第五章相交线、平行线小结

合集下载

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线知识点总结在几何学中,相交线和平行线是基础概念。

它们在理解和解决几何问题时起着重要的作用。

本文将对相交线和平行线的概念、性质以及应用进行总结。

一、相交线的概念及性质相交线是指在同一个平面内交于一点或多个点的两条或多条线段。

我们来看一下相交线的性质。

1. 相交线的定义:两条线段在平面内交于一点或多个点。

2. 相交线的种类:根据其相交方式,相交线可以分为垂直相交线和斜交线两种。

垂直相交线是指交于一点且互相垂直的两条线段;斜交线是指交于一点但不互相垂直的两条线段。

3. 相交线上的角:相交线会形成一些特殊的角,主要包括相邻角、对顶角、内错角和外错角。

相邻角是指在同一侧的相交线上,且共享一个端点的两个角;对顶角是指在相交线的对立面上,且互相垂直的两个角;内错角是指在同一侧的相交线上,且不相邻的两个角;外错角是指在同一侧的相交线上,且与内错角互补的两个角。

4. 直线的平分线:两条相交直线的交点处的角被称为直线的平分线。

平分线将原角分成两个相等的角。

二、平行线的概念及性质平行线是指在同一平面内,永不相交的两条直线。

接下来我们来了解一下平行线的性质。

1. 平行线的定义:在同一平面内,两条直线如果不相交,则它们是平行线。

2. 平行线的判定:常用方法有欧几里得假设、对角线法、平行线法则等。

3. 平行线的性质:平行线之间相互平行;平行线与同一条直线的交线上的对应角相等;平行线与同一平行线的交线上的对应角相等;平行线与平行线之间的距离相等。

4. 平行线的应用:平行线在实际问题中有着广泛的应用,比如在测量、建筑、地理等领域。

通过平行线的性质,我们可以解决许多与位置、角度、距离等有关的问题。

三、相交线与平行线的关系相交线和平行线之间有着紧密的联系,它们的性质可以相互应用。

1. 垂直相交线与平行线:如果两条平行线被一条垂直相交线所截,那么所截得的对应角互为互补角。

2. 斜交线与平行线:如果两条平行线被一条斜交线所截,那么所截得的对应角互为相等角或互为互补角。

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线知识点总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-相交线与平行线一:相交线(1)相交线的定义两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(4)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.∠1和∠3,∠2和∠4是对顶角.(5)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.如图:∠1和∠2,∠2和∠3是邻补角.(6)对顶角的性质:对顶角相等.(如图∠1=∠3,∠2=∠4)(7)邻补角的性质:邻补角互补,即和为180°.(如图∠1+∠2=180°)(8)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的。

二、垂线(1)、垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图,OD⊥AB,垂足为O(2)、垂线的性质过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”“过一点”的点在直线上或直线外都可以。

(3)、垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(4)垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.(如图,PA,PB,PC等线段中,PO最短)(4)、点到直线的距离(如图,PO的长)(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.三、平行线1、在同一平面内,两条直线的位置关系有两种:平行和相交.(1)平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.(2)同一平面内,两条直线的位置关系:平行或相交,对于这一知识的理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.(3)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.如图,过点P只有直线a 与直线 b平行(4)平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.(5)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.如图,如果a∥c,b∥c,那么a∥c2、同位角、内错角、同旁内角(1)同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.例如∠1和∠5,∠3和∠7,∠4和∠8,∠2和∠6.(2)内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.例如∠3和∠5,∠4和∠6.(3)同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角。

