八年级数学等腰三角形2
等腰三角形(2)八年级数学下册(北师大版)
随堂练习
3.若等腰三角形两腰上的高相交所成的钝角为100°, 则顶角的度数为 ( B )
A.50° B.80 °
C.100 °
D.130 °
4.在△ABC中,AB=AC,BD、CE分别为∠ABC、
∠ACB的平分线,BD=5,则CE= 5
.
随堂练习
5.如图,已知△ABC 是等边三角形,D,E,F 分别是 三边AB,AC,BC 上的点,且DE⊥AC,EF⊥BC, DF⊥AB,计算△DEF 各个内角的度数.
A
B
C
探究新知
类比拓展: (1)等边三角形是轴对称图形吗?如果是,它有几条 对称轴? (2)等边三角形还有哪些特征?
探究新知
归纳总结 等边三角形的性质: 1.等边三角形是轴对称图形。 2.等边三角形的各角都相等,都等于60° 3.等边三角形每个角的平分线和这个角的对边上的中线、 高线重合(“三线合一”),它们所在的直线都是等边 三角形的对称轴。等边三角形共有三条对称轴。
随堂练习
解:因为△ABC 是等边三角形, 所以∠A=∠B=∠C=60°. 因为DE⊥AC,EF⊥BC,DF⊥AB, 所以∠AED=∠EFC=∠FDB=90°. 所以∠ADE=90°-∠A=90°-60°=30°. 所以∠EDF=180°-30°-90°=60°. 同理可得∠DEF=∠EFD=60°. 即△DEF 各个内角的度数都是60°.
等边三角 形的性质
等边三角形的三个内角都相等,并且 每个角都等于60°
谢谢~
情境导入
在七下我们已经知道了“三边相等的三角形是等边三角 形”,生活中有很多等边三角形,如交通图标、台球室的三角 架等,它们都是等边三角形.
思考:在上一节课我们证明等腰三角形的两底角相等,那等边三 角形的各角之间有什么关系呢?等腰三角形中有哪些相等的线段?
2022八年级数学上册 第十三章 轴对称13.3 等腰三角形 1等腰三角形第2课时 等腰三角形的判定
13.3 等腰三角形
13.3.1 等腰三角形 第2课时 等腰三角形的判定
知识点一 等角对等边
1.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为( D )
A.2
B.3
C.4
D.5
2.如图,已知OC平分∠AOB,CD∥OB,若OD=8 cm,则CD等于( A )
A.8 cm B.4 cm
C.15 cm
D.20 cm
3.(课本P79练习T1改编)如图,在△ABC中,AB=AC,∠A=36°,BD平 分∠ABC交AC于点D,则图中等腰三角形有___△__A_B_C_,__△__A_B_D_,__△__B_D_C___.
4.如图,在△ABC中,BD⊥AC,∠A=50°,∠CBD=25°,若AC=3 cm,则AB=___3_c_m___.
C.8个
D.9个
考查角度一 等腰三角形的判定 11.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O, 给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC. (1)上述三个条件中,由哪两个条件可以判定△ABC是等腰 三角形?(用序号写出所有成立的情形) (2)请选择(1)中的一种情形,写出证明过程.
9.在如图所示的三角形中,若AB=AC,则能被一条直线分成①②③
B.①②④
C.②③④
D.①③④
10.在如图所示的正方形网格中,网格线的交点称为格点.已知点A,B是两
格点,如果点C也是图中的格点,且使得△ABC为等腰三角形,那么这样
的点C有( C )
A.6个
B.7个
5.如图,在△ABC中,AB=AC,D是AB上一点,过点D作DE⊥BC于点E, 并与CA的延长线交于点F,试判断△ADF的形状,并说明理由. 解:△ADF是等腰三角形.理由如下:∵AB=AC, ∴∠B=∠C.∵DE⊥BC,∴∠DEB=∠DEC=90°, ∴∠BDE+∠B=90°,∠F+∠C=90°, ∴∠BDE=∠F.∵∠BDE=∠ADF, ∴∠ADF=∠F,∴AF=AD, ∴△ADF是等腰三角形.
八年级下册数学作业-----等腰三角形(2)
八年级下册数学作业-----等腰三角形(2)姓名:___________班级:___________考号:___________一、单选题1.等腰三角形的顶角是70°,则腰上的高与底边所夹的角为( )A .55°B .35°C .40°D .以上都不对 2.若一个等腰三角形的两边长分别是2和5,则该等腰三角形的周长是( ) A .9 B .12 C .13 D .12或9 3.如图,在△ABC 中,AB=AC ,D 为BC 中点,∠BAD=35°,则∠C 的度数为( )A .35°B .45°C .55°D .60° 4.若等边三角形的边长为4cm ,则这条边上的高为( )A .2cmB .3cmC .1cmD .23cm 5.如图,点A 的坐标是()2,2,若点P 在x 轴上,且APO ∆是等腰三角形,则点P 的坐标不可能是( )A .()1,0B .()2,0C .()22,0-D .()4,0 6.如图,△ABC 中,AC =AD =BD ,∠DAC =40°,则∠B 的度数是( )A .35°B .30°C .25°D .20° 7.△ABC 中,AB =AC ,∠A =∠C ,则∠B =( )A .36°B .45°C .60°D .90°8.如图,在△ABC 中,∠C =90°,CA =CB , AG 平分∠BAC 交BC 于H ,BG ⊥AG ,垂足为G .若AH =8,则BG 的长为( )A .3B .5C .8D .4二、填空题 9.如图,ABC ∆是边长为8的等边三角形,D 为AC 的中点,延长BC 到E ,使CE CD =,DF BC ⊥于点F ,求线段BF 的长,BF =______________.10.如图,已知等边△ABC 中,BD=CE,AD 与BE 交于点P ,则∠APE=________.11.等腰三角形的底角是顶角的2倍,则顶角的度数是_______°.12.如图,在△ABC 中,AB=AC ,BD 是△ABC 的一条角平分线,若∠A =36°,则∠BDC 的度数为_________.13.如图,在ABC V 中,AB AC =,点D 在AC 上,且BD BC AD ==,则A ∠=_____度.14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.三、解答题15.