-n)^2 = 5 + 1 = 6,所以m-n=±√6。
由于m+n=2,所以m-n不能为正数,故m-n=-√6,即m-n=-1。
2. 若a、b、c是等差数列的前三项,且a+b+c=12,则b的值为()A. 4B. 6C. 8D. 10答案:B解析:等差数列的前三项之和等于中间项的三倍,即a+b+c=3b,代入a+b+c=12,得3b=12,解得b=4。
3. 若一个等比数列的公比为q,且q≠1,若前三项分别为a、ar、ar^2,则该数列的第四项为()A. ar^3B. ar^4C. ar^5D. ar^6答案:B解析:等比数列的通项公式为an = a1 q^(n-1),所以第四项为ar^3 q = ar^4。
4. 在直角坐标系中,点A(2,3),点B(-1,-4),则线段AB的中点坐标为()A. (1,1)B. (1,-1)C. (3,1)D. (3,-1)答案:A解析:线段AB的中点坐标为((x1+x2)/2, (y1+y2)/2),代入点A(2,3)和点B(-1,-4),得中点坐标为((2-1)/2, (3-4)/2),即(1,1)。
5. 若函数f(x) = ax^2 + bx + c的图象开口向上,且a>0,则下列说法正确的是()A. b>0B. b<0C. c>0D. c<0答案:C解析:二次函数的开口方向由二次项系数a决定,a>0时开口向上。
对于开口向上的二次函数,顶点坐标为(-b/2a, c-b^2/4a),因为a>0,所以顶点的y坐标c-b^2/4a>0,即c>0。
初三第二次模拟数学试卷
一、选择题(每题5分,共50分)1. 若a、b是方程x² - 3x + 2 = 0的两根,则a + b的值为:A. 2B. 3C. 4D. 52. 下列函数中,有最小值的是:A. y = x²B. y = -x²C. y = x³D. y = 2x3. 已知数列{an}的前n项和为Sn,若a1 = 2,an = 2an-1 + 1,则S10的值为:A. 2047B. 2048C. 2049D. 20504. 若函数f(x) = ax² + bx + c的图像开口向上,且a > 0,则下列说法正确的是:A. b > 0B. b < 0C. c > 0D. c < 05. 在等边三角形ABC中,点D在BC边上,若∠ADC = 30°,则∠ABC的度数为:A. 60°B. 70°C. 75°D. 80°6. 若方程x² - 4x + 3 = 0的两根为m和n,则m + n的值为:A. 2B. 3C. 4D. 57. 下列图形中,不是轴对称图形的是:A. 正方形B. 等腰三角形C. 长方形D. 梯形8. 已知二次函数y = ax² + bx + c(a ≠ 0)的图像与x轴的交点为(1,0)和(3,0),则a的值为:A. 1B. -1C. 1/2D. -1/29. 若一个正方体的体积为64立方厘米,则它的表面积为:A. 96平方厘米B. 128平方厘米C. 256平方厘米D. 512平方厘米10. 下列数列中,不是等差数列的是:A. 2, 5, 8, 11, ...B. 3, 6, 9, 12, ...C. 4, 7, 10, 13, ...D. 1, 3, 5, 7, ...二、填空题(每题5分,共50分)11. 已知方程x² - 5x + 6 = 0的两根为m和n,则m² + n²的值为______。
中考模拟数学试题及答案(二)
中考数学模拟试卷(二)一、选择题(本题共10小题;每小题3分,共30分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.1.13-的值是 ( )A .-3B .3C .13D .-132.函数(1)y k x =-中,如果y 随着x 增大而增大,那么常数k 的取值范围是( ) A .1k < B .1k ≤ C .1>k D .1k ≥ 3.一个几何体的三视图如图所示,则此几何体是( ) A .圆锥 B .棱柱 C .圆柱 D .棱台3.下列计算正确的是 ( )A.422a a a =+; B .236a a a =÷; C .32a a a =⋅; D .532)(a a =. 4.如果b a <,0<c ,那么下列不等式成立的是( ).A. c b c a +<+;B. c b c a +-<+-;C. bc ac <;D.cbc a <. 5.在一个不透明的袋子中装有2个白球,n 个红球,它们除了颜色不同外,其余均相同. 若从中随机摸出一个球,摸到红球的概率是54,则n 的值等于( ) A .15个 B .8个 C .10个 D .6个6.在平面直角坐标系中,若点P (m ,m+2)在第二象限,则mx 的取值范围为 ( ) A .-2 <m<0 B .m <-2 C .m >0 D .m >-2 7.如图所示,点P 为反比例函数y =2x上的一动点,作PD ⊥x 轴于点D ,△POD 的面积为k ,则函数y =k x -1的图像为 ( )8.如图所示,将矩形ABCD 沿对角线BD 折叠,使C 落在C'处, BC'交AD 于E ,则下列结论不一定成立的是 ( ) A .AD =BC' B .∠EBD =∠EDB C .△ABE ∽△CBD D .sin ∠ABE =AEED9.如图所示,已知Rt △ABC 中,∠ABC =90°,∠BAC =30°,AB =3,将△ABC 绕顶点C 顺时针旋转至△A'B'C 的位置,且A 、C 、B'三点在同一条直线上, 则点A 经过的最短路线的长度是 ( )(第3题图)俯视图 主视图左视图A .8cmB .43cmC .323πcm D .83πcm10.如图所示,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°.现给出以下四个结论:①∠A =45°; ②AC =AB ;③AE =BE ;④CE ·AB =2BD 2,其中正确结论的序号是 ( ) A .①②B .②③C .②④D .③④二、填空题(本题共8小题;每小题3分,共24分)请把最后结果填在题中横线上.请把最后结果填在题中横线上.11.分解因式:a 3-a =________________.12.如图所示的围棋盘放在平面直角坐标系内,黑棋A 的坐标为(-1, 2),那么白棋B 的坐标是____________.13.4支排球队进行单循环比赛(参加比赛的每两支球队之间都要进行一 场比赛),则总的比赛场数为_______场.14.若关于x 的分式方程311x a x x--=-无解,则a =_______.15.现在一般超市都是使用环保购物袋,某超市有偿..提供可重复使用的三种环保购物袋,每个售价分别为1元、2元和3元,这三种环保购物袋每个最多分别能装大米3kg 、5kg和8kg .6月7日,小明和爸爸在该超市选购了3个环保购物袋用来装刚购买的20kg 散装大米,他们选购的3个环保购物袋至少..应付给超市___________元. 16.如图所示的抛物线是二次函数y =ax 2-3x +a 2-1的图像,那么a 的值是_______. 17.如图所示,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是________.18.如图所示为手的示意图,在各个手指间标记字母A 、B 、C 、D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是_______;当字母C 第201次出现时,恰好数到的数是_______;当字母C 第2n +l 次出现时(n 为正整数),恰好数到的数是_______(用含n 的代数式表示).A B CD E(第10题Ox yE DC A B三、解答题(本题共11小题;共76分.解答应写出文字说明、证明过程或演算步骤)19.(本小题5分)计算:0183221π⎛⎫-+⎪-⎝⎭20.(本小题5分)先化简,再求值:2239(1)x xx x---÷,其中31x=21.(本小题5分)解不等式组:12,132,2xx x->⎧⎪⎨-≤+⎪⎩………………①…………②22.(本小题6分)如图所示,△ABC在方格纸中.(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2).并求出B点坐标.(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A'B'C'.(3)计算△A'B'C'的面积S.23.(本小题6分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如右图所示:(1)请你完成如左图所示游戏一个回合所有可能出现的结果的树状图.(2)求一个回合能确定两人先下棋的概率.解:(1)树状图为:24.(本题满分6分)结合“两纲教育”,某中学600名学生参加了“让青春飞扬”知识竞赛.竞赛组委会从中随机抽取了部分学生的成绩(得分都是整数..,最高分98分)作为样本进行统计分析,并绘制成抽样分析分类统计表和频率分布直方图(如表1和图6,部分数据缺失).试根据所提供的信息解答下列问题:(1) 本次随机抽样调查的样本容量是 ▲ ;(2) 试估计全校所有参赛学生中成绩等第为优良的学生人数;(3) 若本次随机抽样的样本平均数为76.5,又表1中b 比a 大15,试求出a 、b 的值; (4) 如果把满足q x p ≤≤的x 的取值范围记为[p ,q ],表1中a 的取值范围是 ▲ . (A )[69.5,79.5] (B )[65,74] (C )[66.5,75.5] (D )[66,75]25.(本小题8分)如图所示,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200m 范围内为原始森林保护区,在MN 上的点A 处测得点C 在点A 的北偏东45°方向上,从A 向东走600m 到达B 处,测得点C 在点B 的北偏西60°方向上. (1)MN 是否穿过原始森林保护区?为什么?(参考数据:3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?26.(本小题8分)如图a 所示,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE 、GC .成绩范围60<x 8060<≤x80≥x 成绩等第 不合格合格优良人数 40平均成绩57a b表1:抽样分析分类统计表抽样分析频率分布直方图(图6)成绩0.01 0.04 组距频率0.020.0349.5 0.1 0.20.3 0.15 59.5 69.5 79.5 89.599.5(1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论.(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图b 所示,连接AE 和CG .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.27.(本小题9分)如图所示,已知⊙O 的半径为6cm ,射线PM 经过点O ,OP =10cm ,射线PN 与⊙O 相切于点Q .A 、B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动,设运动时间为t s . (1)求PQ 的长.(2)当t 为何值时,直线AB 与⊙O 相切?OPQMNAB28.(本小题9分)某茶厂种植“春蕊”牌绿茶,由历年来市场销售行情知道,从每年的3 月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用图a 中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用图b 所示的抛物线表示.B C D EFG A a 图 B C D E F G A b 图(1)直接写出图a中表示的市场销售单价y(元)与上市时间£(天)(t>0)的函数关系式.(2)求出图b中表示的种植成本单价z(元)与上市时间t(天)(t>0)的函数关系式.(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500g.)29.(本小题9分)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=5分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标.