人教版数学八年级上册12.3角的平分线的性质 教学设计

合集下载

人教版八年级数学上册-角的平分线的性质 角平分线的性质教案

人教版八年级数学上册-角的平分线的性质 角平分线的性质教案

12.3 角的平分线的性质第1课时角平分线的性质一、教学目标(一)知识与技能1.会作已知角的平分线;2.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质;3.会利用角的平分线的性质进行证明与计算.(二)过程与方法在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力.(三)情感、态度与价值观在探究作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.二、教学重点、难点重点:角的平分线的性质的证明及应用;难点:角的平分线的性质的探究.三、教法学法三步导学的教学模式;自主探索,合作交流的学习方式.四、教与学互动设计(一)激情导课如图是小明制作的风筝,他根据AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?(二)民主导学1、探究一:角的平分线的作法Ⅰ、议一议问题1请你拿出准备好的角,用你自己的方法画出它的角平分线.问题2如图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB 和AD沿着角的两边放下,画一条射线AE,AE就是∠DAB的平分线.你能说明它的道理吗?问题3通过上面的探究,你有什么启发?你能用尺规作图作已知角的平分线吗?请你试着做一做,并与同伴交流.ABCECA BOBD 21AOCADBMN已知:∠MAN求作:∠MAN 的角平分线.作法:(1)以A 为圆心,适当长为半径画弧,交AM 于B ,交AN 于D.(2)分别以B 、D 为圆心,大于的长为半径画弧,两弧在∠MAN 的内部交于点C.(3)画射线AC. ∴射线AC 即为所求. Ⅱ、练一练平分平角∠AOB.通过上面的步骤得到射线OC 以后,把它反向延长得到直线CD.直线CD 与直线AB 是什么关系?思考:你能总结出“过直线上一点作这条直线的垂线”的方法吗?请说明你的方法。

人教版数学八年级上册教学设计12.3《角的平分线的性质》

人教版数学八年级上册教学设计12.3《角的平分线的性质》

人教版数学八年级上册教学设计12.3《角的平分线的性质》一. 教材分析《角的平分线的性质》是人教版数学八年级上册的教学内容。

本节课主要让学生掌握角的平分线的性质,即角的平分线上的点到角的两边的距离相等。

这一性质是几何中的基本概念,对于学生理解和掌握几何知识体系具有重要意义。

教材通过引入角的平分线,引导学生探究角的平分线的性质,从而培养学生的观察能力、推理能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了角的概念、线段的概念以及一些基本的几何性质。

但是,对于角的平分线的性质,学生可能较为陌生。

因此,在教学过程中,教师需要从学生的实际出发,通过引导、探究、实践等方式,帮助学生理解和掌握角的平分线的性质。

三. 教学目标1.知识与技能:使学生理解和掌握角的平分线的性质,能够运用角的平分线的性质解决一些简单的问题。

2.过程与方法:通过观察、操作、探究等方法,培养学生的几何思维能力和解决问题的能力。

3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:角的平分线的性质。

2.难点:如何运用角的平分线的性质解决实际问题。

五. 教学方法1.引导法:教师通过提问、设疑等方式,引导学生思考和探究角的平分线的性质。

2.实践操作法:学生通过实际操作,观察和总结角的平分线的性质。

3.合作交流法:学生分组讨论,共同解决问题,培养团队合作意识。

六. 教学准备1.教师准备:教材、PPT、几何模型等教学资源。

2.学生准备:笔记本、尺子、圆规等学习工具。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本的课题,如:“在平面上有两个点A和B,如何找到一点C,使得AC=BC?”引导学生思考和探讨。

2.呈现(10分钟)教师通过PPT展示角的平分线的性质,引导学生观察和总结。

同时,教师可以通过实际操作,让学生直观地感受角的平分线的性质。

3.操练(10分钟)学生分组讨论,运用角的平分线的性质解决实际问题。

及反思人教版数学八年级上册12.3角的平分线的性质优秀教学案例

及反思人教版数学八年级上册12.3角的平分线的性质优秀教学案例
(四)总结归纳
在总结归纳环节,我会邀请几名学生代表分享他们小组的讨论成果,通过学生的讲解,总结出角的平分线的性质以及应用方法。我还会对学生的讲解进行点评,补充和强调重点知识点,确保每位学生都能对角的平分线有清晰的认识。
(五)作业小结
为了巩固学生对本节课知识的学习,我会布置以下作业:
1.完成课本上的练习题,巩固角的平分线的性质。
(二)过程与方法
1.采用自主探究、小组合作的学习方式,引导学生主动发现角的平分线的性质,培养他们的观察、分析、归纳能力。
2.通过问题引导,让学生在解决具体几何问题时,学会运用角的平分线性质,提高解题效率。
3.设计丰富的教学活动,如讨论、展示、练习等,让学生在实践中掌握角的平分线相关知识,提高他们的实际操作能力。
4.注重数学方法的传授,让学生在学习过程中掌握几何图形的基本分析方法,培养他们的几何思维。
(三)情感态度与价值观
1.激发学生对数学几何学科的兴趣,使他们感受到数学学习的乐趣,培养他们的学习自信心。
2.培养学生面对几何问题时,勇于挑战、积极思考的良好品质,使他们养成独立解决问题的习惯。
3.通过对角的平分线的学习,让学生认识到几何知识在实际生活中的广泛应用,增强他们的学习责任感。
(二)问题导向
在教学过程中,我将采用问题导向的教学方法,引导学生主动探究角的平分线性质。设计一系列具有启发性的问题,如:“角的平分线是什么?”“角的平分线有什么性质?”“如何运用角的平分线性质解决实际问题?”等。通过这些问题,激发学生的好奇心,让他们在解决问题的过程中,掌握角的平分线相关知识。
(三)小组合作
(二)问题导向,激发学生思维
本案例采用问题导向的教学方法,引导学生主动探究角的平分线性质。设计具有启发性的问题,激发学生的好奇心,培养他们的逻辑思维和几何直观。在解决问题的过程中,学生能够逐步掌握角的平分线相关知识,提高解决问题的能力。

人教版八年级上册 12.3 角的平分线的性质 教学设计

人教版八年级上册 12.3 角的平分线的性质 教学设计

人教版八年级上册 12.3 角的平分线的性质教学设计
12.3 角平分线的性质
教学目标:
知识与技能:
1.掌握用尺规作已知角平分线的方法和步骤.
2.掌握角平分线的性质并能初步应用.
过程和方法:
1.在探究作已知角平分线的方法和角平分线的
性质的过程中,发展几何直觉.
2.初步了解角平分线的性质在生活、生产中的应
用。

情感态度与价值观:
培养学生探究问题的兴趣,增强解决问题的信
心,获得解决问题的成功体验.
教学设想:
本节案例主要采用的是课件展示的展现方式,对学生在学
习过程中表现出来的情感与态度,对知识、技能的掌握情
况,所使用的方法等各个方面进行了观察.
教材分析:
本节课是在七年级学习了角平分线的概念和前面刚学完证明三角形全等的基础上进行教学的。

