2019高考圆锥曲线大题例题练习题
2019年高考数学理试题分类汇编:圆锥曲线(含答案)
2019年高考数学理试题分类汇编:圆锥曲线(含答案)2019年高考数学理试题分类汇编——圆锥曲线一、选择题1.(2019年四川高考)设O为坐标原点,P是以F为焦点的抛物线y=2px(p>0)上任意一点,M是线段PF上的点,且PM=2MF,则直线OM的斜率的最大值为2/3.(答案:C)2.(2019年天津高考)已知双曲线x^2/4 - y^2/9 = 1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,则双曲线的方程为x^2/4 - y^2/9 = 1.(答案:D)3.(2019年全国I高考)已知方程x^2/n^2 - y^2/m^2 = 1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(-1,3)。
(答案:A)4.(2019年全国I高考)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点。
已知|AB|=42,|DE|=25,则C的焦点到准线的距离为4.(答案:B)5.(2019年全国II高考)圆(x-1)^2 + (y-4)^2 = 13的圆心到直线ax+y-1=0的距离为1,则a=-2/3.(答案:A)6.(2019年全国II高考)已知F1,F2是双曲线E:x^2/4 -y^2/2 = 1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=1/3,则E的离心率为2/3.(答案:A)7.(2019年全国III高考)已知O为坐标原点,F是椭圆C:x^2/a^2 + y^2/b^2 = 1(a>b>0)的左焦点,A、B分别为C的左、右顶点。
P为C上一点,且PF⊥x轴。
过点A的直线l与线段PF交于点M,与y轴交于点E。
若直线BM经过OE的中点,则C的离心率为1/3.(答案:A)8.(2019年浙江高考)已知椭圆 + y^2/(m^2-1) = 1(m>1)与双曲线- y^2/(n^2-1) = 1(n>0)的焦点重合,e1,e2分别为m,n,则e1+e2=3.(答案:C)解析】Ⅰ)由题意可知,椭圆C的离心率为$\frac{\sqrt{3}}{2}$,根据离心率的定义可得:$\frac{c}{a}=\frac{\sqrt{3}}{2}$,其中$c$为椭圆的焦距之一,即$2c$为椭圆的长轴长度,$a$为椭圆的半长轴长度,$b$为椭圆的半短轴长度,则有:$$\frac{2c}{2a}=\frac{\sqrt{3}}{2}$$ 即:$$\frac{c}{a}=\frac{\sqrt{3}}{4}$$ 又因为焦点$F$在椭圆的一个顶点上,所以该顶点的坐标为$(a,0)$,即$2c=2a$,代入上式可得:$$\frac{b}{a}=\frac{1}{2}$$ 又因为椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,代入$\frac{b}{a}=\frac{1}{2}$可得:$$\frac{x^2}{a^2}+\frac{4y^2}{a^2}=1$$ 即:$$x^2+4y^2=a^2$$ (Ⅱ)(i)设椭圆C的另一个顶点为$V$,则$OV$为椭圆的长轴,$OF$为椭圆的短轴,且$OV=2a$,$OF=\sqrt{3}a$。
高考圆锥曲线大题
高考圆锥曲线大题设圆锥曲线方程为$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$,其中$A,B,C,D,E,F$为常数且$B^2 - 4AC < 0$。
1. 若圆锥曲线经过点$P(x_1, y_1)$,则将$P$代入方程得到$Ax_1^2 + Bx_1y_1 + Cy_1^2 + Dx_1 + Ey_1 + F = 0$。
2. 若圆锥曲线的切线斜率为$k$,则曲线上任一点$(x,y)$处的切线斜率可通过$f'(x) = -\left(\frac{Ax+By+D}{2Ay+Bx+E}\right)$求得。
3. 圆锥曲线的离心率可通过公式$e = \sqrt{\frac{A^2 +C^2}{B^2 - 4AC}}$计算。
4. 圆锥曲线的焦点坐标可通过$(x,y) = \left(\frac{B(E-By)-2C(D-Ax)}{B^2-4AC}, \frac{B(D-Ax)-2A(E-By)}{B^2-4AC}\right)$计算。
5. 若圆锥曲线的方程为$x^2 - 2xy - y^2 + 4x + 4y - 4 = 0$,则$A=1, B=-2, C=-1, D=4, E=4, F=-4$。
6. 若圆锥曲线是椭圆,则满足$B^2 - 4AC < 0$以及$A=C$的条件。
7. 若圆锥曲线是抛物线,则满足$B^2 - 4AC = 0$的条件。
8. 若圆锥曲线是双曲线,则满足$B^2 - 4AC < 0$以及$A\neqC$的条件。
9. 圆锥曲线方程的标准形式为$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$或$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$,其中$(h,k)$为中心坐标,$a$和$b$为椭圆的半长轴和半短轴。
10. 若已知圆锥曲线的焦点坐标$(x_1,y_1)$和$(x_2,y_2)$,则圆锥曲线方程可表示为$(x-x_1)^2 + (y-y_1)^2 = (x-x_2)^2 + (y-y_2)^2$。
高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)
设M(x1,y1),M′(x2,y2), 设 MF1 的方程为 x=my- 3,
x=my- 3,
由x42+y2=1
得(m2+4)y2-2 3my-1=0,
故yy11+y2=y2=-mm2 221++3m44.,
设F1M与F2N的距离为d,四边形F1F2NM的面积为S,
则 S=12(|F1M|+|F2N|)d=12(|F1M′|+|F1M|)d=12|MM′|d= S△MF2M′,
2
PART TWO
真题体验 押题预测
真题体验 (2018·全国Ⅰ,文,20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与 C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程;
解 当l与x轴垂直时,l的方程为x=2, 可得点M的坐标为(2,2)或(2,-2). 所以直线 BM 的方程为 y=12x+1 或 y=-12x-1. 即x-2y+2=0或x+2y+2=0.
所以 y1+y2=2k,y1y2=-4.
直线 BM,BN 的斜率之和 kBM+kBN=x1y+1 2+x2y+2 2=x2y1+x1x+1y22+x22+y12+ y2.
①
将 x1=yk1+2,x2=yk2+2 及 y1+y2,y1y2 的表达式代入①式分子,
可得 x2y1+x1y2+2(y1+y2)=2y1y2+4kky1+y2=-8k+8=0.
当且仅当 t2=92,即 t=±322时取等号.
故△BPQ
的面积的最大值为
2 2.
热点二 范围问题
圆锥曲线的范围问题的常见解法 (1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形 性质来解决; (2)代数法:若题目中的条件和结论能体现一种明确的函数关系或不等关系或已知 参数与新参数之间的等量关系等,则可利用这些关系去求参数的范围.
2019-2020年高考数学专题练习——圆锥曲线
该双曲线的离心率为( )24.已知抛物线 y 2 4x 的焦点为 F ,准线为 l ,P 是 l 上一点,直线 PF 与抛物线交于 M ,N 两 uuur 点, 若 PF uuuur 3MF,则 MN()16 A . 3B .8C .16D .83 35.知双曲线 2x2 a 2b y 2 1(ab0,b 0) , A 1、A 2 是实轴顶点, F 是右焦点,B (0,b ) 是虚轴端点,若在线段 BF 上(不含端点)存在不同的两点 P i i 1,2 ,使得 P i A 1A 2 i 1,2 构成 以 A 1A 2为斜边的直角三角形,则双曲线离心率e 的取值范围是( )2019-2020 年高考数学专题练习圆锥曲线(一)、选择题 2 x 1.设双曲线 C: 2 a 2 y 2 1 a 0,b b 10 的左、右焦点分别为 F 1,F 2,过点 F 1 且斜率为3的直线与双曲线的两渐近线分别交于点 A ,B ,并且 F 2A F 2B ,则双曲线的离心率为A . 52B . 2 D .2 x 2.设 F 1,F 2 分别为双曲线 C : 2 a 2 b y 2 1(ab 0,b 0) 的左、右焦点, A 为双曲线的左顶点,以 F 1F 2 为直径的圆交双曲线某条渐近线于 M 、N 两点,且满足:MAN 120o ,则 7A .3B . 19 321 C .3D . 7333.双曲线 2x2a 2y2 1 a 0,bb0 的左、右焦点分别为 F 1,F 2,过 F 1 作倾斜角为 60°的直线与y 轴和双曲线的右支分别交于 A , B 两点,若点 A 平分线段F 1B ,则该双曲线的离心率是 A . 3B . 2+ 3 C. 2 D . 2 1B .( 2, 52 1) 51D . ( 52 126.已知过抛 物线 y 2 2px(p 0)的 焦点 F 的 直线与 抛物线 交于 A ,B 两点,且 uuur uuurAF 3FB ,抛物线的准线 l 与 x 轴交于点 C , AA 1 l 于点 A 1,若四边形 AA 1CF 的面积 为12 3 ,则准线 l 的方程为A . x2 B . x 2 2 C . x 2 D . x 17.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90 °的正角 .已知双曲线22 E: a x 2 b y 21(a ab0,b 0) ,当其离心率e [ 2,2] 时,对应双曲线的渐近线的夹角的取值范围为( )A .[0, 6]B . [ , ]63C .[ 4, 3]D .[3, 2]8.已知直角坐标原点22xy O 为椭圆 C : 2 2ab 1(a b 0) 的中心,F 1,F 2 为左、右焦点,在区间 (0,2)任取一个数 e ,则事件 “以 e 为离心率的椭圆 C 与圆 O : x 2 y 2 a 2 b 2 没有 交点 ”的概率为( )A .2442 B . 4C .2 2 D .22 29.已知直线 y 1x 与双曲线 ax 2 by 21(a 0, b 0 )的渐近线交于A ,B 两点,且过原点和线段AB 中点的直线的斜率为3, a则()2b23 A .3 B .C . 93D . 2327223210.过双曲线 x 22 y1的右焦点且与 x 轴垂直的直线交该双曲线的两条渐近线于 A ,B 两3点,则AB)A.4 33B.2 3 C.6 D.4 311.已知抛物线C:4x的焦点为F,过F的直线交C于A,B 两点,点A在第一象限,P(0,6),O 为坐标原点,则四边形OPAB面积的最小值为(7 A.4 13B.4C.3D.412.若双曲线2x3m1的一条渐近线方程为2x 3y 0 ,则m 的值为()233C.2213.已知双曲线a x2 b y2 1 的左右焦点分别为F1,F2,O 为双曲线的中心,P 是双曲线的右支上的点,PF1F2的内切圆的圆心为I,且圆I 与x 轴相切于点A,过F2作直线PI 的垂线,垂足为B,若 e 为双曲线的离心率,则()A.|OB | e|OA| C.|OB| |OA| B.|OA| e|OB|D.|OA|与|OB |关系不确定14.已知 F 是椭圆C:2y1 的左焦点,5P为C上一点,A(1,4),则|PA| |PF |的3最小值为()10 A.3 11B.3C.4 D.13315.已知F1,F2 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且F1PF2 3,则椭圆和双曲线的离心率的倒数之和的最大值为A.4 3 B.2 3C.3 D.22216.