(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式.(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.参考答案1~10. BCCAB AACDC 11.()()11a a a +- 12.(-3,-2) 13.6 14.1或-2 15.8 16.-1 17.601318.B 603 6n +3 19.0 20.解:原式=9)32(2-⨯--x xx x x x =)3)(3(3-+⨯-x x x x x=31+x 当13-=x 时,原式=231+=32-21.由①,得x>3. 由②,得x ≤10. ∴原不等式的解集为3<x ≤10. 22.(1)图略.B (2,1) (2)图略(3)16 23.(1)如图所示:(2)3424..解:(1) 80 ; (2) 成绩位于79.5~89.5的频率为25.015.03.02.01.01=+++-)(.所以全校所有参赛学生中成绩等第为优良的学生人数为24015.025.0600=+⨯)((人) (3) 本次随机抽样分析成绩不合格的人数为81.080=⨯(人),成绩优良的人数为324.080=⨯(人),依据题意,可得方程组⎪⎩⎪⎨⎧=+-=++⨯.15,5.76803240857b a ba 解得 ⎩⎨⎧==.87,72b a(4) D .25.(1)MN 不会穿过原始森林保护区 (2)原计划完成这项工程需要25天 26.(1)AE ⊥GC (2)成立 27.(1)8cm (2)当t 为0.5s 或3.5s 时,直线AB 与⊙O 相切28.(1) ()()2160 0<t<120,380 (120t 150),220 150t 1805t y t ⎧-+⎪⎪=≤≤⎨⎪⎪+≤≤⎩(2)()2111020300z t =-+(t>0)(3)在t =10时,纯收益单价最大,最大值为100元。
九年级二模数学试题及答案
九年级二模数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax + bx + cC. y = ax^2 + bxD. y = ax + b答案:A2. 已知圆的半径为5,圆心在原点,那么该圆的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B3. 如果一个角的正弦值是0.5,那么这个角可能是多少度?A. 30°B. 45°C. 60°D. 90°答案:A4. 以下哪个选项是不等式2x - 3 > 5的解?A. x > 4B. x < 4C. x > 2D. x < 2答案:A5. 计算下列哪个表达式的值等于0?A. (x - 2)(x + 2)B. (x + 2)(x - 2)C. x^2 - 4D. x^2 + 4答案:C6. 一个等腰三角形的两边长分别为5和8,那么第三边的长度是多少?A. 3B. 5C. 8D. 无法确定答案:C7. 计算下列哪个表达式的值等于1?A. (2/3)^2B. (3/2)^2C. √(2/3)D. √(3/2)答案:A8. 以下哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2 或 x = 3B. x = 1 或 x = 6C. x = 2 或 x = -3D. x = -2 或 x = -3答案:A9. 一个长方体的长、宽、高分别为3、4、5,那么它的体积是多少?A. 60B. 48C. 36D. 24答案:A10. 计算下列哪个表达式的值等于-1?A. (-1)^3B. (-1)^2C. (-1)^1D. (-1)^0答案:A二、填空题(每题2分,共20分)11. 一个数的立方根是2,那么这个数是______。
答案:812. 一个等差数列的首项是3,公差是2,那么第5项是______。
初三数学二模考试卷
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 3.14B. -5C. √2D. 1/32. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. -1/23. 若a=2,b=-3,则a+b的值为()A. -1B. 1C. 5D. -54. 已知x²-4x+4=0,则x的值为()A. 2B. -2C. 1D. -15. 若a,b是方程x²-2x+1=0的两根,则a²+2a+b²的值为()A. 2B. 4C. 6D. 86. 在等腰三角形ABC中,若底边BC=8,腰AB=AC=10,则三角形ABC的周长为()A. 18B. 26C. 28D. 367. 已知函数y=kx+b(k≠0),当x=1时,y=2;当x=2时,y=4,则该函数的图像是()A. 一次函数的图像,经过一、二、三、四象限B. 一次函数的图像,经过一、二、三象限C. 一次函数的图像,经过一、二、四象限D. 一次函数的图像,经过一、三、四象限8. 在直角坐标系中,点A(-2,3),点B(4,-1),则线段AB的中点坐标为()A. (1, 1)B. (1, 2)C. (2, 1)D. (2, 2)9. 若∠A和∠B是等腰三角形ABC的两底角,则∠A+∠B的度数为()A. 60°B. 90°C. 120°D. 180°10. 若正方形的边长为a,则该正方形的周长为()A. 4aB. 3aC. 2aD. a二、填空题(每题3分,共30分)11. 已知x²-6x+9=0,则x的值为______。
12. 在直角坐标系中,点P(-3,4),点Q(2,-1),则线段PQ的长度为______。
13. 若a,b是方程x²-5x+6=0的两根,则a²-5a+6的值为______。
14. 若∠A和∠B是等腰三角形ABC的两底角,则∠A+∠B的度数为______。
初三贵阳2模数学试题及答案
初三贵阳2模数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333...(3的循环)B. √2C. 0.5D. 1/32. 已知a、b、c是三角形的三边,下列哪个条件能判断出这是一个直角三角形?A. a² + b² = c²B. a² + b² > c²C. a² + b² < c²D. a² + c² > b²3. 函数y = 2x + 3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 已知x = 2是方程x² - 5x + 6 = 0的一个根,那么另一个根是多少?A. 1B. 2C. 3D. 65. 一个数的相反数是-3,这个数是多少?A. 3B. -3C. 0D. 66. 已知一个等腰三角形的两边长分别是3cm和6cm,那么这个三角形的周长是多少?A. 9cmB. 12cmC. 15cmD. 不能构成三角形7. 下列哪个不等式是正确的?A. 3x > 2x + 1B. 3x < 2x + 1C. 3x ≤ 2x + 1D. 3x ≥ 2x + 18. 已知一个扇形的圆心角是60°,半径是10cm,那么这个扇形的面积是多少?A. 50π cm²B. 100π cm²C. 150π cm²D. 200π cm²9. 一个数的绝对值是5,这个数可能是多少?A. 5B. -5C. 5或-5D. 010. 函数y = 3x - 2与y = -2x + 3的交点坐标是多少?A. (1, 1)B. (1, -1)C. (-1, 1)D. (-1, -1)二、填空题(每题3分,共15分)11. 已知一个等差数列的首项是2,公差是3,那么第5项是多少?12. 一个矩形的长是8cm,宽是4cm,那么它的面积是多少?13. 已知一个二次函数的顶点坐标是(2, -1),且开口向上,那么它的对称轴是什么?14. 一个数的平方是25,那么这个数是多少?15. 一个圆的半径是5cm,那么它的周长是多少?三、解答题(每题10分,共40分)16. 已知一个三角形的三边长分别是a、b、c,且满足a² + b² = c²,证明这是一个直角三角形。
初三数学中考模拟试题二
初三数学中考模拟试题二一、选择题(每小题3分,共36分) 1.4的平方根是( ) A .2B .2C .2±D .2±2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为( ) A .40.2110-⨯ B .42.110-⨯C .52.110-⨯D .62110-⨯3、下列各式的变形中,正确的是( )A .(﹣x ﹣y )(﹣x+y )=x 2﹣y 2B .﹣x=C .x 2﹣4x+3=(x ﹣2)2+1 D .x ÷(x 2+x )=+14.定义新运算:a ⊕b =例如:4⊕5=,4⊕(﹣5)=.则函数y =2⊕x (x ≠0)的图象大致是( )A B C D (7题图)5.已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的( )A .平均数但不是中位数 B.平均数也是中位数 C .众数 D. 中位数但不是平均数 6.已知m 是方程x 2-x -2=0的一个实数根,则代数式22(m m)(m 1)m--+的值为( ). A.4 B.-4 C.0 D.-27.已知某几何体的三视图如图所示,根据图中的数据,求得该几何体的表面积为( )A .30πB .39πC .15πD .24π8.如图,把半径为3的⊙O 沿弦AB ,AC 折叠,使和都经过圆心O ,则阴影部分的面积为( )A .πB .2πC .3πD .4π9.如图,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A .(3,2)B .(3,1)C .(2,2)D .5(2,2)10.如图,ABC ∆中,90C ∠=︒,点O 是边AB 上一点,以点O 为圆心,以OB 为半径作圆,O 恰好与AC 相切于点D ,连接BD .若3OA OB =,则cos ABD ∠的值是( ) A .63 B .33 C .56D .76(8题) (10题) (11题)11.在平面直角坐标系中,Rt △OAB 的位置如图所示,∠OAB =90°,OA :AB =3:4,点B 的纵坐标为5,反比例函数(k ≠0)的图象经过点A ,交OB 于C ,若OC :BC =3:2.则k 的值为( )A .﹣9B .C .﹣3D .12.二次函数y=ax 2+bx+c (a >0)的顶点为D ,其图象与x 轴有两个交点A (﹣m ,0),B (1,0),交y 轴于点C (0,﹣3am+6a ),以下说法:①m=3;②当∠ADB=120°时,a=63;③当∠ADB=120°时,抛物线上存在点M (M 与P 不重合),使得△ABM 是顶角为120°的等腰三角形;④抛物线上存在点N ,当△ABN 为直角三角形时,有a ≥21;正确的是( ) A .①② B .③④ C .①②③ D .①②③④二、填空题(每小题4分,共24分)13.分解因式::ab 2﹣4ab+3a= .14.将点P (-a ,-b -2)绕点C (0,-1)旋转180°得到点Q ,则点Q 的坐标为 . 15.“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全.小刚每天从家骑自行车上学都经过三个路口,且每个路口只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,他遇到两次红灯的概率是 . 16.已知关于x 的分式方程﹣=1的解为负数,则k 的取值范围是 .17.如图,在Rt △ABC 中,已知∠A =90°,AB =6,BC =10,D 是线段BC 上的一点,以C 为圆心,CD 为半径的半圆交AC 边于点E ,交BC 的延长线于点F ,射线BE 交于点G ,则BE •EG 的最大值为 .18.如图,在平面直角坐标系中,点A ,C 分别在x 轴,y 轴上,四边形ABCO 为矩形,AB =16,点D 与点 A 关于y 轴对称,tan ∠ACB =,点E 、F 分别是线段AD 、AC 上的动点(点E 不与点A ,D 重合),且 ∠CEF =∠ACB .当△EFC 为等腰三角形时,△AEC 的面积为 _______________.(17题) (18题)三、解答题(共7小题,共90分) 19.