第五章 相交线与平行线小结(1)-

第五章 相交线与平行线小结(1)-

小结从容说课本章的概念、性质比较多,要让学生在学完本章后注意梳理所学的知识,寻找一些重点内容之间的内在联系,建立知识体系.本章的知识结构框图中分别列出了相交和平行两个分支的内容及其联系,使学生明白所学知识的系统性,以及为什么研究直线的位置关系时要研究一些角的关系.用这个框图时,可以把一些主要的定义、公理、判定方法、性质补充上,使它成为全章复习的提纲.另外,对一些内容要求要注意循序渐进.如对于推理证明、命题的相关内容的要求,要服从整套书的安排,要结合图形掌握等等.第五章相交线与平行线小结(1)(第12课时)三维目标一、知识与技能1.在具体情境中回顾邻补角、对顶角的概念,知道对顶角相等;回顾垂线,•垂线段及过一点有且仅有一条直线垂直于已知直线,会用三角形或量角器过一点画一条直线的垂线,回顾垂线段最短的性质,体会点到直线的距离的意义并会度量点到直线的距离;2.回顾平行线的概念,平行公理及推论,•会用三角尺和直尺过一点画已知直线的平行线;会识别同位角、内错角、同旁内角,会用平行线的性质和判定方法解决问题、体会两条平行线间距离的意义并会度量两条平行线间的距离;3.回顾平移的定义和基本性质,利用平移进行简单的图案设计,•认识和欣赏平移在现实生活中的应用;4.回顾命题的概念、构成及命题的真假.二、过程与方法1.理解本章学过的关于描述图形形状和位置关系的语句,•会用语句描述简单的图形,会根据描述的语句画出图形,能结合一些具体内容进行说理,初步养成言之有据的习惯.2.注意观察实物、模型和图形,通过观察、归纳、对比来寻找图形的位置、•关系和数量关系,从而发现图形的性质.三、情感态度与价值观在观察、操作、想象、说理、交流的过程中,发展空间观念,初步形成积极参与数学活动,与他人合作交流的意识,激发学生空间与图形的兴趣.教学重点回顾、思考本章的重点内容.教学难点建立本章的知识结构框架图.教具准备多媒体课件.教学过程一、小结活动11.在平面内,不重合的两条直线的位置关系有两种:相交、平行.•在研究平行线时,常常是通过有关的角来判断直线平行和反映平行线的性质的.下面是本章学到的一些数学名词,你能用自己的语言给它们一个简短的描述吗?你能画出一个图形来表示它们吗?对顶角、邻补角、垂直、平行、同位角、内错角、同旁内角、平移.2.对顶角有什么性质?你会度量点到直线的距离和两条平行线的距离吗?3.怎样判别两条直线是否平行?平行线有什么特征?•对比平行线的性质和直线平行的条件,它们有什么异同?4.图形平移时,连接各对应点的线段有什么关系?•你能利用平移设计一些图案吗?5.学习本章时,要注意观察实物、模型和图形,通过观察、归纳、•对比来寻找图形中的位置关系和数量关系,从而发现图形的性质.二、建立本章的知识框架图活动2在充分思考和交流的基础上,逐渐建立本章的知识结构图.设计意图:在反思和交流的过程中,逐渐建立知识体系.完善自己的知识结构,反思自己的学习过程.师生行为:可鼓励学生自己梳理全章的内容,使学生明白所学知识的系统性.教师引导学生完成:本章知识结构图三、例题讲解【例1】如图所示,选择恰当的方向击打白球,可以使白球反弹后将红球撞入袋中,此时:∠1=∠2,并且∠2+∠3=90°,如果∠3=30°,那么∠1应等于多少度,才能保证红球能直接入袋?解:因为∠2+∠3=90°,∠3=30°,所以∠2=60°.所以∠1=∠2=60°.则:∠1等于60°,才能保证红球直接入袋.【例2】如图,直线b与直线c平行吗?说说你的理由.解:直线b与直线c平行.因为b⊥a,c⊥a,所以∠1=90°,∠2=90°,因此∠1=∠2,由“同位角相等,两直线平行”得,b∥c.(也可由内错角相等或同旁内角互补来说理由)【例3】如图所示,如果∠B与∠C互补,那么哪两条直线平行?∠A与哪个角互补,可以保证AD∥BC?答:如果∠B与∠C互补,那么线段AB与线段DC平行;∠A与∠B互补,•可保证AD•∥BC.理由都是:同旁内角互补,两直线平行.【例4】如图,在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是北偏东42°,甲、乙两地同时开工,若干天后公路准确接通.•乙地所修公路的走向是南偏西多少度?为什么?答:乙地所修公路的走向是南偏西42°.