已知:如图,ABC ∆中,AB AC =,中线BD 和CE 交于点O .(1)求证:OBC ∆是等腰三角形;(2连接OA ,试判断直线OA 与线段BC 的关系,并说明理由.16.如图,△ABC 中,∠ABC 与∠ACB 的角平分线交于点F ,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E .请猜想线段:DB 、DE 、EC 之间的数量关系,并说明理由.17.如图,在△ABC 中,CA=CB ,点D 在BC 上,且AB=AD=DC ,求∠C 的度数.18.如图,ABC ∆和CDE ∆ 都是等边三角形,连接AD 、BE ,AD 与BE 相交于点F .(1)求证AD BE =;(2)BFA ∠= o .参考答案1.B【解析】【分析】结合题意画出图形,可先求得两底角的大小,在再结合直角三角形两锐角互余可求得答案.【详解】解:如图:△ABC中,AB=AC,BD是边AC上的高.∵∠A=70°,且AB=AC,∴∠ABC=∠C=(180°﹣70°)÷2=55°;在Rt△BDC中,∠BDC=90°,∠C=55°;∴∠DBC=90°﹣55°=35°.故选:B.【点睛】本题主要考查等腰三角形的性质,掌握等腰三角形两底角相等和三角形内角和定理是解题的关键.2.B【解析】【分析】根据等腰三角形的定义,即可得到答案.【详解】∵一个等腰三角形的两边长分别是2和5,∴等腰三角形的三边长分别为:5,5,2,即:该等腰三角形的周长是12.故选B.【点睛】本题主要考查等腰三角形的定义以及三角形三边之间的关系,掌握等腰三角形的定义,是解3.C【解析】试题分析:根据等腰三角形的三线合一的性质可直接得到AD平分∠BAC,AD⊥BC,因此∠DAC=∠BAD=35°,∠ADC=90°,从而可求得∠C=55°.故选C考点:等腰三角形三线合一4.D【解析】【分析】作出等边三角形一边上的高,利用等腰三角形的性质以及勾股定理可得三角形一边上的高. 【详解】解:如图作AD⊥BC于点D.∵△ABC为等边三角形,∴BD=CD=2cm,∴AD=22224223-=-=(cm).AB BD故选:D.【点睛】本题考查了等边三角形的性质,利用等腰三角形“三线合一”的性质得出BD的长,再结合勾股定理求解是解决本题的突破点.5.A【解析】【分析】∆是等腰三角形时P点的位本题可先根据勾股定理求出OA的长,然后结合选项分析APO置,然后用排除法求解.解:点A的坐标是(2,2),根据勾股定理:则OA=当OA=OP=,且点P在点O左侧时,P点坐标为:()-,当OA=AP时,由对称性可知P点坐标为:()4,0,当OP=AP时,则P点坐标为:()2,0,∴点P的坐标不可能是()1,0故选:A.【点睛】此题主要考查了坐标与图形的性质,勾股定理,等腰三角形的判定,关键是根据等腰三角形的判定和性质,分情况讨论.6.A【解析】【分析】先根据等腰三角形的性质及三角形内角和定理求出∠ADC的度数,再根据等腰三角形的性质及三角形外角与内角的关系求出∠B的度数即可.【详解】∵△ABC中,AC=AD,∠DAC=40°,∴∠ADC=180402︒-︒=70°,∵AD=BD,∠ADC=∠B+∠BAD=70°,∴∠B=∠BAD=(702)°=35°.故选:A.【点睛】本题主要考查等腰三角形的性质,熟练运用等边对等角是解此题的关键.7.C【解析】【分析】首先∠A=∠B=∠C,再根据三角形内角和定理即可解决问题.【详解】∵AB=AC,∴∠B=∠C,∵∠A=∠C,∴∠A=∠B=∠C∵∠A+∠B+∠C=180°,∴3∠B=180°∴∠B=60°.故选:C.【点睛】本题考查等腰三角形的性质,等边三角形的判定和性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识.8.D【解析】【分析】如图,延长AC交BG的延长线于E,构建等腰△BAE、全等三角形△BEC和△AHC,利用等腰三角形的性质和全等三角形的对应边相等得到:BE=AH,所以BG=12AH=4.【详解】如图,延长AC交BG的延长线于E,∵△ABC中,∠C=90°,CA=CB,∴∠ABC=∠CAB=45°,∵AG平分∠BAC∴∠CAG=12∠BAC=22.5°,∵AG⊥BG,∴∠BGA=90°,∴∠GBA=90°-22.5°=67.5°,∴∠GBC=∠EBA-∠ABC=22.5°.∴∠GBC=∠CAH,∵CA=CB,∠ACB=∠BCE∴△ACH≌△BCE∴BE=AH∵AG平分∠BAC,AG⊥BG,∴BG=EG,即BG=12 BE,∴BG=12AH=12×8=4.故选:D.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰直角三角形的性质.9.6【解析】【分析】根据等边三角形的性质可得∠DBC=30°,∠DCB=60°,根据等腰三角形的性质及三角形外角的性质可得∠E=30°,可得BD=DE,根据等腰三角形的“三线合一”可得BF=12BE即可求解.【详解】∵ABC是边长为8的等边三角形,D为AC的中点∴∠DBC=12∠ABC=30°,∠DCB=60°,BC=8,CD=4∵CE=CD∴CE=4,∠E=∠CDE=30°∴∠DBC=∠E,BE=BC+CE=12 ∴BD=DE∴BF=12BE=6 故答案为:6【点睛】本题考查的是等边三角形的性质及等腰三角形的性质与判定,掌握图形的性质并能根据三角形的外角的性质求出∠E 的度数是关键.10.60°【解析】【分析】通过证△ABD ≌△BCE 得∠BAD =∠CBE ,然后运用三角形外角的性质求解.【详解】解:在等边△ABC 中,∵60AB BC ABD BCE BD CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,∴∠APE =∠BAD +∠ABP =∠ABP +∠CBE =∠ABD =60°.故答案为:60°. 【点睛】本题考查了等边三角形的性质,全等三角形的判定及性质,三角形外角的性质,解答时证明三角形全等是关键.11.36【解析】【分析】根据底角与顶角的倍数关系,可设顶角是x 度,则底角就是2x 度,根据三角形内角和定理,即可列出方程解决问题.【详解】解:顶角是x 度,则底角就是2x 度,根据三角形内角和定理可得:2x+2x+x=180,5x=180,x=36,故答案为:36°.【点睛】本题考查了三角形内角和定理和等腰三角形的性质的灵活应用.12.72°【解析】【分析】利用等腰三角形的性质和角平分线的定义以及三角形的外角的定义解答即可. 