(16分) (1)(8分) 计算:(2)(8分)化简求值:2569(2)223x x xx x x x -+--÷+---,再从14x -<<的范围内选取一个你喜欢的整数代入求值.20.(12分)2022北京冬奥会,为了解学生最喜欢的冰雪运动,学校从全校随机抽取了部分学生,进行了问卷调查(每个被调查的学生在4种冰雪运动中只选择最喜欢做的一种),4种冰雪运动分别是:A 、滑雪,B 、滑冰,C 、冰球,D 、冰壶;将数据进行整理并绘制成如图两幅统计图(未画完整).(1)这次调查中,一共调查了 名学生,请补全条形统计图;(2)若全校有2800名学生,请估计该校最喜欢“滑冰”运动项目的学生数;(3)学校想要从D 档的4名学生中随机抽取2名同学谈谈自己的喜爱的原因,已知这4名学生中1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.21.(12分).如图,点A 为反比例函数y =在第一象限的图象上的一动点,过点A 作y 轴的垂线,垂足为H ,连接AO 并延长AO 交双曲线的另一支于点B ,以AB 为边作等边三角形ABC ,点C 在第四象限,若OH =3,tan ∠AOH =.(1)求反比例函数y =的解析式; (2)求点C 的坐标.22、如图,平行四边形ABCD 中,AC 与BD 相交于点O ,AB =AC ,延长BC 到点E ,使CE =BC ,连接AE ,分别交BD 、CD 于点F 、G . (1)求证:△ADB ≌△CEA ; (2)若BD =9,求AF 的长.3202220212188)125.0()260(tan 1)60(sin --⨯-----23.(12分)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如下表所示:甲型客车乙型客车载客量(人/辆)35 30租金(元/辆)400 320学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(5分)(2)学校共有几种租车方案?最少租车费用是多少?(7分)24.(12分)如图,AB为⊙O直径,C、D为⊙O上不同于A、B两点,连接CD,过C作⊙O的切线交AB延长线于点F.直线DB⊥CF于点E.(1)求证:∠ABD=2∠BAC;(2)连接BC,求证:BC2=2BE•BO;(3)当BD=,sin∠F=时,求CD的长.25.(14分)如图,在平面直角坐标系中,抛物线y=x2﹣2x经过坐标原点,与x轴正半轴交于点A,该抛物线的顶点为M,直线y=﹣x+b经过点A,与y轴交于点B,连接OM.(1)填空:b=,点M的坐标;(2)将直线AB向下平移,得到过点M的直线y=mx+n,且与x轴负半轴交于点C,取点D(2,0),连接DM,求直线CM的函数解析式及∠DMC的度数;(3)点E是线段AB上一动点,点F是线段OA上一动点,连接EF,线段EF的延长线与线段OM交于点G.当∠BEF=2∠BAO时,是否存在点E,使得3GF=4EF?若存在,求出点E的坐标;若不存在,请说明理由.。
中考数学二模试题(有答案解析)
中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________时间100分钟满分150分一.选择题(共6小题,满分24分,每小题4分)1.下列代数式中,为单项式的是()A .B .AC .D .x2+y22.已知x>y,那么下列正确的是()A .x+y>0B .A x>A yC .x﹣2>y+2D .2﹣x<2﹣y3.将抛物线y=(x﹣2)2+1向上平移3个单位,得到新抛物线的顶点坐标是()A .(2,4)B .(﹣1,1)C .(5,1)D .(2,﹣2)4.在平面直角坐标系中,以点A (2,1)为圆心,1为半径的圆与x轴的位置关系是()A .相离B .相切C .相交D .不确定5.如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是()A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82°D .如果该校九年级外出学生共有500人,那么估计全年级外出骑车的学生约有140人6.如图,在△A B C 中,点D 、E分别是边B C 、A C 的中点,A D 和B E交于点G,设=,=,那么向量用向量、表示为()A .B .C .D .二.填空题(共12小题,满分48分,每小题4分)7.分解因式:x2﹣4x=.8.计算:A 3•A ﹣1=.9.已知函数f(x)=,那么f(10)=.10.如果关于x的方程x2﹣6x+m﹣1=0有一个根为2,那么m=.11.某品牌旗舰店将某商品按进价提高40%后标价,在一次促销活动中,按标价的8折销售,售价为2240元,那么这种商品的进价为元.12.某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:75~90有15人,90~105有42人,105~120有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是.13.用换元法解方程=3时,设=y,那么原方程化成关于y的整式方程是.14.如果正六边形的半径是1,那么它的边心距是.15.如果从方程x+1=0,x2﹣2x﹣1=0,x+=3中任意选取一个方程,那么取到的方程是整式方程的概率是.16.已知,在Rt△A B C 中,∠C =90°,A C =9,B C =12,点D 、E分别在边A C 、B C 上,且C D :C E =3:4.将△C D E绕点D 顺时针旋转,当点C 落在线段D E上的点F处时,B F恰好是∠A B C 的平分线,此时线段C D 的长是.17.如图,某人在山坡坡脚A 处测得电视塔塔尖点P的仰角为60°,沿山坡向上走200米到达B 处,在B 处测得点P的仰角为15°.已知山坡A B 的坡度i=1:,且H、A 、B 、P在同一平面内,那么电视塔的高度PH为米.(结果保留根号形式)18.如图,已知在等边△A B C 中,A B =4,点P在边B C 上,如果以线段PB 为半径的⊙P与以边A C 为直径的⊙O外切,那么⊙P的半径长是.三.解答题(共7小题,满分78分)19.(10分)先化简,再求值:,其中.20.(10分)解不等式组:,并将解集在数轴上表示出来.21.(10分)如图,是一个地下排水管的横截面图,已知⊙O的半径OA 等于50C m,水的深度等于25C m(水的深度指的中点到弦A B 的距离).求:(1)水面的宽度A B .(2)横截面浸没在水中的的长(结果保留π).22.(10分)一辆汽车从甲地出发前往相距350千米的乙地,在行驶了100千米后,因降雨,汽车每行驶1千米的耗油量比降雨前多0.02升.如图中的折线A B C 反映了该汽车行驶过程中,油箱中剩余的油量y(升)与行驶的路程x(千米)之间的函数关系.(1)当0≤x≤100时,求y关于x的函数解析式(不需要写出定义域);(2)当汽车到达乙地时,求油箱中的剩余油量.23.(12分)如图,已知在直角梯形A B C D 中,A D ∥B C ,∠A B C =90°,A E⊥B D ,垂足为E,联结C E,作EF ⊥C E,交边A B 于点F.(1)求证:△A EF∽△B EC ;(2)若A B =B C ,求证:A F=A D .24.(12分)已知直线交x轴于点A ,交y轴于点C (0,4),抛物线经过点A ,交y轴于点B (0,﹣2),点P为抛物线上一个动点,设P的横坐标为m(m>0),过点P作x轴的垂线PD ,过点B 作B D ⊥PD 于点D ,联结PB .(1)求抛物线的解析式;(2)当△B D P为等腰直角三角形时,求线段PD 的长;(3)将△B D P绕点B 旋转得到△B D ′P′,且旋转角∠PB P′=∠OA C ,当点P对应点P′落在y轴上时,求点P的坐标.25.(14分)如图,已知扇形A OB 的半径OA =4,∠A OB =90°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结C D .点P是弧A B 上一点,PC =PD .(1)当C ot∠OD C =,以C D 为半径的圆D 与圆O相切时,求C D 的长;(2)当点D 与点B 重合,点P为弧A B 的中点时,求∠OC D 的度数;(3)如果OC =2,且四边形OD PC 是梯形,求的值.参考答案一.选择题(共6小题,满分24分,每小题4分)1.下列代数式中,为单项式的是()A .B .AC .D .x2+y2【解答】解:A 、分母中含有字母,不是单项式;B 、符合单项式的概念,是单项式;C 、分母中含有字母,不是单项式;D 、不符合单项式的概念,不是单项式.故选:B .2.已知x>y,那么下列正确的是()A .x+y>0B .A x>A yC .x﹣2>y+2D .2﹣x<2﹣y【解答】解:∵x>y,∴x﹣y>0,A x>A y(A >0),x+2>y+2,2﹣x<2﹣y.故选:D .3.将抛物线y=(x﹣2)2+1向上平移3个单位,得到新抛物线的顶点坐标是()A .(2,4)B .(﹣1,1)C .(5,1)D .(2,﹣2)【解答】解:将抛物线y=(x﹣2)2+1向上平移3个单位,得y=(x﹣2)2+1+3,即y=(x﹣2)2+4,顶点坐标为(2,4),故选:A .4.在平面直角坐标系中,以点A (2,1)为圆心,1为半径的圆与x轴的位置关系是()A .相离B .相切C .相交D .不确定【解答】解:∵点A (2,1)到x轴的距离为1,圆的半径=1,∴点A (2,1)到x轴的距离=圆的半径,∴圆与x轴相切;故选:B .5.如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是()A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82°D .如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人【解答】解:A 、由题意知乘车的人数是20人,占总人数的50%,所以九(3)班有20÷50%=40人,故此选项错误;B 、步行人数为:40﹣12﹣20=8人,故此选项正确;C 、步行学生所占的圆心角度数为×360°=72°,故此选项错误;D 、如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约为500×=150人,故此选项错误;故选:B .6.如图,在△A B C 中,点D 、E分别是边B C 、A C 的中点,A D 和B E交于点G,设=,=,那么向量用向量、表示为()A .B .C .D .【解答】解:∵=,=,∴=+=﹣+,∵A D ,B E是△A B C 的中线,∴G是△A B C 的重心,∴B G= B E,∴=﹣+,故选:A .二.填空题(共12小题,满分48分,每小题4分)7.分解因式:x2﹣4x=x(x﹣4).【解答】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).8.计算:A 3•A ﹣1= A 2.【解答】解:原式=A 3+(﹣1)=A 2.故答案为:A 2.9.已知函数f(x)=,那么f(10)=2.【解答】解:∵f(x)=,∴f(10)==2.故答案为:2.10.如果关于x的方程x2﹣6x+m﹣1=0有一个根为2,那么m=9.【解答】解:把x=2代入方程得:22﹣6×2+m﹣1=0.解得m=9.故答案是:9.11.某品牌旗舰店将某商品按进价提高40%后标价,在一次促销活动中,按标价的8折销售,售价为2240元,那么这种商品的进价为2000元.【解答】解:设这种商品的进价是x元,根据题意可以列出方程:由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为:2000.12.某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:75~90有15人,90~105有42人,105~120有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是0.25.【解答】解:120~135分数段的频数=200﹣15﹣42﹣58﹣35=50人,则测试分数在120~135分数段的频率==0.25.故答案为:0.25.13.用换元法解方程=3时,设=y,那么原方程化成关于y的整式方程是y2﹣3y+2=0.