内容包括角平分线的作法、角平分线的性质及初步应用。

作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。

因此,本节内容在数学知识体系中起到了承上启下的作用。

同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。

人教版八年级数学上册12.3角平分线的性质优秀教学案例

人教版八年级数学上册12.3角平分线的性质优秀教学案例
3.小组合作:组织学生进行小组讨论和合作,培养了学生的团队合作能力和交流沟通能力,同时也提高了学生的学习效果。
4.反思与评价:教师引导学生进行自我反思和评价,让学生从他人的反馈中认识到自己的优点和不足,促进了学生的持续发展。
5.作业小结:布置具有针对性的作业,让学生巩固和应用所学知识,培养了学生的应用意识和实践能力。同时,教师对学生的作业进行及时批改和反馈,引导学生进行改进和提高。
四、教学内容与过程
(一)导入新课
1.利用多媒体平分线的实际意义。
2.提出问题:“你们在生活中有没有遇到过需要用到角平分线的情景?角平分线有什么特殊性质吗?”激发学生的好奇心和求知欲。
3.回顾已学过的角的相关知识,如角的概念、分类和度量,为学生学习角平分线的性质打下基础。
3.设计具有挑战性的练习题,让学生在解决问题的过程中,巩固和应用角平分线的性质,提高学生的解题能力。
(三)小组合作
1.组织学生进行小组讨论和合作,共同探索角平分线的性质,培养学生的团队合作能力和交流沟通能力。
2.引导学生相互启发、借鉴和补充,激发学生的创意思维,提高学生的学习效果。
3.鼓励学生展示自己的研究成果,培养学生的表达能力和自信心的同时,也让其他学生从中学习和借鉴。
(二)讲授新知
1.介绍角平分线的定义:角平分线是将一个角平分为两个相等角的线段。
2.讲解角平分线的性质,包括角平分线上的点到角的两边的距离相等,角平分线可以将角分为两个相等的角等。
3.通过几何图形和动画,直观地展示角平分线的性质,让学生理解和掌握。
4.引导学生发现和总结角平分线的性质规律,培养学生的逻辑思维能力。
2.利用多媒体展示角平分线的图形和动画,让学生直观地观察和理解角平分线的性质,激发学生的学习兴趣。

人教版数学八年级上册12.3角的平分线的性质(第一课时)教学设计

人教版数学八年级上册12.3角的平分线的性质(第一课时)教学设计
三、教学重难点和教学设想
(一)教学重难点
1.重点:角的平分线的定义、性质及其应用。
2.难点:
(1)角的平分线性质的推理与证明。
(2)运用角的平分线性质解决实际问题,如构造等腰三角形、解决角度分配问题等。
(二)教学设想
1.教学方法:
(1)采用直观演示法,通过动态图示、实际操作等方式,让学生直观感受角的平分线的形成过程,为理解性质打下基础。
2.教师总结:
(1)强调角的平分线的定义及性质。
(2)指出角的平分线在实际问题中的应用价值。
(3)鼓励学生继续探索几何知识,提高自己的空间观念和逻辑思维能力。
五、作业布置
为了巩固本节课所学的角的平分线的性质,提高学生的应用能力,特布置以下作业:
1.基础练习题:
(1)完成课本习题12.3第1题,判断下列各图中,哪些是角的平分线,并说明理由。
(1)联系生活实际,设计一道角的平分线性质的应用题,要求解题步骤详细,答案正确。
(2)运用角的平分线性质,解决一道实际生活中的问题,如角度分配、构造图形等。
4.思考题:
(1)思考:如何运用角的平分线性质求解等腰三角形的顶角?
(2)思考:在平面几何中,角的平分线有哪些重要性质?它们在解决实际问题中有什么作用?
3.生活实例导入:通过生活中的实例,如红绿灯的指示牌、墙壁上的挂钟等,让学生感受到角在生活中的应用,激发学生的学习兴趣。
4.提出问题:引导学生思考如何将一个角平均分成两个相等的角。从而引出本节课的主题——角的平分线。
(二)讲授新知
1.角的平分线的定义:介绍角的平分线的概念,强调角的平分线将一个角分成两个相等的角。
(2)新课:以直观演示、问题驱动方式引入角的平分线的定义和性质,让学生通过自主探究、小组合作等方式掌握性质。

人教版初中八年级数学上册角的平分线的性质教案

人教版初中八年级数学上册角的平分线的性质教案

12.3 角的平分线的性质(1)教学内容本节课首先介绍作一个角的平分线的方法,然后用三角形全等证明角平分线的性质定理.教学目标1.知识与技能通过作图直观地理解角平分线的两个互逆定理.2.过程与方法经历探究角的平分线的性质的过程,领会其应用方法.3.情感、态度与价值观激发学生的几何思维,启迪他们的灵感,使学生体会到几何的真正魅力.重点难点1.重点:领会角的平分线的两个互逆定理.2.难点:两个互逆定理的实际应用.教具准备投影仪、制作如课本图11.3─1的教具.教学方法采用“问题解决”的教学方法,让学生在实践探究中领会定理.教学过程一、创设情境,导入新课【问题探究】(投影显示)如课本图11.3─1,是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?【教师活动】首先将“问题提出”,然后运用教具(如课本图11.3─1•)直观地进行讲述,提出探究的问题.【学生活动】小组讨论后得出:根据三角形全等条件“边边边”课本图11.3─1判定法,可以说明这个仪器的制作原理.【教师活动】请同学们和老师一起完成下面的作图问题.操作观察:已知:∠AOB.求法:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,交OA于M,交OB于N.(2)分别以M、N为圆心,大于12MN的长为半径作弧,两弧在∠AOB的内部交于点C.(3)作射线OC,射线OC•即为所求(课本图11.3─2).【学生活动】动手制图(尺规),边画图边领会,认识角平分线的定义;同时在实践操作中感知.【媒体使用】投影显示学生的“画图”.【教学形式】小组合作交流.二、随堂练习,巩固深化课本P19练习.【学生活动】动手画图,从中得到:直线CD与直线AB是互相垂直的.【探研时空】(投影显示)如课本图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?【教师活动】操作投影仪,提出问题,提问学生.【学生活动】实践感知,互动交流,得出结论,“从实践中可以看出,第一条折痕是∠AOB的平分线OC,第二次折叠形成的两条折痕PD、PE是角的平分线上一点到∠AOB两边的距离,这两个距离相等.”论证如下:已知:OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E(课本图11.3─4)求证:PD=PE.证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°在△PDO和△PEO中,,,,PDO PEO AOC BOC OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PDO ≌△PEO (AAS )∴PD=PE【归纳如下】角的平分线上的点到角的两边的距离相等.【教学形式】师生互动,生生互动,合作交流.三、情境合一,优化思维【问题思索】(投影显示)如课本图11.3─5,要在S 区建一个集贸市场,使它到公路、铁路的距离相等,•离公路与铁路交叉处500米,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20 000)?【学生活动】四人小组合作学习,动手操作探究,获得问题结论.从实践中可知:角平分线上的点到角的两边距离相等,将条件和结论互换:到角的两边的距离相等的点也在角的平分线. 证明如下:已知:PD ⊥OA ,PE ⊥OB ,垂足分别是D 、E ,PD=PE .求证:点P 在∠AOB 的平分线上.证明:经过点P 作射线OC .∵PD ⊥OA ,PE ⊥OB∴∠PDO=∠PEO=90°在Rt △PDO 和Rt △PEO 中,,,OP OP PD PE =⎧⎨=⎩∴Rt △PDO ≌Rt △P EO (HL ) ∴∠AOC=∠BOC ,∴OC 是∠AOB 的平分线.【教师活动】启发、引导学生;组织小组之间的交流、讨论;帮助“学困生”.【归纳】到角的两边的距离相等的点在角的平分线上.【教学形式】自主、合作、交流,在教师的引导下,比较上述两个结论,弄清其条件和结论,加深认识.四、范例点击,应用所学【例】如课本图11.3─6,△ABC的角平分线BM,CN相交于点P,求证:点P•到三边AB,BC,CA的距离相等.【思路点拨】因为已知、求证中都没有具体说明哪些线段是距离,而证明它们相等必须标出它们.所以这一段话要在证明中写出,同辅助线一样处理.如果已知中写明点P到三边的距离是哪些线段,那么图中画实线,在证明中就可以不写.【教师活动】操作投影仪,显示例子,分析例子,引导学生参与.证明:过点P作PD、PE、PF分别垂直于AB、B C、CA,垂足为D、E、F.∴BM是△ABC的角平分线,点P在BM上.∴PD=PE同理 PE=PF∴PD=PE=PF即点P到边AB、BC、CA的距离相等.【评析】在几何里,如果证明的过程完全一样,只是字母不同,可以用“同理”二字概括,省略详细证明过程.【学生活动】参与教师分析,主动探究学习.五、随堂练习,巩固深化课本P50练习1、2.六、课堂总结,发展潜能1.学生自行小结角平分线性质及其逆定理,和它们的区别.2.说明本节例子实际上是证明三角形三条角平分线相交于一点的问题,•说明这一点是三角形的内切圆的圆心(为以后学习设伏).七、布置作业,专题突破课本P51习题12.3第1、2、3题.板书设计把黑板分成三部分,左边部分板书概念、定理等,中间部分板书探究,右边部分板书例题,重复使用时,中间部分和右边部分板书练习题.。