【详解】解:∵AB=AC,AB=AC∴∠ABC=∠C=12(180°-∠A)=72°又∵BD是△ABC的一条角平分线∴∠ABD=∠BDC=12∠ABC=36°∴∠BDC=∠A+∠ABD=72°【点睛】本题考查了等腰三角形的性质和角平分线的定义以及三角形的外角的定义,灵活应用三角形的外角的定义进行解题是解答本题的关键.13.36【解析】【分析】设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得答案.【详解】设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x ;∵x+2x+2x=180°,∴x=36°,∴∠A=36°,故答案为36.【点睛】本题考查了等腰三角形的性质,涉及了等边对等角、三角形外角的性质,三角形的内角和定理,通过三角形内角和定理列方程求解是正确解答本题的关键.14.10【解析】【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【详解】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形; ②当6为底边时,则腰长=(26-6)÷2=10,因为6-6<10<6+6,所以能构成三角形; 故腰长为10.故答案为:10.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.15.(1)证明见解析;(2)直线AO 垂直平分线段BC .【解析】【分析】(1)根据等边对等角得到A ABC CB =∠∠,再结合中线的定义得到CD BE =,由三角形全等的判定可以证明()BCD CBE SAS ∆≅∆,从而证明12∠=∠;(2)根据全等三角形的判定和性质得到OA 平BAC ∠,再根据等腰三角形的三线合一的性质得到直线AO 垂直平分线段BC .【详解】(1)证明:如图1所示:在ABC ∆中,=AB AC ,∴AABC CB=∠∠,又Q BD和CE是三角形的中线,∴D和E分别是边AC、AB的中点,∴CD BE=,在BCD∆和CBE∆中,BC CBBCD CBECD BE=⎧⎪∠=∠⎨⎪=⎩()BCD CBE SAS∴∆≅∆,12∠∠∴=,∴OBC∆是等腰三角形;(2)直线AO垂直平分线段BC,理由如下:如图2所示,连接AO并延长交BC于点F,OBC∆Q是等腰三角形,BO CO∴=,在AOB∆和AOC∆中AB ACAO AOBO CO=⎧⎪=⎨⎪=⎩()AOB AOC SSS∴∆≅∆,BAF CAF∴∠=∠,∴直线AO垂直平分线段BC(等腰三角形三线合一)故答案为:直线AO垂直平分线段BC.【点睛】(1)利用三角形全等的判定证明对应角相等,由角相等可以得出等腰三角形;∠,再由等腰三角(2)利用三角形全等的判定和性质,证明对应角相等,得到OA平BAC形三线合一即可得出结论.16.结论:DE=BD+EC.理由见解析.【解析】【分析】先根据角平分线的定义及平行线的性质证明△BDF和△CEF是等腰三角形,再由等腰三角形的性质得BD=DF,CE=EF,即可得到结论.【详解】解:结论:DE=BD+EC.理由:∵BF平分∠ABC,∴∠DBF=∠CBF,∵DE∥BC,∴∠CBF=∠DFB,∴∠DBF=∠DFB,∴BD=DF,同理FE=EC,∴DE=DF+EF=DB+EC.【点睛】本题考查了等腰三角形的判定,平行线的性质及角平分线的概念.根据角平分线的概念和平行线的性质证出等腰三角形是解决此题的关键.17.∠C 的度数是36°【解析】试题分析:设∠B=x°, 根据等腰三角形的性质可得∠CAB=∠B=x°,∠ADB=∠B=x°,∠C=∠CAD ,再根据三角形外角的性质可得∠C=12x°,在△ABC 中,根据三角形的内角和求出x 的值即可得∠C=36°.试题解析:设∠B=x°,∵CA=CB ,∴∠CAB=∠B=x°,∵AB=AD=DC ,∴∠ADB=∠B=x°,∠C=∠CAD ,∵∠ADB=∠C+∠CAD ,∴∠C=12x°, 在△ABC 中,x+x+12x=180, 解得:x=72,∴∠C= 12×72°=36°. 18.(1)证明见解析;(2)60.【解析】【分析】(1)利用SAS 定理证明ACD ∆≌BCE ∆,从而求解;(2)利用全等三角形的性质求得CBE CAD ∠=∠,然后根据三角形内角和求得∠BFA=180°-(∠BAF+∠ABF),根据等量代换求得∠BFA =180°-(∠BAC+∠ABC ),然后利用等边三角形的性质求解.【详解】解:(1)在ACD ∆和BCE ∆中AC BC ACD BCD EC DC =⎧⎪∠=∠⎨⎪=⎩∴ACD ∆≌BCE ∆(SAS )∴AD BE =(2)由ACD ∆≌BCE ∆得CBE CAD ∠=∠∴∠BFA=180°-(∠BAF+∠ABF)=180°-(∠BAC+∠CAD+∠ABF)=180°-(∠BAC+∠CBE+∠ABF )=180°-(∠BAC+∠ABC )∵△ABC 为等边三角形∴∠BAC=∠ABC=60°∴∠BFA=180°-(60°+60°)=60°故答案为:60【点睛】本题考查全等三角形的判定和性质,等边三角形的性质,比较基础,掌握SAS 判定定理及相关性质是本题的解题关键。
八年级数学等腰三角形的轴对称性2
用符号语言表示为:
在△ABC中 (1)∵AB=AC,AD⊥BC, BD CD ; B ∴∠___= 1 ∠___ 2 ,____=____ (2)∵AB=AC,AD是中线, 1 =∠_, 2 ____ AD ⊥____ BC ; ∴∠_ (3)∵AB=AC,AD是角平分线, AD ⊥____ BD =____ BC ,____ CD 。 ∴____
12
D
C
等腰三角形“三线合一”的性 质
评注:在做题过程中,若想使用 三线合一,题中至少要出现三线 中的一线,即“一线生机”。
知识应用:
(1)如果等腰三角形的一个底角为500,则其余 等腰三角形中的内角,若没指出是底 两个角为____ 800 和____. 500 角还是顶角应分两种情况讨论,注意 0,则它的一个 (2)如果等腰三角形的顶角为 80 运用三角形内角之和等于180 °。 底角为____. 500
C E
A
B
D
F
5、如图,在△ABC中,AB=AC,BD、CE分 别是∠ABC和∠ACB角平分线,图中的 等腰三角形共有 ( )
A.6个 B.5个
A
C.4个
D.3个
E
0DBC源自6、如图,在△ABC中,AB=AC,△ABD 与△AEC都是等边三角形,且 ∠DAE=∠DBC,求△ABC的三个内角 的度数.