双曲线x2y21(a a2b2A(. 1,2)b 0)离心率的范围是()B(. 1,)C(. 2,)D(. 1,22)17.如图,过抛物线 y 2px(p 0)的焦点 F 的直线 l 交抛物线于点 A ,B ,交其准线于点8 C . 3为( )2x 2 2 py 的焦点,点 F 2为抛物线 C 的对称轴与其准线的交点,过 F 2 作抛物线 C 的切线,切点为 A ,若点 A 恰好在以 F 1,F 2 为焦点的双曲线上,则双曲线 的离心率为( ▲ )两点, MN 中点的横坐标为 1,则此椭圆的方程是( )2A . y32 B. 2 x32 2y1 522yx C. 1 36 92 xD . 362y1 921. 已知双曲线 C :2 x 2 ay 2 b 21a 0,b 0 的虚轴长为 8 ,右顶点 (a ,0)到双曲线的一16D .318.已知过椭圆 2x 2a2y2 1(a b 0)b 2的左焦点且斜率为 a 的直线 l 与椭圆交于 A ,B 两点 .若椭圆上存在一点 P ,满足 OA OB OP 0 (其中点O 为坐标原点),则椭圆的离心率A . 22B .C. 321D .219.已知点 F 1 是抛物线 C :A .6 22B . 2 1C . 2 1D .6 2220.已知椭圆中心在原点,且一个焦点为 F(0 ,3 3) ,直线 4x3y 13 0 与其相交于 M 、N34,则 p 为(条渐近线的距离为 12,则双曲线 C 的方程为(2 x A . 9 2 y 216 x 2C. 25 y 2 16 22. 已知圆C : x 2 y 2 2x 2 3y 线相切,则双曲线的离心率为( ) A . 2 6 3 B .23323.设双曲线2 x 2 a 2 y b 2 1(a 0, b 0) 2x 2y2 16 92 2xy 216 2522yx2ab 243 F , 过点 B. D.1(a C . 的右焦点为0,b 0) 的一条渐近D . 7 作与 x 轴垂直的直线 l 交 且与双曲线在第一象限的交点为P , 设 O 为坐标原点,若 uu ur OP uur OA uuur OB( , R), A . 23B . 3 5 35 两渐近线于 A ,B 两点, 2 x 2 y3 16 ,则双曲线的离心率为( C.3 2 2 9 D . 8 2 24.设 F 为双曲线 C : ab 21(a 0,b 0) 的右焦点, O 为坐标原点,以 OF 为直径的圆与圆 x y a 交于 P ,Q 两点.若 PQ OF ,则 C 的离心率为( A . 2 B . 3.C 2)25.数学中有许多形状优美、寓意美好的曲线,曲线 22C : x 2 y 21 |x| y 就是其中之一 (如图) .给出下列三个结论: ① 曲线 C 恰好经过 6 个整点(即横、纵坐标均为整数的点);② 曲线 C 上任意一点到原点的距离都不超过 2 ; ③ 曲线 C 所围成的 “心形 ”区域的面积小于 3. 其中,所有正确结论的序号是( ) A. ① B. ② C. ①②D.①②③、填空题26.过点Mx20,1 的直线l交椭圆x81于A,B两点,F为椭圆的右焦点,当△ABF的周长最大时,△ABF的面积为27.已知F1,F2 分别为双曲线2C:x242 y12 1的左、右焦点,点P在双曲线C上,G,I 分别为F1PF2的重心、内心,若GI∥x 轴,则F1PF2 的外接圆半径R=2 28.已知点P在离心率为2 的双曲线x2 a2y2 1(a 0,b 0) 上,F1,F2为双曲线的两个buuur 焦点,且PF1uuuurPF20 ,则PF1F2的内切圆半径r 与外接圆半径R之比为29.已知双曲线2C:x2a2yb2 1 a 0,b 0 的实轴长为16,左焦点为F,M 是双曲线 C 的一条渐近线上的点,且OM MF ,O为坐标原点,若S OMF 16 ,则双曲线C的离心率2 x 30.设点M 是椭圆2 a 2 yb2 1(a b 0) 上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F,圆M 与y 轴相交于不同的两点P、Q,若PMQ 为锐角三角形,则椭圆的离心率的取值范围为2 31. 平面直角坐标系xOy 中,椭圆x2 a2by2 1( a b 0 )的离心率e23,A1,A2分别是椭圆的左、右两个顶点,圆A1的半径为a,过点A2 作圆A1的切线,切点为P,在x 轴的上方交椭圆于点Q.则P P A Q232.如图所示,椭圆中心在坐标原点,为椭圆的右顶点和上顶点,当FB515 1,此类椭圆被称为“黄金椭圆”2算出“黄金双曲线 ”的离心率 e 等于 .22C: x 2 y 21(a b 0)33.已知椭圆 a b,A ,B 是 C 的长轴的两个端点,点 M 是 C 上的一点,满足 MAB 30 , MBA 45 ,设椭圆 C 的离心率为 e ,则 e 2 ________________________ .234.已知抛物线 y 2 2px(p 0)的焦点为 F ,O 为坐标原点,点 M ,N 为抛物线准线上相 异的两点,且 M ,N 两点的纵坐标之积为 - 4,直线 OM , ON 分别交抛物线于 A , B 两点,若A , F ,B 三点共线,则 p ______________ .235.已知抛物线 y 2 8x 上有一条长为 9 的动弦 AB ,则 AB 中点到36.如图:以等边三角形两顶点为焦点且过另两腰中点的椭圆的离心率 e= .等腰三角形,则 M 的坐标为 __________22x 2y 2 139.已知椭圆 9 5 的左焦点为 F ,点 P 在椭圆上且在 x 轴的上方,若线段 PF 的中点在以原点 O 为圆心, OF 为半径的圆上,则直线 PF 的斜率是 ________ .240. 设抛物线 y 2px(p 0)的焦点为 F,已知 A , B 为抛物线上的两个动点,且满足| MN |AFB60,过弦 AB 的中点 M 作抛物线准线的垂线 MN,垂足为 N,则 |AB| 的最大值为41. 已知 F 为抛物线 C: y 2 4x 的焦点, E 为其标准线与 x 轴的交点,过 F 的直线交抛物线37.已知双曲线 C :2x2 a的两条渐近线分别交于2y21(a 0,b 0) 的左、右焦点分别为 F 1,F 2,过 F 1 的直线与 C buuur uuur uuur uuuurA ,B 两点.若 F 1A AB , F 1B F 2B 0,则C 的离心率为38.设 F 1,F 2 为椭圆1的两个焦点,M 为 C 上一点且在第一象限 .若△MF 1F2为C:36 20C 于 A ,B 两点, M 为线段 AB 的中点,且 |ME | 20,则|AB|参考答案0,易知F (1,0),设直线AB : x my 1x my 1 2由 2y 2 4my 4 0, 所以 y 1 y 2 4 y 2y 2 4x易知 f (x) 在 0,1 上为减函数,所以当12. A22双曲线 x y1的一条渐近线方程为 2x 3y 0 ,可得3 m m 1(3 m)(m 1) 0 ,解得 m ( 1,3),因为 m 1x 3 m y3 解得 m ,故选A.13,内切圆与 x 轴的切点是A ,∵ ,由圆切线长定理有 , 设内切圆的圆心横坐标为x ,则,即3y 12 4 1 2y 12( y 1 0) y1f (x) 3 x2 1 2 3x3 x 2 24 ( x 1)(3x 24x 4)2 x 2 2x 22x 2设A(x 1, y 1), B(x 2,y 2)且x 1,y 1S OPABS OPASOFA SOFB32 1 2f ( x) x x (x 0)4 2 x4y 1y 1 1时, ( S OPAB )min 13,故选4B0 是双曲线的渐近线方程,所以∴ ,即 A 为右顶点,在中,由条件有,在中,有∴.设椭圆的右焦点为,由,则,根据椭圆的定义可得,所以22e2 ,由焦点三角形面积公式得b12 3b22,即设椭圆离心率e1 ,双曲线离心率a12 3a22 4c2,即1232e12 e22 4 ,设1 12 2 m ,n 即m 3n 4 ,e1 e2由柯西不等式得m n最大值为43 3设的中点,由题意知两式相减得,而,所以所以直线的方程为,联立,解得又因为,所以所以点代入椭圆的方程,得,所以,故选 A.,易得:∴此椭圆的方程是 故选: C∵ |PQ| |OF | c ,∴ POQ 90o , 又|OP| |OQ | a ,∴a 2 a 2 c 2 解得 c 2,即 e 2.a由题意,得 ,设过 的抛物线 的切线方程为 ,联立,令,解得 , 即 ,不妨设 ,由双曲线的定义得.故选 C.,则该双曲线的离心率为设椭圆方程为联立方程: ,整理得:, ,则,即 ,化简得:1,0),(-1,1)六个整点,结论① 正确.22由x2y21 x y 得,x2y2, 1x y,解得x2点的距离都不超过2 . 结论② 正确.如图所示,易知A 0, 1 ,B 1,0 ,C 1,1, ,D心形”区域的面积大于3,说法③ 错误.由x2y21 x y得,y2x y 1 x2, |x|y234x2 ,1423x2 2 4厔0,x243所以x可为的整数有0,-1,1,从而曲线C:x2y21 x y 恰好经过(0,1),(0,-1),(1,0),(1,1), (-4 1026.3628.229. 526230.2 , 所以曲线C 上任意一点到原0,1 ,四边形ABCD 的面积S ABCD 11 123,很明显2心形”区域的面积大于2 S ABCD ,即231.37如图所示,设,,椭圆方程为圆的方程为,直线与圆相切,则:,直线是斜率为,直线方程为:联立直线方程与椭圆方程:整理可得:即,由弦长公式可得:,在中,,故5132.2“黄金椭圆”的性质是,可得“黄金双曲线”也满足这个性质.如图,设“黄金双曲线”的方程为,22则,,∵, ∴, ∴, ∴,解得 或 (舍去),∴黄金双曲线 ”的离心率 e 等于1333. 35 35.2易知抛物线 的准线方程为 ,设 ,且 的中点为 ,分别 过点 作直线 的垂线,垂足分别为 ,则 ,由抛物线定义,得 (当且仅当 三点共线时取等号),即 中点 到 轴的最短距离为 .36. 3 1OA 为中位线且 OA BF 1 ,所以 OB OF 1 ,因此 F 1OA BOA ,又根据两渐近线对uuur uuur uuur uuuur由F 1A AB, F 1B F 2B 0知 A 是 BF 1的中点, uuu r F Buuuur F 2B ,又 O 是 F 1, F 2的中点,所称, F 1OA F 2OB ,所以 F 2OB 60 , e1 (b )21 tan2 60 2.39. 15方法 1:由题意可知 |OF|=|OM |= c = 2,由中位线定理可得 PF 1 2|OM | 4,设 P(x,y)可得 (x 2)2 y 2 16,2联立方程 xy 2519 可解得 x32,x 21 2 (舍),点 P 在椭圆上且在 x 轴的上方,1515求得 P3, ,所以 k P F 2152 2F 138. (3, 15)22已知椭圆 C :x y36 20 1可知, a 6,c 4,由 M 为 C 上一点且在第一象限,故等腰三角形 MF 1F 2中 MF 1 F 1F 2 8,MF 2 2a MF 1 4 , sin F 1F 2M4 , y MMF 2 sin F 1F 2 M 15 ,22代入C :3x6 2y0 1可得 x M3.故 M 的坐标为 (3, 15 ) .82方法 2:焦半径公式应用解析 1:由题意可知 |OF |=|OM |= c= 2 , 由中位线定理可得 PF 1 2|OM | 4 ,即 aex p 4 x p15求得 P 3, 15 ,所以 k PF215 . 2 2 PF 12F (1,0)为抛物线 C :y 2=4x 的焦点,E (-1,0)为其准线与 x 轴的交点, 设过F 的直线为 y=k (x-1), 代入抛物线方程 y 2=4x ,可得 k 2x 2-( 2k 2+4) x+k 2=0,设 A ( x 1, y 1), B (x 2,y 2),解得k 2=1,则 x 1+x 2=6,由抛物线的定义可得 |AB|=x 1+x 2+2=8.。
圆锥曲线历年高考题(整理)附答案
一、选择题:(60分)
1.椭圆 的离心率是()
