§7.3 宇宙航行
万有引力理论的成就与宇宙航行-高一物理同步备课系列(人教版2019必修第二册)
★其他环绕天体围绕中心天体做匀速圆周运动时,求解中心天体质量的方法类似。
(1)只能求出中心天体的质量M,不能求出环绕天体的质量m。
特别说明:
(2)地球的公转周期(365天)、地球自转周期(1天)、月球绕地球的公转周期(27.3天)等,在估算天体质量时,常作为已知条件。
算一算:设地面附近的重力加速度g=9.8m/s2,地球半径R =6.4×106m,引力常量G=6.67×10-11 N·m2/kg2,试估算地球的质量。
方法一:重力加速度法(g、R)
科学真是迷人。根据零星的事实,增加一点猜想,竟能赢得那么多的收获! ——马克·吐温
想一想:还有其他方法吗?
算一算:已知月球绕地球周期T=27.3天,月地平均距离r=3.84×108m,引力常量G=6.67×10-11 N·m2/kg2,试估算地球的质量。
3. 第三宇宙速度(逃逸速度):如果物体的速度大于或等于16.7km/s,物体就摆脱了太阳引力的束缚,飞到太阳系以外的宇宙空间去。这个速度叫第三宇宙速度。
宇宙速度
注意:宇宙速度都是针对发射速度;以上三个宇宙速度都是地球上的宇宙速度。.
说明:(1)第一宇宙速度是发射人造地球卫星的最小发射速度,当V发=7.9km/s时,卫星恰好环绕地球表面做匀速圆周运动;要使卫星在较高的轨道上运行,就必须使发射速度大于7.9km/s。
(2)极地轨道:卫星轨道平面与赤道平面垂直,卫星通过两极上空。
(3)倾斜轨道(一般轨道) :卫星轨道和赤道成某一的角度。
F引Байду номын сангаас
(6)人造地球卫星的运行速度和发射速度间的大小关系: V运≤7.9km/s ≤ V发< 11.2km/s
第七章万有引力与宇宙航行【思维导图+考点通关】(解析版)
第七章万有引力与宇宙航行一、思维导图二、考点通关考点1行星的运动开普勒第一定律(轨道定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上否定了行星圆形轨道的说法,建立了正确的轨道理论,给出了太阳准确的位置 开普勒第二定律(面积定律)对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等描述了行星在其轨道上运行时,线速度的大小不断变化。
解决了行星绕太阳运动的速度大小问题 开普勒第三定律(周期定律)所有行星轨道的半长轴的三次方跟它的公转周期的二次方的比都相等⎝⎛⎭⎫a 3T 2=k表明了行星公转周期与轨道半长轴间的关系,椭圆轨道半长轴越长的行星,其公转周期越长;反之,其公转周期越短2.行星运动的近似处理实际上,行星的轨道与圆十分接近,在中学阶段的研究中我们可按圆轨道处理。
这样就可以说:(1)行星绕太阳运动的轨道十分接近圆,太阳处在圆心。
(2)对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)大小不变,即行星做匀速圆周运动。
(3)所有行星轨道半径r 的三次方跟它的公转周期T 的二次方的比值都相等,即r 3T 2=k 。
注:处理行星绕太阳(恒星)的运动问题时,根据题意判断行星轨道是需要按椭圆轨道处理,还是按圆轨道处理,当题中说法是轨道半径时,则可按圆轨道处理。
【典例1】“墨子号”是由中国自主研制的世界上第一颗空间量子科学实验卫星,标志着中国在量子通信技术方面走在了世界前列;其运行轨道为如图所示的绕地球E 运动的椭圆轨道,地球E 位于椭圆的一个焦点上。
轨道上标记了墨子卫星经过相等时间间隔⎝⎛⎭⎫Δt =T 14,T 为轨道周期的位置。
则下列说法正确的是( )A .面积S 1>S 2B.卫星在轨道A点的速度小于其在B点的速度C.T2=Ca3,其中C为常数,a为椭圆半长轴D.T2=C′b3,其中C′为常数,b为椭圆半短轴【答案】C【解析】根据开普勒第二定律可知,卫星与地球的连线在相同时间内扫过的面积相等,故面积S1=S2,A错误;根据开普勒第二定律,卫星在A点、B点经过很短的时间Δt,卫星与地球连线扫过的面积S A=S B,由于时间Δt很短,则这两个图形均可看作扇形,则12v AΔt·r A=12v BΔt·r B,且知r A<r B,则v A>v B,B错误;根据开普勒第三定律:所有行星轨道半长轴的三次方跟它的公转周期的二次方的比都相等,即a3T2=k,整理可得T2=1k a3=Ca3,其中C=1k,为常数,a为椭圆半长轴,故C正确,D错误。
万有引力习题及答案
【典型例题】例1、海王星的公转周期约为5.19×109s,地球的公转周期为3.16×107s,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍?例2、有一颗太阳的小行星,质量是1.0×1021kg,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。
例3、16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个观点,这四个论点目前看存在缺陷的是()A、宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动。