(3)如果等腰三角形的一个角为800,则其余两 800和200 或500和500 个角为___________________. (4)如果等腰三角形的一个角为1000,则其余两 400和400 个角为_________.
(5)等腰三角形的一个外角为1300,则三个内角 0、650、500 或500、500、800 65 分别:_______________________________.
八年级下证明二等腰三角形 - 培优
等腰三角形知识点等腰三角形⑴定义:有两条边相等的三角形叫做等腰三角形。
⑵性质:①等腰三角形的两个底角相等(简称“等边对等角”);②等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(简称“三线合一”)。
③等腰三角形是轴对称图形。
⑶判定方法:①等腰三角形的定义;②如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边” )。
等边三角形(也叫正三角形)(1)定义:三条边都相等的三角形叫做等边三角形。
⑵性质:①等边三角形的各角相等,并且每一个角都等于60°;②等边三角形是轴对称图形。
⑶判定方法:①等边三角形的定义;②三个角都相等的三角形是等边三角形;③有一个角是60°的等腰三角形是等边三角形。
典型例题等腰三角形例1.等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边上的高所在的直线变式练习:性质“等腰三角形的三线合一”,其中所指的“线”之一是()A.等腰三角形底角的平分线B.等腰三角形腰上的高C.等腰三角形腰上的中线D.等腰三角形顶角的平分线变式练习.下列关于等腰三角形的性质叙述错误的是()A.等腰三角形两底角相等B.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合C.等腰三角形是中心对称图形D.等腰三角形是轴对称图形例2.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是()A.17cm B.22cm C.17cm或22cm D.18cm变式练习.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是()A.40°B.50°C.60°D.30°变式练习.等腰三角形的一个外角是80°,则其底角是()A.100°B.100°或40°C.40°D.80°变式练习.如图所示,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,∠A=18°,则∠GEF 的度数是( )A .80°B .90°C .100°D .108°ECA F G例3:如图,在等腰△ABC 中,AB=AC ,一腰上中线BD 将这个三角形的周长分为16和8的两部分,求这个等腰三角形的腰长与底边长.变式练习:如图,若P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P1P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长是变式练习:如图,在△ABC 中,AB=AC=10,ABC=∠ACB=15°,CD 是腰AB 上的高;求:△ABC 的面积.变式练习:如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .例4:如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,D 为 BC 的中点.(1)写出点D 到DABC 三个顶点 A 、B 、C 的距离的关系(不要求证明)(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN=BM ,请判断△DMN 的形状,并证明你的结论NMDBA C变式练习:在△ABC 中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P 旋转,观察线段PD 与PE 之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P 旋转,△PBE 是否能成为等腰三角形?若能,指出所有情况(即写出△PBE 为等腰三角形时CE 的长);若不能,请说明理由.培优例5:(1)等腰三角形的内角的度数之比为1:2,这个等腰三角形底角的度数为________(2)已知等腰三角形ABC 的三边长a,b,c 均为整数,且满足a+bc+b+ac=24,则这样的三角形共有__________个.例6.如图,若AB=AC ,BG=BH ,AK=KG ,则BAC ∠的度数是_______例7.如图,在△ABC 中,AC=BC ,90ACB ∠= ,D 是AC 上一点,AE BD ⊥交BD 的延长线于E ,且12AE BD =,求证:BD 是∠ABC 的角平分线例8.如图1,三角形ABC 的边BC 在直线l 上,AC BC ⊥,且AC=BC ,三角形EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且EF=FP 。
2022年秋八年级数学上册 第13章 轴对称 13.3 等腰三角形 13.3.1 等腰三角形 第2课
15.如图,在 Rt△ABC 中,AB=AC,∠BAC=90°,O 为 BC 的中点. (1)求证:OA=OB=OC; (2)若点 M、N 分别是 AB、AC 上的点,且 BM=AN,试判断△OMN 的形 状,并说明理由.
(1)证明:在 Rt△ABC 中,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°, 又∵O 为 BC 的中点,∴AO⊥BC,AO 平分∠BAC(三线合一),∴∠OAC= ∠OAB=21∠BAC=45°,∴∠OAB=∠B=45°,∴OA=OB,∴OA=OB= OC; (2)解:△OMN 为等腰直角三角形.理由:∵AB=AC,BM=AN,∴AB- BM = AC - AN , ∴ AM = CN , 在 △ AOM 和 △ CON 中 ,
证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=21(180°-∠A)=12×(180° -36°)=72°,又∵BD 平分∠ABC,∴∠ABD=∠DBC=12∠ABC=21×72° =36°,∠BDC=∠A+∠ABD=36°+36°=72°, ∴∠C=∠BDC,∠A= ∠ABD,∴AD=BD=BC.
的是( B )
A.∠A=50°,∠B=60°
B.∠A=70°,∠B=40°
C.∠A=40°,∠B=90°
D.∠A=80°,∠B=60°
2.如图,AD 是△ABC 的边 BC 上的高,添加下列条件中的某一个,不能
推出△ABC 为等腰三角形的是( A )
A.∠BAD=∠ACD
B.∠BAD=∠CAD
C.BD=CD
A∠MO=AMCN=∠OCN=45° ,∴△AOM≌△CON,∴OM=ON,∠AOM= OA=OC
∠CON,又∵∠CON+∠AON=90°,∴∠AOM+∠AON=90°,即∠MON =90°,∴△OMN 为等腰直角三角形.
八年级数学人教版(上册)第2课时等腰三角形的判定
讲授新课
方法总结:“等角对等边”是判定等腰三角形 的重要依据,是先有角相等再有边相等,只限 于在同一个三角形中,若在两个不同的三角形 中,此结论不一定成立.
侵权必究
讲授新课
如图,在△ABC中,AB=AC,∠ABC和∠ACB
的平分线交于点O.过O作EF∥BC交AB于E,交AC于F.
探究EF、BE、FC之间的关系.
∴ AC=AB. ( 等角对等边 ) B
C
即△ABC为等腰三角形. 侵权必究
讲授新课
辨一辨:如图,下列推理正确吗?
A 12
B
D
C
∵∠1=∠2 ,
∴ BD=DC
(等角对等边).
C D
1
A2
B
∵∠1=∠2, ∴ DC=BC (等角对等边).
错,因为都不是在同一个三角形中.
侵权必究
讲授新课
求证:如果三角形一个外角的平分线平行于 三角形的一边,那:1.作线段AB=a. 2.作线段AB的垂直平分线MN,交AB
于点D. 3.在MN上取一点C,使DC=h. 4.连接AC,BC,则△ABC即为所求.