人教版数学八年级上册12.3角平分线的性质教学设计

人教版数学八年级上册12.3角平分线的性质教学设计
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成小组,并给出一些实际的几何问题,让学生运用角平分线的性质进行解决。例如,证明一条线段是某个角的平分线,或者求解一个角的度数等。学生会在小组内进行讨论和合作,共同解决问题。通过这样的讨论,学生能够更好地理解和运用角平分线的性质,并培养他们的合作和交流能力。
2.实践性作业:我会设计一些实际问题,让学生运用所学的角平分线性质进行解决。例如,设计一道题目要求学生测量一张纸张的某个角的平分线长度,或者求解一个实际图形中某个角的度数等。通过这样的实践性作业,学生能够将所学的知识运用到实际问题中,提高他们的实践操作能力。
3.合作性作业:我会设计一些需要学生合作完成的作业,让他们在小组内进行讨论和交流。例如,设计一道题目要求学生共同探究角平分线的性质,并用自己的语言进行描述和证明。通过这样的合作性作业,学生能够培养合作和交流的能力,提高他们的团队协作能力。
(三)情感态度与价值观
在本节课的教学中,学生将培养以下情感态度和价值观:
1.对数学学习的兴趣:学生通过观察和实验,发现角平分线的性质,增强对数学学习的兴趣;
2.探究精神:学生在探索角平分线的性质的过程中,培养独立思考和解决问题的能力;
3.合作意识:学生在与同伴的合作与交流中,培养团队协作的能力,提高沟通和表达能力;
4.严谨态度:学生在学习和证明角平分线的性质时,培养严谨的科学态度,注重细节和逻辑性。
二、学情分析
在开展人教版数学八年级上册12.3角平分线的性质的教学之前,对学生的学情进行分析是必要的。首先,学生在之前的学习中已经掌握了角的概念、线段的长度等基础知识,具备了一定的几何图形观察和推理能力。然而,对于角平分线的性质,他们可能还没有直观的认识,需要通过观察、实验和证明来建立。

人教版数学八年级上册12.3角的平分线的判定教学设计

人教版数学八年级上册12.3角的平分线的判定教学设计
4.能够运用角的平分线性质解决相关问题,如求角的度数、证明线段相等或比例关系等。
(二)过程与方法
1.采用探究式教学方法,引导学生从实际操作中发现角的平分线的判定定理,培养学生的观察能力和逻辑思维能力。
2.通过小组合作、讨论交流等形式,让学生在合作中学习,提高解决问题的能力和团队协作精神。
3.设计具有梯度性的练习题,使学生在巩固基础知识的同时,逐步提高解题能力,培养良好的学习习惯。
(三)学生小组讨论
1.教学活动:教师给出几个实例,让学生分组讨论如何找出这些角的平分线。
2.小组讨论:学生在小组内分享自己的思考过程,讨论如何运用角的平分线判定定理解决问题。
3.教师指导:教师巡回指导,对学生的疑问进行解答,引导学生运用角的平分线性质解决问题。
(四)课堂练习
1.教学内容:教师布置以下练习题,让学生独立完成。
a.判断题:判断下列各题中,哪个是角的平分线。
b.解答题:已知一个角的度数,求这个角的平分线。
c.应用题:运用角的平分线性质解决实际问题。
2.解答与讲解:教师选取部分学生的答案进行展示和讲解,指出解题过程中的关键步骤和注意事项。
(五)总结归纳
1.教学内容:教师引导学生回顾本节课所学内容,总结角的平分线的定义、性质和判定定理。
1.学生在空间想象力方面的发展水平,引导他们通过实际操作,将抽象的角的平分线概念具体化、形象化。
2.学生在逻辑推理能力上的差异,针对不同水平的学生设计不同难度的问题,使他们在解决问题的过程中逐步提高推理能力。
3.学生在团队合作中的表现,鼓励他们积极参与讨论,学会倾听他人意见,提高沟通能力和团队协作精神。
4.培养学生的创新意识,鼓励他们敢于尝试、勇于探索,形成独立思考的能力。

及反思人教版数学八年级上册12.3角的平分线的性质教学设计

及反思人教版数学八年级上册12.3角的平分线的性质教学设计
-让学生尝试用自己的话解释角的平分线性质,并将其应用于解决实际问题,提高学生的几何直观和逻辑推理能力。
3.拓展作业:
-设计一道探索性问题,如“在等腰三角形中,角的平分线与其他线段有何关系?”鼓励学生进行深入探究,培养他们的创新意识和探究精神。
-要求学生查阅资料,了解角的平分线在生活中的应用,例如在建筑、艺术等领域中的应用,并在课堂上分享。
及反思人教版数学八年级上册12.3角的平分线的性质教学设计
教学设计:
一、教学目标
(一)知识与技能
1.理解角的平分线的概念,掌握角的平分线的表示方法。
2.掌握角的平分线的性质,能够运用性质解决相关问题。
3.能够运用角的平分线性质进行图形的折叠、剪切等操作,培养空间想象能力和动手操作能力。
(二)过程与方法
(二)过程与方法
1.通过实际操作和几何画板的演示,观察角的平分线的特点,培养观察力和直觉思维。
2.与同伴合作,通过讨论和论证来探究角的平分线的性质,锻炼逻辑推理和数学表达能力。
3.运用角的平分线性质解决一系列问题,学会运用几何直观和逻辑推理相结合的方法。
(三)情感态度与价值观
本章节的教学旨在激发学生的:
4.小组合作作业:
-分成小组,共同探讨和研究一个与角的平分线相关的问题,如“如何利用角的平分线构造特殊的几何图形?”要求小组提交一份研究报告,并在课堂上进行展示。
在布置作业时,要注意以下几点:
1.作业难度要适中,既要保证基础知识的巩固,又要激发学生的思考。
2.作业形式要多样化,既要注重学生的动手操作,又要培养他们的逻辑思维和创新能力。
3.鼓励学生在完成作业过程中相互讨论、交流,提高合作能力。
4.及时批改和反馈作业,了解学生的学习情况,为下一步教学提供参考。