B、地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动。
C、天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象。
D、与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多。
例4.假设已知月球绕地球做匀速圆周运动,万有引力提供向心力,假如地球对月球的万有引力突然消失,则月球的运动情况如何?若地球对月球的万有引力突然增加或减少,月球又如何运动呢?【针对训练】1、某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3则此卫星运行的周期大约是:()A.1-4天之间 B.4-8天之间 C.8-16天之间 D.16-20天之间2、两行星运行周期之比为1:2,其运行轨道的半长轴之比为:()A.1/2B.C.D.3、地球到太阳的距离是水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(设地球和水星绕太阳运转的轨道是圆轨道)4.关于日心说被人们所接受的原因是()A.以地球为中心来研究天体的运动有很多无法解决的问题B.以太阳为中心,许多问题都可以解决,行星的运动的描述也变得简单了C.地球是围绕太阳转的 D.太阳总是从东面升起从西面落下5、考察太阳M的卫星甲和地球m(m<M)的卫星乙,甲到太阳中心的距离为r1,乙到地球中心的距离为r2,若甲和乙的周期相同,则:()A、r1>r2B、r1<r2C、r1=r2D、无法比较6、设月球绕地球运动的周期为27天,则地球的同步卫星到地球中心的距离r与月球中心到地球中心的距离R之比r/R为()A. 1/3B. 1/9C. 1/27D. 1/18【能力训练】1、关于公式R3 / T2=k,下列说法中正确的是()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k 值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错2、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A. 1:27B. 1:9C. 1:3D. 9:13、两颗小行星都绕太阳做圆周运动,它们的周期分别是T和3T,则()A、它们绕太阳运转的轨道半径之比是1:3B、它们绕太阳运转的轨道半径之比是1:C、它们绕太阳运转的速度之比是:1:4D、它们受太阳的引力之比是9:74、开普勒关于行星运动规律的表达式为,以下理解正确的是()A.k是一个与行星无关的常量B.R代表行星运动的轨道半径C.T代表行星运动的自传周期D.T代表行星绕太阳运动的公转周期5、关于天体的运动,以下说法正确的是()A.天体的运动与地面上物体的运动遵循不同的规律B.天体的运动是最完美、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都绕太阳运动6、关于太阳系中各行星的轨道,以下说法正确的是:()A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同7、如果某恒星有一颗卫星,此卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度ρ=_________(万有引力常量为G)8、两颗行星的质量分别是m1,m2,它们绕太阳运转轨道的半长轴分别为R1、R2,如果m1=2m2,R1=4R2,那么,它们的运行周期之比T1:T2= 9、已知两行星绕太阳运动的半长轴之比为b,则它们的公转周期之比为多少?10、有一行星,距离太阳的平均距离是地球到太阳平均距离的8倍,则该行星绕太阳公转周期是多少年?11、地球公转运行的轨道半径R=1.49×1011m,若把地球的公转周期称为1年,土星运行的轨道半径是r=1.43×1012m,那么土星的公转周期多长?参考答案:例1. 646倍例2. 4.61年例3. ABC 例4. 略。
高一物理人教版必修二第六章第5节《宇宙航行》说课稿
《宇宙航行》说课稿尊敬的各位领导,各位老师,大家好。
今天我说课的题目选自人教版高中物理必修二第六章第五节《宇宙航行》。
下面我将从教材分析、学情分析,教学目标、教学重难点、教学方法、教学程序、作业设计与板书设计几个的方面进行阐述。
一、教材分析《宇宙航行》是新课程人教版必修二第六章第五节的内容,本节课是以学生前面已掌握的平抛运动、圆周运动和向心力等知识以及万有引力定律为基础,重点推导了第一宇宙速度,介绍了第二、第三宇宙速度。
通过对人造卫星、宇宙速度的介绍,使学生对航天科学产生兴趣,增强民族自信心和自豪感。
是学生进一步学习研究天体物理问题的基础。
二、学情分析从学生年龄特征来看,大多是00后出生,他们已经对本节知识有一定的接受能力,但是对知识体系条理性掌握,对易混淆知识的辨别能力还欠缺。
从学生的知识基础来看,本节与第五章息息相关,不同水平的学生学起来认知程度不一样。
从认知特点及思维规律来看,学生容易接收表象、浅显的知识,不易接收推理性强、易混淆的知识。
因此在教学过程中教师要作合理的引导。