【解答】解:设=y,则.所以原方程可变形为:.方程的两边都乘以y,得y2+2=3y.即y2﹣3y+2=0.故答案为:y2﹣3y+2=0.14.如果正六边形的半径是1,那么它的边心距是.【解答】解:∵A B C D D EF为正六边形,∴∠B OC =360°÷6=60°,OG⊥B C .∴∠B OG=∠B OC =30°.在Rt△B OG中,C os∠B OG=.∵OB =1,∴OG=OB •C os∠B OG=1×=.故答案为:.15.如果从方程x+1=0,x2﹣2x﹣1=0,x+=3中任意选取一个方程,那么取到的方程是整式方程的概率是.【解答】解:∵在所列的6个方程中,整式方程有x+1=0,x2﹣2x﹣1=0,x4﹣1=0这3个,∴取到的方程是整式方程的概率是=,故答案为:.16.已知,在Rt△A B C 中,∠C =90°,A C =9,B C =12,点D 、E分别在边A C 、B C 上,且C D :C E =3:4.将△C D E绕点D 顺时针旋转,当点C 落在线段D E上的点F处时,B F恰好是∠A B C 的平分线,此时线段C D 的长是6.【解答】解:如图所示,设C D =3x,则C E=4x,B E=12﹣4x,∵=,∠D C E=∠A C B =90°,∴△A C B ∽△D C E,∴∠D EC =∠A B C ,∴A B ∥D E,∴∠A B F=∠B FE,又∵B F平分∠A B C ,∴∠A B F=∠C B F,∴∠EB F=∠EFB ,∴EF=B E=12﹣4x,由旋转可得D F=C D =3x,∵Rt△D C E中,C D 2+C E2=D E2,∴(3x)2+(4x)2=(3x+12﹣4x)2,解得x1=2,x2=﹣3(舍去),∴C D =2×3=6,故答案为:6.17.如图,某人在山坡坡脚A 处测得电视塔塔尖点P的仰角为60°,沿山坡向上走200米到达B 处,在B 处测得点P的仰角为15°.已知山坡A B 的坡度i=1:,且H、A 、B 、P在同一平面内,那么电视塔的高度PH为100米.(结果保留根号形式)【解答】解:过B 作B M⊥HA 于M,过B 作B N∥A M,如图所示:则∠A MB =90°,∠A B N=∠B A M,由题意得:A B =200米,∠PB N=15°,∠P A H=60°,∵山坡A B 的坡度i=1:,∴tA n∠B A M=1:=,∴∠B A M=30°,∴∠A B N=30°,∴∠P A B =180°﹣∠P A H﹣∠B A M=90°,∠A B P=∠A B N+∠PB N=45°,∴△P A B 是等腰直角三角形,∴P A =A B =200米,在Rt△P A H中,sin∠P A H==sin60°=,∴PH=P A =100(米),故答案为:100.18.如图,已知在等边△A B C 中,A B =4,点P在边B C 上,如果以线段PB 为半径的⊙P与以边A C 为直径的⊙O外切,那么⊙P的半径长是.【解答】解:如图,连接OP,过点O作OH⊥B C 于P,在等边△A B C 中,A B =4,∴A C =B C =A B =4,∠A C B =60°,∵点O是A C 的中点,∴A O=OC =2,∵以线段PB 为半径的⊙P与以边A C 为直径的⊙O外切,∴PO=2+B P,∵OH⊥B C ,∴∠C OH=30°,∴HC =1,OH=,∵OP2=OH2+PH2,∴(2+B P)2=3+(4﹣1﹣B P)2,∴B P=,故答案为.三.解答题(共7小题,满分78分)19.(10分)先化简,再求值:,其中.【解答】解:原式==﹣=,当x=﹣1时,原式==.20.(10分)解不等式组:,并将解集在数轴上表示出来.【解答】解:解不等式3(x+2)>x﹣2,得:x>﹣4,解不等式x﹣≤,得:x≤,则不等式组的解集为﹣4<x≤,将不等式组的解集表示在数轴上如下:21.(10分)如图,是一个地下排水管的横截面图,已知⊙O的半径OA 等于50C m,水的深度等于25C m(水的深度指的中点到弦A B 的距离).求:(1)水面的宽度A B .(2)横截面浸没在水中的的长(结果保留π).【解答】解:(1)过O作OH⊥A B 于H,并延长交⊙O于D ,∵OH⊥A B ,OH过O,∴∠OHA =90°,A H= A B ,=,∵水的深度等于25C m,∴HD =25(C m),∵OA =OD =50C m,∴OH=OD ﹣HD =25(C m),∴A H===25(C m),∴A B =50 C m;(2)连接OB ,∵OA =50C m,OH=25C m,∴OH=OA ,∵∠OHA =90°,∴∠OA H=30°,∴∠A OH=60°,∵OA =OB ,OH⊥A B ,∴∠B OH=∠A OH=60°,即∠A OB =120°,∴的长是=(C m).22.(10分)一辆汽车从甲地出发前往相距350千米的乙地,在行驶了100千米后,因降雨,汽车每行驶1千米的耗油量比降雨前多0.02升.如图中的折线A B C 反映了该汽车行驶过程中,油箱中剩余的油量y(升)与行驶的路程x(千米)之间的函数关系.(1)当0≤x≤100时,求y关于x的函数解析式(不需要写出定义域);(2)当汽车到达乙地时,求油箱中的剩余油量.【解答】解:(1)设当0≤x≤100时,y关于x的函数解析式为y=kx+B ,根据题意,得:,解得,∴y=﹣x+50;(2)由题意可知,前100千米耗油量为10升,后250千米的耗油量为:250×(0.1+0.02)=30(升),油箱中的剩余油量为:50﹣10﹣30=10(升).23.(12分)如图,已知在直角梯形A B C D 中,A D ∥B C ,∠A B C =90°,A E⊥B D ,垂足为E,联结C E,作EF ⊥C E,交边A B 于点F.(1)求证:△A EF∽△B EC ;(2)若A B =B C ,求证:A F=A D .【解答】解:(1)证明:∵A E⊥B D ,EF⊥C E,∴∠A EB =∠C EF=∠A B C =90°,∴∠A B E+∠EA F=∠A B E+∠C B E=90°,∴∠EA F=∠C B E,∵∠A EF+∠B EF=∠B EC +∠B EF=90°,∴∠A EF=∠B EC ,∴△A EF∽△B EC ;(2)证明:∵A D ∥B C ,∠A B C =90°,∴∠B A D =180°﹣∠A B C =90°,∵A E⊥B D ,∴∠A EB =90°=∠B A D ,∵∠A B E=∠D B A ,∴△A B E∽△D B A ,∴=,∵△A EF∽△B EC ,∴=,∴=,∵A B =B C ,∴A F=A D .24.(12分)已知直线交x轴于点A ,交y轴于点C (0,4),抛物线经过点A ,交y轴于点B (0,﹣2),点P为抛物线上一个动点,设P的横坐标为m(m>0),过点P作x轴的垂线PD ,过点B 作B D ⊥PD 于点D ,联结PB .(1)求抛物线的解析式;(2)当△B D P为等腰直角三角形时,求线段PD 的长;(3)将△B D P绕点B 旋转得到△B D ′P′,且旋转角∠PB P′=∠OA C ,当点P对应点P′落在y轴上时,求点P的坐标.【解答】解:(1)∵点C (0,4)在直线y=﹣x+n上,∴n=4,∴y=﹣x+4,令y=0,∴x=3,∴A (3,0),∵抛物线y=x2+B x+C 经过点A ,交y轴于点B (0,﹣2),∴C =﹣2,6+3B ﹣2=0,∴B =﹣,∴抛物线解析式为y=x2﹣x﹣2;(2)∵P的横坐标为m(m>0),且点P在抛物线上,∴P(m,m2﹣m﹣2),∵PD ⊥x轴,B D ⊥PD ,∴点D 坐标为(m,﹣2),若△B D P为等腰直角三角形,则PD =B D ,①当点P在直线B D 上方时,PD =m2﹣m﹣2﹣(﹣2)=m2﹣m,如图1,B D =m.∴m2﹣m=m,解得:m1=0,m2=,∵m>0,∴m=;②当点P在直线B D 下方时,如图2,m>0,B D =m,PD =﹣m2+m,∴﹣m2+m=m,解得:m1=0,m2=,∵m>0,∴m=;综上所述,m=或;即当△B D P为等腰直角三角形时,线段PD 的长为或.(3)∵∠PB P'=∠OA C ,OA =3,OC =4,∴A C =5,∴sin∠PB P'=,C os∠PB P'=,若点P在y轴右侧,①当△B D P绕点B 逆时针旋转,且点P'落在y轴上时,如图3,过点D ′作D ′M⊥x轴,交B D 于M,过点P′作P′N⊥y轴,交MD '的延长线于点N,∴∠D B D ′=∠ND ′P′=∠PB P′,由旋转知,P′D ′=PD =m2﹣m,在Rt△P′D ′N中,sin∠ND ′P′==sin∠PB P′=,∴P′N=P′D ′=(m2﹣m),在Rt△B D ′M中,B D ′=m,C os∠D B D ′==C os∠PB P′=,∴B M= B D ′=m,∵P′N=B M,∴(m2﹣m)=m,∴m=,∴P(,);②当△B D P绕点B 顺时针旋转,且点P'落在y轴上时,如图4,过点P作PT⊥y轴于点T,∴PT=m,B T=OT﹣OB =﹣(m2﹣m﹣2)﹣2=﹣m2+m,∵∠PB P′=∠OA C ,∴tA n∠PB P′=tA n∠OA C ==,∴=,∴PT= B T,∴m=(﹣m2+m),解得:m=0(舍去)或m=,∴P(,﹣);若点P在y轴左侧,仿照上述方法讨论均不存在满足条件的点P;综上所述,点P的坐标为(,)或(,﹣).25.(14分)如图,已知扇形A OB 的半径OA =4,∠A OB =90°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结C D .点P是弧A B 上一点,PC =PD .(1)当C ot∠OD C =,以C D 为半径的圆D 与圆O相切时,求C D 的长;(2)当点D 与点B 重合,点P为弧A B 的中点时,求∠OC D 的度数;(3)如果OC =2,且四边形OD PC 是梯形,求的值.【解答】解:(1)如图1中,∵∠C OD =90°,C ot∠OD C ==,∴可以假设OD =3k,OC =4k,则C D =5k,∵以C D 为半径的圆D 与圆O相切,∴C D =D B =5k,∴OB =OD +D B =3K+5K=4,∴k=,∴C D =.(2)如图2中,连接OP,过点P作PE⊥OA 于E,PF⊥OB 于F.∵=,∴∠A OP=∠POB ,∵PE⊥OA ,PF⊥OB ,∴PE=PF,∵∠PEC =∠PFB =90°,PD =PC ,∴Rt△PEC ≌Rt△PFB (HL),∴∠EPC =∠FPB ,∵∠PEO=∠EOF=∠OFP=90°,∴∠EPF=90°,∴∠EPF=∠C PB =90°,∴∠PC B =∠PB C =45°,∵OP=OB ,∠POB =45°,∴∠OB P=∠OPB =67.5°,∴∠C B O=67.5°﹣45°=22.5°,∴∠OC D =90°﹣22.5°=67.5°.(3)如图3﹣1中,当OC ∥PD 时,∵OC ∥PD ,∴∠PD O=∠A OD =90°,∵C E⊥PD ,∴∠C ED =90°,∴四边形OC ED 是矩形,∴OC =D E=2,C E=OD ,设PC =PD =x,EC =OD =y,则有,可得x=2﹣2(不合题意的已经舍弃),∴PD =2﹣2,∴==﹣1.如图3﹣2中,当PC ∥OD 时,∵PC ∥OD ,∴∠C OD =∠OC E=∠C ED =90°,∴四边形OC ED 是矩形,∴OC =D E=2,C E=OD ,∵OP=4,OC =2,∴PC ===2,∴PD =PC =2,∴PE===2,∴EC =OD =2﹣2,∴===3+,综上所述,的值为﹣1或3+.。
初三数学二模考试试卷题
一、选择题(每题4分,共40分)1. 已知一次函数y=kx+b的图象经过点(1,2)和点(-1,0),则该函数的解析式为()。
A. y=2x+1B. y=-2x+1C. y=2x-1D. y=-2x-12. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标为()。
A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)3. 如果等腰三角形底边长为6,腰长为8,那么它的周长是()。
A. 18B. 20C. 22D. 244. 下列各式中,不是方程的是()。