C
M A DB
N
侵权必究
讲授新课
如图,在△ABC中,∠ACB=90°,CD是AB 边上的高,AE是∠BAC的平分线,AE与CD交于点F, 求证:△CEF是等腰三角形.
第十三章 轴对称
13.3 等腰三角形
第2课时 等腰三角形的判定
侵权必究
目录页
新课导入
讲授新课
当堂练习
课堂小结
侵权必究
新课导入
✓ 教学目标 ✓ 教学重点
侵权必究
学习目标
探索等腰三角形的判定定理及其应用
青岛版八年级上册数学《等腰三角形》(第2课时)
F B C
11
解:△FBC是等腰三角形.理由如下:
由AB=AC,可知△ABC是等腰三角形,
所以∠ABC=∠ACB.
因为BF,CF分别是∠ABC与∠ACB的角平分线, A
F B C
12
1 所以∠ABF=∠CBF= ∠ABC, 2 1 ∠ACF=∠BCF= ∠ACB, 2 所以∠FBC=∠FCB,由此可知FB=FC.
D
B
F
E
C
15
①
(2)在(1)中,如果△ABC中,AB≠AC,
其他条件不变(如图②),图中有等腰三角形 吗?说明你的理由.
A
D B
②
F
E C
16
解:由平行线的性质及角平分线的概念可知
∠DBF=∠DFB,∠ECF=∠EFC,
可知△DBF和△ECF是等腰三角形.
A
D B
②
F
E C
17
1 .在△ABC 中, AB=2cm,∠ B=50°,若 AC=2cm , 则 ∠ A=______ 80° , ∠ C=______; 50° 如 果 ∠C=50°,则∠A=________. 2cm
1
等腰三角形
(第2课时)
如图,位于海上A,B两处的两艘救生船接到O处遇 险船只的报警,测得∠A=∠B.如果这两艘救生船以同 样的速度同时出发,能不能同时赶到出事地点(不考虑 风浪因素)?
3
实验与探究 ( 1 )你还记得已知两角及其夹边怎样作三角形的 吗?如果已知∠ α (∠ α < 90°)和线段a(如图),你 能用尺规作△ABC,使∠B=∠C=∠α,BC=a吗?
7
例1 如图,已知∠A=36°,∠DBC=36°, ∠C=72°.求∠BDC和∠ABD的度数,并指出
浙教版八年级上册数学第2章 等腰三角形
解:设xs后,△PQB为等腰三角形. ∵∠B=90°, ∴PB=QB. 由题意得PB=(12-x)cm,BQ=2xcm, ∴12-x=2x,解得x=4. 即4s后,△PQB为等腰三角形.
14 【中考·南京】如图,在边长为4的正方形ABCD中, 请画出以A为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角 形.(要求:只要画出示意图,并在所画等腰三角形长 为3的边上标注数字3即可)
C.三条D.一条或三条
2 下列说法正确的是( D ) ①等腰三角形是等边三角形; ②三角形按边分类可分为等腰三角形、等边三角形和 不等边三角形; ③等腰三角形至少有两条边相等. A.①②③B.②③ C.①③D.③
3 【杭州期末】若等腰三角形的底边长是10,则
腰长可以是( D ) A.1 B.3 C.5 D.7
解:如图.
12 一个等腰三角形的三边长分别是3x-2,4x-3,6- 2x,求等腰三角形的周长.
解:①当3x-2是底边长时,腰长为4x-3,6-2x, ∴4x-3=6-2x, ∴x=1.5, ∴4x-3=6-2x=3,3x-2=2.5. ∴等腰三角形的周长=3+3+2.5=8.5;
②当4x-3是底边长时,腰长为3x-2,6-2x, ∴3x-2=6-2x, ∴x=1.6, ∴3x-2=6-2x=2.8,4x-3=3.4. ∴等腰三角形的周长=2.8+2.8+3.4=9; ③当6-2x是底边长时,腰长为3x-2,4x-3, ∴3x-2=4x-3,∴x=1,∴3x-2=4x-3=1,6-2x =4,∵1+1<4,∴不能构成三角形. 综上所述,等腰三角形的周长为8.5或9.
8
【浙江自主招生】等腰三角形,一腰上的中线将
它 的 周 长 分 成 12 和 9 两 部 分 , 则 腰 长 为
八年级上册数学-等腰三角形(二)三线合一
第15讲等腰三角形(二)三线合一知识导航1、等腰三角形底边上的高→底边上的中线,顶角的平分线。
2、等腰三角形底边上的中线→底边上的高,顶角的平分线。
3、等腰三角形顶角的平分线→底边上的中线,底边上的高。
【板块一】知等腰→连中线方法技巧遇等腰三角形底边的中点,常连接底边上的中线,构造三线合一的模型解题。
120,点F为CD的中点,AB=AE,BC=ED,【例1】如图,在五边形ABCDE中,∠B=∠E,∠BAE=0求∠BAF的度数。
针对练习11、如图,在等腰△ABC中,AB=AC,点O是BC的中点,OD⊥AB于点D,OE⊥AC于点E,求证:AD=AE。
90,AB=AC,点D是BC的中点。
2、已知△ABC中,∠BAC=0(1)如图1,E,F分别是AB,AC上的点,且BE=AF,试判断△DEF的形状,并说明理由;(2)如图2,若E,F分别为AB,CA的延长线上的点,且仍有BE=AF,请判断△DEF的是否仍有(1)中的形状,并说明理由。
【板块二】知等腰→作高线方法技巧遇等腰三角形,常作底边上的高,构造三线合一的模型解题。
【例2】如图,在△ABC中,AB=AC,AD=DB,DE⊥AB于点E,若BC=10,且△BDC的周长为24,求AE的长。
【例3】如图,在△ABC中,AE平分∠BAC,EB⊥AB且EA=EC,求证:AC=2AB。
针对练习21、如图,在△ABC中,AD⊥BC于点D,且∠ABC=2∠C,求证:CD=AB+BD。
2、如图,在△ABC中,CA=CB,BD⊥AC于点D,AE⊥BC于点E,BD,AE交于点O。
(1)求证:CD=CE;(2)求证:OC⊥AB。
3、如图1,在等腰△ABC中,∠ACB=090,AC=BC,点D在AB上,AD=AC,BE垂直于直线CD,垂足为点E。
(1)求∠BCD的度数;(2)求证:CD=2BE;(3)如图2,若点O是AB的中点,点G在OC上,∠OAG=∠OCD,求BEAG的值。
【板块三】构等腰→用“三线”方法技巧在同一个三角形中证明两线段相等或垂直时,往往构造等腰(直角)三角形,运用三线合一来解决问题。
初二数学等腰三角形 altitude性质
初二数学等腰三角形 altitude性质初二数学等腰三角形的altitude性质等腰三角形是初中数学中一个基础的几何形状,其中最重要的性质之一是等腰三角形的altitude性质。