因为:两直线平行,内错角相等.【例5】如图:(1)如果a∥b,找出图中各角之间的等量关系.(2)如果c∥d,那么需要哪两个角相等?答:(1)a∥b,则图中各角之间的等量关系是:∠1=∠2,∠2=∠3,∠3=∠1,∠1+∠4=180°,∠2+∠4=180°,∠3+∠4=180°,∠5+∠6=180°.(2)c∥d,那么需要∠3=∠5或者∠4=∠6.四、课时小结这节课我们共同复习回顾了本章的内容.大家要掌握直线平行的条件和平行线的特征,并会用自己的语言来表达理由.板书设计小结(一)活动与探究已知,如下图,CD∥OB,EF∥AO,则∠1与∠O相等吗?为什么?[过程]让学生在活动过程中,寻找多种方法,这样能激发学生的思维.利用综合法分析:由CD∥OB,可推得:①∠1=∠2,②∠1与∠3互补,③∠O=∠4,④∠O=∠5,⑤∠O与∠6互补,•由EF•∥AO,又推出:⑥∠1=∠5,⑦∠1=∠4,⑧∠1与∠6互补,⑨∠O=∠2,⑩∠O与∠3互补.由①与⑨、②与⑩、③与⑦、④与⑥、⑤与⑧均可推得∠1=∠O,从而得出五种不同证法.利用分析法分析:假如:∠1=∠O,由CD∥OB得∠1=∠2,所以只须有∠O=∠2即可.由EF∥OA可得,同理分析可有其他证法.[结果]∠1与∠O相等.证法一:因为CD∥OB,所以∠1=∠2(两直线平行,内错角相等).因为EF∥AO(已知),所以∠O=∠2(两直线平行,同位角相等).所以∠1=∠O.证法二://13//3CD OBEF OA O⇒∠∠⎫⇒⎬⇒∠∠⎭与互补与互补∠1=∠O.证法三://4//14CD OB OEF OA⇒∠=∠⎫⇒⎬⇒∠=∠⎭∠1=∠O.证法四://5//15CD OB OOA EF⇒∠=∠⎫⇒⎬⇒∠=∠⎭∠1=∠O.证法五://6180//16180CD OB OEF OA⇒∠+∠=︒⎫⇒⎬⇒∠+∠=︒⎭∠1=∠O.备课资料自测题一、选择题1.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°2.下列语句中,是对顶角的语句为()A.有公共顶点并且相等的角; B.两条直线相交,有公共顶点的角C.顶点相对的角; D.两条直线相交,有公共顶点没有公共边的两个角3.如图1,下列说法错误的是()A.∠1和∠3是同位角; B.∠1和∠5是同位角C.∠1和∠2是同旁内角; D.∠5和∠6是内错角(1) (2) (3)4.如图2,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有()A.5个B.4个C.3个D.2个5.如图3,OB⊥OD,OC⊥OA,∠BOC=32°,那么∠AOD等于()A.148°B.132°C.128°D.90°二、填空题6.∠1与∠2互余,∠2与∠3互补,∠1=63°,∠3=______.7.∠α和∠β互为补角,又是对顶角,则它们的两边所在的直线_______.8.如图,已知直线EF与AB、CD都相交,AB∥CD,则∠1=∠2.证明:因为EF与AB相交(已知),所以∠1=∠3().因为AB∥CD(已知),所以∠2=∠3().所以∠1=∠2().9.已知,如图,AD∥BC,∠BAD=∠BCD,则AB∥CD.证明:因为AD∥BC(已知),所以∠1=()().又因为∠BAD=∠BCD(已知),所以∠BAD-∠1=∠BCD-∠2().即:∠3=∠4.所以AB∥CD().三、解答题10.如图6,直线a、b被直线c所截,且a∥b,若∠1=118°,则∠2为多少度?解:因为∠1+∠3=180°,∠1=118°,所以∠3=62°,因为a∥b,所以∠2=∠3=62°.11.已知一个角的余角的补角比这个角的补角的一半大90°,则这个角的度数等于多少度?答案:1.B 2.D 3.B 4.A 5.A 6.153°7.互相垂直8.对顶角相等两直线平行,同位角相等等量代换9.∠2 两直线平行,内错角相等等式性质内错角相等,两直线平行10.∠2为62°11.解:设这个角的余角为x,那么这个角的度数为(90°-x),这个角的补角为(•90°+x),这个角的余角的补角为(180°-x).依题意,列方程为:180°-x=12(x+90°)+90°解得:x=30°这时,90°-x=90°-30°=60°.所以所求的角的度数为60°.。