三、教学目标1、知识与技能(1)知道三个宇宙速度的含义和数值,会推导第一宇宙速度。
(2)会解决涉及人造地球卫星运动的较简单的问题。
(3)理解卫星的运行速度、角速度、周期、向心加速度与轨道半径的关系。
2、过程与方法(1)在学习牛顿对卫星发射猜想的同时,培养学生科学探索能力;(2)培养学生在处理实际问题时,如何构建物理模型的能力。
3、情感态度与价值观(1)通过展示人类在宇宙航行领域中的伟大成就,激发学生学习物理知识的热情。
(2)通过介绍我国在航天方面的成就,激发学生的爱国热情,增强民族自信心和自豪感。
(3)感知人类探索宇宙的梦想,促使学生树立献身科学的人生观和价值观。
四、教学重点依据课程标准要求和本节教材实际,并结合课后习题,确定本节的教学重点为:宇宙第一速度的推导过程和方法,了解第一宇宙速度的应用领域。
因为高一学生思维还不够敏捷,很难做到大跨度的思维跳跃,对于人造卫星、宇宙飞船等高科技产品,学生在学习时往往存在一定的心里障碍。
宇宙航行地球同步卫星教案
宇宙航行-地球同步卫星教案第一章:引言1.1 教学目标:让学生了解地球同步卫星的基本概念。
激发学生对宇宙航行和地球同步卫星的兴趣。
1.2 教学内容:宇宙航行简介:宇宙航行的意义、发展历程和现状。
地球同步卫星的概念:地球同步卫星的定义、特点和应用。
1.3 教学方法:采用讲授法,介绍宇宙航行和地球同步卫星的基本概念。
利用多媒体展示宇宙航行的图片和视频,激发学生的兴趣。
1.4 教学活动:引导学生思考宇宙航行的意义和重要性。
学生展示对地球同步卫星的理解和认识。
第二章:地球同步卫星的轨道2.1 教学目标:让学生了解地球同步卫星的轨道特点。
培养学生分析问题和解决问题的能力。
2.2 教学内容:地球同步卫星的轨道特点:轨道平面、轨道周期和轨道高度。
地球同步卫星轨道的计算方法。
2.3 教学方法:采用讲授法,介绍地球同步卫星轨道的特点和计算方法。
利用数学模型和实例解释地球同步卫星轨道的计算过程。
2.4 教学活动:学生分组讨论地球同步卫星轨道的特点。
学生进行轨道计算的练习,加深对轨道计算方法的理解。
第三章:地球同步卫星的应用3.1 教学目标:让学生了解地球同步卫星的应用领域。
培养学生对地球同步卫星应用的实际意义的认识。
3.2 教学内容:地球同步卫星的应用领域:通信、气象、地球观测等。
地球同步卫星应用的实例和效益。
3.3 教学方法:采用讲授法,介绍地球同步卫星的应用领域和实例。
利用多媒体展示地球同步卫星应用的图片和视频。
3.4 教学活动:学生分组讨论地球同步卫星应用的实际意义。
学生展示对地球同步卫星应用的理解和认识。
第四章:地球同步卫星的发射和控制4.1 教学目标:让学生了解地球同步卫星的发射和控制过程。
培养学生对地球同步卫星发射和控制技术的兴趣。
4.2 教学内容:地球同步卫星的发射过程:发射设施、发射方式和发射注意事项。
地球同步卫星的控制技术:轨道控制、姿态控制和生命周期控制。
4.3 教学方法:采用讲授法,介绍地球同步卫星的发射和控制过程。
宇宙航行说课稿全
可编辑修改精选全文完整版宇宙航行说课稿宇宙航行说课稿1尊敬的各位评委老师,同学们:大家好!我今天说课的课题是《宇宙航行》,关于这节课我主要介绍以下几方面内容:教材简介,课程分析,教学目标,教学重点难点,教学过程,小结,其中教学过程又包括下面五个部分:复习旧课,新课引入,新课教学,巩固复习,布置作业,下面我将对各个部分进行详细的解说。
一、教材简介《宇宙航行》是人民教教育出版社出版的普通高中课程标准实验教科书物理必修2模块第7章第5节的内容。
二、课程分析本节课是以学生已掌握的曲线运动一章中的平抛运动,圆周运动,和向心力等知识以及万有引力定律为基础。
重点讲述了人造卫星的发射原理,人造卫星绕地球做圆周运动的动力学原因和人造卫星的速度问题。
人造卫星是万有引力定律在天文学上应用的一个实例,为学生以后深入学习研究天体物理问题奠定了基础,而且本节课与社会生活有着密切的联系,如气象卫星与天气预报,卫星定位系统与自动导航汽车等,更值得大家瞩目的是:我国在xxxx年,20xx年相继成功发射了“神舟五号”、“神舟六号”宇宙飞船,圆了国人盼望已久的飞天之梦,为以后进一步的科学研究奠定了坚实的基础,因此本节课具有广泛的现实意义和科研价值。
三、教学目标依据课程标准,对教材分析之后制定了如下三维教学目标:(一)知识与技能1)知道世界航天发展史和中国航天发展史;2)理解人造卫星的发射原理,并能够准确阐述其绕地球做圆周运动的动力学原因;3)会计算人造卫星的环绕速度,并能推导第一宇宙速度;4)了解第二,第三宇宙速度的含义。
(二)过程与方法1)通过“航天员与记者”模拟活动的参与,提高学生的合理表达能力;2)学生在人造卫星发射原理的探究过程中培养自主探究能力和分析推理能力。
(三)情感态度与价值观1)通过观看“世界航天发展史和中国航天发展史”视频激发学生学习科学,热爱科学的激情,增强民族自信心和自豪感。
四、教学重点难点学生在解决第一宇宙速度,以及相关课后习题时均以人造卫星的环绕速度为基础,因此本节课的重点内容是人造卫星环绕速度的求解。
《宇宙航行》优质课教学设计
《宇宙航行》教学设计桐庐中学——郭金华简明说课一、教材分析“宇宙航行”是人教版—普通高中《物理》教材·必修2—第六章“万有引力与航天”的第五小节。