利用等腰三角形的altitude性质,我们可以解决许多与等腰三角形相关的问题。
本文将就初二数学等腰三角形的altitude性质进行探究。
一、等腰三角形的定义和性质回顾首先,我们来回顾一下等腰三角形的定义和性质。
等腰三角形是指具有两边长度相等的三角形。
根据等腰三角形的定义,我们可以得出如下结论:1. 等腰三角形的底边(即两边长度不相等的边)上的两个底角是相等的。
2. 等腰三角形的底边的中线和高线重合。
现在我们来详细讨论等腰三角形的altitude性质。
二、等腰三角形的altitude性质等腰三角形的altitude是指从顶点到底边上某一点的垂线。
根据等腰三角形的altitude性质,我们可以得出以下重要结论:1. 等腰三角形的两条altitude相等。
证明:设等腰三角形的顶点为A,底边上的某一点为P,垂线交底边于点Q和R。
由于三角形APQ和APR的两个直角边相等(AQ = AR),所以根据直角三角形的唯一性可知,这两个三角形必定是全等三角形。
由全等三角形的性质可知,相应的部分也必定相等。
因此,AQ = AR,即等腰三角形的两条altitude相等。
2. 等腰三角形的altitude与底边的垂线重合。
证明:设等腰三角形的顶点为A,底边上的某一点为P,垂线交底边于点Q。
根据等腰三角形的定义和性质可知,三角形APQ和APR是全等三角形。
由于在全等三角形中,对应的边和角相等,所以∠AQP = ∠ARP = 90度。
这说明altitude和底边的垂线是重合的。
三、利用等腰三角形的altitude性质解题利用等腰三角形的altitude性质,我们可以解决许多与等腰三角形相关的问题。
下面通过一个例题来展示如何应用这一性质:例题:在等腰三角形ABC中,AB = AC,垂线AM交BC于点M。
八年级数学等腰三角形2
下面这些图形给我们什么印象?
什么是等腰三角形,结合以下图形,指出等腰三角形 的腰,底边,顶角,底角幼小衔接加盟
;
又沂水南至下邳入泗,过郡五,行六百里,青州浸。梁父,东平阳,南武阳,冠石山,治水所出,南至下邳入泗,过郡二,行九百四十里。莽曰桓宣。莱芜,原山,甾水所出,东至博昌入泲,幽州浸。又《禹贡》汶水出西南入泲。汶水,桑钦所言。巨平,有亭亭山祠。嬴,有铁官。牟, 故国。蒙阴,《禹贡》蒙山在西南,有祠。颛臾国在蒙山下。莽曰蒙恩。华,莽曰翼阴。宁阳。侯国。莽曰宁顺。乘丘,富阳,桃山,侯国。莽曰裒鲁。桃乡,侯国。莽曰鄣亭。式。齐郡。秦置。莽曰济南。属青州。户十五万四千八百二十六,口五十五万四千四百四十四。县十二:临淄, 师尚父所封。如水西北至梁邹入泲。有服官、铁官。莽曰齐陵。昌国,德会水西北至西安入如。利,莽曰利治。西安,莽曰东宁。巨定,马车渎水首受巨定,东北至琅槐入海。广,为山,浊水所出,东北至广饶入巨定。广饶,昭南,临朐,有逢山祠。石膏山,洋水所出,东北至广饶入巨 定。莽曰监朐。北乡,侯国。莽曰禺聚。平广,侯国。台乡。北海郡,景帝中二年置。属青州。户十二万七千,口五十九万三千一百五十九。县二十六:营陵,或曰营丘。莽曰北海亭。剧魁,侯国。莽曰上符。安丘,莽曰诛郅。瓡,侯国。莽曰道德。淳于,益,莽曰探阳。平寿,剧,侯 国。都昌,有盐官。平望,侯国。莽曰所聚。平的,侯国。柳泉,侯国。莽曰弘睦。寿光,有盐官。莽曰翼平亭。乐望,侯国。饶,侯国。斟,故国,禹后。桑犊,覆甑山,溉水所出,东北至都昌入海。平城,侯国。密乡,侯国。羊石,侯国。乐都,侯国。莽曰拔垄。石乡,侯国。上乡, 侯国。新成,侯国。成乡,侯国。莽曰石乐。胶阳。侯国。东莱郡,高帝置。属青州。户十万三千二百九十二,口五十万二千六百九十三。县十七:掖,莽曰掖通。腄,有之罘山祠。居上山,声洋水所出。东北入海。平度,莽曰利卢。黄,有莱山松林莱君祠。莽曰意母。临朐,有海水祠。
八年级数学等腰三角形的轴对称性2
八年级数学《等腰三角形》(第2课时)教案
《12.3.1等腰三角形(第2课)》教学设计1、设计理念:本设计把“问题”贯穿于教学的始终,运用“提出问题——探究问题——解决问题”的教学方式,让学生体会发现结论和证明结论的乐趣,使学生在长知识的同时,也长智慧、长能力以及培养良好的思维品质。
让数学思想方法渗透于课堂教学之中。
本设计引导学生运用“转化”思想,将等腰三角形转化为两个全等的三角形;设计中注重首尾呼应,以渗透数学源于生活的思想,培养学生的数学应用意识。
2、学情分析:学生在学习了全等三角形、轴对称、线段的垂直平分线、以及等腰三角形的概念和性质的基础上通过动手操作、观察、探究等活动,运用学过的知识发展思维能力培养学生的应用意识和实践能力,使学生体会数学的作用,能生动活泼地投入到数学学习中去,学生学起来轻松愉快容易产生成就感。
3、教学任务分析:等腰三角形是新人教版八年级数学第十四章第三节的内容,它是在认识了轴对称性以及了解了全等三角形的判定的基础上进行的,是在学生学习了等腰三角形的概念及性质的基础上展开的。
本单元共五课时,本节为第二课时,重点研究等腰三角形的判定方法,从知识的承接关系上看,等腰三角形的判定与性质存在互逆关系,在探索方法和思路上基本相同,前者是探索特殊三角形的边角之间的关系,并将这种特殊关系应用于解决证明关于线段垂直或相等、角相等等问题,后者是根据三角形中部分元素之间的特殊关系探索三角形的形状特征,它既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,还是今后证明角相等、线段相等及两直线互相垂直的依据,因此本节课具有承上启下的重要作用可采用探索发现法完成本节的教学,在教学中以学生参与为主,便于激发学生学习热情,体验成功的喜悦,通过直观的演示和学生自己动手使学生在获得感性知识的同时,为掌握理性知识创造条件,这样更有利于调动学生积极性,激发学生兴趣,使学生变被动学习为积极主动愉快学习,也符合数学教学的直观性和可接受性。
4、学习目标:1.1知识与技能目标:理解等腰三角形的判定方法,能够应用其进行有关证明或计算1.2经历对等腰三角形的判定方法的探索与应用过程,进一步体会添加辅助线构造全等三角形探获线段或角相等的化归转化思想,提高归纳演绎推理技能。
八年级数学等腰三角形的轴对称性2
最新人教版八年级上册数学第十三章轴对称第25课时等腰三角形的性质(2)——三线合一
返回目录
典型例题
知识点1
“三线合一”的简单运用
【例1】如图25-2,在△ABC中,AB=AC,AD⊥BC于点D,
65°
∠BAD=25°,则∠ACD=____________.