人教版-数学-八年级上册-12.3 角的平分线的性质(1) 教案

人教版-数学-八年级上册-12.3 角的平分线的性质(1)  教案

12.3 角的平分线的性质一、教学目标(一)核心素养(二)学习目标会用尺规作一个角的平分线,知道作法的合理性;探索并证明角平分线的性质;能用角的平分线的性质解决简单问题.(三)学习重点角的平分线的性质的证明及应用.(四)学习难点角的平分线的性质的探究.二、教学设计(一)课前设计预习任务用尺规作图作一个角的平分线的方法,其依据是SSS .角的平分线上的点到角的两边的距离相等.预习检测一、填空题1.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若BC=8cm,BD=5cm,则点D到AB的距离为.答案:3cm解析:根据题意画出图形,过点D作DE⊥AB,交AB于点E,D点到AB的距离即为DE 的长.∵∠BCA=90°∴AC⊥BC∵AC⊥BC,DE⊥AB,AD平分∠CAB∴CD=DE∵BC=8cm,BD=5cm,CD=DE,BC=CD+BD∴DE=3cm即D点到直线AB的距离是3cm.点拨:根据角平分线的性质添加辅助线作答2.∠AOB的平分线上一点P,P到OA的距离为2.5cm,则P到OB的距离为cm.答案:2.5解析:∵P是∠AOB平分线上一点,点P到OA的距离是2.5cm,∴P到OB的距离等于点P到OA的距离,为2.5cm.因此,本题正确答案是:2.5.点拨:根据角平分线上的点到角的两边的距离相等解答.二、选择题3.如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()A.PD=PEB.OD=OEC.∠DPO=∠EPOD.PD=OD答案:D解析:A项;由角分线性质,正确B项;由角分线性质知PD=PE,由HL知Rt△OEP≌△ODP,则两三角形全等知OD=OE,正确.C项;同B项,由两三角形全等知∠DPO=∠EPOD项;错误点拨:由题设可知OP为∠AOB的角平分线,PE为P到OB的距离,PD为P到OA的距离,再由角的平分线性质判断即可.可由角分线的性质找出相应的结论.(二)课堂设计1.知识回顾(1)三角形的判断方法有哪些?SSS,SAS,AAS,ASA,HL(2)三角形中有哪些重要线段?三角形中有三条重要线段,它们分别是:三角形的高,三角形的中线,三角形的角的平分线.(3)从直线外一点到这条直线的垂线段的长叫做点到直线的距离.2.问题探究探究一角的平分线的作法●活动①请同学们拿出准备好的角,用你自己的方法画出它的角平分线,然后与大家交流分享.【设计意图】通过学生动手实践,寻找作已知角的平分线的方法,目的是为了引入尺规作图作已知角的平分线.12BD●活动②如图是一个平分角的仪器,其中AB=AD ,BC=DC.将点A 放在角的顶点,AB 和AD 沿着角的两边放下,画一条射线AE ,AE 就是∠DAB 的平分线. 你能说明它的道理吗?让同学们把推理过程写在课堂作业本上,老师巡查学生完成情况,对个别学生进行引导,最后教师把有典型错误的解答过程展示出来,让同学们去纠正错误.【设计意图】为如何用尺规作图作已知角的平分线作铺垫.●活动③老师提出问题:通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)讨论结果展示:已知:∠MAN求作:∠MAN 的角平分线.作法:(1)以A 为圆心,适当长为半径画弧,交AM 于B ,交AN 于D.(2)分别以 B.D 为圆心,大于 的长为半径画弧,两弧在∠MAN 的内部交于点C.(3)画射线AC.∴射线AC 即为所求.分组讨论: 1.在上面作法的第二步中,去掉“大于12BD的长”B这个条件行吗?2.第二步中所作的两弧交点一定在∠MAN的内部吗?学生讨论结果总结:1.去掉“大于12BD的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以B.D为圆心,大于12BD的长为半径画两弧,两弧的交点可能在∠MAN的内部,也可能在∠MAN的外部,而我们要找的是∠MAN内部的交点,否则两弧交点与顶点连线得到的射线就不是∠MAN的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.练一练:任意画一角∠AOB,作它的平分线.【设计意图】设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯探究二角的平分线的性质●活动①如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开.观察两次折叠形成的三条折痕,三条折痕分别表示什么?你能得出什么结论?学生回答后师生归纳:OC表示∠AOB的角平分线,PD和PE分别表示P到OA和OB的距离,P到角两边的距离相等(PD=PE)【设计意图】让学生感知角平分线的性质.●活动②学生活动:作已知∠AOB的平分线,过平分线上一点P,作两边的垂线段.投影出下面两个图形,让学生评一评.结论:同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点作两边的垂线段,所以他的画法不符合要求.问题1:如何用文字语言叙述所画图形的性质?师生共同归纳:角平分线上的点到角的两边的距离相等.问题2:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话?已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D.E为垂足.由已知事项推出的事项:PD=PE.【设计意图】进一步理解角平分线的题设和结论.●活动③以上结论成立吗?让同学们独立进行证明,然后展示学生的证明过程:证明:∵PD⊥OA,PE⊥OB (已知)∴∠PDO = ∠PEO=90°(垂直的定义)在△PDO和△PEO中∠PDO = ∠PEO(已证)∠AOC = ∠BOC (已知)OP=OP (公共边)∴△PDO ≌△PEO(AAS)∴PD=PE(全等三角形的对应边相等)于是我们得角的平分线的性质:角的平分线上的点到角的两边的距离相等.符号语言:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,垂足分别为点D.E.(已知)∴PD=PE(角的平分线上的点到角的两边的距离相等)【设计意图】展示符号语言的目的在于规范学生的书写过程,培养学生严谨的推理能力.探究三用角的平分线的性质解决简单问题●活动①应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,我们可以直接利用性质解决问题.例1(1) 下面四个图中,点P都在∠AOB的平分线上,则图形( )中PD=PE.A B C D【知识点】角平分线的性质.【思路点拨】利用角平分线的性质时,非常重要的条件是PD和PE是到角两边的距离.【解答过程】选项A中如果增加一个条件OD=OE,就能得出PD=PE;选项B和C中PD不是到OA的距离;选项D中P到OA和OB的距离为PD和PE.【答案】D(2)下图中,PD⊥OA,PE⊥OB,垂足分别为点D.E,则图中PD=PE吗?【知识点】角平分线的性质.【思路点拨】已知没有告诉OC为∠AOB的平分线,由此PD与PE不相等.【解答过程】PD与PE不相等,因为OC不是∠AOB的平分线.(3)如图,△ABC中,∠C=90°,BD平分∠ABC,CD=2cm,则点D到AB的距离为cm.【知识点】角平分线的性质.【思路点拨】过D作AB的垂线段DE,垂足为E,由BD平分∠ABC,可得DC=DE=2.【解答过程】解:过D作AB的垂线段DE,垂足为E,∵BD平分∠ABC,CD⊥BC,DE⊥AB,∴DC=DE∵CD=2cm,∴DE=2cm,即点D到AB的距离为2cm【答案】2练习:如图,△ABC中,∠C=90°,BD平分∠ABC,DE⊥AB,垂足为点E,AC=7cm,则AD+DE= cm.EDCBA【知识点】角平分线的性质.【思路点拨】由BD平分∠ABC,可得DC=DE,AD+DE=AD+DC=AC.【解答过程】解:∵BD平分∠ABC,CD⊥BC,DE⊥AB,∴DC=DE∴AD+DE=AD+DC=AC.∵AC=7cm,∴AD+DE=7cm.【答案】7【设计意图】通过练习,理解角平分线的性质.●活动②例2如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20 000)?【知识点】角平分线的性质【思路点拨】1.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500米处.2.在纸上画图时,我们经常以厘米为单位,而题中距离又是以米为单位,这就涉及一个单位换算问题了.1 m=100 cm,所以比例尺为1:20 000,其实就是图中1 cm表示实际距离200 m的意思.作图如下:【答案】第一步:尺规作图法作出∠AOB的平分线OP.第二步:在射线OP上截取OC=2.5 cm,确定C点,C点就是集贸市场所建地了.练习:在S区有一个贸易市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路,怎样修才能使路最短?它们有怎样的数量关系呢?【知识点】角平分线的性质【思路点拨】过P分别作公路和铁路的垂线段,这两条垂线段就是P点到公路和铁路的最短距离.【答案】过P点分别作铁路和公路的垂线段,它们的数量关系为相等.●活动3例3如图,△ABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,F在BC上,AD=DF 求证:CF=EA【知识点】角平分线的性质和三角形的判定和性质S公路铁路P初中-数学-打印版【思路点拨】证CF和EA所在的两个三角形全等【解答过程】证明:∵∠C=90°,BD平分∠ABC,DE⊥AB于E,∴DC=DE又∵AD=DF∴△DCF≌△DEA(HL)∴CF=EA练习:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC,求证:OB=OC.【知识点】角平分线的性质和全等三角形的判定【思路点拨】利用角平分线的性质可得OD=OE,证明△BOD ≌△COE可得OB=OC 【答案】证明:∵CD⊥AB,BE⊥AC,AO平分∠BAC,∴OD=OE,∠BDO=∠CEO=90°.∵∠BOD=∠COE,∴△BOD ≌△COE.∴OB=OC.3. 课堂总结知识梳理(以课堂内容为根据,结合教学目标的几点要求,对涉及到的知识细致梳理)(1)会用尺规作一个角的平分线,知道作法的理论依据;(2)探索并证明角平分线的性质;(3)能用角的平分线的性质解决简单问题.重难点归纳(本节课的中心知识点在此进行回顾,对课堂上的典型方法、特殊例题进行归纳点拨)(1)角的平分线的性质的探究.(2)角的平分线的性质的证明及应用.(3)证明线段相等通常证明线段所在的两个三角形全等.初中-数学-打印版。