主要介绍了万有引力定律的实践成就,及航天事业的发展及其巨大成果。
教材不但介绍了人造卫星中一些基本理论,更是在其中渗透了很多研究实际物理问题的物理方法。
因此,本节课是“万有引力与航天”中的重点内容,是学生进一步学习研究天体物理问题的理论基础。
人造卫星是万有引力定律在天文学上应用的一个实例,是学生学习、了解现代科技知识的一个极好素材。
通过对人造卫星原理、宇宙速度等宇宙航行知识的学习,学生不仅可以对万有引力定律有个更全面、更深入的认识,对人类进行宇宙航行有一个更为系统的了解,还有助于培养学生利用所学知识分析、解决实际问题的能力。
同时,也会让学生产生对航天科学的热爱,增强民族自豪感和自信心。
二、教学设计思路1.本节课是一节知识应用与扩展的课程,所以设计时注意加大知识含量,引起学生兴趣。
同时注意方法的培养,让学生养成用万有引力是天体运动的向心力这一基本方法研究问题的习惯,避免套公式的不良习惯。
围绕第一宇宙速度的讨论,让学生形成较正确的卫星运动图景。
2. 本课的教学设计中教师的主导作用表现为:积极创设问题情境、启发学生思维;学生的主体作用为:动脑、动口、动手。
而电教媒体则为这一切提供丰富的信息资源和交互平台。
3.运用现代教育技术能够扩展可视性,实现对现实的形象模拟。
本电教设计精心挑选了多媒体素材,对媒体的运用,力求体现引导认知性、体现逻辑性和现实模拟的真实性。
在每个环节,先用媒体让学生形成感性认知,以问题为中心,学生在观察与体验中思考,自觉地由浅入深,由感性到理性分层探索,再通过师生的讨论、分析、概括及应用,实现由感性认识上升为理性认识的飞跃。
将思维的发展贯穿于知识认知的全过程,是本课的一条主线。
多媒体素材的使用:图片(由嫦娥奔月、飞天壁画、神舟七号飞船等图片切入课题,增强学生对物理学科的亲切感,诱发学习动机);Flash课件(1:牛顿关于人造卫星的猜想;2:在动态变化过程中认知三种宇速;3:卫星的运动特征);视频录像(神七出仓、“嫦娥一号”发射全程:激发学生热情和兴趣,实现对现实的形象模拟,让学生体验科学的整体感)。
新教材2023年高中物理 第7章 万有引力与宇宙航行 1 行星的运动课件 新人教版必修第二册
所有行星绕太阳运动的轨道 都是_椭__圆____,太阳处在所有 _椭__圆____的一个__焦__点___上
开普勒 第二 定律
从太阳到行星的连线在 _相__等____的时间内扫过 _相__等____的面积
公式或图示
定律
开普勒 第三 定律
内容
所有行星的轨道的 __半__长__轴___的三次方跟 它的__公__转__周__期___的二 次方的比值都相等
(2)还需要知道地球、火星各自轨道的半长轴; (3)对于圆轨道,开普勒第三定律仍然适用,只是Ta32=k 中的半长轴 a 换成圆的轨道半径 r。
要点提炼
1.模型构建 天体虽做椭圆运动,但它们的轨道一般接近圆。中学阶段我们在处 理天体运动问题时,为简化运算,一般把天体的运动当作圆周运动来研 究,并且把它们视为做匀速圆周运动,椭圆的半长轴即为圆半径。
探究 二
开普勒第三定律的应用
情景导入
如图所示是火星冲日的年份示意 图,请思考:
(1)观察图中地球、火星的位置,地 球和火星谁的公转周期更长?
(2)已知地球的公转周期是一年,由 此计算火星的公转周期还需要知道哪些 数据?
(3)地球、火星的轨道可近似看成圆 轨道,开普勒第三定律还适用吗?
提示:(1)由题图可知,地球到太阳的距离小于火星到太阳的距离, 根据开普勒第三定律可得:火星的公转周期更长一些;
第七章 万有引力与宇宙航行
〔情 境 导 入〕 日出日落,斗转星移,神秘的宇宙壮丽璀璨……
当我们远古的祖先惊叹星空的玄妙时,他们就开始试图破译日月星 辰等天文现象的奥秘……到了17世纪,牛顿以他伟大的工作把天空中的 现象与地面上的现象统一起来,成功地解释了天体运动的规律。
本章我们将学习对人类智慧影响极为深远、在天体运动中起着决定 作用的万有引力定律,并了解它的发现历程和在人类开拓太空中的作 用。
高中物理课件:宇宙航行
成为一颗人造地球卫星。简称
人造卫。星
想一想:
物体初速度达到多大时就可以成为一颗人造 卫星呢?
由此可见,人造地球卫星运行遵从的规律 是:卫星绕地球做圆周运动,地球对卫星 的引力提供向心力。
二 、宇宙速度
当发射一颗卫星绕地球表面附近(100~200KM)运 动时,轨道半径近似为R,由万有引力提供向心 力可得:
小结:基本思路
1. 在星体表面附近 F引=G重
黄金代换:GM=gR 2
2.若不在星体表面将行星(或卫 星)的运动看成是匀速圆周运动.
3.万有引力充当向心力 F引=F向.
5、宇宙航行
牛顿的猜想
牛顿的手稿
一、人造卫星:
在地球上抛出的物体,当它的速度足够大时,
物体就永远不会落到地面上,它将围绕地球旋转,
GMm R2
m
v2 R2
GM=gR2
v GM R
v gR
代入数据可得:v=7.9km/s
(1)第一宇宙速度
第一宇宙速度是人造卫星在地面附近环绕 地球作匀速圆周运动所必须具有的速度, 所以也称为“环绕速度”。
v1=7.9km/s
V=16.7km/s V=11.2km/s
V=7.9km/s 11.2km/s>V>7.9km/s
心的距离为r,求卫星运动
的线速度v、角速度ω、
F
周期T ?