A. 2x+5=0B. 3(x-1)=2x+1C. x²-4=0D. 5x-3y=125. 若x²-6x+9=0,则x的值为()。
A. 3B. 2C. 1D. -36. 在等差数列{an}中,a1=3,公差d=2,那么a10的值为()。
A. 21B. 22C. 23D. 247. 下列各式中,是勾股数的是()。
A. 3²+4²=5²B. 5²+12²=13²C. 6²+8²=10²D. 7²+24²=25²8. 若a、b、c是等比数列,且a+b+c=0,则b的值为()。
A. 0B. 1C. -1D. 无法确定9. 在平面直角坐标系中,点P(3,4)关于直线y=x的对称点坐标为()。
A.(3,4)B.(4,3)C.(-3,-4)D.(-4,-3)10. 若x、y满足方程组:$$ \begin{cases} x+y=5 \\ 2x-3y=1 \end{cases}$$,则x的值为()。
A. 2B. 3C. 4D. 5二、填空题(每题5分,共50分)11. 若a、b、c是等差数列,且a+b+c=0,则a²+b²+c²的值为______。
12. 若x²-5x+6=0,则x²+5x的值为______。
河南省2023年九年级中考数学 模拟试卷(二)
NMEODCBA2022-2023学年第二学期九年级一模考试数学模拟试卷(二)注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟.请用蓝、黑色钢笔或圆珠笔直接答在试卷上.2.答题前将密封线内的项目填写清楚.题号一二三总分16 17 18 19 20 21 22 23分数一、选择题(每小题3分,共30分)1.下列各数中最大的数是【】(A)π(B)17(C)4 (D)-82.我省2016年全年生产总值达到约19 367亿元,19367亿元用科学记数法表示为【】(A)1119.36710⨯元(B)121.936710⨯元(C)130.1936710⨯元(D)131.936710⨯元3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是【】(A)(B)(C)(D)4.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数为【】(A)75 (B)70 (C)60 (D)555.下列计算正确的是【】(A)228=-(B)()632=-(C)22423aaa=-(D)()523aa=-6. 不等式组3252(2)1xx-<⎧⎨-≤⎩的解集是【】得分评卷人考号:班级:姓名:(A ) 无解 (B )1x <- (C )52x ≥(D )512x -<≤ 7.从九年级一班3名优秀班干部和九二班2名优秀班干部中随机抽取两名学生担任升旗手,则抽取的两名学生刚好一个班的概率为【 】(A )45 (B )35 (C )25(D )158.为了解长城小区“全民健身”活动的开展情况,随机对居住在该小区的部分居民一周的体育锻炼时间进行了抽样统计,结果如下表:锻炼时间(时) 3 4 5 6 7 人数(人)6141541则关于居民一周体育锻炼时间,下列说法错误的是【 】(A )众数是5小时(B )中位数是4小时(C )平均数是4.5小时(D )样本容量是40 9.如图,已知△ABC ,∠ACB =90°,BC=3,AC=4,小红按如下步骤作图:①分别以A ,C 为圆心,以大于12AC 的长为半径在AC 两边作弧,交于两点M ,N ;②连接MN ,分别交AB ,AC 于点D ,O ;③过C 作CE ∥AB 交MN 于点E ,连接AE ,CD .则四边形ADCE 的周长为【 】(A )10(B )20(C )12(D )24(第9题 ) (第10题)10.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线.点P 从原点D 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是【 】 (A )(2014,0)(B )(2015,-1) (C )(2015,1) (D )(2016,0)二、填空题(每小题3分,共15分) 11.计算:01(3)3--+= .12.若关于x 的一元二次方程032=-+k x x 有两个不相等的实数根,则k 的取值范围是_ _.13.已知A(0,3),B(2,3)是抛物线cbxxy++-=2上两点,该抛物线的顶点坐标是 .14.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB 于点E,以点C 为圆心,OA的长为直径作半圆交OE于点D.若OA=4,则图中阴影部分的面积为 .(第14题)(第15题)15.如图,在矩形ABCD中,BC=3,CD=4,点P是AB上(不含端点A,B)任意一点,把△PBC 沿PC折叠,当点B的对应点B′落在矩形ABCD对角线上时,BP=.三、解答题(本题共8个小题,满分75分)16.(8分)先化简22121x xxx x x--⎛⎫÷-⎪+⎝⎭,然后从-1,0,1,2中选取一个合适的数作为x的值代入求值. 得分评卷人17.(9分)为了了解学生在一年中的课外阅读量,九(1)班对九年级800名学生采用随机抽样的方式进行了问卷调查,调查的结果分为四种情况:A.10本以下;B.10~15本;C.16~20本;D.20本以上.根据调查结果统计整理并制作了如图所示的两幅统计图表:(1)在这次调查中一共抽查了名学生;(2)表中x,y的值分别为:x= ,y= ;(3)在扇形统计图中,C部分所对应的扇形的圆心角是度;(4)根据抽样调查结果,请估计九年级学生一年阅读课外书20本以上的学生人数.18. (9分)如图,△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,交AC于点E.(1)求证:△OBD≌△OED;(第18题)(2)填空:①当∠BAC= 度时,CA是⊙O的切线;②当∠BAC= 度时,四边形OBDE是菱形19. (9分)某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,得分各种情况人数统计频数分布表课外阅读情况 A B C D频数20 x y 40得分得分评卷人测得仰角为48°,再往建筑物的方向前进6米到达D 处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈710,tan48°≈1110,sin64°≈910,tan64°≈2.)(第19题)20.(9分)如图,矩形OABC 的顶点A ,C 分别在x 轴和y 上,点B 的坐标为(-2,3),双曲线(0)k y x x=< 的图象经过BC 的中点D ,且与AB 交于点E ,连接D ,E .(1)求k 的值及点E 的坐标.(2)若点F 是OC 边上一点,且∠BDE=∠CFB ,求点F 的坐标.(第20题)21. (10分)学校准备购进一批节能灯,已知1只A 型节能灯和3只B 型节能灯共需26元;3只A 型节能灯和2只B 型节能灯共需29元.(1)求一只A 型节能灯和一只B 型节能灯的售价各是多少元?得分 评卷人得分 评卷人(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.如图1,△ABC和△ADE均为等边三角形,点D在BC的延长线上,连接CE,请填空:①∠ACE的度数为;②线段AC、CD、CE之间的数量关系为.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC的延长线上,连接CE请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)问题解决如图3,在Rt△ABC中,AC=3,BC=5,∠ACB=90°,若点P满足PA=PB,∠APB=90°,请直接写出线段PC的长度.23.(11分)如图,抛物线y=-x 2+bx+c 与直线221+=x y 交于C 、D 两点,其中点C 在y 轴上,点D 的坐标为)273(,. 点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD于点F.(1)求抛物线的解析式;(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由.....相应的点P 的坐标.(第23题)备用图。
初三数学二模试题及答案
初三数学二模试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(3循环)B. 根号2C. 22/7D. 3.1416答案:B2. 一个二次函数的图像开口向上,且经过点(1,0),则下列哪个选项是正确的?A. 函数的顶点在x轴上方B. 函数的顶点在x轴下方C. 函数的顶点在x轴上D. 无法确定答案:A3. 如果一个等腰三角形的底边长为6,腰长为5,那么它的高是多少?A. 4B. 3C. 2根号7D. 根号7答案:C4. 下列哪个选项是不等式2x-3>5的解集?A. x>4B. x<4C. x>1D. x<1答案:A5. 一个圆的半径为3,那么它的面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C6. 一个数列的前三项为2,4,8,那么它的第四项是多少?A. 16B. 32C. 64D. 128答案:B7. 一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是多少?A. 5B. 7C. 根号7D. 根号13答案:A8. 下列哪个选项是方程x^2-5x+6=0的解?A. 2和3B. 1和6C. 2和-3D. -2和-3答案:A9. 一个正方体的体积为27立方厘米,那么它的棱长是多少?A. 3厘米B. 6厘米C. 9厘米D. 27厘米答案:A10. 下列哪个选项是函数y=x^2-4x+4的最小值?A. 0B. 4C. -4D. 无法确定答案:A二、填空题(每题3分,共15分)11. 一个数的相反数是-5,那么这个数是______。
答案:512. 一个数的绝对值是8,那么这个数可以是______或______。
答案:8或-813. 一个二次函数的图像与x轴交于两点,这两点的横坐标之和为-3,那么这个二次函数的对称轴是______。
答案:x=-3/214. 一个等差数列的前三项为3,7,11,那么它的第五项是______。
初三数学二模试卷(含详细答案)
初三二模数学试卷一.选择题(本大题共6题,每题4分,共24分)1.下列实数中,是无理数的是()A. 3.14B. 1C.、3D. , 92.下列二次根式中,与ja是同类二次根式的是()A. 3aB. \ 2a2C. a3D. . a43.函数y kx 1 (常数k 0)的图像不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.某幢楼10户家庭某月的用电量如下表所示:用电量(度)140 160 180 200户数 1 3 4 2那么这10户家庭该月用电量的众数和中位数分别是()A. 180、180B.180、160C.160、180D.160、1605.已知两圆的半径分别为1和5,圆心距为4,那么两圆的位置关系是()A.外离B.外切C.相交D.内切6.如图,已知^ ABC和^ DEF,点E在BC边上,点A在DE边上,边EF和边AC交于点G ,如果AE EC , AEG B.那么添加下列一个条件后,仍无法判定△ DEF与^ ABC一定相似的是( )AB DE_ AD G.BC EF . AE GAG EG ED E.AC EF . EF [二.填空题一,, 27.计算:a a ____________2 _8.因式分解:x 2x ___________9.方程比2x x的根是 ______________3x ...... . 10.函数f(x) 的7E 乂域是—x 211.如果关于x的方程x22x m r 1 rr12.计算:2a 3(a b) ___________E0有两个实数根,那么m的取值范围是___________ 4个单位后,所得新抛物线的顶点坐标是___________(1)这个反比例函数的解析式; (2)四边形OABC 的面积.14 . 一个不透明的袋子里装有 3个白球、1个红球,这些球除颜色外无其他的差异,从袋子中随机摸出1个球,恰好是白球的概率是15 .正五边形的中心角是16 .如图,圆弧形桥拱的跨度 AB 16米,拱高CD17 .