A. B. C. D.
2.已知椭圆中心在坐标原点,焦点在 轴上,并且长轴长为12,离心率为 ,则该椭圆的方程为()
A. B. C. D.
3.方程 所表示的曲线是()
A.双曲线B.椭圆C.线段D.圆
4.已知双曲线的一条渐近线方程为y=x,则双曲线的离心率曲线的实轴长和虚轴长。
(2)若 ,点 是双曲线上的任意一点,求 的最小值。
20.已知双曲线 。
(1)求与双曲线 有相同的焦点,且过点 的双曲线 的标准方程。
(2)直线 分别交双曲线的两条渐近线与A,B两点,当 时,求实数 的值。
(A)(B)(C)(D)
5.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则三角形ABC的周长是()
(A)2(B)6(C)4(D)12
6.已知双曲线虚轴的一个端点为M,两个焦点为 , ,则双曲线的离心率为()
A. B. C. D.
7.曲线 与曲线 的()
A. B. C. D.
二、填空题:(30分)
11.双曲线 的虚轴长是实轴长的2倍,则 。
12.已知椭圆的中心在原点,一个焦点为 ,且长轴长是短轴长的2倍,则求该椭圆的标准方程为。
13.已知椭圆 的焦点为 ,点P在椭圆上。若 ,则 的大小为
14.已知点 ,椭圆 与直线 交于点A,B,则 的周长为()
15.已知双曲线 与双曲线 有相同的渐近线,且 的右焦点为 ,则 ( ), ()。
(A)焦距相等(B)离心率相等(C)焦点相同(D)准线相同
8.已知F是双曲线 的右焦点,O为坐标原点,设P是双曲线上一点,则 的大小不可能是()
2019届高考数学专题十九 圆锥曲线综合总结 练习题及答案
专题十九 圆锥曲线综合1.直线过定点例1:已知中心在原点,焦点在x 轴上的椭圆C的离心率为2,过左焦点F 且垂直于x 轴的直线交椭圆C 于P ,Q两点,且PQ =(1)求C 的方程;(2)若直线l 是圆228x y +=上的点()2,2处的切线,点M 是直线l 上任一点,过点M 作椭圆C 的切线MA ,MB ,切点分别为A ,B ,设切线的斜率都存在.求证:直线AB 过定点,并求出该定点的坐标.【答案】(1)22184x y +=;(2)证明见解析,()2,1.【解析】(1)由已知,设椭圆C 的方程为()222210x y a b a b+=>>,因为PQ =(P c -,代入椭圆方程得22221c a b+=,又因为c e a ==,所以21212b+=,b c =,所以24b =,2228a b ==, 所以C 的方程为22184x y +=.(2)依题设,得直线l 的方程为()22y x -=--,即40x y +-=, 设()00,M x y ,()11,A x y ,()22,B x y ,由切线MA 的斜率存在,设其方程为()11y y k x x -=-,联立()1122184y y k x x x y -=-+=⎧⎪⎨⎪⎩得,()()()2221111214280k x k y kx x y kx ++-+--=, 由相切得()()()222211111682140Δk y kx k y kx ⎡⎤=--+--=⎣⎦, 化简得()221184y kx k -=+,即()22211118240x k x y k y --+-=, 因为方程只有一解,所以1111122111822x y x y xk x y y ===---,所以切线MA 的方程为()11112x y y x x y -=--,即1128x x y y +=,同理,切线MB 的方程为2228x x y y +=, 又因为两切线都经过点()00,M x y ,所以101020202828x x y y x x y y +=+=⎧⎨⎩,所以直线AB 的方程为0028x x y y +=,又004x y +=,所以直线AB 的方程可化为()00248x x x y +-=, 即()02880x x y y -+-=,令20880x y y -=-=⎧⎨⎩,得21x y ==⎧⎨⎩,所以直线AB 恒过定点()2,1.2.面积问题例2:已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为4,直线1:b l y x c=与椭圆相交于A 、B 两点,2F 关于直线1l 的对称点E 在椭圆上.斜率为1-的直线2l 与线段AB 相交于点P ,与椭圆相交于C 、D 两点.(1)求椭圆的标准方程;(2)求四边形ACBD 面积的取值范围.【答案】(1)22184x y +=;(2)3232,93⎛⎤ ⎥⎝⎦. 【解析】(1)由椭圆焦距为4,设()12,0F -,()22,0F ,连结1EF ,设12EF F α∠=,则tan b cα=,又222a b c =+,得sin b aα=,cos c aα=,()12122sin9012||sin sin 90F F c a c e b c a EF EF b c aa aαα︒∴======++︒-++, 解得222a bc c b c =+⇒==,28a =,所以椭圆方程为22184x y +=.(2)设直线2l 方程:+y x m =-,()11,C x y 、()22,D x y ,由22184x y y x m +==-+⎧⎪⎨⎪⎩,得2234280x mx m -+-=,所以1221243283x x m m x x +=-=⎧⎪⎪⎨⎪⎪⎩,由(1)知直线1l :y x =,代入椭圆得A ⎛⎝,B,得AB =2l 与线段AB 相交于点P,得m ⎛∈ ⎝,12CD x =-=而21lk =-与11l k =,知21l l ⊥,12ACBD S AB CD ∴=⨯=由m ⎛∈⎝,得232,03m ⎛⎤-∈- ⎥⎝⎦3232,93⎛⎤⎥⎝⎦,∴四边形ACBD 面积的取值范围3232,93⎛⎤⎥⎝⎦.3.参数的值与范围例3:已知抛物线()2:20C y px p =>的焦点()1,0F ,点()1,2A 在抛物线C 上,过焦点F 的直线l 交抛物线C 于M ,N 两点. (1)求抛物线C 的方程以及AF的值;(2)记抛物线C 的准线与x 轴交于点B ,若MF FN λ=,2240BM BN +=,求λ的值.【答案】(1)24y x =,2AF =;(2)2λ=.【解析】(1)抛物线()2:20C y px p =>的焦点()1,0F ,12p∴=,则24p =,抛物线方程为24y x =; 点()1,2A 在抛物线C 上,122pAF∴=+=. (2)依题意,()1,0F ,设:1l x my =+,设()11,M x y 、()22,N x y ,联立方程241y xx my ==+⎧⎨⎩,消去x ,得2440y my -=-.所以121244y y m y y +==-⎧⎨⎩ ①,且112211x my x my =+=+⎧⎨⎩,又MF FN λ=,则()()11221,1,x y x y λ--=-,即12y y λ=-,代入①得()222414y y mλλ⎧-=--=⎪⎨⎪⎩,消去2y 得2142m λλ=+-,()1,0B -,则()111,BM x y =+,()221,BN x y =+,则()()222222221122||11BM BN BMBN x y x y +=+=+++++()222212121222x x x x y y =++++++()2222121212(1)(1)222my my my my y y =+++++++++ ()()()2221212148m y y m y y =+++++()()22421168448164016m m m m m m =+++⋅+=++,当4216401640m m ++=,解得212m =,故2λ=.4.弦长类问题例4:已知椭圆()22122:10x y C a b a b +=>>的左右顶点是双曲线222:13x C y -=的顶点,且椭圆1C 的上顶点到双曲线2C .(1)求椭圆1C 的方程;(2)若直线l 与1C 相交于1M ,2M 两点,与2C 相交于1Q ,2Q 两点,且125OQ OQ ⋅=-,求12M M 的取值范围.【答案】(1)2213x y +=;(2)(. 【解析】(1)由题意可知:23a =,又椭圆1C 的上顶点为()0,b ,双曲线2C 的渐近线为:0y x x =⇔=,1b =⇒=,∴椭圆方程2213x y +=. (2)易知直线的斜率存在,设直线的方程为y kx m =+,代入2213x y -=,消去y 并整理得:()222136330k xkmx m ----=,要与2C 相交于两点,则应有:()()22222222130130 3641333013k k k m k m m k -≠⎧-≠⎪⇒⎨----->+>⎧⎪⎨⎪⎩⎪⎩, 设()111,Q x y ,()222,Q x y , 则有:122613km x x k+=-,21223313m x x k--⋅=-. 又()()()()22121212121212121OQ OQ x x y y x x kx m kx m k x x km x x m ⋅=+=+++=++++. 又:125OQ OQ ⋅=-,所以有:()()()22222221133613513k m k m m k k⎡⎤+--++-=-⎣⎦-, 2219m k ⇒=-,②将y kx m =+,代入2213x y +=,消去y 并整理得:()222136330k x kmx m +++-=,要有两交点,则()()2222223641333031Δk m k m k m =-+->⇒+>.③ 由①②③有2109k <≤.设()133,M x y 、()244,M x y .有342613km x x k-+=+,23423313m x x k -⋅=+,12M M==将2219mk=-代入有1212M M M M ==12M M ⇒=2t k =,10,9t ⎛⎤∈ ⎥⎝⎦, 令()()()()()2311'1313t t tf t f t t t +-=⇒=++,10,9t ⎛⎤∈ ⎥⎝⎦. 所以()'0f t >在10,9t ⎛⎤∈ ⎥⎝⎦内恒成立,故函数()f t 在10,9t ⎛⎤∈ ⎥⎝⎦内单调递增,故()(1250,72f t M M ⎛⎤∈⇒∈ ⎥⎝⎦.5.存在性问题 例5:已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为()11,0F -,()21,0F ,点A ⎛ ⎝⎭在椭圆C 上. (1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线l ,使得当直线l 与椭圆C 有两个不同交点M ,N 时,能在直线53y =上找到一点P ,在椭圆C 上找到一点Q ,满足PM NQ =?若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1)2212x y +=;(2)不存在,见解析.【解析】(1)设椭圆C 的焦距为2c ,则1c =,∵A ⎛ ⎝⎭在椭圆C 上,∴122a AF AF =+==∴a =,2221b a c =-=,故椭圆C 的方程为2212x y +=.(2)假设这样的直线存在,设直线l 的方程为2y x t =+,设()11,M x y ,()22,N x y ,353,P x ⎛⎫ ⎪⎝⎭,()44,Q x y ,MN 的中点为()00,D x y ,由22222y x t x y =++=⎧⎨⎩,消去x ,得229280y ty t -+-=,∴1229t y y +=,且()2243680Δt t =-->,故12029y y ty +==且33t -<<, 由PM NQ =,知四边形PMQN 为平行四边形, 而D 为线段MN 的中点,因此D 为线段PQ 的中点,∴405329y t y +==,得42159t y -=,又33t -<<,可得4713y -<<-,∴点Q 不在椭圆上,故不存在满足题意的直线l .一、解答题1.已知动圆P 过点()22,0F 并且与圆()221:24F x y ++=相外切,动圆圆心P 的轨迹为C .(1)求曲线C 的轨迹方程;(2)过点()22,0F 的直线1l 与轨迹C 交于A 、B 两点,设直线1:2l x =,设点()1,0D -,直线AD 交l 于M ,求证:直线BM 经过定点.【答案】(1)()22103y x x -=>;(2)见解析.【解析】(1)由已知12| | 2PF PF =+,12| | 2PF PF -=,P 轨迹C 为双曲线的右支,22a =,1a =,12| 24F F c ==,2c =∴曲线C 标准方程()22103y x x -=>.(2)由对称性可知,直线BM 必过x 轴的定点,当直线1l 的斜率不存在时,()2,3A ,()2,3B -,13,22M ⎛⎫⎪⎝⎭,知直线BM 经过点()1,0P ,当直线1l 的斜率存在时,不妨设直线()1:2l y k x =-,()11,A x y ,()22,B x y , 直线()11:11y AD y x x =++,当12x =时,()11321My y x =+,()1131,221y M x ⎛⎫ ⎪ ⎪+⎝⎭, ()22233y k x x y =--=⎧⎪⎨⎪⎩得()()222234430k x k x k -+-+=,212243k x x k -+=-,2122433k x x k +=-,下面证明直线BM 经过点()1,0P ,即证PM PB k k =,即1212311y yx x -=+-, 即12112233y x y x y y -+=+,由112y kx k =-,222y kx k =-,整理得,()12124540x x x x -++=,即()22222243434450333k k k k k k -+⋅-⋅+=---即证BM 经过点()1,0P ,直线BM 过定点()1,0.2.已知点31,2⎛⎫⎪⎝⎭在椭圆()2222:10x y E a b a b +=>>上,设A ,B 分别为椭圆的左顶点、下顶点,原点O 到直线AB(1)求椭圆E 的方程;(2)设P 为椭圆E 在第一象限内一点,直线PA ,PB 分别交y 轴、x 轴于D ,C 两点,求四边形ABCD 的面积.【答案】(1)22143x y +=;(2).