V
由F引=F向得到:
Mm v2
G m
r2
r
GMm r2
mr ω2
v GM ( r↑,v ↓) r
GM ω r3 ( r↑,ω↓)
GMm r2
mr
4π2 T2
T 2π
r3
( r↑,T ↑)
万有引力习题及答案
【典型例题】例1、海王星的公转周期约为5.19×109s ,地球的公转周期为3.16×107s ,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍?例2、有一颗太阳的小行星,质量是1.0×1021kg ,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。
例3、16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个观点,这四个论点目前看存在缺陷的是( )A 、宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动。
B 、地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动。
C 、天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象。
D 、与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多。
例4.假设已知月球绕地球做匀速圆周运动,万有引力提供向心力,假如地球对月球的万有引力突然消失,则月球的运动情况如何?若地球对月球的万有引力突然增加或减少,月球又如何运动呢?【针对训练】1、某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3则此卫星运行的周期大约是:( )A .1-4天之间B .4-8天之间C .8-16天之间D .16-20天之间2、两行星运行周期之比为1:2,其运行轨道的半长轴之比为:( )A.1/2B. 22C. 3221D.23213、地球到太阳的距离是水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(设地球和水星绕太阳运转的轨道是圆轨道)4.关于日心说被人们所接受的原因是( )A .以地球为中心来研究天体的运动有很多无法解决的问题B .以太阳为中心,许多问题都可以解决,行星的运动的描述也变得简单了C .地球是围绕太阳转的D .太阳总是从东面升起从西面落下5、考察太阳M 的卫星甲和地球m(m<M)的卫星乙,甲到太阳中心的距离为r1,乙到地球中心的距离为r2,若甲和乙的周期相同,则:( )A 、r1>r2B 、r1<r2C 、r1=r2D 、无法比较6、设月球绕地球运动的周期为27天,则地球的同步卫星到地球中心的距离r与月球中心到地球中心的距离R 之比r/R为()A. 1/3B. 1/9C. 1/27D. 1/18【能力训练】1、关于公式R3 /T2=k,下列说法中正确的是()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错2、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A. 1:27B. 1:9C. 1:3D. 9:13、两颗小行星都绕太阳做圆周运动,它们的周期分别是T和3T,则()A、它们绕太阳运转的轨道半径之比是1:3B、它们绕太阳运转的轨道半径之比是1:39C、它们绕太阳运转的速度之比是:1:4D、它们受太阳的引力之比是9:74、开普勒关于行星运动规律的表达式为kTR23,以下理解正确的是()A.k是一个与行星无关的常量B.R代表行星运动的轨道半径C.T代表行星运动的自传周期D.T代表行星绕太阳运动的公转周期5、关于天体的运动,以下说法正确的是()A.天体的运动与地面上物体的运动遵循不同的规律B.天体的运动是最完美、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都绕太阳运动6、关于太阳系中各行星的轨道,以下说法正确的是:()A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同7、如果某恒星有一颗卫星,此卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度ρ=_________(万有引力常量为G)8、两颗行星的质量分别是m1,m2,它们绕太阳运转轨道的半长轴分别为R1、R2,如果m1=2m2,R1=4R2,那么,它们的运行周期之比T1:T2=9、已知两行星绕太阳运动的半长轴之比为b,则它们的公转周期之比为多少?10、有一行星,距离太阳的平均距离是地球到太阳平均距离的8倍,则该行星绕太阳公转周期是多少年?11、地球公转运行的轨道半径R=1.49×1011m,若把地球的公转周期称为1年,土星运行的轨道半径是r=1.43×1012m,那么土星的公转周期多长?参考答案:例1. 646倍 例2. 4.61年 例3. ABC 例4. 略。
大单元教学设计说课稿《宇宙航行》
大单元教学设计说课稿《7.4 宇宙航行》一、教材分析①本节课主要介绍了宇宙航行的基本概念、宇宙飞行器的分类、轨道运动和引力加速度等内容。
②学生已经学习了牛顿运动定律和万有引力定律,对物体在空间中的运动有一定的认识和了解。
③学生在初中物理学习中已经掌握了基本的运动学和力学知识,能够理解和应用本节课的基本概念和理论知识。
④本节课的内容比较抽象,需要学生有较强的想象力和理解能力,同时也需要学生具备良好的数学能力和逻辑思维能力。
二、学情分析①学生对宇宙航行的概念和相关知识的了解比较少,需要通过本节课的学习来开拓视野和扩展知识面。
②学生普遍对太空探索和宇宙探索比较感兴趣,对本节课的内容比较好奇,学习积极性较高。
③学生对抽象概念和理论知识的理解能力参差不齐,需要通过多种方式和方法进行引导和巩固。
④学生在数学和逻辑思维能力方面的水平有所不同,需要根据学生的实际情况进行个性化教学。