第5章 平行线与相交线知识总结与测验

第5章 平行线与相交线知识总结与测验

第五章平行线与相交线复习知识要点一.余角、补角、对顶角1、余角:如果两个角的和是直角,那么称这两个角互为余角.2、补角:如果两个角的和是平角,那么称这两个角互为补角.3、对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4、互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠3=90°,则∠2=∠3.5、互为补角的有关性质:①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°.②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.6、对顶角的性质:对顶角相等.二.同位角、内错角、同旁内角的认识及平行线的性质7、同一平面内两条直线的位置关系是:相交或平行.8、“三线八角”的识别:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.如图,直线ba,被直线l所截①∠1与∠5在截线l的同侧,同在被截直线ba,的上方,叫做同位角(位置相同)②∠5与∠3在截线l的两旁(交错),在被截直线ba,之间(内),叫做内错角(位置在内且交错)③∠5与∠4在截线l的同侧,在被截直线ba,之间(内),叫做同旁内角。

三.平行线的性质与判定9、平行线的定义:在同一平面内,不相交的两条直线是平行线.10两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补。

其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质。

七下数学第五章相交线与平行线知识点

七下数学第五章相交线与平行线知识点

七下数学第五章相交线与平行线知识点
七下数学第五章相交线与平行线包括以下几个知识点:
1. 平行线的判定:两条直线如果在同一个平面内,且没有交点,那么它们是平行线。