返回目录
变式训练
1. 如图25-3,AB=AC,AD⊥BC于点D,BC=6,则
3
BD=____________.
返回目录
= ,
∴△AED≌△AFD(SAS). ∴DE=DF.
返回目录
谢
谢
返回目录
又∵∠CBE=∠CAD,
∴∠CBE+∠C=90°.
∴∠BEC=90°.
∴BE⊥AC.
返回目录
C组
8. 如图25-12,点D,E在△ABC的边BC上,AB=AC, AD=AE.求
证:BD=CE.
证明:如答图25-1,过点A作AF⊥BC于点F.
∵AB=AC,AD=AE,
∴BF=CF,DF=EF.
∴BF-DF=CF-EF.
∴∠ADE= ×(180°-40°)
=70°.∴∠EDC=90°-70°=20°.
返回目录
变式训练
2. 如图25-5,在△ABC中,AB=AC,AD是边BC的中线,过点D作
DE⊥AC于点E.若∠BAC=72°.求∠ADE的度数.
解:∵AB=AC,AD是边BC的中线,
∴∠CAD= ∠BAC.
证明:∵AB=AC,点D为BC的中点,
∴AD是△ABC的角平分
线.∴∠BAE=∠CAE.∵AE=AE,
AB=AC,∴△ABE≌△ACE(SAS).
返回目录
变式训练
3. 如图25-7,在△ABC中,AB=AC,点D是BC的中点,点E在
浙教版数学八年级上册2.2《等腰三角形》教案
浙教版数学八年级上册2.2《等腰三角形》教案一. 教材分析等腰三角形是初中数学中的重要内容,也是八年级上册的教学重点。
浙教版数学八年级上册2.2《等腰三角形》一节,通过介绍等腰三角形的性质和判定方法,使学生掌握等腰三角形的特征,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作和推理能力。
但部分学生对抽象几何图形的学习仍存在一定的困难,对等腰三角形的性质和判定方法的理解需要通过大量的实践活动来加深。
三. 教学目标1.知识与技能:让学生掌握等腰三角形的性质,学会判定一个三角形是否为等腰三角形。
2.过程与方法:通过观察、操作、推理等实践活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作精神、创新意识和解决问题的能力。
四. 教学重难点1.教学重点:等腰三角形的性质和判定方法。
2.教学难点:等腰三角形性质的证明和应用。
五. 教学方法1.情境教学法:通过生活实例引入等腰三角形,激发学生的学习兴趣。
2.启发式教学法:引导学生主动探究等腰三角形的性质,培养学生的逻辑思维能力。
3.实践活动法:学生进行操作实践,加深对等腰三角形性质的理解。
4.小组合作学习法:鼓励学生分组讨论,培养学生的合作精神和沟通能力。
六. 教学准备1.教学课件:制作课件,展示等腰三角形的图片和实例。
2.教学道具:准备一些等腰三角形模型,供学生观察和操作。
3.练习题:准备一些有关等腰三角形的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的等腰三角形实例,如金字塔、塔吊等,引导学生关注等腰三角形的特征。
提问:你们认为等腰三角形有哪些特点?从而引出本节课的主题。
2.呈现(10分钟)介绍等腰三角形的定义和性质,通过课件和实物展示,让学生直观地感受等腰三角形的特征。
同时,引导学生尝试证明等腰三角形的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Байду номын сангаас
产褥感染中,哪种细菌的感染最易发生感染性休克A.厌氧性链球菌B.乙型溶血性链球菌C.金葡菌D.大肠埃希菌E.肺炎链球菌 关于集体"四荒"土地的说法,不正确的是。A.包括荒山、荒沟、荒丘、荒滩B.其使用权最长不得超过30年C.使用权可以继承、转让、抵押或参股联营D.同等条件下,本集体组织成员有对其的优先承包权 财政的主体是,是为实现政府职能服务的。A.社会B.政府(或者说国家)C.货币D.银行 机械通气的目的不包括A.维持通气量B.改善换气功能C.纠正缺氧和二氧化碳潴留D.减少氧消耗E.改善通气/血流比 FDGJ电路中的条件电源在轨道停电又恢复供电时起防止进路错误解锁的作用。 根据是否具有独立生产功能和独立施工条件,以及预算和结算的条件的不同,矿业工程项目一般划分为。A.单项工程、单位工程和分项、分部工程B.矿井建设工程与矿山开采工程C.地面工程与地下工程D.矿建工程、土建工程和机电安装工程 《川西钻探公司环境保护管理办法》规定,井场周围造成局部污染,责任性赔、罚款在的为较大环境污染事故。A、6000-10000;B、10000-50000;C、50000-80000。 30岁男性,摔伤后即感左肘疼痛、肿胀,不能活动,查体左肘关节固定于半伸直位,尺骨鹰嘴突出于肘后,肘部三点关系改变,最可能的诊断是A.肱骨髁上骨折B.尺骨鹰嘴骨折C.肘关节后脱位D.肱骨髁间骨折E.肱骨内上髁骨折 简述食管的3个生理性狭窄。 机件的真实大小应以图样上所注的尺寸为依据,与图形的大小及绘图的准确度无关A.正确B.错误 与起搏器寿命有关的因素不包括。A.主要由起搏器的电池决定B.与耗电量有关C.与起搏器工作的百分比有关D.与起搏阈值有关E.