三、核心素养1.物理观念①深入理解宇宙航行的基本概念和物理原理;②掌握宇宙飞行器的分类和特点,理解轨道运动和引力加速度等物理现象;③理解宇宙航行对人类探索宇宙的重要意义和现实意义。
2.科学思维①运用物理知识和数学知识,分析和解决宇宙航行中的实际问题;②通过实例分析和比较,理解宇宙航行的发展历程和技术创新;③理解科学探究的基本思路和方法,探究宇宙航行的未知领域。
3.科学探究①通过课堂讨论和实验设计,深入了解宇宙航行中的科学问题;②运用科学思维和方法,探究宇宙航行中的未知领域,如宇宙黑洞和暗物质等。
4.科学态度与责任①认识到宇宙航行对人类探索宇宙和推动科学技术发展的重要作用;②强调在宇宙探索中的安全和环保问题,培养学生的责任感和环保意识;③关注国家和人类的长远利益,理解科学研究和应用的社会责任。
四、教学重难点1.重点①理解宇宙航行的基本概念和物理原理,掌握轨道运动和引力加速度等物理现象;②理解宇宙飞行器的分类和特点,掌握常见的轨道类型和宇宙飞行器的运行轨迹;③通过实例分析和比较,理解宇宙航行的发展历程和技术创新。
(新教材)统编人教版高中物理必修二第七章第4节《宇宙航行》优质课教案(2课时)
(新教材)统编人教版高中物理必修二第七章第4节《宇宙航行》优质课教案(2课时)【教材分析】本课教材主要内容有三个方面:宇宙速度、人造地球卫星、载人航天与太空探索。
教材一开始以牛顿的设想引入,让学生思考人造地球卫星如何才能不落回地面;紧接着从运动和受力分析入手,用万有引力定律和牛顿第二定律讲解了宇宙速度理论知识;在此基础上,教材介绍了人类探索太空的活动:人造地球卫星、载人航天与太空探索。
教材安排有思考与讨论、科学漫步,以提高学生理解、探究分析解决问题的能力。
【教学目标】1.能从运动和受力分析入手,用万有引力定律和牛顿第二定律求解第一宇宙速度、第二宇宙速度、第三宇宙速度。
2.了解人类运用万有引力理论的巨大成就。
【核心素养】1.物理观念:通过学习宇宙航行知识,能从物理学视角形成运动与相互作用认识和观念;能从物理学视角解释自然现象和解决实际问题。
2.科学思维:能从物理学视角认识宇宙航行;能基于经验事实建构物理模型,抽象概括;运用分析综合、推理论证等方法;能基于事实证据和科学推理对不同观点和结论提出质疑和批判,进行检验和修正,进而提出创造性见解的能力与品格。
3.科学探究:培养基于观察和实验提出物理问题、形成猜想和假设、设计实验与制订方案、获取和处理信息、基于证据得出结论并作出解释,以及对科学探究过程和结果进行交流、评估、反思的能力。
4.科学态度与责任:在认识宇宙航行知识,认识科学•技术•社会•环境关系的基础上,逐渐形成的探索自然的内在动力,严谨认真、实事求是和持之以恒的科学态度。
【教学重难点】(一)教学重点:用万有引力定律和牛顿第二定律求解第一宇宙速度、第二宇宙速度、第三宇宙速度。
(二)教学难点:用万有引力定律和牛顿第二定律求解宇宙速度。
【学情分析】学生已经学习了曲线运动知识,对力学有了较多的认识。
但本节是学习万有引力定律的运用,学生首次接触,旨在要引导学生建立起运动的观点。
学生的理解能力有限,需要教师进一步耐心培养。
高中物理【宇宙航行】教学课件
4.“最小发射速度”与“最大环绕速度” (1)“最小发射速度”:向高轨道发射卫星比向低轨道发射卫星困难,因为 发射卫星要克服地球对它的引力。近地轨道是人造卫星的最低运行轨道,而近 地轨道的发射速度就是第一宇宙速度,所以第一宇宙速度是人造卫星的最小发 射速度。 (2)“最大环绕速度”:由 GMr2m=mvr2可得 v= GrM,轨道半径越小,线 速度越大。在所有环绕地球做匀速圆周运动的卫星中,近地卫星的轨道半径最 小,线速度最大,所以近地人造卫星的线速度(即第一宇宙速度)是最大环绕速度。 因此,第一宇宙速度既是人造卫星的最小发射速度,又是人造卫星做匀速 圆周运动的最大环绕速度。
①1961年4月12日,苏联航天员加加林进入东方一号载人飞船,完成人类首 次进入太空的旅行。 ②1969年7月,美国阿波罗11号登上月球。
③2003年10月,我国的神舟五号发射升空,圆了中国人的飞天梦想。 ④2013年6月,我国的神舟十号分别完成与天宫一号空间实验室的手动和 自动交会对接。 ⑤2016年10月,我国的_神__舟__十__一__号___完成与__天__宫__二__号__空间实验室的自动 交会对接。 ⑥2017年4月,我国的__天__舟__一__号___成功发射并与天宫二号自动交会对接。 ⑦2019年1月3日,我国的嫦娥四号探测器成功完成世界首次在月球背面软 着陆。并通过“鹊桥”中继星传回了世界第一张近距离拍摄的月背影像图, 揭开了古老月背的神秘面纱。
18×1×3.17,
解得 v 月≈1.7 km/s。
答案:1.7 km/s
主题探究二 人造地球卫星的运行分析
[问题驱动] 如图 7.4-4 甲所示为不同轨道上的人造地球卫星,如图 7.4-4 乙所示为我国 的天宫二号空间实验室;天宫二号的轨道高度大约是 393 km,而地球同步卫星 的轨道高度大约是 3.6×104 km。思考以下问题:
《宇宙航行》万有引力与宇宙航行PPT优质课件精品公开课比赛
三个宇宙速度 发射速度与环绕速度不同。发射速度是将卫星送入轨道,在地面上所必须获得的速 度。环绕速度是卫星发射成功后,环绕地球运行时的速度。
7
[观图助学]
知识点二 人造地球卫星、载人航天与太空探索
你知道哪些我国最近发射的人造卫星?它们是地球同步卫星吗? 1.人造地球卫星
(1)1957年10月4日,世界上第一颗人造地球卫星发射成功。 1970年4月24日,我国第一颗人造卫星“__东__方___红__一__号___”发射成功。
卫星就可以形成一条南北纬50°之间的全球观测带。再配合几颗纵穿地球两极的极 轨卫星,就能形成全球气象卫星观测系统,为天气预报提供全面、及时的气象资料。
用卫星监测厄尔尼诺现象。不同的颜色代表海平面高度与正常水平的差值
12
答案 (1)根据 GMRm2 =mvR2,v= GRM,可见第一宇宙速度由地球的质量和半径决 定。不同。 (2)轨道越高,需要的发射速度越大。
13