12.3 角的平分线的性质 人教版八年级数学上学期教案

12.3 角的平分线的性质 人教版八年级数学上学期教案

课题12.3角平分线的判定上课教师上课时间第周第节教学目标1、掌握角平分线的判定。

2、熟练运用角平分线的判定及性质解决问题。

3、结合实际,创造丰富的情境,提高学生的学习兴趣,让他们在活动中获得成功的体验,培养学生的探索精神,树立学习的信心.教学重点角平分判定的应用。

教学难点运用角平分线判定证明及解决实际问题.教学过程环节教师活动学生活动设计意图课前预习1、布置学生的课前预习任务;2、进行预习方法指导;3、对学生预习任务进行检查与评定。

1、认真阅读教材50内容,用铅笔勾画重点概念;2、完成《练习册》28-29页例1、例2。

培养课前预习习惯,提升自主学习能力。

自主学习理解新知一、师生互动、引问激思(运用教材,梳理知识)1、角平分线的判定例1:如图,BE⊥AC于点E,CF⊥AB于点F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.(练习册28页例1)2、三角形的平分线例2:如图,某市有一块由三条公路围成的三角形绿地,现准备在其中建一座小亭供人们休息吗,而且要使小亭中心到三条公路的距离相等,试确定小亭中心的位置(练习册29页例2)一、进入情境、领会所学(理解教材,领悟新知)1、在课本上用红色笔勾画角平分线判定的内容;2、分小组分享例1解答过程;3、总结证明角平分线的常见方法。

1、分小组展示例2解答;2、说出解决此类题型的方法;3、说出三角形三条角平分线的关系;4、板书写例题解答格式。

课堂前阶段通过师生互动,学生温故知新,初步领会角平分线判定定理。

通过例题掌握三角形三角平分线的关系。

互动交流巩固所学二、点导评析、归类拓展(运用教辅,解疑释惑)例1变式:如图,在 △ ABC 中,摆放有两个完全一样的三板,它们的一组对应直角边分别在边AB 、AC 上,且这组对应边所对的顶点重合于点M ,则点M 一定在( )A、∠A的平分线上; B、边AC的高上;C、边BC的垂直平分线上;D、边AB的中线上(练习册28页列1变式训练)例2变式:如图,已知∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC.求证:AM 平分∠DAB (练习册29页例2变式训练)二、课堂展示、体系建构(例题展示,变式操练)说出作判断的依据;1、规范快速求解;2、准确说清解题依据;3、尝试总结解题方法。