如果一个三角形一边上的中线的长与另两边中点的连线段的长相等,我们称这个三角形为“等线三角形",这条边称为“等线边”.解答题2 — 形OABC 是平行四边形, OC 2J5, sin AOC -V 5 5 C 以及边AB 的中点D.求:19. 计算:|2 ,一 2|8320. 解不等式组: 3(2x 3x 121) 4x 5 CL21. 如图,在平面直角坐标系xOy 中,点A 在x 轴正半轴上,点 B 、C 在第一象限,且四边4米,那么圆弧形桥拱所在圆的半径在等线三角形ABC 中,AB 为等线边,且AB 3,AC 2 ,那么 BC18.如图,矩形ABCD 中,ABE 、F 分别在边 AD 、BC 上,且点B 、F关于过点E 的直线对称,如果以CD 为直径的圆与EF 相切,那么 AE.... k .............,反比例函数y -的图像经过点x22.某文具店有一种练习簿出售,每本的成本价为 2元,在销售的过程中价格有调整,按原价格每本 8.25元,卖出36本,后经两次涨价,按第二次涨价后的价格卖出了25本.发现按原价格和第二次涨价后的价格销售,分别获得的销售利润恰好相等.(1)求第二次涨价后每本练习簿的价格;(2)在两次涨价过程中,假设每本练习簿平均获得利润的增长率完全相同,求这个增长率 ^23 .如图,在直角梯形 ABCD 中,AD//BC, C 90 , BC CD ,点E 、F 分别在边BC 、CD 上, 且BE DF AD ,联结DE ,联结AF 、BF 分别与DE 交于点G 、P.(1)求证:AB BF ;(2)如果 BE 2EC,求证:DG GE .24 .已知抛物线y ax 2bx 3经过点A(7, 3),与x 轴正半轴交于 B(m,0)、C(6m,0)两点,与y 轴交于点D.(1)求m 的值;,川(2)求这条抛物线的表达式;(注: 利润增长率=(后一次的利润-前一次的利润)一 前一次的利润100% )(3)点P在抛物线上,点Q在x轴上,当PQD 90 且PQ 2DQ,求P、Q 坐标.25.如图所示,MON 45 ,点P是MON内一点,过点P作PA OM于点A、PB ON于点B,且PB 2& ,取OP的中点C,联结AC并延长,交OB于点D.(1)求证:ADB OPB;(2)设PA x , OD y ,求y关于x的函数解析式;(3)分别联结AB、BC,当4ABD与4CPB相似时,求PA的长.2019年第二学期初三教学质量检测数学参考答案及评分说明一、选择题:(本大题共6题,每题4分,,茜分24分)1. C; 2, C; 3. B; 4, A; 5. D; 6. C.二、填空题:(本大题共12题,每题4分,满分48分)3 7 1 7. a;8.xx2;9. x 4; 10. x 2; 11. m 1 ; 12.—a—b;3 3313. 1,2 ;14. —;15. 72 ;16. 10; 17,中'5 ;18. 3.4三、解答题:(本大题共7题,,茜分78分)19.(本题满分10分) 1 . .解:原式=2 J2 2 1<2 1 (2)4=3 . ................................................................. 2 分420.(本题满分10分)解:由①得:6x 3 4x 5 . ............................................. 2分2x 2. ............................................. 2 分x 1 . ............................................. 1 分由②得:3x 2 x . ............................................... 2分2x 2. ............................................... 1 分x 1 . .............................................. 1 分・•・原不等式组的解集是1 x 1 . ................................... 2分21.(本题满分10分,每小题各5分)解:(1)过点C作CH,OA于点H. .......................................... 1分在ACOH 中,/ CHO= 90° , /.sinZ AOC= CH 275 • ........................ 1 分OC 5••• OC 2而,CH= 4. ................................................ 1 分在ACOH 中,/ CHO= 90° , •. OH vOC 2CH 2 2 .•・•点C在第一象限,,点C的坐标是(2, 4). ........................... 1分k (8)••.反比例函数y —的图像过点C (2, 4) ,k = 8.即y - . .................. 1分x x(2)过点D作DG ±OA于点G. ............................................. 1分••・四边形ABCD是平行四边形,,AB=OC=2J5. ............................... 1分••,点D是边AB的中点,,AD=<5. ....................................... 1分在4DAG 中,Z DGA= 90 ° , ,sin/DAG =sin / AOC= _DG_ 2Jg.DA 5••.DG=2, AG=1 . .•・设点D 的坐标为(a, 2).••.反比例函数y '的图像过点D (a, 2), a = 4.即OG=4 . ............ 1分x••.OA=OG —AG=3.,四边形OABC的面积为12. .............................. 1分22.(本题满分10分,其中第(1)小题4分,第(2)小题6分)解:(1)设第二次涨价后每本练习簿的价格为x 元. ............................. 1分由题意得:8.25 2 36 x 2 25. ................................... 2分解得:x 11 .答:第二次涨价后每本练习簿的价格为11元. .......................... 1分(2)设每本练习簿平均获得利润的增长率为 y. ............................ 1分2 由题意得:8.25 2 1 y 11 2. .......... 2分解得:y 0.2或y 2.2 (不合题意,舍去). ............................ 2分 答:每本练习簿平均获彳#利润的增长率为20%. ......................... 1分23.(本题满分12分,每小题各6分)证明:(1) ,「AD//BC, AD=BE,,四边形 ABED 是平行四边形. ..................... 1分• . AB=DE . ........................................................... 1 分 ••• BE=DF , BC=CD,CE=CF. .............................................. 1 分又・. / BCF= / DCE= 90o, BC=CD. /.A BCF^A DCE . .......................... 2 分DE=BF. ............................................................. 1 分 AB=BF.(2)延长AF 与BC 延长线交于点 H. .......................................... 1分••• BE=2CE, BE=DF=AD , CE=CF,DF =2CF , AD= 2CE. .................................................. 1 分AD= 2CE=2CH .又「 EH=CE+CH. AD=EH . .................................................. 1 分DG=GE .24.(本题满分12分,其中第(1)小题3分,第(2)小题4分,第(3)小题5分)解:(1)抛物线y ax 2bx 3与y 轴的交点D (0,3).••• AD //BC,AD DF CH CF••• AD // BC,DG AD GE EH•••抛物线经过点 A (7,3), •♦・抛物线的对称轴为直线 x - . ............... 1分2m 6m工.解得m 1. ..................................................... 1分2 2(2)由 m 1得 B (1, 0).将A (7,3)、B (1, 0)代入抛物线解析式得:49a 7b 33,........ 2分a b 3 0.1a5, 解得: 2 ......................................... b 7.2.......... 1 c 7这条抛物线的表达式为: y -x 27x 3. ................................2 2(3)①当点Q 在原点时,抛物线与 x 轴的交点(6,0)即为点P,••• P (6,0) , Q (0,0) . ...................................... 1 分②当点Q 不在原点时,过点 P 作PH x 轴于点H . • : DOQ QHP 90 , DQO QPH ,• .△ DOQ st QHP . ................................................ 1 分QH 2OD 6, PH 2OQ .由题意,设Q (k,0),那么P(6 k, 2k).1 2 7 c• .•点P(6 k, 2k)在抛物线y -x -x 3上,2 21 /2 7- 6 k)2(6 k) 3 2k 2 2解得k 0 , k 21 . ........................................ 1分当k 0时,点Q 与点O 重合,舍去.••• P (5,2) , Q ( 1,0) . .......................................... 1 分 ••• P (6,0), Q (0,0)或 P (5,2) , Q ( 1,0).25.(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4分)(1)证明:记 COA• •• PA OM , C 是 OP 的中点,,AC OC PC . ......................... 1 分PQD 90 且 PQ=2DQ.PQ=2DQ,ODQH OQ DQ PHQP• •• COA CAO . .................................................... 1 分 又.• MON 45 ,ADB AOD CAO 45o. .................................................................................. 1 分POB MON COA 45o . .................................................................................. 1 分又• PB ON ,• ♦・在△ POB 中,/ PBO=90° , OPB 90oPOB 450. ..................1 分ADB OPB .(2)解:延长 AP,交ON 于点E,过点A 作AF ON 于点F. ......................... 1分••• PA OM , / MON= 45° , PB ON , ・ ./ AEO= 45即^ AOE 、△ PBE 均为等腰直角三角形.