[探究归纳] 1.第一宇宙速度:第一宇宙速度是人造卫星近地环绕地球做匀速圆周运动的速度。 2.第一宇宙速度的计算式 (1)由 GMRm2 =mvR2推导可得 v= GRM。 也适用于其他星体的卫星 (2)由 mg=mvR2推导可得 v= gR。 v=7.9 km/s是最小的发射速度 3.第一宇宙速度的理解
利用开普勒第三定律
27
解析 由 GMr2m=mvr2得 v= GrM,所以 vA>vB=vC,选项 A 正确;由 GMr2m= mr4Tπ22得 T=2π GrM3 ,所以 TA<TB=TC,选项 B 正确;由 GMr2m=ma 得 a=GrM2 , 所以 aA>aB=aC,又 mA=mB<mC,所以 FA>FB,FB<FC,选项 C 错误;三颗卫 星都绕地球运行,故由开普勒第三定律得RT2A3A=RT2B3B=RT2C3C,选项 D 正确。 答案 ABD
【高中物理】宇宙航行(第1课时)课件 高一下学期物理人教版(2019)必修第二册 - 副本
物体质量m=1Kg
分析:地球对地球表面物体的吸引力:
F1
G
mM 地 R2
6.67
10 11 5.89 10 (6400 103)2
24
1
N
9.59 N
太阳对地球表面物体的吸引力:
F2
G
mM日 R2
6.67 1011 21030 (1.496 1011)2
1
N
5.96
10 3
N
<< F1
物体绕地球做圆周运动的向心力由
1 3
2
4
三、人造卫星的运动规律
1.卫星绕地球的运动和受力特点 卫星绕地球做圆周运动,地球对卫 星的万有引力提供向心力。F引 = F向
2.卫星的动力学方程 (r-V-ω-T的关系)
G
Mm r2
m
v2 r
m 2 r
m( 2
T
)2 r
mg
G
Mm r2
m
v2 r
G Mm m2r
r2
G
Mm r2
m(
第一宇宙速度是在地面的最小发射速度,也 是最大在轨运行速度。
1.第一宇宙速度:(环绕速度) (1)概念:物体发射速度为7.9km/s,称为第一宇宙速度,也称环绕速度。 (2)状态和特点:只能贴近地球做匀速圆周运动,既是绕地匀速圆周运 动的最大环绕速度,也是克服引力做功最少的最小发射速度。 2.第二宇宙速度:(脱离速度) (1)概念:物体发射速度为11.2km/s,称为第二宇 宙速度 (2)状态和特点:脱离地球引力,不再绕地球运行。
练习2.如图所示,a、b、c是在地球大气层外圆形轨道 上运动的3颗卫星,下列说法正确的是( D ) A.b、c的线速度大小相等,且大于a的线速度 B.b、c的向心加速度大小相等,且大于a的向心加速度 C.c加速可追上同一轨道上的b,b减速可等候同一轨道 上的c D.a卫星由于某原因,轨道半径
宇宙航行重要知识点总结
宇宙航行重要知识点总结一、宇宙航行的基本原理1.引力和离心力:宇宙航行的基本原理是建立在引力和离心力的相互作用之上的。
引力是天体之间相互吸引的力量,而离心力则是天体上物体沿着曲线运动时的离心力。
在太空航行中,引力和离心力的平衡是飞船轨道运动的基础。
2.逃逸速度:在地球表面,如果物体的速度超过11.2千米/秒,它将能够逃离地球的引力场,实现宇宙飞行。
这个速度就是逃逸速度,宇宙航行的基本原理之一就是要克服地球的引力,突破逃逸速度,进入太空。
3.行星转移轨道:为了利用行星引力推动飞船进入宇宙,人们提出了行星转移轨道的概念。
它是利用其他星球的引力,将太空航行器推向目的地的一种机动方式。
例如,从地球到火星的宇宙飞行,就可以利用火星的引力,减少火箭消耗的燃料。
二、太空飞行器1.轨道飞行器:轨道飞行器是能够进入地球轨道并围绕地球运行的宇宙飞行器。
它主要包括人造卫星、宇宙飞船、国际空间站等。
轨道飞行器的主要任务包括科学实验、通讯、地球观测等。
2.行星探测器:行星探测器是一种能够进入太阳系其他行星轨道并进行科学探测的飞行器。
它主要包括探测器、着陆器、漫游器等。
行星探测器的主要任务包括行星表面观测、大气组成测定、地质构造分析等。
3.载人飞行器:载人飞行器是一种能够携带宇航员进行太空飞行的飞行器。
它主要包括宇宙飞船、登月舱、航天飞机等。
载人飞行器的主要任务包括科学实验、宇宙站建设、太空旅游等。
三、宇宙探测器1.探测目标:宇宙探测器的主要任务是对外太空进行科学探测,获取有关宇宙起源、演化和未来发展的重要信息。
它的探测目标主要包括行星、卫星、小行星、彗星、星系、星云等。
2.探测工具:宇宙探测器通常携带多种探测工具,包括光学望远镜、射电望远镜、红外线望远镜、粒子探测仪等。
这些探测工具能够获取有关宇宙物质、能量、辐射等方面的重要信息。
3.探测任务:宇宙探测器的探测任务主要包括行星表面观测、地壳构造分析、大气成分测定、宇宙辐射探测、宇宙射线测定、恒星观测、宇宙微波辐射测定、星系演化观测等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7.3 宇宙航行复习学案
【要点点拨】
1.第一宇宙速度7.9km/s 是人造卫星在地面附近绕地球做匀速圆周运动所必须具有的速度,而如人造卫星绕地球做匀速圆周运动的半径越大,则所需的线速度相应越小。
2.若实际发射卫星的的速度大于7.9km/s 且小于11.2km/s ,则卫星绕地球做椭圆运动。
卫星如做椭圆运动,它在各点的速度大小是不同的由r
GM v =可粗略看出,r 变大时,v 变小。
3.在求解有关人造卫星的的习题时,一定要注意卫星离地面高度与卫星绕地球做匀速圆周运动的轨道半径是两个不同的概念。
4.第二、第三宇宙速度虽然数值上比第一宇宙速度大不多,但要达到这一速度是相当困难的。
【解题思路】
1. 用万有引力定律处理天体问题,主要有两条解题思路:(1)在地面附近把万有引力看成等于物体受的重力,即mg F =引,主要用于计算涉及重力加速度的问题;(2)把天体的运动看成是匀速圆周运动,且向心引F F =,主要用于计算天体质量、密度以及讨论卫星的速度、角速度、周期随轨道的变化而变化等问题。
2. 地面上物体的重力是由于地球对物体的万有引力引起的,但一般情况下这两者并不相等,因为地面上物体随地球自转的向心力也由万有引力的一个分力提供,不过这一分力却较小,实际计算中常常忽略。
3. 人造卫星中的物体所受地球的万有引力全部提供卫星作圆周运动的向心力,因此卫星内部的物体处于完全失重状态。
【学习目标】
1.了解卫星的发射运行等情况.