【解析】(1)因为椭圆()2222:10x y E a b a b +=>>经过点31,2⎛⎫ ⎪⎝⎭,有229141a b +=, 由等面积法,可得原点O 到直线AB=,联立两方程解得2a =,b =E 的方程为22:143x y E +=.(2)设点()()00000,,0P x y x y >>,则2200143x y +=,即22003412x y +=.直线()00:22y PA y x x =++,令0x =,得0022D yy x =+.从而有00022y BDx =+=+AC =.所以四边形的面积为01122AC BD ⋅=221122====.所以四边形ABCD的面积为3.已知点C 为圆()2218x y ++=的圆心,P 是圆上的动点,点Q 在圆的半径CP 上,且有点()1,0A 和AP 上的点M ,满足0MQ AP ⋅=,2AP AM =. (1)当点P 在圆上运动时,判断Q 点的轨迹是什么?并求出其方程; (2)若斜率为k 的直线l 与圆221x y +=相切,与(1)中所求点Q 的轨迹交于不同的两点F ,H ,且3445OF OF ≤⋅≤(其中O 是坐标原点),求k的取值范围.【答案】(1)是以点C ,A 为焦点,焦距为2,长轴长为2212x y +=;(2)32,22⎡⎡-⎢⎢⎣⎦⎣⎦.【解析】(1)由题意MQ 是线段AP 的垂直平分线, 所以2CPQC QP QCQA CA =+=+==,所以点Q 的轨迹是以点C ,A 为焦点,焦距为2,长轴长为∴a =,1c =,1b ==,故点Q 的轨迹方程是2212x y +=.(2)设直线l :y kx b =+,()11,F x y ,()22,H x y , 直线l 与圆221x y +=1=,即221b k =+,联立2212x y y kx b +==+⎧⎪⎨⎪⎩,消去y 得:()222124220k x kbx b +++-=,()()()2222222164122182180Δk b k b k b k =-+-=-+=>,得0k ≠,122412kbx x k +=-+,21222212b x x k -=+,∴()()()()()222221212121222122411212k b kb OF OH x x y y k x x kb x x bkbb kk+--⋅=+=++++=++++()()222222222124111121212k k k k k k k k k +++=-++=+++,所以223144125k k +≤≤+,得21132k ≤≤,2k ≤≤,解得2k ≤≤2k ≤≤,故所求范围为32,22⎡⎡⎢⎢⎣⎦⎣⎦. 4.已知椭圆()2222:10x y C a b a b +=>>的焦距为2c ,离心率为12,圆222:O x y c +=,1A ,2A 是椭圆的左右顶点,AB 是圆O 的任意一条直径,1A AB △面积的最大值为2.(1)求椭圆C 及圆O 的方程;(2)若l 为圆O 的任意一条切线,l 与椭圆E 交于两点P ,Q ,求PQ 的取值范围.【答案】(1)22143x y +=,221x y +=;(2)⎡⎢⎣⎦.【解析】(1)设B 点到x 轴距离为h ,则1111222A AB A OB S S AO h a h ==⋅⋅⋅=⋅△△,易知当线段AB 在y 轴时,max h BO c ==,12A AB S a c ∴=⋅=△,12c e a ==,2a c ∴=,2a ∴=,1c =,b =, 所以椭圆方程为22143x y +=,圆的方程为221x y +=.(2)当直线L 的斜率不存在时,直线L 的方程为1x =±,此时223b PQ a==;设直线L 方程为:y kx m =+,直线为圆的切线,1d ∴==,221m k ∴=+,直线与椭圆联立,22143y kx mx y ⎧=++=⎪⎨⎪⎩,得()2224384120k x kmx m +++-=, 判别式()248320Δk =+>,由韦达定理得:122212284341243km x x k m x x k -+=+-⋅=+⎧⎪⎪⎨⎪⎪⎩,所以弦长12PQ x =-=2433t k =+≥,所以PQ ⎛= ⎝⎦;综上,PQ ⎡∈⎢⎣⎦, 5.如图,己知1F 、2F 是椭圆()2222:10x y G a b a b +=>>的左、右焦点,直线():1l y k x =+经过左焦点1F ,且与椭圆G 交A ,B 两点,2ABF △的周长为(1)求椭圆G 的标准方程;(2)是否存在直线I ,使得2ABF △为等腰直角三角形?若存在,求出直线l 的方程;若不存在,请说明理由.【答案】(1)22132xy+=;(2)不存在,见解析. 【解析】(1)设椭圆G 的半焦距为c ,因为直线l 与x 轴的交点为()1,0-,故1c =. 又2ABF △的周长为224AB AF BF a ++==a =222312b a c =-=-=.因此,椭圆G 的标准方程为22132x y +=.(2)不存在.理由如下:先用反证法证明AB 不可能为底边,即22AF BF ≠.由题意知()21,0F ,设()11,A x y ,()22,B x y ,假设22AF BF =,则又2211132x y +=,2222132x y +=,代入上式,消去21y ,22y 得:()()121260x x x x -+-=. 因为直线l 斜率存在,所以直线l 不垂直于x 轴,所以12x x ≠,故126x x +=.(与1x≤,2x ≤126x x +≤<矛盾)联立方程()221321x y y k x +==+⎧⎪⎨⎪⎩,得:()2222326360k x k x k +++-=,所以21226632k x x k +=-=+矛盾. 故22AF BF ≠.再证明AB 不可能为等腰直角三角形的直角腰. 假设2ABF △为等腰直角三角形,不妨设A 为直角顶点. 设1AF m =,则2AF m =,在12AF F△中,由勾股定理得:()224m m+=,此方程无解.故不存在这样的等腰直角三角形.。
圆锥曲线专题(理科)之2019高考真题分专题
2019圆锥曲线专题(理)1.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C . D .2.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为( )A B C .2 D3.渐近线方程为x ±y =0的双曲线的离心率是( )A B .1C D .24.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为( )25.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .86.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y += B .22132x y += C .22143x y += D .22154x y += 7.已知椭圆()222210x y a b a b +=>>的离心率为12,则( )A .22.2a b =B .2 2.34a b=C .2a b =D .34a b =8.数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+x y 就是其中之一(如图)。
给出下列三个结论:① 曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);② 曲线C ③ 曲线C 所围城的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③9.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方, 若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.10.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .11.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uu u r ,120F B F B ⋅=uuu r uuu r,则C 的离心率为____________.12.设12F F ,为椭圆C :22+13620x y=的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.13.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点, 则点P 到直线x +y =0的距离的最小值是 .14.已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若4AF BF +=,求l 的方程;(2)若3AP PB =uu u r uu r,求AB .15.已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.16.如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交32于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.17.已知抛物线2:2C x py =-经过点(2,-1). (I) 求抛物线C 的方程及其准线方程;(II)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B ,求证:以AB 为直径的圆经过y 轴上的两上定点.17.已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;12(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:是直角三角形; (ii )求面积的最大值.18.如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.19.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离(Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点PQG △PQG△N在y轴的负半轴上.若||||⊥,求直线PB的斜率.ON OF=(O为原点),且OP MN。
2019年高三理科数学高考大题精练:圆锥曲线:范围(最值)问题(附解析)
2019年高三理科数学高考大题精练:圆锥曲线:范围(最值)问题(附解析)精练例题[2019·江南十校]已知椭圆()2222:10x y C a b a b+=>>,B 为其短轴的一个端点,1F ,2F 分别为其左右两个焦点,已知三角形12BF F 121cos 3F BF ∠=.(1)求椭圆C 的方程;(2)若动直线22:0,3l y kx m m k ⎛⎫=+≠≠ ⎪⎝⎭与椭圆C 交于()11,P x y ,()22,Q x y ,M 为线段PQ 的中点,且22123x x +=,求OM PQ ⋅的最大值. 【答案】(1)22132x y +=;(2)52.【解析】(1)由2222212222411cos 3233a c c F BF a c a a -∠==⇒=⇒=,222bc =,12121cos sin 3F BF F BF ∠=⇒∠=,结合1222132F BF S a a ===△,22b ⇒=, 故椭圆C 的方程为22132x y +=.另解:依题意:12122F BF S cb bc =⨯==△221212212cos 2cos1233F BF b F BF a ∠∠=-=⇒=, 解得23a =,22b =,故椭圆C 的方程为22132x y +=.(2)联立()()2222222223263602432032236y kx mk x kmx m Δk m k m x y =+⇒+++-⎧⎨⎩=⇒=+->⇒+>+=.且122632kmx x k -+=+,21223632m x x k -=+;依题意()()()()2222212121222262632333232m km x x x x x x k k--+=⇒+-=⇒-=++,化简得:22322k m +=(∵232k ≠);设()00,M x y ,由()()22112222012121222120222362233236x y x y y x x y y k x x y x y ⎧⎪⎨+=-⇒-=--⇒==--+=⎪⎩, 又00y kx m =+,解得31,2k M m m ⎛⎫- ⎪⎝⎭22222943142k m OM m m +-⇒==, ()()()()()2222222221222222243222111251132432k m m PQ kx x kOM PQ m m m k+-+⎛⎫⎛⎫=+-=+=⇒⋅=-+≤ ⎪⎪⎝⎭⎝⎭+,52OM PQ ⋅≤.当且仅当221132m m -=+,即m =时,OM PQ ⋅的最大值为52.模拟精炼1.[2019·柳州模拟]已知点()1,0F-,直线:4l x=-,P为平面内的动点,过点P作直线l的垂线,垂足为点M,且1122PF PM PF PM⎛⎫⎛⎫-⋅+=⎪ ⎪⎝⎭⎝⎭.(1)求动点P的轨迹C的方程;(2)过点F作直线1l(与x轴不重合)交C轨迹于A,B两点,求三角形面积OAB的取值范围.(O为坐标原点)2.[2019·雷州期末]如图,已知抛物线2:2C y px =和()22:41M x y -+=,过抛线C 上一点()()000,1H x y y ≥作两条直线与M 相切于A 、B 两点,分别交抛物线于E 、F 两点,圆心点M 到抛物线准线的距离为174. (1)求抛物线C 的方程;(2)当AHB ∠的角平分线垂直x 轴时,求直线EF 的斜率; (3)若直线AB 在y 轴上的截距为t ,求t 的最小值.3.[2019·周口调研]已知直线2py x =-与抛物线()2:20C y px p =>交于B ,D 两点,线段BD 的中点为A ,点F 为C 的焦点,且OAF △(O 为坐标原点)的面积为1. (1)求抛物线C 的标准方程;(2)过点()2,2G 作斜率为()2k k ≥的直线l 与C 交于M ,N 两点,直线OM ,ON 分别交直线2y x =+于P ,Q 两点,求PQ 的最大值.