(3) ••• PB ON , C 是 OP 的中点,・•. CB CP .CPB CBP ,即^ CBP 为等腰三角形.又ABD 与^ CBP 相似,且 ADB CPB .••• ABD ADB 或 DAB ADB.即 AB AD 或 AB BD . ......................................... 1 分CA CO CP CB , ACP 2 COA , BCP 2 BOC . ••• ACB 2 AOB 90 .又.. CA CB, •. DAB 45 . ....................................... 1 分, e力1800 450c①如果 AB AD ,那么 ADB ABD ------------------- 67.5°.2OPB 67.5o . AOP BOP 22.5o.又「 PA OM 于点A 、PB ON 于点B, PA PB 2<2 . .................... 1分 ② 如果BA BD ,那么 ABD 90o.PBD 90,,点A 在直线PB 上.又 PA=x, PB=2>/2 ,PE=4, AO=AE= x 4 . ...........................•.OE=^/2x 4在.2 2 • .OF=EF=AF =—x 2短,OB= 72x 2J2, DF=——x 2<22 2ADB OPB , cot ADB cot OPB .DF PBAF OB二x 2 2 y22x 2 5 22 2 2x 2 2.2x 2 4.2x y --2x 41分1分1分1分11 / 又「 PA OM 于点A, ••・点P 与点A 重合.而点P 是 MON 内一点,,点P 与点A 不重合.此情况不成立. .............. 1分综上所述,当^ ABD 与△ CBP 相似时,PA 2/2 . 参考答案.填空题三.简答题3 . .19. ―; 20. 1 x 1 ;423.略;1 2 7… , 一 -x 2 -x 3; (3) P(6,0)、Q(0,0)或 P(5,2)、Q( 1,0); 2 237. a 8. x(x 2) ” . 仆 7rir 11. m 1 12. a b3 3 9. x10. x 13.(1,2) 14. 15. 72 16. 10 17. 518. 3 25. (1) 略; (2) 2x 2 4.2x2x 4 ⑶4.一.选择题1. C2. C3. B4. A5. D6. C 8 21. (1) y - ; (2) 12; 22. (1) 11; (2) 20%; 24. (1) m 1 ; (2) y。
初三数学二模试卷答案
一、选择题(每题4分,共40分)1. 下列选项中,不是一元二次方程的是()A. x^2 + 2x + 1 = 0B. x^2 - 4x + 4 = 0C. x^2 + 2x - 3 = 0D. x^2 - 3x + 2 = 0答案:C解析:一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为常数,且a≠0。
C选项中,a=0,不符合一元二次方程的定义。
2. 已知函数f(x) = x^2 - 4x + 4,则f(2)的值为()A. 0B. 2C. 4D. 8答案:A解析:将x=2代入函数f(x) = x^2 - 4x + 4中,得到f(2) = 2^2 - 42 + 4 = 0。
3. 下列不等式中,正确的是()A. -3 < -2B. -3 > -2C. -3 ≤ -2D. -3 ≥ -2答案:A解析:在不等式中,负数越小,其值越大。
因此,-3比-2小,故-3 < -2。
4. 已知三角形ABC中,∠A = 90°,∠B = 45°,则∠C的度数为()A. 45°B. 90°C. 135°D. 180°答案:C解析:三角形内角和为180°,∠A = 90°,∠B = 45°,则∠C = 180° - 90° - 45° = 135°。
5. 已知等腰三角形ABC中,AB = AC,AD为高,则∠ADB的度数为()A. 45°B. 60°C. 90°D. 120°答案:C解析:在等腰三角形中,底角相等,即∠BAD = ∠CAD。
又因为AD为高,所以∠ADB = ∠ADC。
在三角形ADC中,∠ADC = 90°,所以∠ADB = 90°。
二、填空题(每题5分,共20分)6. 已知方程x^2 - 5x + 6 = 0,则该方程的解为x1 = ,x2 = 。
初三数学二模试卷
一、选择题(每题4分,共20分)1. 下列各数中,无理数是()A. √4B. 0.333…C. √2D. 3/42. 已知a=5,b=3,则a²+b²的值是()A. 16B. 14C. 18D. 263. 下列方程中,解为整数的是()A. 2x+1=7B. 3x-5=11C. 4x+3=10D. 5x-7=94. 在等腰三角形ABC中,AB=AC,若∠B=40°,则∠C的度数是()A. 40°B. 50°C. 60°D. 70°5. 下列函数中,y是x的函数的是()A. y=√x²+1B. y=|x|C. y=√x²-1D. y=±√x²二、填空题(每题5分,共25分)6. 已知x²-6x+9=0,则x的值为______。
7. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标为______。
8. 下列图形中,是轴对称图形的是______。
9. 若a、b是方程2x²-3x+1=0的两个根,则a+b的值为______。
10. 已知函数y=2x-3,当x=4时,y的值为______。
三、解答题(共55分)11. (15分)解下列方程组:\[\begin{cases}2x+y=7 \\x-3y=1\end{cases}\]12. (10分)已知在△ABC中,∠A=30°,∠B=45°,∠C=105°,求△ABC的面积。
13. (10分)已知函数y=-2x²+3x+1,求函数的顶点坐标。
14. (10分)在平面直角坐标系中,点A(-2,3),点B(4,5),求直线AB的斜率。
15. (10分)已知数列{an}中,a₁=1,a₂=3,且an+1=2an-1,求第n项an的通项公式。
四、附加题(共10分)16. (5分)已知函数y=3x²-2x+1,求函数的图像与x轴的交点坐标。
初三数学模拟试题(二)含答案
CFGD EO 初三数学模拟试题(二)一、 选择题(每小题3分,共30分) 1.】A .±B. C .3 D .2. 下列各式运算正确是【 】A .2a 2•3a 2=5a 2B .(-a 2)3=a 6 C.= D . ()221001.--⨯ =13.某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查,白菜价格的平均值均为3.50元,方差分别为S 甲2=18.3,S 乙2=17.4,S 丙2=20.1,S 丁2=12.5.其中最稳定的城市是【 】A .甲B .乙C .丙D .丁4. 如图,已知//AB ED ,65ECF ∠=,则BAC ∠的度数为( )(A )115 (B )65 (C )60 (D )25 5.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF 等于【 】A .80° B. 50° C. 40° D. 20°第4题图第5题图 第6题图6.如图,5个圆的圆心在同一条直线上, 且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为【 】A . 48πB . 24πC . 12πD . 6π 7.抛物线26y x =-可以看作是由抛物线265y x =-+按下列哪种变换得到【 】A . 向上平移5个单位B . 向下平移5个单位C . 向左平移5个单位D . 向右平移5个单位8.已知两圆的半径分别是4和6,圆心距为7,则这两圆的位置关系是( ) (A )相交 (B )外切 (C )外离 (D )内含 9. 如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为弧ABO 上的一点(不与O 、A 两点重合),则cos ∠C 的值是【 】A .34 B .35 C .43 D .4510.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为【】A.64B.49C.36D.25二、填空题:(每小题3分,共15分)11.方程x3-2x=0的解为.12.若,x y为实数,且20x+=,则2010()x y+的值为___________.13.若反比例函数y=kx(k<0)的函数图象过点P(2,m)、Q(1,n),则m与n的大小关系是:m n.14.数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是________题.15.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为.三、解答题(第1小题7分,第2小题8分,共15分)16.解答下列各题:(11223sin30 --°(2)先化简,再求值:2222()()y x y x x y x yx y x y--++÷-+,其中x=2,y=1-;17.如图,小明在大楼30米高的窗口P 处进行观测(即PH =30米),测得山坡上A 处的俯角为15°,山脚B 处得俯角为60°,已知该山坡的坡度i (即tan ∠ABC )为1:3,点P 、H 、B 、C 、A 在同一个平面上.点H 、B 、C 在同一条直线上,且PH ⊥HC .求A 、B 两点间的距离(结果精确到0.1米,参考数据:3≈1.732).18.如图,已知正比例函数y = ax (a ≠0)的图象与反比例函致xky(k ≠0)的图象的一个交点为A (-1,2-k 2),另—个交点为B ,且A 、B 关于原点O 对称,D 为OB 的中点,过点D 的线段OB 的垂直平分线与x 轴、y 轴分别交于C 、E .(1)写出反比例函数和正比例函数的解析式; (2)试计算△COE 的面积是△ODE 面积的多少倍.19.一不透明纸箱中装有形状大小质地等完全相同的4个小球,分别标有数字1,2,3,4.(1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.20. 如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G。
初三数学模拟考试试卷二
一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √9B. 2.25C. √16D. √22. 已知a、b是方程x^2 - 3x + 2 = 0的两个根,则a+b的值为()A. 1B. 2C. 3D. 43. 若等差数列{an}的公差为d,且a1=2,a4=8,则d的值为()A. 2B. 3C. 4D. 54. 在直角坐标系中,点A(3,4)关于直线y=x的对称点为()A.(4,3)B.(-4,-3)C.(-3,-4)D.(3,-4)5. 若一个等比数列的前三项分别是2,6,18,则该数列的公比为()A. 2B. 3C. 6D. 96. 已知函数f(x) = 3x^2 - 4x + 1,则f(-1)的值为()A. 0B. 1C. 2D. 37. 在等腰三角形ABC中,若AB=AC,且∠BAC=70°,则∠ABC的度数为()A. 70°B. 110°C. 60°D. 50°8. 已知正方体的棱长为a,则其对角线的长度为()A. aB. √2aC. 2aD. √3a9. 若直线l的方程为y = kx + b,且k^2 + 1 = 0,则直线l的斜率k为()A. 1B. -1C. 0D. 不存在10. 已知函数g(x) = x^3 - 6x^2 + 9x - 1,则g(2)的值为()A. 1B. 3C. 5D. 7二、填空题(每题3分,共30分)11. 若a、b、c是等差数列的三项,且a+b+c=12,a+b=8,则c的值为______。
12. 在直角坐标系中,点P(2,-3)到原点O的距离为______。
13. 已知函数h(x) = x^2 - 4x + 4,则h(2)的值为______。
14. 在等边三角形ABC中,若AB=AC=BC,则∠BAC的度数为______。