2.了解飞船飞入太空的情况.
3.知道三个宇宙速度的含义,会推导第一宇宙速度.
【自主学习】
一、宇宙速度
1、人造地球卫星在地面附近绕地球做圆规道运行时,速度为0v ,如果将它发射至半径为二倍地球半径的高空轨道,那么它的运行速度是=v _0v 。
2、两颗人造地球卫星A 和B 的质量比2:1:=B A m m ,轨道半径之比3:1:=B A r r ,
某一时刻它们的连线通过地心,则此时它们的线速度之比=B A v v :_,向心加速度之
比=B A a a :_,向心力之比=B A F F :_。
二、梦想成真
1、人造地球卫星以地心为圆心,做匀速圆周运动,下列说法正确的是( )
A :半径越大,速度越小,周期越小
B :半径越大,速度越小,周期越大
C :所有卫星的速度均是相同的,与半径无关
D :所有卫星的角速度均是相同的,与半径无关
2、若已知某行星绕太阳公转的半径为r ,公转周期为T ,万有引力恒量为G ,则由此
可求出( )
A :某行星的质量
B :太阳的质量
C :某行星的密度
D :太阳的密度
【典型例题】
例1、 月球的质量约为地球的1/81,半径约为地球半径的1/4,地球上第一宇宙速度
约为7.9km/s,则月球上第一宇宙速度月为多少?
例2、人造地球卫星与地面的距离为地球半径的1.5倍,卫星正以角速度ω做匀速圆周
运动,地面的重力加速度为g ,R 、 ω、g 这三个物理量之间的关系是( )
A :R g 5252=ω
B :R g 52=ω
C :R g 2323
D :R
g 2552 例3、 在绕地球做匀速圆周运动的航天飞机的外表面上,有一隔热陶瓷片自动脱落,则
陶瓷片的运动情况是
A :平抛运动
B :自由落体运动
C :仍按原轨道做匀速圆周运动
D :做速圆周运动,逐渐落后于航天飞机
【针对训练】
1、利用所学的知识,推导第一宇宙速度的表达式gR v =。
2、在某星球上,宇航员用弹簧称称得质量为m 的砝码的重为F ,乘宇宙飞船在靠近
该星球表面空间飞行,测得其环绕周期是T 。
根据上述数据,试求该星球的质量
3、地球的同步卫星距地面高h约为地球半径R的5倍,同步卫星正下方的地面上有一静止的物体A,则同步卫星与物体A的向心加速度之比是多少?若给物体A以适当的绕行速度,使A成为近地卫星,则同步卫星与近地卫星的向心加速度之比为多少?
4、我们国家在1986年成功发射了一颗实用地球同步卫星,从1999年至今已几次将“神
州”号宇宙飞船送入太空。
在某次实验中,飞船在空中飞行了36h,绕地球24圈。
那么同步卫星与飞船在轨道上正常运转相比较()
A:卫星运转周期比飞船大
B:卫星运转速率比飞船大
C:卫星运转加速度比飞船大
D:卫星离地高度比飞船大
5、甲、乙两颗人造地球卫星在同一轨道平面上的不同高度处同向运行,甲距地面高度
为地球半径的0.5倍,乙甲距地面高度为地球半径的5倍,两卫星在某一时刻正好位于地球表面某处的正上空,试求:(1)两卫星运行的速度之比;(2)乙卫星至少经过多少周期时,两卫星间的距离达到最大?
6、一宇航员在某一行星的极地着陆时,发现自己在当地的重力是在地球上重力的0.01
倍,进一步研究还发现,该行星一昼夜的时间与地球相同,而且物体在赤道上完全失去了重力,试计算这一行星的半径R。
7、侦察卫星通过地球两极上空的圆轨迹运动,他的运行轨道距地面高度为h,要使卫
星在一天的时间内将地面上赤道各处在日照条件下的情况全部拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?(设地
球的半径为R,地面处重力加速度为g,地球自转周期为T)
8.登月火箭关闭发动机在离月球表面112km的空中沿圆形轨道运动,周期是120.5min,月球的半径是1740km,根据这组数据计算月球的质量和平均密度。
【学后反思】
_____________________________________________________________________________________________________________________。
附:答案:
[自主学习]一、1. 2
2 2.1:
3 二、1.B 2.B [典型例题]例一.76.1km/s 例二.A 例三.C
[针对训练]1.略 2.344
316Gm
T F π 3.(1)6:1 (2)1:36 4.AD 5.(1)2:1(2)14乙T 6. 7108.1⨯ 7.g h R T
32
)(4+π 8.231016.7⨯=M ,33107.2m kg
⨯=ρ。