2. 平行线的性质:
a. 平行线上的任意两点与第三条线的交点分别都与平行线上的对应点连线相平行。

b. 平行线之间的距离是不变的,无论在任何位置上测量。

3. 线的相交情况:
a. 直线与直线相交,交点为一点。

b. 直线与平行线相交,交点为无穷远处的一点(虚交点)。

c. 平行线与平行线相交,交点不存在。

4. 相交线的判定:
a. 两条直线相交,交点只有一个。

b. 两条直线平行,交点不存在。

c. 两条直线重合,交点有无数个。

5. 用相交线运用到的一些概念:
a. 对偶关系:如果两条直线相交于一个点,那么这两条直线互为对偶关系。

b. 垂直线:两条互相垂直的直线相交于直角。

6. 平行线判定定理:
a. 若两条直线被一组平行线切割,那么这两条直线也是平行线。

b. 若两条直线分别与一组平行线平行,那么这两条直线也是平行线。

这些知识点是七下数学第五章相交线与平行线的重点,通过学习这些内容,能够更好地理解和运用在平行线和相交线的相关问题中。

相交线、平行线复习小结

相交线、平行线复习小结

5.5 相交线、平行线复习小结·教学设计教学目标1.知识储备:理解对顶角、邻补角、同位角、内错角、同旁内角的概念,能在图形中正确地辨认它们;掌握垂线,点到直线的距离的概念,会用三角板或量角器画直线的垂线,了解垂线段最短的性质,会度量点到直线的距离;了解平行线的概念,掌握平行公理及其推论,平行线的判定、性质,会用三角板和直尺画各种位置的直线的平行线;了解命题的题设和结论,把命题改成“如果……那么……”的形式;2.能力培养点:熟悉和掌握几何语言,能够把学过的概念和性质,用图形或符号表示出来,也能用语言说明几何图形;训练学生观察图形和利用图形解决问题的能力;3.情感体验点:使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的教育.教学重点难点1.相交线、平行线的性质与判定,命题证明的步骤、格式;2.本章知识点的综合理解与应用.教学方法由题组引发概念,再由题组巩固概念与性质等知识点.教学准备教师准备三角板、演示文稿.教学过程一、引发概念组题.师:请同学们看一组题,通过这一组题我们来归纳本章的知识结构.1.平面内两直线的位置关系有________种,即________和________.2.如图5—5—1,直线a和b相交,∠3和∠2叫________角,∠3和∠2的数量关系是________;∠1和∠2叫________角,它们的数量关系是________.3.如图5—5—2,直线AB、CD交于O,且∠AOC=90°,则直线AB与CD的位置关系是________,几何符号表示为AB________CD.根据垂直定义∠AOC=90°时,则AB________CD;若AB⊥CD,则∠AOC=________度.4.过直线外一点有且只有________条直线垂直于已知直线.5.如图5—5—3,PO ⊥AB ,则P A 、PO 、PB 三条线段中最短线段为_________,根据是_________.6.如图5—5—4,直线a 、b 被直线c 所截,则∠1与∠2叫_______角;∠2与∠3叫_________角;∠2与∠4叫_________角.7.若a ∥b ,c ∥b ,则有结论___________.8.经过直线外一点有且只有_________条直线与已知直线平行.9.如图5—5—5,因为 ∠1=∠2,所以 a ∥b .根据______________________.因为 ∠2=∠3,所以 a ∥b .根据______________________.因为 ∠2+∠4=180°,所以 a ∥b .根据______________________.10.如图5—5—6,因为 a ∥b ,所以 ∠3=∠2.根据______________________.因为 a ∥b ,所以 ∠2=∠1.根据______________________.因为a∥b,所以∠2+∠4=180°.根据______________________.11.命题“同位角相等,两直线平行”写成“如果……那么……”的形式为__________,其中题设为____________,结论为____________.点评:这一组题都是直接体现基本概念的题目,让学生完成题目的同时回忆本章的有关概念、性质及判定等.二、知识结构.点评:引导学生整理结构图,再与教材对照.三、例题选讲.例1 已知:如图5—5—7,直线.a∥b,c∥d,∠1=100°,求∠2,∠3的度数.解:因为c∥d(已知),所以∠1=∠4(两直线平行,同位角相等).因为∠3=∠4(对顶角相等),所以∠1=∠3(等量代换).因为∠1=100°(已知),所以∠3=100°(等量代换).因为a∥b(已知),所以∠2+∠4=180°(两直线平行,同旁内角互补),所以∠2=180°-100°=80°.点评:教学中要严格要求几何解答题的推理格式变式练习:1.如图5—5—8,AB∥CD,AD∥BC,能否推出∠1=∠2,∠3=∠4.要求学生写出已知、求证和证明过程.2.如图5—5—9,AB∥CD,AD∥BC,能否推出∠1+∠3=180°.要求学生写出已知、求证和证明过程.点评:要引导学生认清图形,明确哪两条平行线可推出相应的结论.例2 如图5—5—11,已知AB∥EF,∠BED=∠B+∠D,求证:AB∥CD.分析:要证AB∥CD,需证EF∥CD,需证∠2=∠D,需证∠1=∠B.以上可由AB∥EF一步一步推出.证明:因为AB∥EF(已知),所以∠B=∠1(两直线平行,内错角相等).Array因为∠BED=∠B+∠D(已知),因为∠BED=∠1+∠2(已知),所以∠2=∠D(等量代换),所以EF∥CD(内错角相等,两直线平行).又因为AB∥EF(已知),所以AB∥CD(平行公理推论).教师进一步引导学生,能否直接证明AB∥CD,思路是看能否找到相等的内错角和同位角、或同旁内角互补,提示作辅助线.思路:要证AB∥CD,需证∠1=∠D,需证∠D=∠2,需证∠B=∠3.证明:如图5—5—12,延长DE交AB于G因为AB∥EF(已知),所以∠B=∠3,∠1=2(两直线平行,同位角、内错角相等).又因为∠BED=∠2+∠3=∠B+∠D(已知),所以∠2=∠D(等量代换),所以∠1=∠D(等量代换).所以AB∥CD(内错角相等,两条直线平行).师:能否利用“同位角相等,两条直线平行”来证明呢?提示学生做出同位角,如图5—5—13,证出∠1=∠D即可.师:能否通过证明“同旁内角互补”,得到AB∥CD?学生自行完成.点评:初学几何,就使学生感受一题多解的奥妙,提高学习的兴趣.四、综合应用,巩固练习.1.已知:如图5—5—14,∠1+∠3=180°,CD⊥AD,C M平分∠DCE,求:∠4的度数.Array解:因为∠3=∠6(对顶角相等),∠1+∠3=180°(已知),所以∠1+∠6=180°(等量代换),所以AD∥BC(同旁内角互补,两直线平行).因为CD⊥AD(已知),所以∠7=90°(垂直定义).因为 AD ∥BC (已知),所以 ∠7+∠DCE =180°(两直线平行,同旁内角互补),所以 ∠DCE =90°.因为 CM 平分工DCE (已知),所以 ∠4=21∠DCE =45°(角平分线定义). 2.已知:如图5—5—15,∠1=∠2,∠3=∠4,∠5=∠A ,求证:BE ∥CF . 证明:因为 ∠3=∠4(已知),所以 AE ∥BC (内错角相等,两直线平行).所以 ∠FDC =∠5(两直线平行,内错角相等).因为 ∠5=∠A (已知),所以 ∠FDC =∠A (等量代换),所以 DC ∥AB (同位角相等,两直线平行),所以 ∠5+∠2+∠3=180°(两直线平行,同旁内角互补).因为 ∠1=∠2(已知),所以 ∠1+∠5+∠3=180°(等量代换),所以 BE ∥FC (同旁内角互补,两直线平行).3.已知:如图5—5—16,DC ∥AB ,∠ABD +∠4=90°求证:AD ⊥DB .证明:因为 DC ∥AB (已知),所以 ∠CDB =∠DBA (两直线平行,内错角相等).∠CDB +∠ADB +∠A =180°(两直线平行,同旁内角互补).所以 ∠DBA +∠ADB +∠A =180°(等量代换).因为 ∠ABD +∠A =90°(已知),所以 ∠ADB +90°=180°(等量代换),所以∠ADB=90°(等式性质),所以AD⊥DB(垂直定义).五、课堂小结.全章知识结构图.六、课外练习.p29—41复习题5 1—3.评析:本节课是平面几何入门后的第一次复习小结课,作者在教案中,设计了引发概念题组,构建知识结构图,综合例题选讲和变式训练四个教学环节,这对于初学几何的七年级学生来说,是非常及时和必要的.相信该课上完后,将有力地促使他们系统地掌握知识,初步掌握数学的论说形式,领略到一题多解的魅力,提高数学学习的兴趣.。

七年级数学下册第五章相交线与平行线必考知识点归纳(带答案)

七年级数学下册第五章相交线与平行线必考知识点归纳(带答案)