答案与解析1.【答案】(1)22143x y +=;(2)30,2⎛⎤⎥⎝⎦.【解析】(1)设动点(),P x y ,则()4,M y -,由11022PF PM PF PM ⎛⎫⎛⎫-+= ⎪⎪⎝⎭⎝⎭,2214PF PM ∴=,即2214PF PM ∴=,()2221144x y x ∴++=+,化简得22143x y +=.(2)由(1)知轨迹C 的方程为22143x y +=,当直线1l 斜率不存在时31,2A ⎛⎫-- ⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭,1322OAB S AB OF ∴=⋅=△, 当直线1l 斜率存在时,设直线l 方程为()10x my m =-≠,设()11,A x y ,()22,B x y ,由221143x my x y ⎧⎪⎨-+=⎪⎩=,得()2234690m y my +--=. 则21441440Δm =+>,122634m y y m +=+,122934y y m -=+,1211122OABS OF y y =⋅-=⨯△=令()211m t t +=>,则OAB S ==△,令()196f t t t =++,则()219f t t'=-,当1t >时,()0f t '>,()196f t t t∴=++在()1,+∞上单调递增,()()116f t f∴>=,32OAB S ∴<△,综上所述,三角形OAB 面积的取值范围是30,2⎛⎤⎥⎝⎦.2.【答案】(1)2y x =;(2)14-;(3)11-.【解析】(1)∵点M 到抛物线准线的距离为17424p +=,∴12p =,即抛物线C 的方程为2y x =. (2)∵当AHB ∠的角平分线垂直x 轴时,点()4,2H ,∴HE HF k k =-, 设()11,E x y ,()22,F x y ,∴1212H H H H y y y y x x x x --=---,∴12222212H H H H y y y y y y y y --=---, ∴1224H y y y +=-=-.212122212121114EF y y y y k x x y y y y --====---+. (3)设点()()2,1H m m m ≥,242716HM m m =-+,242715HA m m =-+. 以H 为圆心,HA 为半径的圆方程为()()22242715x m y m m m -+-=-+,……①M 方程:()2241x y -+=.……②①-②得:直线AB 的方程为()()()22422442714x m m y m m m m -----=-+. 当0x =时,直线AB 在y 轴上的截距()1541t m m m=-≥, ∵t 关于m 的函数在[)1,+∞单调递增,∴min 11t =-. 3.【答案】(1)24y x =;(2) 【解析】(1)设()11,B x y ,()22,D x y ,则12121y y x x -=-. 由2112y px =,2222y px =两式相减,得()()121212()2y y y y p x x -+=-. ∴12121222x x y y p p y y -+=⋅=-,所以点A 的纵坐标为122y y p +=, ∴OAF △的面积1122pS p =⨯⨯=,解得2p =.故所求抛物线的标准方程为24y x =.(2)直线l 的方程为()22y k x -=-.由方程组()2224y k x y x-=-=⎧⎪⎨⎪⎩,得24880ky y k --+=. 设233,4y M y ⎛⎫ ⎪⎝⎭,244,4y N y ⎛⎫ ⎪⎝⎭,则344y y k +=,3488y y k =-.直线OM 的方程为34y x y =,代入2y x =+,解得3324y x y =-,所以33328,44y P y y ⎛⎫⎪--⎝⎭.同理得44428,44y Q y y ⎛⎫⎪--⎝⎭.所以484PQ y =-==-== 因为2k ≥,所以1102k <≤,所以当112k =,即2k =时,PQ 取得最大值。
2019高考数学圆锥曲线与方程真题汇总(一题不拉)
(2019•上海20)已知椭圆22184x y +=,1F ,2F 为左、右焦点,直线l 过2F 交椭圆于A ,B 两点.(1)若直线l 垂直于x 轴,求||AB ;(2)当190F AB ∠=︒时,A 在x 轴上方时,求A 、B 的坐标;(3)若直线1AF 交y 轴于M ,直线1BF 交y 轴于N ,是否存在直线l ,使得11F AB F MN S S =V V ,若存在,求出直线l 的方程;若不存在,请说明理由.【解答】解:(1)依题意,2(2,0)F ,当AB x ⊥轴时,则A,(2,B ,得||AB = (2)设1(A x ,1)y ,11290(90)F AB F AF ∠=︒∠=︒Q ,∴2212111111(2,)(2,)40AF AF x y x y x y =+-=-+=u u u r u u u u r g g ,又A 在椭圆上,满足2211184x y +=,即22114(1)8x y =-,∴221144(1)08x x -+-=,解得10x =,即(0,2)A .直线:2AB y x =-+,联立222184y x x y =-+⎧⎪⎨+=⎪⎩,解得8(3B ,2)3-;(3)设1(A x ,1)y ,2(B x ,2)y ,3(0,)M y ,4(0,)N y ,直线:2l x my =+,则11212121||||2||2F AB S F F y y y y =-=-V g ,1134341||||||2F MN S FO y y y y =-=-V g . 联立222184x my x y =+⎧⎪⎨+=⎪⎩,得22(2)440m y my ++-=.则12242m y y m +=-+,12242y y m -=+. 由直线1AF 的方程:11(2)2y y x x =++,得M 纵坐标13122y y x =+;由直线1BF 的方程:22(2)2y y x x =++,得N 的纵坐标24222y y x =+. 若11F AB F MNS S =V V ,即12342||||y y y y -=-,121212341212121222228()||||||||2||2244(4)(4)y y y y y y y y y y x x my my my my --=-=-==-++++++,12|(4)(4)|4my my ∴++=,21212|4()16|4m y y m y y +++=,代入根与系数的关系,得22244|416|422m m m m m --++=++g,解得m =.∴存在直线20x +-=或20x --=满足题意.(2019•上海12)已知2()||(1,0)1f x a x a x =->>-,()f x 与x 轴交点为A ,若对于()f x 图象上任意一点P ,在其图象上总存在另一点(Q P 、Q 异于)A ,满足AP AQ ⊥,且||||AP AQ =,则a = .【解答】解:由题意,可知: 令2()||01f x a x =-=-,解得:21x a=+,∴点A 的坐标为:2(1a +,0).则2,11()2,1AAa x x x f x a x x x ⎧-<⎪⎪-=⎨⎪-+>⎪-⎩….()f x ∴大致图象如下:由题意,很明显P 、Q 两点分别在两个分段曲线上,不妨设点P 在左边曲线上,点Q 在右边曲线上.设直线AP 的斜率为k ,则2:(1)AP l y k x a=--. 联立方程:2(1)21y k x ay ax ⎧=--⎪⎪⎨⎪=-⎪-⎩,整理,得:222[(2)](1)20kx a k x k a a a +-+++--=.2(2)22P A a k a a x x k a k-+∴+=-=+-.21A x a =+Q ,221P A a ax x a k k∴=+--=-. 再将1P ax k=-代入第一个方程,可得: 2P k y a a=--. ∴点P 的坐标为:(1a k -,2)k a a--.||AP ∴==AP AQ ⊥Q ,∴直线AQ 的斜率为1k -,则12:(1)AQ l y x k a=---.同理类似求点P 的坐标的过程,可得: 点Q 的坐标为:2(1,)ak a ak-+.||AQ ∴===||||AP AQ =Q ,及k 的任意性,可知:224a a=,解得:a =(2019•上海9)过曲线24y x =的焦点F 并垂直于x 轴的直线分别与曲线24y x =交于A ,B ,A 在B 上方,M 为抛物线上一点,(2)OM OA OB λλ=+-u u u u r u u u r u u u r,则λ= .【解答】解:过24y x =的焦点F 并垂直于x 轴的直线分别与24y x =交于A ,B ,A 在B 上方,依题意:得到:(1A ,2)(1B ,2)-,设点(,)M x y ,所以:M 为抛物线上一点,(2)OM OA OB λλ=+-u u u u r u u u r u u u r ,则:(x ,)(1y λ=,2)(2)(1λ+-,2)(22λ-=-,4),代入24y x =,得到:3λ=. 故答案为:3(2019•浙江21)如图,已知点(1,0)F 为抛物线22(0)y px p =>的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得ABC ∆的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记AFG ∆,CQG ∆的面积分别为1S ,2S . (Ⅰ)求p 的值及抛物线的准线方程; (Ⅱ)求12S S 的最小值及此时点G 的坐标.【解答】解:(Ⅰ)由抛物线的性质可得:12p=,2p ∴=,∴抛物线的准线方程为1x =-; (Ⅱ)设(A A x ,)A y ,(B B x ,)B y ,(C C x ,)C y ,重心(G G x ,)G y ,令2A y t =,0t ≠,则2A x t =,由于直线AB 过F ,故直线AB 的方程为2112t x y t -=+,代入24y x =,得:222(1)40t y y t ---=,24B ty ∴=-,即2B y t =-,21(B t ∴,2)t -,又1()3G A B C x x x x =++,1()3G A B C y y y y =++,重心在x 轴上,∴220C t y t -+=,21(()C t t∴-,12())t t -,422222(3t t G t -+,0),∴直线AC 的方程为222()y t t x t -=-,得2(1Q t -,0),Q Q 在焦点F 的右侧,22t ∴>,∴424222142442222521|||2|||||223221222211|||||1||2|23A C t t t FG y S t t t t t t S t t QG y t t t t-+--====--+-----g g g g,令22m t =-,则0m >,1221322213433424S m S m m m m m m=-=--=++++++g …,∴当3m =时,12S S 取得最小值为31+,此时(2,0)G . (2019•浙江15)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是 .【解答】解:椭圆22195x y +=的3a =,5b =,2c =,23e =,设椭圆的右焦点为F ',连接PF ',线段PF 的中点A 在以原点O 为圆心,2为半径的圆,连接AO ,可得||2||4PF AO '==,设P 的坐标为(,)m n ,可得2343m -=,可得32m =-,15n =,由(2,0)F -,可得直线PF 的斜率为 15215322=-+. 另解:由||2||4PF AO '==,||642PF =-=,||24FF c '==,可得416161cos 2244PFF +-'∠==⨯⨯,115sin 116PFF '∠=-=,可得直线PF 的斜率为sin 15cos PFF PFF '∠='∠.故答案为:15.(2019•浙江2)渐近线方程为0x y ±=的双曲线的离心率是( ) A .22B .1C .2D .2【解答】解:根据渐近线方程为0x y ±=的双曲线,可得a b =,所以2c a = 则该双曲线的离心率为2ce a==,故选:C . (2019•江苏17)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的焦点为1(1,0)F -,2(1,0)F .过2F 作x 轴的垂线l ,在x 轴的上方,1与圆2222:(1)4F x y a -+=交于点A ,与椭圆C 交于点D .连结1AF 并延长交圆2F 于点B ,连结2BF 交椭圆C 于点E ,连结1DF .已知152DF =. (1)求椭圆C 的标准方程;(2)求点E 的坐标.【解答】解:(1)如图,22F A F B =Q ,22F AB F BA ∴∠=∠,22212F A a F D DA F D F D ==+=+Q ,1AD F D ∴=,则11DAF DF A ∠=∠,12DF A F BA ∴∠=∠,则12//F D BF ,1c =Q ,221b a ∴=-,则椭圆方程为222211x y a a +=-,取1x =,得21D a y a -=,则22112a a AD a a a -+=-=. 又152DF =,∴2152a a +=,解得2(0)a a =>.∴椭圆C 的标准方程为22143x y +=;(2)由(1)知,3(1,)2D ,1(1,0)F -,∴2133224BF DF k k ===,则23:(1)4BF y x =-,联立223(1)4143y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得22118390x x --=. 解得11x =-或2137x =(舍). ∴132y =-.