与起搏器体积大小有关 女,30岁,反复痰中带血或大咯血5年,无低热、盗汗,查体:左下肺局限性、固定性湿性啰音。胸片示:左下肺纹理粗乱,呈卷发样,最可能的诊断是。A.慢性支气管炎B.浸润性肺结核C.支气管内膜结核D.风心病二尖瓣狭窄E.支气管扩张 关于儿童孤独症,叙述错误的是A.交流障碍是其核心症状B.目前无特效药物治疗,主要是采取教育和行为干预的方法C.遗传因素在发病中占重要作用D.存在特殊面容E.可合并智力发育落后 有关矿山建设事故处理的规定叙述不准确的有。A.发生矿山事故,矿山企业必须立即组织抢救,防止事故扩大,减少人员伤亡和财产损失,对伤亡事故必须立即、如实报告建设行政主管部门和管理矿山企业的主管部门B.管理矿山企业的主管部门应对矿山事故中伤亡的职工按照国家规定给予抚恤或 优质碳素结构钢45#钢中的45表示钢中的平均含碳量为A、45%B、0.45%C、4.5%D、0.045% 板件变形后,在弯曲部位强度会。A.增强B.不变C.下降 麻疹恢复期的治法是A.辛凉透表,清宣肺卫B.宣肺开闭,清热解毒C.清凉解毒,佐以透发D.清热解毒,利咽消肿E.养阴益气,清解余邪 在SJ电路中,FDGJ接点的作用是。A.防止闪白光带B.防止轻型车跳动时错误解锁C.检查QJJ电路完整D.实现区段锁闭 [多选,案例分析题]患者男性,36岁,因腹胀、腹痛、呕吐2天由朋友扶送入院,患者发病前曾与该朋友在某酒店就餐饮酒,呕吐物为宿食。查体:上腹局部稍硬,上腹明显压痛,有轻微反跳痛,既往有十二指肠溃疡病史。门诊血常规:Hb109g/L,WBC11.2×1012/L;N70%;淋巴细胞30%。入 形名参同 根据《水污染防治法》关于防止地表水污染的具体规定,下列说法错误的是()。A.在生活饮用水水源地的水体保护区内,不得新建排污口B.禁止向水体排放油类、酸液、碱液或者剧毒废液C.向水体排放含热废水,应当采取措施,保证水体的水温符合水环境质量标准D.禁止排放含病原体的污水 当终端发现激活集或候选集中的某个基站的导频信号强度小于时,就启动该基站对应的切换去掉计时器。A.T_TDROPB.T_COMPC.T_DROPD.T_ADD 小儿遗尿辨证属实的为A.小便清长而多B.智力较差C.食欲不振,大便溏薄D.尿黄量少而臊臭E.乏力汗出 导致男性不育症的原因有_____________、____________、________________、____________、等。 下列各项,不是望舌质内容的是。A.舌神B.舌色C.舌形D.舌态E.剥落 治疗筋脉挛急疼痛,应选用药物的味是。A.酸B.苦C.甘D.辛E.咸 管线安装工的基本步骤是;先总后分、从大到小、由粗到细。A.安装B.操作C.识图D.施工 下列关于肾血流动力学异常的原因哪项是错误的A.交感神经过度兴奋B.肾内肾素血管紧张素系统兴奋C.肾内舒血管性前列腺素合成减少,缩血管性前列腺素产生过多D.血管缺血导致血管内皮损伤E.球一管反馈过弱 洗胃术的禁忌证有A.服用强酸或强碱等腐蚀性物质B.胃底食管静脉曲张C.食管或贲门梗阻、狭窄D.严重心肺疾病E.胃穿孔患者 一氧化碳中毒后较为典型的临床症状是A.幻听、失语B.呼吸困难、面色苍白C.无力、嗜睡D.四肢湿冷、全身大汗E.口唇呈樱桃红色 下列有关休息的陈述哪一项不正确()A.休息就是睡觉B.休息是指在一定时间内减少活动C.休息意味着身心感到平静、宽慰和放松D.休息可解除人体的疲劳E.休息可降低精神上的压力 肥胖的脑力劳动者每天需要的热量是A.20cal×标准体重(kg)B.25cal×标准体重(kg)C.30cal×标准体重(kg)D.35cal×标准体重(kg)E.40cal×标准体重(kg) 第一代移动通信系统的典型代表制式是和。 供电营业厅的客户代理岗位,也担负着用电检查工作的一部分工作。A.售前服务B.供电方案的确定C.审图D.售后服务 列说法错误的是.A、下级对上级发布的命令有不同看法时也应执行,事后可与领导人交换意见B、绝对权威的负面效应是产生下级对上级的对抗心理和上级对下级的不信任C、船上人员的频繁流动性只会造成彼此不了解、不适应,不利于安全航行D、非正式小群体需正确引导 [单选,共用题干题]男性,27岁,农民。11月23日以"发热、头痛、腰痛2天"入院,自行口服"感冒药"无好转。查体:醉酒貌,腋下见条痕状出血点,上腹部压痛。该病主要的病理改变是。A.小血管内皮细胞肿胀、变性、坏死B.主动脉及其分支的慢性非特异性炎症C.中小动脉的局灶性坏死性全层血 有关会议、展览和特殊活动的共性说法不正确的是。A.这些活动均涉及到人员的迁徙和移动B.这些活动能为人们生活增添乐趣C.这些活动是长期筹备、短期举办的"线"状活动D.这些活动的组织管理都是以独立的项目方式进行的 患者因严重烧伤住院,需给予鼻饲要素饮食补充营养。检查胃管是否在胃内的最好方法是()A.用注射器抽出胃内容物B.用注射器向胃内注入10ml空气听气过水声C.用听诊器听胃管是否在胃内D.将胃管末端放入盛水的碗中,观察有无气泡溢出E.让患者感觉胃管是否在胃内 鼠疫是主要通过下列哪种媒介传播的自然疫源性烈性传染病A.野鼠B.鼠蚤C.蚊子D.家鼠E.黑姬鼠 图中所示红细胞异常结构为A.H-J小体B.杜勒小体C.嗜碱性点彩红细胞D.疟原虫E.网织红细胞