七年级数学下册第五章相交线与平行线必考知识点归纳单选题1、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于()A.40°B.36°C.44°D.100°答案:A分析:首先根据∠1=∠2=40°得到PQ∥MN,然后根据两直线平行,同旁内角互补即可求出∠4的度数.∵∠1=40°,∠2=40°,∴∠1=∠2,∴PQ∥MN,∴∠4=180°﹣∠3=40°,故选:A.小提示:本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.2、如图,下列说法错误的是().A.∠1与∠2是内错角B.∠1与∠4是同位角C.∠2与∠4是内错角D.∠2与∠3是同旁内角答案:B分析:根据同位角、内错角及同旁内角的定义:两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形即可得出答案.解:由图形可得:∠1与∠2是内错角,故A选项正确;∠1与∠4既不是同位角,也不是内错角,也不是同旁内角,故B选项错误;∠2与∠4是内错角,故C选项正确;∠2与∠3是同旁内角,故D选项正确,故选:B.小提示:此题考查了同位角、内错角及同旁内角的知识,属于基础题,掌握定义是关键.3、如图,直线l1∥l2,直线l1、l2被直线l3所截,若∠1=54°,则∠2的大小为()A.36°B.46°C.126°D.136°答案:C分析:根据两直线平行同位角相等求出∠3=54°,再利用邻补角的定义求解.解:如图.∵l1∥l2,∴∠1=∠3=54°.∴∠2=180°﹣∠3=180°﹣54°=126°.故选:C.小提示:本题主要考查平行线的性质,邻补角的定义,根据平行线的性质得到∠1=∠3=54°是解决本题的关键.4、如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠4答案:B分析:同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.根据此定义即可得出答案.解:∵直线AD,BE被直线BF和AC所截,∴∠1与∠2是同位角,∠5与∠6是内错角,故选:B.小提示:本题考查的知识点是同位角和内错角的概念,解题的关键是熟记内错角和同位角的定义.5、如图,四边形ABCO是矩形,点D是BC边上的动点(点D与点B、点C不重合),则∠BAD+∠DOC的值为()∠ADOA.1B.12C.2D.无法确定答案:A分析:过点D作DE//AB交AO于点E,由平行的性质可知∠BAD=∠ADE,∠DOC=∠ODE,等量代换可得∠BAD+∠DOC∠ADO的值.解:如图,过点D作DE//AB交AO于点E,∵四边形ABCO是矩形∴AB//OC∵DE//AB∴AB//DE,DE//OC∴∠BAD=∠ADE,∠DOC=∠ODE∴∠BAD+∠DOC∠ADO=∠BAD+∠DOC∠ADE+∠ODE=∠BAD+∠DOC∠BAD+∠DOC=1故选:A.小提示:本题主要考查了平行线的性质,灵活的添加辅助线是解题的关键.6、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3B.∠2+∠3=180°C.∠1=∠4D.∠1+∠4=180°分析:同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可. 解:∵∠1=∠3,∴a∥b(同位角相等,两直线平行),故A不符合题意;∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行)故B不符合题意;∵∠4=∠3,∠1=∠4,∴∠1=∠3,∴a∥b(同位角相等,两直线平行)故C不符合题意;∵∠1+∠4=180°,∠1,∠4不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定a∥b,故D符合题意;故选D小提示:本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.7、如图,AD⊥BC,ED⊥AB,表示点D到直线AB距离的是线段()的长度A.DB B.DE C.DA D.AE答案:B分析:根据从直线外一点到这直线的垂线段的长度叫做点到直线的距离解答.解:∵ED⊥AB,∴点D到直线AB距离的是线段DE的长度.故选:B.小提示:本题考查了点到直线的距离的定义,是基础题,熟记概念并准确识图是解题的关键.8、如图,从位置P到直线公路MN共有四条小道,若用相同的速度行走,能最快到达公路MN的小道是( ).A.PA B.PB C.PC D.PD根据垂线段最短得,能最快到达公路MN的小道是PB,故选:B.9、如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°答案:C分析:根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项不符合题意;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项不符合题意;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项符合题意;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项不符合题意;故选C.小提示:本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.10、下列命题中,是真命题的有()①两条直线被第三条直线所截,同位角的平分线平行;②垂直于同一条直线的两条直线互相平行;③过一点有且只有一条直线与已知直线平行;④对顶角相等,邻补角互补.A.1个B.2个C.3个D.4个答案:A分析:根据平行线的性质及基本事实,对顶角及邻补角的性质进行判断.两条平行线被第三条直线所截,同位角的平分线平行,故①是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故②是假命题;过直线外一点有且只有一条直线与已知直线平行,故③是假命题;对顶角相等,邻补角互补,故④是真命题.故选A.小提示:本题考查命题的真假判断,熟练掌握平行线的性质,对顶角及邻补角的性质是解题的关键.填空题11、空间两条不重合的直线的位置关系有________、________、________三种.答案:相交平行异面分析:在空间,直线与直线的位置关系有平行、相交、异面三种,在同一平面内两条不重合的直线的位置关系是平行或相交,根据两条直线所在的空间解答即可.