人教版八年级上册12.3《角的平分线的性质》教学设计

人教版八年级上册12.3《角的平分线的性质》教学设计

12.3角的平分线的性质 教学设计教学目标1. 掌握利用逻辑推理的方法证明角平分线的性质和判定定理;2. 掌握作已知角平分线的方法;了解证明几何命题的一般步骤和格式.3. 在探索问题的过程中体会知识间的关系,能够进行有条理地思考并进行简单的推理.4. 使学生能够利用角平分线的性质和判定定理解决相应的问题.教学重难点重点:探究角平分线的性质,能够利用其解决相关实际问题.难点:角平分线性质的推导过程.课前准备三角板、直尺、圆规、多媒体课件、几何画板教学过程问题1:在练习本上画一个角,怎样得到这个角的平分线?用量角器度量,也可用折纸的方法.[追问1] 你能评价这些方法吗?在生产生活中,这些方法是否可行呢?[追问2] 下图是一个平分角的仪器,其中AB =AD ,BC =DC ,将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE ,AE 就是∠DAB 的平分线.你能说明它的道理吗?师生探究,说明其中的原理(利用“边边边”),进而得到利用尺规作角平分线的方法.教师出示作图过程:已知:∠AOB.求作:∠AOB 的平分线.作法:(1)以O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N.(2) 分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 内部相交于点C. (3) 画射线OC.射线OC 即为所求.教师提出问题:角的平分线有哪些性质呢,请同学们与我一同来探究一下吧!【设计意图】1.创设情境,通过实践探究角平分线的作法,引起学生的探究兴趣,引出本节课的内容.2.培养学生的抽象思维能力和运用三角形全等的知识(SSS)解决问题的能力.3.从试验抽象出几何模型,明确几何作图的基本思路和方法.问题2 【探究1】如图,将∠AOB的两边对折,再折个直角三角形(以第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得到什么结论?你能利用所学过的知识,说明你的结论的正确性吗?[师生活动]学生活动:学生首先独立操作,然后观察操作后的图形,进行讨论,经过讨论发现,折痕DP和折痕PE与其他边有着特殊的关系:(1)PD⊥OA,PE⊥OB;(2)PD=PE.然后寻找上述结论成立的理由:(1)由折叠过程可以得到;由(2)可以利用三角形全等的条件得到,△OPD≌△OPE,进而得到PD=PE.教师活动:组织学生独立操作、思考,在此基础上进行讨论,鼓励学生大胆发言,并对自己的看法作出判断.最后引导学生归纳角平分线的性质:角平分线上的点到角两边的距离相等.【探究2】我们已经知道角平分线上的点到角两边的距离相等,那么若一个点到角两边的距离相等,这个点是否在这个角的平分线上呢?谈谈你的看法.如图,已知PD⊥OA,PE⊥OB,且PD=PE,那么P点在∠AOB的平分线上吗?为什么?[师生活动]学生活动:学生独立思考,自主探索,利用三角形全等解决问题.考虑连接OP,由条件OP=OP,PD=PE,可以判断Rt△OPD≌Rt△OPE,于是得到∠DOP=∠EOP,即OP 平分∠AOB.教师活动:引导学生对所得出的结论进行推理,在推理的过程中注重学生语言的准确性和简洁性,最后归纳:角的内部到角的两边的距离相等的点在角的平分线上.[练习]练习1 下列结论一定成立的是.(1)如图,OC 平分∠AOB,点P 在OC 上,D,E 分别为OA,OB 上的点,则PD =PE.(2)如图,点P 在OC 上,PD⊥OA,PE⊥OB,垂足分别为D,E,则PD =PE.(3)如图,OC 平分∠AOB,点P 在OC 上,PD⊥OA,垂足为D.若PD =3,则点P 到OB 的距离为3.[练习2] 如图,△ABC中,∠B =∠C,AD 是∠BAC 的平分线, DE⊥AB,DF⊥AC,垂足分别为E,F.求证:EB =FC.【设计意图】1.培养学生的数学抽象概括能力及理性精神.2.通过小组合作学习,动手操作探究,获得问题结论,从实践中学习知识.3.运用三角形全等的有关知识,归纳、证明角的平分线的性质与判定.通过举例,说明角的平分线的性质在生活、生产中的应用,提高学生解决问题的能力.问题3:例1要在S区建立一个集贸市场,使它到公路、铁路的距离相等,且离公路与铁路的交叉处500米.这个集贸市场应建于何处(比例尺为1∶20000)?[师生活动]学生活动:学生小组合作,在独立思考的基础上小组交流,发现若到公路、铁路的距离相等,则集贸市场一定在上述角的平分线上,于是可以用尺规作出角平分线,然后根据比例尺画出集贸市场所在地即可.教师活动:组织学生思考、讨论、交流,引导学生发现集贸市场所在地应在角平分线上这个结论.例2如图,△ABC的角平分线BM,CN相交于点P.求证:点P到三边AB,BC,CA 的距离相等.[思路点拨]因为已知、求证中都没有具体说明哪些线段是距离,而证明它们相等必须标出它们.所以这一段话要在证明中写出,同辅助线一样处理.如果已知中写明点P到三边的距离是哪些线段,那么图中画实线,在证明中就可以不写.[变式]△ABC的面积是24 cm2,它的三条内角平分线的交点到AB的距离为3 cm,则△ABC的周长为________.【设计意图】1.利用所学的数学知识解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段.2.教师注意提醒学生:在几何里,如果证明的过程完全一样,只是字母不同,可以用“同理”二字概括,省略详细证明过程.问题4:探究交流:你能找到OP=OP′的条件吗?已知点C是∠AOB平分线上一点,点P,P′分别在OA,OB上,如果要得到OP=OP′,需要添加下列条件中的某一个即可.请写出所有可能的条件的序号________.①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC;⑤CP⊥OA且CP′⊥OB.[解析] 这是一道角平分线的性质与三角形全等知识的综合题,可通过是否具备全等,是否具备角平分线性质中的条件来加以判断.①如果∠OCP=∠OCP′,又因为∠POC=∠P′OC,OC=OC,可证△POC≌△P′OC(ASA),得到OP=OP′;②如果∠OPC=∠OP′C,因为∠POC=∠P′OC,OC=OC,可证△POC≌△P′OC(AAS),得到OP=OP′;④如果PP′⊥OC,设PP′交OC于D,因为∠ODP=∠ODP′,∠POC=∠P′OC,OD=OD,可证△POD≌△P′OD(ASA),得到OP=OP′;⑤如果CP⊥OA且CP′⊥OB,因为∠POC=∠P′OC,所以CP=CP′.又因为OC=OC,可证△POC≌△P′OC(HL),得到OP=OP′;③如果PC=P′C,因为∠POC=∠P′OC,OC=OC,这样三个条件不能证明三角形全等,当CP不垂直于OA时,以C为圆心,CP为半径画弧与OP有两个交点,其中的一个交点使△OP′C≌△OPC不成立.所以正确答案为①②④⑤.【设计意图】1.巩固本节课所学知识及提升综合应用所学知识解决问题的能力.2.培养学生的归纳概括能力及分析问题、思考问题的探究能力.问题5:课堂小结:(1)学生自行小结角平分线性质及其判定定理和它们的区别.(2)说明本节例子实际上是证明三角形三条角平分线相交于一点的问题,说明这一点是三角形的内切圆的圆心(为以后学习设伏).布置作业:布置作业:课本P51中的习题12.3.【设计意图】课堂小结,发展潜能;布置作业,专题突破.问题6 知识网络:【设计意图】框架图式总结,更容易形成知识网络.第二课时教学目标1.探索并证明角平分线性质定理的逆定理.2.会用角平分线性质定理的逆定理解决问题.3.培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验.教学重难点重点:角平分线性质定理的逆定理.难点:角平分线的性质的探究.课前准备多媒体课件教学过程问题1:(1)交换角的平分线性质中的已知和结论,你能得到什么结论,这个新结论正确吗?角的内部到角的两边距离相等的点在角的平分线上.[追问]你能证明这个结论的正确性吗?证明略[练习]判断题:(1)如图,若QM =QN,则OQ 平分∠AOB;()(2)如图,若QM⊥OA 于M,QN⊥OB 于N,则OQ是∠AOB 的平分线;()(3)已知:Q 到OA 的距离等于2 cm,且Q 到OB 距离等于2 cm,则Q 在∠AOB 的平分线上.()(2)在S 区建一个广告牌P,使它到两条公路的距离相等.a.这个广告牌P 应建于何处?这样的广告牌可建多少个?b.若这个广告牌P 离两条公路交叉处500 m(在图上标出它的位置,比例尺为1:20 000),这个广告牌应建于何处?C.如图,点P是△ABC的两条角平分线BM,CN 的交点,点P 在∠BAC的平分线上吗?这说明三角形的三条角平分线有什么关系?证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足为D,E,F.∵BM是△ABC的角平分线,点P在BM上,∴PD=PE,同理PE=PF∴PD=PE=PF即点P到三边AB,BC,CA的距离相等.【设计意图】通过一步一步深入探究,由易到难理解新知识.问题2 如图,要在S 区建一个广告牌P,使它到两条公路和一条铁路的距离都相等.这个广告牌P 应建在何处?[变式1] 如图,△ABC 的一个外角的平分线BM 与∠BAC的平分线 AN 相交于点P,求证:点 P 在△ABC另一个外角的平分线上.[变式2] 如图,P 点是△ABC的两个外角平分线 BM,CN 的交点,求证:点 P 在∠BAC 的平分线上.[变式3] 如图,将问题3中“S 区”去掉,广告牌P到两条公路和一条铁路的距离相等.这个广告牌P 应建在何处?【设计意图】通过实际问题的探究,使所学的知识得到熟练的应用;通过不断深入的变式,使学生掌握知识的核心.问题3:课堂小结:(1)本节课学习了哪些内容?(2)本节课的结论与角平分线的性质定理的区别和联系是什么?(3)应用本节课的结论时,常作的辅助线是什么?布置作业:教科书习题12.3第3、7题.【设计意图】课堂小结,发展潜能;布置作业,专题突破.。