即点E 的坐标为3(1,)2--.(2019•江苏7)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .【解答】解:Q 双曲线2221(0)y x b b -=>经过点(3,4),∴221631b-=,解得22b =,即b .又1a =,∴该双曲线的渐近线方程是y =.故答案为:y =.(2019•天津文19)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,左顶点为A ,上顶点为B .已|2||(OA OB O =为原点). (Ⅰ)求椭圆的离心率; (Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且//OC AP .求椭圆的方程.【解答】解:(Ⅰ|2||OA OB =2b =,可得12c e a ==;(Ⅱ)b =,12c a =,即2a c =,b =,可得椭圆方程为2222143x y c c +=,设直线FP 的方程为3()4y x c =+,代入椭圆方程可得2276130x cx c +-=,解得x c =或137cx =-,代入直线PF 方程可得32c y =或914cy =-(舍去),可得3(,)2c P c ,圆心C 在直线4x =上,且//OC AP ,可设(4,)C t ,可得3242ctc c=+,解得2t =,即有(4,2)C ,可得圆的半径为2,由直线FP 和圆C 相切的条件为d r =2=,解得2c =,可得4a =,b =椭圆方程为2211612x y +=.(2019•天津理18)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||(ON OF O =为原点),且OP MN ⊥,求直线PB 的斜率.【解答】解:(Ⅰ)由题意可得24b =,即2b =,c e a ==222a b c -=,解得a =,1c =,可得椭圆方程为22154x y +=;(Ⅱ)(0,2)B ,设PB 的方程为2y kx =+,代入椭圆方程224520x y +=,可得22(45)200k x kx ++=,解得22045k x k =-+或0x =,即有220(45kP k -+,22810)45k k -+,2y kx =+,令0y =,可得2(M k-,0),又(0,1)N -,OP MN ⊥,可得281011220k k k-=---g ,解得k =可得PB的斜率为 (2019•天津理5文6)已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||(AB OF O =为原点),则双曲线的离心率为( ) ABC .2D【解答】解:Q 抛物线24y x =的焦点为F ,准线为l .(1,0)F ∴,准线l 的方程为1x =-,l Q 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||(AB OF O =为原点),2||b AB a ∴=,||1OF =,∴24ba=,2b a ∴=,c ∴==,∴双曲线的离心率为ce a=故选:D .(2019•北京文19)已知椭圆2222:1x y C a b +=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P 、Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若||||2OM ON =g,求证:直线l 经过定点. 【解答】解:(Ⅰ)椭圆2222:1x y C a b +=的右焦点为(1,0),且经过点(0,1)A .可得1b c ==,a =,则椭圆方程为2212x y +=;(Ⅱ)证明:y kx t =+与椭圆方程2222x y +=联立,可得222(12)4220k x ktx t +++-=,设1(P x ,1)y ,2(Q x ,2)y ,△2222164(12)(22)0k t k t =-+->,122412kt x x k+=-+,21222212t x x k -=+,AP的方程为1111y y x x -=+,令0y =,可得111xx y =-,即11(1x M y -,0); AQ 的方程为2211y y x x -=+,令0y =,可得221x y y =-.即22(1xN y -,0). 1212121212(1)(1)1()1()()(2)y y y y y y kx t kx t kx kx t --=+-+=+++-++2222222224(1)(12)()()121212t kt t t t k kt k k k k --=+-++--=+++g g ,||||2OM ON =g ,即为1212||211x xy y =--g ,即有22|1|(1)t t -=-,由1t ≠±,解得0t =,满足△0>,即有直线l 方程为y kx =,恒过原点(0,0).(2019•北京文11)设抛物线24y x =的焦点为F ,准线为l ,则以F 为圆心,且与l 相切的圆的方程为 .【解答】解:如图,抛物线24y x =的焦点为(1,0)F ,Q 所求圆的圆心F ,且与准线1x =-相切,∴圆的半径为2. 则所求圆的方程为22(1)4x y -+=. 故答案为:22(1)4x y -+=.(2019•北京文5)已知双曲线2221(0)x y a a-=>,则(a = )AB .4C .2D .12【解答】解:由双曲线2221(0)x y a a -=>,得21b =,又c e a =,得225c a =,即2222215a b a a a ++==,解得214a =,12a =. 故选:D .(2019•北京理18)已知抛物线2:2C x py =-经过点(2,1)-. (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线1y =-分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【解答】解:(Ⅰ)抛物线2:2C x py =-经过点(2,1)-.可得42p =,即2p =,可得抛物线C 的方程为24x y =-,准线方程为1y =;(Ⅱ)证明:抛物线24x y =-的焦点为(0,1)F -,设直线方程为1y kx =-,联立抛物线方程,可得2440x kx +-=,设1(M x ,1)y ,2(N x ,2)y ,可得124x x k +=-,124x x =-,直线OM 的方程为11y y x x =,即14xy x =-,直线ON 的方程为22y y x x =,即24x y x =-,可得14(A x ,1)-,24(B x ,1)-,可得AB 的中点的横坐标为121142()224k k x x -+==-g ,即有AB 为直径的圆心为(2,1)k -,半径为12||144||222AB x x =-==,可得圆的方程为222(2)(1)4(1)x k y k -++=+,化为224(1)4x kx y -++=,由0x =,可得1y =或3-.则以AB 为直径的圆经过y 轴上的两个定点(0,1),(0,3)-.(2019•北京理8)数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③【解答】解:将x 换成x -方程不变,所以图形关于y 轴对称,当0x =时,代入得21y =,1y ∴=±,即曲线经过(0,1),(0,1)-;当0x >时,方程变为2210y xy x -+-=,所以△224(1)0x x =--…,解得(0x ∈,所以x 只能取整数1,当1x =时,20y y -=,解得0y =或1y =,即曲线经过(1,0),(1,1),根据对称性可得曲线还经过(1,0)-,(1,1)-,故曲线一共经过6个整点,故①正确.当0x >时,由221x y xy +=+得222212x y x y xy ++-=„,(当x y =时取等),222x y ∴+„,∴,即曲线C 上y ,根据对称性可得:曲线C ②正确.在x 轴上图形面积大于矩形面积122=⨯=,x 轴下方的面积大于等腰直角三角形的面积12112=⨯⨯=,因此曲线C 所围成的“心形”区域的面积大于213+=,故③错误. 故选:C .(2019•北京理4)已知椭圆22221(0)x y a b a b +=>>的离心率为12,则( )A .222a b =B .2234a b =C .2a b =D .34a b =【解答】解:由题意,12c a =,得2214c a =,则22214a b a -=,22244a b a ∴-=,即2234a b =. 故选:B .(2019•新课标Ⅲ文21)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点.(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.【解答】(1)证明:设D (t ,−12),A (x 1,y 1),则x 12=2y 1,由于y ′=x ,∴切线DA 的斜率为x 1,故y 1+12x 1−t=x 1,整理得:2tx 1﹣2y 1+1=0.设B (x 2,y 2),同理可得2tx 2﹣2y 2+1=0. 故直线AB 的方程为2tx ﹣2y +1=0. ∴直线AB 过定点(0,12);(2)解:由(1)得直线AB 的方程y =tx +12. 由{y =tx +12y =x22,可得x 2﹣2tx ﹣1=0. 于是x 1+x 2=2t ,y 1+y 2=t(x 1+x 2)+1=2t 2+1.设M 为线段AB 的中点,则M (t ,t 2+12),由于EM →⊥AB →,而EM →=(t ,t 2−2),AB →与向量(1,t )平行,∴t +(t 2﹣2)t =0,解得t =0或t =±1. 当t =0时,|EM →|=2,所求圆的方程为x 2+(y −52)2=4; 当t =±1时,|EM →|=√2,所求圆的方程为x 2+(y −52)2=2.(2019•新课标Ⅲ理21)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【解答】解:(1)证明:y =x 22的导数为y ′=x ,设切点A (x 1,y 1),B (x 2,y 2),即有y 1=x 122,y 2=x 222,切线DA 的方程为y ﹣y 1=x 1(x ﹣x 1),即为y =x 1x −x 122,切线DB 的方程为y =x 2x −x 222,联立两切线方程可得x =12(x 1+x 2),可得y =12x 1x 2=−12,即x 1x 2=﹣1,直线AB 的方程为y −x 122=y 1−y 2x 1−x 2(x ﹣x 1),即为y −x 122=12(x 1+x 2)(x ﹣x 1),可化为y =12(x 1+x 2)x +12,可得AB 恒过定点(0,12);(2)法一:设直线AB 的方程为y =kx +12,由(1)可得x 1+x 2=2k ,x 1x 2=﹣1,AB 中点H (k ,k 2+12),由H 为切点可得E 到直线AB 的距离即为|EH |,可得|12−52|√1+k 2=√k 2+(k 2−2)2,解得k =0或k =±1,即有直线AB 的方程为y =12或y =±x +12,由y =12可得|AB |=2,四边形ADBE 的面积为S △ABE +S △ABD =12×2×(1+2)=3; 由y =±x +12,可得|AB |=√1+1•√4+4=4,此时D (±1,−12)到直线AB 的距离为|1+12+12|√2=√2;E (0,52)到直线AB 的距离为|12−52|√2=√2,则四边形ADBE 的面积为S △ABE +S △ABD =12×4×(√2+√2)=4√2; 法二:(2)由(1)得直线AB 的方程为y =tx +12. 由{y =tx +12y =x22,可得x 2﹣2tx ﹣1=0. 于是x 1+x 2=2t ,x 1x 2=﹣1,y 1+y 2=t (x 1+x 2)+1=2t 2+1,|AB |=√1+t 2|x 1−x 2|=√1+t 2×√(x 1+x 2)2−4x 1x 2=2(t 2+1).设d 1,d 2分别为点D ,E 到直线AB 的距离,则d 1=√t 2+1,d 2=2√t +1.因此,四边形ADBE 的面积S =12|AB |(d 1+d 2)=(t 2+3)√t 2+1. 设M 为线段AB 的中点,则M (t ,t 2+12).由于EM →⊥AB →,而EM →=(t ,t 2−2),AB →与向量(1,t )平行,所以t +(t 2﹣2)t =0.解得t =0或t =±1.当t =0时,S =3;当t =±1时,S =4√2. 综上,四边形ADBE 的面积为3或4√2. (2019•新课标Ⅲ理14文15)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为 . 【解答】解:设M (m ,n ),m ,n >0,椭圆C :x 236+y 220=1的a =6,b =2√5,c =4,e =c a =23,由于M 为C 上一点且在第一象限,可得|MF 1|>|MF 2|,△MF 1F 2为等腰三角形,可能|MF 1|=2c 或|MF 2|=2c ,即有6+23m =8,即m =3,n =√15; 6−23m =8,即m =﹣3<0,舍去. 可得M (3,√15). 故答案为:(3,√15).(2019•新课标Ⅲ文理10)双曲线C :x 24−y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若|PO |=|PF |,则△PFO 的面积为( ) A .3√24B .3√22 C .2√2 D .3√2【解答】解:双曲线C :x 24−y 22=1的右焦点为F (√6,0),渐近线方程为:y =±√22x ,不妨P 在第一象限,可得tan ∠POF =√22,P (√62,√32),所以△PFO 的面积为:12×√6×√32=3√24. 故选:A .(2019•新课标Ⅱ文20)已知1F ,2F 是椭圆2222:1(0)x y C a b a b +=>>的两个焦点,P 为C 上的点,O 为坐标原点.