在空间,直线与直线的位置关系有相交、平行、异面,所以答案是:相交、平行、异面.小提示:此题考查相交于平行的特征及性质,关键是要明确两条直线所在的平面是在空间或是在同一平面内.12、如图,在Rt△ABC中,∠A=90°,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=2,则BC的长为_____答案:12分析:由角平分线的性质得到∠ACM=∠BCM,∠AMN=∠CMN,结合MN∥BC,得到∠AMN=∠CMN=∠ACM=∠BCM,继而证明△MNC是等腰三角形,再由含30°角直角三角形的性质解得MN=CN=4,据此解答.解:∵CM平分∠ACB,MN平分∠AMC,∴∠ACM=∠BCM,∠AMN=∠CMN∵MN∥BC∴∠AMN=∠CMN=∠ACM=∠BCM∴MN=CN∴△MNC是等腰三角形,∵∠A=90°∴∠AMN=∠CMN=∠ACM=∠BCM=30°∴∠B=30°∵AN=2,∠A=90°∴MN=CN=4∴AC=6∵∠B=30°,∠A=90°∴BC=2AC=12所以答案是:12.小提示:本题考查角平分线的定义、平行线的性质、等腰三角形的判定与性质、含30°角直角三角形的性质等知识,是重要考点,掌握相关知识是解题关键.13、如图,直线a∥b,直线c与直线a,b相交,若∠1=54°,则∠3=________度.答案:54分析:根据对顶角相等和平行线的性质“两直线平行同位角相等”,通过等量代换求解.因为a∥b,所以∠2=∠3,因为∠1,∠2是对顶角,所以∠1=∠2,所以∠3=∠1,因为∠1=54°,所以∠3=54°,所以答案是:54.小提示:本题考查了平行线的性质和对顶角的性质,熟练掌握对顶角相等,两直线平行同位角相等、内错角相等,加以灵活运用求解相关角的度数是解题关键.14、镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示.A灯发出的光束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动12°,B灯每秒转动4°.B灯先转动12秒,A灯才开始转动.当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是.答案:6秒或19.5秒分析:设A灯旋转t秒,两灯光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),推出t≤45−12,即t≤33.利用平行线的性质,结合角度间关系,构建方程即可解答.解:设A灯旋转t秒,两灯的光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),∴t≤45﹣12,即t≤33.由题意,满足以下条件时,两灯的光束能互相平行:①如图,∠MAM'=∠PBP',12t=4(12+t),解得t=6;②如图,∠NAM'+∠PBP'=180°,12t﹣180+4(12+t)=180,解得t=19.5;综上所述,满足条件的t的值为6秒或19.5秒.所以答案是:6秒或19.5秒.小提示:本题主要考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.15、如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=________.答案:135°##135度分析:接利用平行线的性质结合邻补角的性质得出答案.解:如图,∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°-45°=135°.所以答案是:135°.小提示:此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.解答题16、推理填空:如图,已知∠B=∠CGF,∠BGC=∠F.求证:∠B+∠F=180°,∠F+∠BGD=180°.证明:∵∠B=∠CGF(已知),∴AB∥CD().∵∠BGC=∠F(已知),∴CD∥EF().∴AB∥EF().∴∠B+∠F=180°().又∵∠BGC+∠BGD=180°(),∠BGC=∠F(已知),∴∠F+∠BGD=180°().答案:同位角相等,两直线平行;同位角相等,两直线平行;平行公理的推论;两直线平行,同旁内角互补;平角的定义;等量代换分析:根据平行线的判定与性质进行解答即可.解:∵∠B=∠CGF(已知);∴AB ∥CD (同位角相等,两直线平行),∵∠BGC =∠F (已知);∴CD ∥EF (同位角相等,两直线平行),∴AB ∥EF (平行公理的推论)∴∠B +∠F =180°(两直线平行,同旁内角互补).又∵∠BGC +∠BGD =180°(平角的定义),∠BGC =∠F (已知),∴∠F +∠BGD =180°(等量代换).小提示:本题考查平行线的判定与性质及推理论证,解题关键是熟练掌握平行线的判定与性质定理.17、如图,AB =CB ,BE =BF ,∠1=∠2,求证:AE =CF .答案:见解析分析:由∠1=∠2得到∠ABE =∠CBF ,然后根据SAS ,得到ΔABE ≌ΔCBF ,然后得到结论成立.证明:∵∠1=∠2(已知),∴∠1+∠FBE =∠2+∠FBE (等式的性质),即∠ABE =∠CBF .在ΔABE 和ΔCBF 中,{AB =CB(已知),∠ABE =∠CBF(已证),BE =BF(已知),∴ΔABE ≌ΔCBF(SAS ).∴AE =CF (全等三角形的对应边相等).小提示:本题考查了全等三角形的判定定理,解题的关键是得到∠ABE =∠CBF.18、如图,已知直线AB∥DF,∠D+∠B=180°.(1)试说明DE∥BC;(2)若∠AMD=75°,求∠AGC的度数.答案:(1)证明见解析;(2)105°.分析:(1)根据平行线的性质得出∠D+∠BHD=180°,等量代换得出∠B=∠DHB,根据平行线的判定得出即可;(2)根据平行线的性质求出∠AGB=∠AMD=75°,再根据邻补角的定义即可求出∠AGC的度数.解:(1)证明:∵AB∥DF,∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠DHB,∴DE∥BC.(2)解:∵DE∥BC,∠AMD=75°,∴∠AGB=∠AMD=75°,∴∠AGC=180°﹣∠AGB=180°﹣75°=105°.小提示:本题涉及的知识点是平行线的判定及性质.熟练掌握平行线的性质及判定并能准确识图是解题的关键.。