角的平分线的性质人教版数学八年级上册教案

角的平分线的性质人教版数学八年级上册教案

角的平分线的性质人教版数学八年级上册教案角平分线是指从一个角的顶点引出一条射线,把这个角分成两个完全一样的角,这条射线叫做这个角的角平分线。

三角形三条角平分线的交点叫做三角形的内心。

以下是我整理的角的平分线的心质人教版数学八年级上册教案,欢送大家借鉴与参考!12.3角的平分线的性质教案一、创设情景,明确目标1.不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么方法?2.假如前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?二、自主学习,指向目标学习至此:请完成《学生用书》相应局部.用尺规作确定角的平分线的方法活动一:教材P48思索展示点评:相等的边有哪些?图形中隐含的条件是什么?作确定角的平分线的方法?为什么要用“大于MN的一半为半径画弧”?小组探讨:平分角的仪器的原理依据是什么?反思小结:理论依据是三角形全等的判定“SSS”.针对训练:见《学生用书》相应局部角平分线的性质与证明活动二:同学们结合折纸活动,猜测一下角平分线有怎样的性质呢?猜测:角平分线上的点到角的两边的距离相等.展示点评:请同学们证明上述猜测(写出确定、求证):通过证明我们得出角平分线性质:________.用数学语言翻译描述上述性质:小组探讨:第一次对折可以得到什么结论?其次次为什么要折出一个直角?角平分线的性质内容?确定和求证分别是什么?如何证明?如何用几何语言表达?根本图形是什么?反思小结:角平分线上的点到角两边的距离相等.针对训练:见《学生用书》相应局部角平分线的运用活动三:如图,OC平分∠AOB,点P为OC上随意一点,PD⊥OA于D,PE⊥OB于E,猜测PD与PE 的数量关系,并证明.展示点评:由角平分线可以得到哪些角相等?由垂直可以得到哪些角相等?由图形可挖掘什么条件?由三角形全等可以得到什么结论?如何写证明过程?小组探讨:此题有哪些不同的证明方法,哪种方法更简便?反思小结:用角平分线的性质证明线段相等比用全等三角形证明线段相等更便利.针对训练:见《学生用书》相应局部四、总结梳理,内化目标本节课学习了那些学问?有哪些运用?1.角平分线的性质定理:在角平分线上的点到角的两边的距离相等.2.角平分线的性质定理是证明角相等、线段相等的新途径.五、达标检测,反思目标1.三角形中,到三边距离相等的点是( C )A.三条高线交点B.三条中线交点C.三条角平分线交点D.三边垂直平分线交点12.3角平分线的性质:测试一、填空题(每题3分,共30分)1.到一个角的两边距离相等的点都在_________.2.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,那么M到OB的距离为_________.3.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________.12.3角的平分线的性质:精选练习7.确定Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,假设BC=32,且BD:CD=9:7,那么D到AB边的距离为( )A.18B.16C.14D. 128.如图6,AE⊥BC于E,CA为∠BAE的角平分线,AD=AE,连结CD,那么以下结论不正确的选项是( )A.CD=CEB.∠AC D= ∠ACEC.∠CDA =90°D.∠BCD=∠ACD9.在△ABC中,∠B=∠ACB,CD是∠ACB的角平分线,确定∠ADC=105°,那么∠A的度数为( )A.40°B.36°C.70°D.60°10.在以下结论中,不正确的选项是( )A.平面内到角的两边的距离相等的点必须在角平分线上B.角平分线上任一点到角的两边的距离必须相等C.一个角只有一条角平分线D.角的平分线有时是直线,有时是线段角的平分线的性质人教版数学八年级上册教案。

人教版数学八年级上册12.3角平分线的性质教案

人教版数学八年级上册12.3角平分线的性质教案
-通过列举具体例子,如等腰三角形、等边三角形等,让学生学会将角平分线性质应用于实际图形。
2.教学难点
a.角平分线性质的证明过程,尤其是辅助线的添加和全等三角形的运用;
b.理解角平分线性质中“点到角两边距离相等”的含义,并能将其应用于解决问题;
c.解决与角平分线相关的高难度问题,如构造角平分线、解决综合几何问题等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了角平分线的定义、性质和它在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对角平分线的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
a.证明角平分线上的任意一点到角的两边的距离相等;
b.应用角平分线的性质解决实际问题;
c.掌握角平分线在实际图形中的应用,如等腰三角形、等边三角形等。
二、核心素养目标
1.培养学生的逻辑推理能力:通过角平分线性质的探究与证明,使学生能够运用几何语言进行逻辑推理,提高论证能力。
2.增强空间观念:通过观察、操作和想象,使学生能够理解角平分线在二维空间中的位置关系,培养空间观念。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角平分线的基本概念。角平分线是通过一个角的顶点,将角分为两个相等角的直线。(解释概念)它是解决几何问题中关于角的重要工具,有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了角平分线在实际中的应用,以及它如何帮助我们解决问题。
五、教学反思
在今天的课堂中,我们探讨了人教版数学八年级上册第十二章第三节“角平分线的性质”。通过这节课的教学,我发现以下几点值得反思:

人教版八年级上册 12.3 角平分线的性质 教案

人教版八年级上册 12.3 角平分线的性质 教案

角的平分线的性质(一)教学目标1、应用三角形全等的知识,解释角平分线的原理.2.会用尺规作一个已知角的平分线.教学重点利用尺规作已知角的平分线.教学难点角的平分线的作图方法的提炼.教学过程Ⅰ.知识回顾问题1:三角形中有哪些重要线段.问题2:你能作出这些线段吗?Ⅱ.合作探究思考:右图是一个平分角的仪器,其中,.将点A放在角的顶点,和沿着角的两边放下,沿画一条射线,就是角平分线.你能说明它的道理吗?要说明是∠的平分线,其实就是证明∠∠.∠和∠分别在△和△中,那么证明这两个三角形全等就可以了.看看条件够不够在△和△.因为所以△≌△().所以∠∠.即射线就是∠的平分线.这种平分角的方法告诉了我们一种作已知角的平分线的方法。

作已知角的平分线的方法:已知:∠.求作:∠的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交、于M、N.的长为半径作弧.两弧在∠内部交(2)分别以M、N为圆心,大于12于点C.(3)作射线,射线即为所求.议一议:的长”这个条件行吗?1.在上面作法的第二步中,去掉“大于122.第二步中所作的两弧交点一定在∠的内部吗?总结:1.去掉“大于1的长”这个条件,所作的两弧可能没有交点,所以2就找不到角的平分线.2.若分别以M、N为圆心,大于1的长为半径画两弧,两弧的交点可2能在∠ 的内部,也可能在∠的外部,而我们要找的是∠内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.思考如图,任意画一角∠,做出∠的角平分线,在上任取一点O,过点O 画出的垂线,分别记垂足为。