(1)若2POF ∆为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且△12F PF 的面积等于16,求b 的值和a 的取值范围. 【解答】解:(1)连接1PF ,由2POF ∆为等边三角形可知在△12F PF 中,1290F PF ∠=︒,2||PF c =,1||PF =,于是122||||1)a PF PF c =+=,故曲线C 的离心率1ce a==. (2)由题意可知,满足条件的点(,)P x y 存在当且仅当:1||2162y c =g ,1y y x c x c=-+-g ,22221x y a b +=,即||16c y =,① 222x y c +=,②22221x y a b +=,③由②③及222a b c =+得422b y c =,又由①知22216y c =,故4b =,由②③得22222()a x c b c=-,所以22c b …,从而2222232a b c b =+=…,故a …4b =,a …点P .所以4b =,a的取值范围为)+∞.(2019•新课标Ⅱ理21)已知点(2,0)A -,(2,0)B ,动点(,)M x y 满足直线AM 与BM 的斜率之积为12-.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C 于点G .()i 证明:PQG ∆是直角三角形; ()ii 求PQG ∆面积的最大值.【解答】解:(1)由题意得1222y y x x ⨯=-+-,整理得曲线C 的方程:221(0)42x y y +=≠,∴曲线C 是焦点在x 轴上不含长轴端点的椭圆;(2)()i 设0(P x ,0)y ,则0(Q x -,0)y -,0(E x ,0),(G G x ,)G y ,∴直线QE 的方程为:000()2y y x x x =-,与22142x y +=联立消去y ,得22222220000000(2)280x y x x y x x y x +-+-=,∴2220000220082G x y x x x x y --=+,∴2002200(8)2G y x x x y -=+,∴220000022000(4)()22G G y y x y y x x x x y --=-=+,∴G PG G y y k x x -=-220000220020002200(4)2(8)2y x y y x y x y x x y ---+=--+232300000002320000004282y y x y y x y x x y x x y ----=--- 2200022000(432)2(4)y x y x y x --=--,把220024x y +=代入上式,得2200022000(434)2(442)PG y x x k x y y --+=--+ 20020022y x x y -⨯=00x y =-,0000()1PQ PG y xk k x y ∴⨯=⨯-=-,PQ PG ∴⊥,故PQG ∆为直角三角形; 1()||()2PQG G Q ii S PE x x ∆=⨯- 001()2G y x x =+ 200002200(8)1[]22y x y x x y -=++ 22200000220082122y x y y x x y -++=⨯+ 20002200(4)2y x x x y +=+ 222000002200(2)2y x x y x x y ++=+ 22000022002()2y x x y x y +=+ 220000222200008()(2)(2)y x x y x y x y +=++ 330000442200008()225y x x y x y x y +=++ 0000200008()2()1x y y x x y y x +=++令0000x y t y x =+,则2t …,2881212PQG t S t t t∆==++ 利用“对号”函数1()2f t t t =+在[2,)+∞的单调性可知,19()4(222f t t +==…时取等号),∴816992PQG S ∆=„(此时00x y =,故PQG ∆面积的最大值为169. (2019•新课标Ⅱ理11文12)设F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若||||PQ OF =,则C 的离心率为()ABC .2D【解答】解:如图,以OF 为直径的圆的方程为220x y cx +-=,又圆O 的方程为222x y a +=,PQ ∴所在直线方程为2a x c=.把2a x c =代入222x y a +=,得2ab PQ c =,再由||||PQ OF =,得2ab c c=,即22244()a c a c -=,22e ∴=,解得e故选:A .(2019•新课标Ⅱ理8文9)若抛物线22(0)y px p =>的焦点是椭圆2213x y p p+=的一个焦点,则(p = )A .2B .3C .4D .8【解答】解:由题意可得:23()2pp p -=,解得8p =.故选:D .(2019•新课标Ⅰ理10文12)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过点2F 的直线与椭圆C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【解答】解:22||2||AF BF =Q ,2||3||AB BF ∴=,又1||||AB BF =,12||3||BF BF ∴=,又12||||2BF BF a +=,2||2a BF ∴=,2||AF a ∴=,13||2BF a =,12||||2AF AF a +=Q ,1||AF a ∴=,12||||AF AF ∴=,A ∴在y 轴上.在Rt △2AF O 中,21cos AF O a∠=,在△12BF F 中,由余弦定理可得222134()()22cos 222a a BF F a +-∠=⨯⨯,根据221cos cos 0AF O BF F ∠+∠=,可得214202a a a -+=,解得23a =,a ∴=. 222312b a c =-=-=.所以椭圆C 的方程为:22132x y +=.故选:B .(2019•新课标Ⅰ文10)双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线的倾斜角为130︒,则C的离心率为( ) A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒【解答】解:双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为by x a=±,由双曲线的一条渐近线的倾斜角为130︒,得tan130tan50b a -=︒=-︒,则sin50tan50cos50b a ︒=︒=︒,∴2222222222501115050b c a c sin a a a cos cos -︒==-==-︒︒,得22150e cos =︒,1cos50e ∴=︒. 故选:D .(2019•新课标Ⅰ理19)已知抛物线2:3C y x =的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1理)若||||4AF BF +=,求l 的方程; (2理)若3AP PB =u u u r u u u r,求||AB .【解答】解:(1理)设直线l 的方程为3()2y x t =-,将其代入抛物线23y x =得:22999(3)0424x t x t -++=,设1(A x ,1)y ,2(B x ,2)y ,则1293422934t x x t ++==+,①,212x x t =②,由抛物线的定义可得:1243||||2432AF BF x x p t +=++=++=,解得712t =,直线l 的方程为3728y x =-. (2理)若3AP PB =u u u r u u u r ,则123y y =-,∴1233()3()22x t x t -=-⨯-,化简得1234x x t =-+,③由①②③解得1t =,13x =,213x =,||AB ∴=. (2019•新课标Ⅰ文21)已知点A ,B 关于坐标原点O 对称,||4AB =,M e 过点A ,B 且与直线20x +=相切.(1)若A 在直线0x y +=上,求M e 的半径;(2)是否存在定点P ,使得当A 运动时,||||MA MP -为定值?并说明理由.【解答】解:M Q e 过点A ,B 且A 在直线0x y +=上,∴点M 在线段AB 的中垂线0x y -=上,设M e 的方程为:222()()(0)x a y a R R -+-=>,则 圆心(,)M a a 到直线0x y +=的距离d =,又||4AB =,∴在Rt OMB ∆中,2221(||)2d AB R +=,即224R +=① 又M Q e 与2x =-相切,|2|a R ∴+=② 由①②解得02a R =⎧⎨=⎩或46a R =⎧⎨=⎩,M ∴e 的半径为2或6;(2)Q 线段AB 为M e 的一条弦O 是弦AB 的中点,∴圆心M 在线段AB 的中垂线上,设点M的坐标为(,)x y ,则222||||||OM OA MA +=,M Q e 与直线20x +=相切,|||2|MA x ∴=+,22222|2|||||4x OM OA x y ∴+=+=++,24y x ∴=,M ∴的轨迹是以(1,0)F 为焦点1x =-为准线的抛物线,|||||2|||MA MP x MP ∴-=+- |1|||1||||1x MP MF MP =+-+=-+,∴当||||MA MP -为定值时,则点P 与点F 重合,即P的坐标为(1,0),∴存在定点(1,0)P 使得当A 运动时,||||MA MP -为定值.。
圆锥曲线高考真题专项练习2019
圆锥曲线高考真题专项练习2019 1.(2018)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.2.(2017)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.3.(2016)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E 于A,M两点,点N在E上,MA⊥NA.(I)当|AM|=|AN|时,求△AMN的面积(II)当2|AM|=|AN|时,证明:<k<2.4.(2015)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB 的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.5.(2014)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.6.(2013)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(Ⅰ)求圆心P的轨迹方程;(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.7.(2012)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F 为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.8.(2011)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.。
卓顶精文2019圆锥曲线历年高考题(整理)附答案
数学圆锥曲线测试高考题一、选择题:1.(20XX 全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为()(A )53(B )43(C )54(D )322.(20XX 全国II )已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是() (A )23(B )6(C )43(D )123.(20XX 全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是()A .43B .75C .85D .3 4.(20XX 广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于()A.2B.223C.2D.4 5.(20XX 辽宁卷)方程22520x x -+=的两个根可分别作为() A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率6.(20XX 辽宁卷)曲线221(6)106x y m m m +=<--与曲线221(59)59x y m m m+=<<--的() (A)焦距相等(B)离心率相等(C)焦点相同(D)准线相同7.(20XX 安徽高考卷)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为() A .2-B .2C .4-D .48.(20XX 辽宁卷)直线2y k =与曲线2222918k x y k x +=(,)k R ∈≠且k 0的公共点的个数为()(A)1(B)2(C)3(D)4 二、填空题:9.(20XX 全国卷I )双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。
10.(20XX 上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(3,0)F -,右顶点为(2,0)D ,设点11,2A ⎛⎫⎪⎝⎭,则求该椭圆的标准方程为 。
圆锥曲线专题(2019全国卷)