15. 若等比数列{bn}的首项b1=3,公比q=2,则b3的值为______。
初三模拟二数学试卷
1. 已知方程2x+3=7,解得x的值为()A. 2B. 3C. 4D. 52. 如果a=3,b=-2,那么a²-b²的值为()A. 7B. -7C. 5D. -53. 下列各组数中,能构成等腰三角形的三边长是()A. 2,3,3B. 3,4,5C. 5,5,12D. 6,8,104. 已知直角三角形的两条直角边分别为3cm和4cm,那么这个三角形的斜边长是()A. 5cmB. 6cmC. 7cmD. 8cm5. 下列函数中,y随x的增大而减小的是()A. y=x²B. y=2xC. y=-xD. y=3x6. 下列各组数中,能构成等比数列的是()A. 2,4,8,16B. 1,2,4,8C. 3,6,12,24D. 2,4,8,16,327. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 平行四边形8. 已知一元二次方程x²-5x+6=0,那么它的两个根分别为()A. 2和3B. 1和4C. 2和4D. 1和39. 下列各式中,正确的是()A. √9=3B. √16=4C. √25=5D. √36=610. 下列各组数中,能构成勾股数的是()A. 3,4,5B. 5,12,13C. 6,8,10D. 7,24,25二、填空题(本大题共10小题,每小题3分,共30分)11. 若x+3=0,则x=______。
12. 已知a=5,b=-3,那么a²+b²的值为______。
13. 在直角三角形中,如果一条直角边长为3cm,斜边长为5cm,那么另一条直角边长为______cm。
14. 函数y=2x+1中,当x=2时,y的值为______。
15. 在等比数列中,如果首项为2,公比为3,那么第5项为______。
16. 下列各式中,正确的是______。
A. √9=3B. √16=4C. √25=5D. √36=617. 下列各式中,正确的是______。
初三数学二模考试试卷
1. 已知a、b、c是三角形的三边,且满足a+b+c=12,a=3,则c的取值范围是()A. 3<c<9B. 3<c<12C. 3<c<6D. 3<c<82. 在下列各数中,有最小正整数解的是()A. 2x+1=3B. 3x-2=5C. 4x+3=7D. 5x-4=93. 已知函数y=2x-3,当x=2时,y的值为()A. 1B. 3C. 5D. 74. 下列图形中,对称轴条数最多的是()A. 正方形B. 等腰三角形C. 等边三角形D. 梯形5. 在下列各式中,正确的是()A. (a+b)²=a²+b²B. (a-b)²=a²-b²C. (a+b)²=a²+2ab+b²D. (a-b)²=a²-2ab+b²6. 已知x²+5x+6=0,则x的值为()A. -2或-3B. 2或3C. -2或2D. -3或37. 在下列各数中,有最大整数解的是()A. 2x+1=3B. 3x-2=5C. 4x+3=7D. 5x-4=98. 已知函数y=3x-2,当x=4时,y的值为()A. 10B. 12C. 14D. 169. 下列图形中,中心对称图形是()A. 正方形B. 等腰三角形C. 等边三角形D. 梯形10. 在下列各式中,正确的是()A. (a+b)²=a²+b²B. (a-b)²=a²-b²C. (a+b)²=a²+2ab+b²D. (a-b)²=a²-2ab+b²二、填空题(每题5分,共50分)11. 若(a+2)²=1,则a的值为______。
12. 若a²=9,则a的值为______。
13. 若a²+b²=25,则(a+b)²的值为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学模拟考试试卷(二)
数学试卷
题号 一 二 三 四 五 总分 总分人 得分
参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为(—
b 2a ,4a
c —b 24a
),对称轴公式为x =—b 2a
.
一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案中,其中只有一个是正确的,请将正确答案的代号填表在题后的括号中.
1.3的倒数是()
A .13
B .— 1
3C .3 D .—3
2.计算2x 3·x 2的结果是()
A .2x
B .2x 5
C .2x 6
D .x 5 3.不等式组⎩
⎨
⎧>≤-62,
31x x 的解集为()
A .x >3
B .x ≤4
C .3<x <4
D .3<x ≤4
4.如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥BC ,若∠C =50°,∠BDE =60°,则∠CDB 的度数等于()
A .70°
B .100°
C .110°
D .120° 5.下列调查中,适宜采用全面调查(普查)方式的是()
A .对全国中学生心理健康现状的调查
B .对冷饮市场上冰淇淋质量情况的调查
C .对我市市民实施低碳生活情况的调查
D .以我国首架大型民用直升机各零部件的检查
6.如图,△ABC 是⊙O 的内接三角形,若∠ABC =70°,则∠AOC 的度数等于() A .140° B .130° C .120° D .110° 7.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是()
8.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图
②,……,则第10次旋转后得到的图形与图①~④中相同的是()
A.图①B.图②C.图③D.图④
9.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。
下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是()
10.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB= 5 .下列结论:①△APD≌△AEB;②点B到直线AE的距离为 2 ;③EB⊥ED;④S△APD+S△APB=1+ 6 ;⑤S正方形ABCD=4+ 6 .其中正确结论的序号是()
A.①③④B.①②⑤C.③④⑤D.①③⑤
二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将答案填在题后的横线上.
11.上海世界博览会自2010年5月1日开幕以来,截止到5月18日,累计参观人数约为324万人,将324万用科学记数法表示为_____________万.
12.“情系玉树大爱无疆” .在为青海玉树的捐款活动中,某小组7位同学的捐款数额(元)分别是:5,20,5,50,10,5,10. 则这组数据的中位数是_____________.
13.已知△ABC与△DEF相似且对应中线的比为2:3,则△ABC与△DEF的周长比为_____________.
14.已知⊙O的半径为3cm,圆心O到直线l的距离是4cm,则直线l与⊙O的位置关系是
_____________.
15.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字
不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点P 的纵坐标,则点P 落在抛物线y =-x 2+2x +5与x 轴所围成的区域内(不含边界)的概率是_____________.
16.含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克
现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克
三、解答题:(本大题共4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.
17.计算:(-1)2010-| -7 |+ 9 ×( 5 -π)0+(1 5
)-
1
18.解方程:x x -1 +1
x =1
19.尺规作图:请在原图上作一个∠AOC ,使其是已知∠AOB 的 3
2
倍(要求:写出已知、
求作,保留作图痕迹,在所作图中标上必有要的字母,不写作法和结论)
已知: 求作:
20.已知:如图,在Rt △ABC 中,∠C =90°,AC = 3 .点D 为BC 边上一点,且BD =
2AD ,∠AD C =60°求△ABC 的周长(结果保留根号)
四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.
21.先化简,再求值:(x 2+4x -4)÷x 2-4 x 2+2x ,其中x =-1
22.已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (-2,0),与反比例函数在第一象限内的图象的交于点B (2,n ),连结BO ,若S △AOB =4. (1)求该反比例函数的解析式和直线AB 的解析式; (2)若直线AB 与y 轴的交点为C ,求△OCB 的面积.
23.在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如下两幅不完整的统计图:
(1)求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;(2)如果发了3条箴的同学中有两位同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
24.已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.
(1)若∠MFC=120°,求证:AM=2MB;
(2)求证:∠MPB=90°- 1
2 ∠FCM.
五、解答题:(本大题共2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.
25.今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,
(元/千克)从5月第1
周的2.8元/千克下降至第2周的2.4元/千克,且y 与周数x 的变化情况满足二次函数
y =- 1
20 x 2+bx +c .
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写
出4月份y 与x 的函数关系式,并求出5月份y 与x 的函数关系式;
(2)若4月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m = 1
4 x +1.2,
5月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m = 1
5
x +2.试问
4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少? (3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,
此种蔬菜的可供销量将在第2周销量的基础上每周减少a %,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8 a %.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a 的整数值.
(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)
26.已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C =120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.
(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;
(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;
(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.。