测量并作比较,你得到什么结论?在上再取几个点试试。

通过以上测量,你发现了角的平分线的什么性质?PⅢ.课堂精讲我们猜想角的平分线有以下性质:角平分线的性质:角平分线上的点到角的两边的距离相等.下面,我们利用三角形全等证明这个性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章全等三角形
12.3角的平分线的性质教学设计
教材分析
本节内容是全等三角形知识的运用延伸,用尺规作一个角的平分线,其作法原理是三角形全等的“边边边”判定方法和全等三角形的性质;角的平分线的性质证明,运用了三角形全等的“角角边”判定方法和全等三角形的性质.角的平分线的性质证明提供了使用角的平分线的一种典型方法——利用角平分线构造两个全等的直角三角形,进而证明相关元素对应相等.角的平分线的性质反映了角的平分线的基本特征,常用来证明两条线段相等,角的平分线的性质的研究过程还可为后期学习线段垂直平分线的性质提供思路。

教学目标
1.会使用尺规作一个已知角的平分线;
2.掌握角的平分线的性质和判定;
3.能运用角的平分线的性质定理解决简单的几何问题.
教学重点及难点
重点:角平分线的尺规作图,角的平分线的性质和判定及其应用.
难点:1.理解对角平分线性质定理中“点到角两边的距离”
2.角的平分线的性质及判定定理的运用.
教学用具
直尺、刻度尺、量角器、角平分仪、多媒体、课件
教学过程
(一)导入新课
问题1:给出一个纸片做的角,能不能找出这个角的角平分线呢?
师生活动:可用量角器,若不利用工具,也可用折纸的方法,教师课件演示.
问题2:哪一种方法用起来更方便?在生活中,这些方法是否都可行呢?
师生活动:用量角器比较方便,但有误差,用折叠的方法比较简捷,但若换成木板、钢板等无法对折的材料,此方法就不行了,那还有别的方法适合吗?引出课题.[设计意图]设计“激趣设疑、联旧带新”环节,既能激发学生的学习兴趣,培养学生运用数学知识解决实际问题的意识,同时为更高层次的知识建构提供了理想途径.(二)探索新知
探究(1):出示仪器模型,说明工人师傅常用如图所示的简易平分角的仪器来画角的平分线.介绍仪器特点(有两对边相等),将A 点放在角的顶点处,AB 和AD 沿角的两边放下,过AC 画一条射线AE ,AE 即为∠BAD 的平分线.为什么?
学生回答,用三角形全等的方法(SSS )证明AE 是∠BAD 的平分线.
师问:把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,也就是A B =AD ,从几何作图角度怎么画?BC =DC ,从几何作图角度怎么画?
师生活动:学生同桌交流,归纳角的平分线的作法.学生板演示范作图.
预设:为什么要以大于
2
1MN 的长为半径画弧?为什么强调交于角的内部?提倡学生自学、对学、再群学.
[设计意图]帮助学生体验从生产生活中分离,抽象出数学模型,以此为线索,先自学、再对学,有问题(或困难)的在小组内交流,从实验操作中获得启示,探究出作角的平分线的方法,不仅注重了个人的实效性发展,而且也实现了学生自身能力的资源共享.
探究(2):请将一张用纸片做的角∠AOB 对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?再连续折出几个直角三角形,然后展开,观察折痕,你能得到什么结论?
问题1:第一次的折痕和角有什么关系?为什么?
问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系? 学生动手折叠
师生活动:第一次折痕是角的平分线,第二次的折痕是角平分线上的点到两边的距离,它们的长度相等,连续再折出折痕长度也对应相等.由此可见,角的平分线除了有平分角的性质,还有其他性质.用文字语言阐述得到的猜想:
角的平分线上的点到角两边的距离相等
[设计意图]学生动手动脑,可猜测并能说出观察到的结论,为逻辑推理做好了铺垫. 几何语言:∵OC 是∠AOB 的角平分线(或者∠AOC =∠BOC )点P 在OC 上且P D ⊥OA ,PE ⊥OB ,∴PD =PE .
师生活动:分清题设和结论,画出图形,引导学生结合图形写出已知、求证,分析后完成证明过程,两名同学板演,教师巡视指导,同桌互查.证明后,教师强调经过证明正确的命题可作为定理.同时强调文字命题的证明步骤.
[设计意图]经历实践→猜想→证明→归纳的过程,符合学生的认知规律,尤其是对于结论的验证,信息技术在此体现了它的不可替代性,特别是对于那些抽象思维能力弱的学生有了很好的帮助.
交换角的平分线性质定理的条件和结论得到:(有难度要及时引导)
角的内部到角的两边的距离相等的点在角的平分线上
几何语言:∵点P在∠AOB的内部,PD⊥OA,PE⊥OB,垂足分别为D,E,PD=PE,∴射线OP是∠AOB的平分线.
按照性质的证明方法学生自己证明.(同桌交流)教师巡视指导.
(三)例题解析
例1.如图,已知CE⊥AB于E,BD⊥AC于D,BD,CE交于O,AO平分∠BAC.求证:OB=OC.
证明:∵AO平分∠BAC,CE⊥AB于E,BD⊥AC于D
∴∠OEB=∠ODC
在△OEB和△ODC中
OEB ODC
OE OD
EOB DOC
∠=∠


=

⎪∠=∠




∴△OEB≌△ODC(ASA)
∴OB=OC
教师用多媒体展示问题,学生观察识图,独立思考,并且在小组内讨论交流,找出证明思路,4名学生板演自己的证明过程,学生再互评.
预设:有学生会仍旧去找全等三角形,而不能直接去运用性质定理解决数学问题.
[设计意图]本例题的解决是为突出重点、突破难点而设计的一项活动.提醒学生能直接运用性质定理解决的数学问题,不要再仍旧去找全等三角形,更好地拓展学生解题思路及形成知识运用能力,符合高效课堂要求.
例2.已知:如图,△ABC的角平分线BM,CN相交于点P.求证:点P到三边A B,BC,CA的距离相等.
证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足为分别D,E,F.
∵BM是ΔABC的角平分线,点P在BM上,∴PD=PE.
同理PE=PF,
∴PD=PE=PF,
即点P到三边AB,BC,CA的距离相等.
限时让学生独立思考分析,然后交流证题思路,再通过多媒体展示一般证明过程.
[设计意图]限时独立完成,并展示.通过问题的解决,帮助学生更好地理解角平分线的性质,并达到能熟练运用的程度.
(四)课堂练习
(1)判断正误,并说明理由:
如图,P在射线OC上,PE⊥OA,PF⊥OB,则PE=PF.( )
P
F
E
O
C
B
A
如图,P是∠AOB的平分线OC上的一点,E,F分别在OA,OB上,则PE=PF.( )
P
F E
O C
B
A
如图,在∠AOB 的平分线OC 上任取一点P ,若P 到OA 的距离为3 cm ,则P 到OB 的距离边为3 cm ( ) P
E
O B A
(2)填空:如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE , 则∠DOC =( )
A
B
C
O E D
[设计意图]学生独立思考完成,旨在进一步理解和巩固角平分线的性质定理(三个条件缺一不可)和判定定理.
答案:(1)× × √ (2)30°
课堂小结
(1)角的平分线的性质定理:角的平分线上的点到角的两边的距离相等
(2)这节课你还有什么困惑?通过本节课你了解了哪些思考问题的方法?
猜想到证明(合情推理——演绎推理).
布置作业:课本P51中的习题12.3.
[设计意图]通过引导学生自主归纳,调动学生的主动参与意识,锻炼学生归纳概括与表达能力.布置作业,专题突破.
板书设计
12.3角的平分线的性质
尺规作角的平分线的步骤
角的平分线的性质定理:角的平分线上的点到角的两边的距离相等
角的平分线性质的几何推理格式。

相关文档
最新文档