圆锥曲线专题(2019年全国卷)10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y +=16.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为_________.19.(12分)已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若,求|AB |.323AP PB =10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒12.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=21.(12分)已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切. (1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由.8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .811.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A BC .2D21.(12分)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.9.若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .812.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为AAB C.2D20.(12分)已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .15.设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.21.已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则△OPF 的面积为A .32B .52C .72D .9215.设12F F ,为椭圆C :2213620x y +=的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为___________. 21.(12分)已知曲线C :22x y =,D 为直线12y =-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以5(0,)2E 为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.。
(完整word版)圆锥曲线高考真题汇编(2013--2019新课标卷)(2019)
高三复习解析几何咼考真题uur uuu uur uuu的两条渐近线分别交于 A,B 两点,若F 1A AB, FB 1 F 2B 0,贝U C 的离心率为 4、【2019新1文理】已知椭圆C 的焦点为斤(1,0)丁2(1,0),过F 2的直线与C 交于A,B 两点PO = PF ,则△ PFO 的面积为(A .2y1的两个焦点,M 为C 上一点且在第一象限.若厶MF 1F 21、【2019年新2文理]若抛物线 y 2 2px (p>0)的焦点是椭圆3p1的一个焦点,贝y p=() pA.2B.3C.4D.82、【2019年新2文理】设F 为双曲线 2 2x y C :_ C : 2 2a b1(a 0,b 0)的右焦点,O 为坐标原点,以 OF 为直径的圆与圆x 2 y 22a 交于PQ 两点,若PQOF ,则C 的离心率为( B. 3 C. 2D.3、【2019新1文理】2x已知双曲线 C :ra 2b 1(a0,b 0) D 的左、右焦点分别为 F l , F 2,过F l 的直线与CAF 2 2 F 2B , AB BF 1 ,则C 的方程为2x2“A. y 122xB.—32y- 12xC.—42xD.-55、【2019新3文理】 x 2 10.双曲线C4的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,为等腰三角形,则 M的坐标为7、【2018新2文理] A . y 2xB . y 3xC血C. yx2D恵D . yx 26、【2019新3文理]15.设 % F 2为椭圆 C:+36 20高三复习在过A 且斜率为 乜 的直线上,△ PF 1F 2为等腰三角形,F 1F 2P 120,则C 的离心率为()621 11A.-B . — C.-D—— 32349、【2018新2文】11. 已知 F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若 PF 1 PF 2 ,且 PF 2F 1 60则C 的离心率为()A . 1乜B . 2. 3C.3 1D.,3 12 22 210、 【2018新1理】&设抛物线 C : y 2=4x 的焦点为F ,过点(—0)且斜率为一的直线与C 交于M , N3uuur mur两点,贝V FM FN =()A . 5B . 6 C. 7 D . 82x211、 【2018新1理】11.已知双曲线 C : — y1, O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的3两条渐近线的交点分别为 M 、2若厶OMN 为直角三角形,则|MN|=()1 B.- 8、 【2018新2理】12 .已知F i ,2 2F2是椭圆C : —2 右 1(a b 0)的左、右焦点,A 是C 的左顶点,点P高三复习则厶ABP面积的取值范围是(B. 3 C. 2.3 D. 412、【2018新1文】 4 .已知椭圆1的一个焦点为(2 ,0),则C的离心率为1 A.- 3 C .13、【2018新1文】15 .直线y1与圆x2 y2 2y 3 0交于A,B两点,则AB14、【2018新3文理】6.直线x 0分别与x轴, y轴交于A, B两点,点P在圆x 2 2 .2 y 2 上,A.2 B. 4, C. .2 , 3.2D. 2 2 ,3215、【2018新3理】11 .设F1 , F2是双曲线2xC:二a2y_b20 )的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P .若PF1 6 OP,则C的离心率为()B. 2C. 316、【2018新3理】16.已知点M21 , 1和抛物线C: y 4x ,过C的焦点且斜率为k的直线与C交于A ,高三复习截得的弦长为2,则C 的离心率为(A. 2为F 的中点,贝U FN【2017新1理】10 .已知F 为抛物线C :y 3 4x 的焦点,过F 作两条互相垂直的直线 hl ,直线h 与C交于A B 两点,直线I ?与C 交于D E 两点,贝U |AB +| DE 的最小值为()3 223、【2017新3文理】10 .已知椭圆C : 每 a bB 两点•若 / AMB 90,贝U k17、【2018新3文】 10.已知双曲线C :1(a 0, b 0)的离心率为 2 ,则点 (4,0)到C 的渐近线的距离为( B . 2D . 2 218、【2017新2理】2 x9.若双曲线C : 一2a2y_b 2(a 0,b0)的一条渐近线被圆y 2 4所19、 【2017新2理】16.已知F 是抛物线2y 8x 的焦点,是C 上一点,F 的延长线交y 轴于点20、高三复习2 221、【2017新1理】15 .已知双曲线 C :^ y2 1(a a b直径的圆与直线 bx ay 2ab0相切,则C 的离心率为(A. 16 B . 14 C. 120 )的左、右顶点分别为A.C .D.0,b 0)的右顶点为A,以A 为圆心,b 为半径做圆22、A,圆A 与双曲线C 的一条渐近线交于M N 两点。
圆锥曲线高考真题总汇编(2013--2019新课标卷)(2019)
解析几何高考真题1、【2019年新2文理】若抛物线22y px =(p>0)的焦点是椭圆2213x y p p+=的一个焦点,则p=( )A.2B.3C.4D.82、【2019年新2文理】设F 为双曲线C:22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P,Q 两点,若PQ OF =,则C 的离心率为( )B.C. 2 3、【2019新1文理】已知双曲线C:22221(0,0)x y a b a b-=>>D 的左、右焦点分别为12,F F ,过1F 的直线与C 的两条渐近线分别交于A,B 两点,若112,0F A AB FB F B =⋅=,则C 的离心率为________4、【2019新1文理】已知椭圆C 的焦点为12(1,0),(1,0)F F -,过2F 的直线与C 交于A,B 两点2212,AF F B AB BF ==,则C 的方程为( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 5、【2019新3文理】10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O为坐标原点,若=PO PF ,则△PFO 的面积为( )A .4B .2C .D .6、【2019新3文理】15.设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.7、【2018新2文理】5.双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为( )A .y =B .y =C .y x =D .y =8、【2018新2理】12.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A 12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .149、【2018新2文】11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A .1B .2CD 1-10、【2018新1理】8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .811、【2018新1理】11.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=( )A .32B .3C .D .412、【2018新1文】4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D 13、【2018新1文】15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________ 14、【2018新3文理】6.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值围是( )A .[]26,B .[]48,C .D .⎡⎣15、【2018新3理】11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF ,则C 的离心率为( )AB .2CD16、【2018新3理】16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C交于A ,B 两点.若90AMB =︒∠,则k =________.17、【2018新3文】10.已知双曲线22221(00)x y C a b a b-=>>:,则点(4,0)到C 的渐近线的距离为( )AB .2CD .18、【2017新2理】9. 若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B 19、【2017新2理】16. 已知F 是抛物线C :28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则FN = .20、【2017新1理】10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .1021、【2017新1理】15.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,以A 为圆心,b为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.【2018全国二卷19】设抛物线的焦点为,过且斜率为的直线与交于,两点,.
(1)求的方程;
(2)求过点,且与的准线相切的圆的方程.
3.【2018全国三卷20】已知斜率为的直线与椭圆交于,两点,线段的中点为.
(1)证明:; (2)设为的右焦点,为上一点,且.证明:
,,成等差数列,并求该数列的公差.
【定点问题】已知()()()0,10,1,10.A B M --,,
动点P 为曲线C 上任意一点,直线,PA PB 的120,0,y ,
)0a b 的两个焦点均在以坐标原点的短半轴长为半径的圆上,且该圆被直线20x y +-=截得的弦长为问:,AB BD 是否【18浙江改编】已知椭圆C :()22
2210x y a b a b +=的离心率为12
,过右顶点与上顶点的直(1)求C 的标准方程;
(2)若圆O :223x y +=上一点处的切线l 与椭圆C 交于不同的两点,,A B 求OAB ∆面积的最大值.
24C y x =:F F (0)k k >l C A B ||8AB =l A B C k l 22
143
x y C +=:A B AB ()()10M m m >,12
k <-F C P C FP FA FB ++=0FA FP FB
5.【2018天津卷19】设椭圆22
221x x a b
+=(a >b >0)的左焦点为F ,上顶点为B . 已知椭圆的离
A 的坐标为(,0)b ,且F
B AB ⋅=(I )求椭圆的方程;
(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .
若
4AQ AOQ PQ =∠(O 为原点) ,求k 的值.。