(完整版)人教版初中数学第五章相交线与平行线知识点

(完整版)人教版初中数学第五章相交线与平行线知识点

第五章 相交线与平行线5.1相交线5.1.1 相交线邻补角与对顶角 两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:图形 顶点 边的关系 大小关系 对顶角∠1与∠2有公共顶点 ∠1的两边与∠2的两边互为反向延长线 对顶角相等 即∠1=∠2 邻补角∠3与∠4 有公共顶点 ∠3与∠4有一条边公共,另一边互为反向延长线. ∠3+∠4=180°注意点:(1)对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;(2)如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角;(3)如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角;(4)两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.例:如图,三条直线交于一点,任意找出图中的四对对顶角.错解:如图, 对顶角为:(1)∠AOC 与∠BOD ;(2)∠AOF 与∠BOD ;(3)∠COF 与∠DOE ;(4)∠AOC 与∠BOE .错解分析:错解中把有公共顶点的角误认为是对顶角,导致(2)和(4)错误.如果对对顶角的概念没有真正理解和掌握,在比较复杂的图形识别中会产生错误.对顶角就是:一个角的两边分别是另一个角的两边的反向延长线 .正解:(1)∠AOC 与∠BOD ;(2)∠BOE 与∠AOF ;(3)∠COF 与∠DOE ;(4)∠COE 与∠DOF .(答案不唯一:∠ AOE 与∠BOF ,∠BOC 与∠AOD 也是对顶角)5.1.2 垂线1、定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.符号语言记作:如图所示:AB ⊥CD ,垂足为O1 2 4 3AB C DO2、在同一平面内,过一点有且只有一条直线与已知直线垂直.3、连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离5.1.3 同位角、内错角、同旁内角两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角.如图,直线b a ,被直线l 所截 1、∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做同位角(位置相同)2、∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内),叫做内错角(位置在内且交错)3、∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做同旁内角.例:如图,判断下列各对角的位置关系:(1)∠1与∠2;(2)∠1与∠7;(3)∠1与∠BAD ;(4)∠2与∠6;(5)∠5与∠8.解:我们将各对角从图形中抽出来(或者说略去与有关角无关的线),得到下列各图.如图所示,不难看出∠1与∠2是同旁内角;∠1与∠7是同位角;∠1与∠BAD 是同旁内角;∠2与∠6是内错角;∠5与∠8对顶角.注意:图中∠2与∠9,它们是同位角吗?不是,∵∠2与∠9的各边分别在四条不同直线上,不是两直线被第三条直线所截而成. 5.2 平行线及其判定5.2.1 平行线1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b .1 2 3 4 5 6 78 1 6 B A D 2 3 45 7 8 9 FEC A BF 2 1 A B C 1 7 A B C D 26A DB F 1 B A F E 5 8 C2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行.因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(∵两点确定一条直线)3、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行如左图所示,∵b ∥a ,c ∥a∴b ∥c注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行.例:同一平面内,不相交的两条线是平行线.错解:对 .错解分析:平行线是同一平面内两条直线的位置关系,不相交的两条线,说的不明确.若是射线或线段有可能不相交.∴说法是错误的 .正解:同一平面内,不相交的两条直线是平行线 .5.2.2 平行线的判定判定方法 1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简称:同位角相等,两直线平行判定方法 2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行简称:内错角相等,两直线平行判定方法 3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行简称:同旁内角互补,两直线平行几何符号语言:∵ ∠3=∠2∴ AB ∥CD (同位角相等,两直线平行) ∵ ∠1=∠2∴ AB ∥CD (内错角相等,两直线平行)∵ ∠4+∠2=180°∴ AB ∥CD (同旁内角互补,两直线平行)例:判断下列说法是否正确,如果不正确,请给予改正:(1)不相交的两条直线必定平行线.(2)在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交.(3)过一点可以且只可以画一条直线与已知直线平行解:(1)错误.平行线是在“同一平面内不相交的两条直线”.“在同一平面内”是一项重要条件,不能遗漏.(2)正确(3)错误.正确的说法是“过直线外一点”而不是“过一点”.∵如果这一点不在已知直线上,是作不出这条直线的平行线的.A B C D E F 1 2 3 4例:如图,由条件∠2=∠B ,∠1=∠D ,∠3+∠F =180°,可以判定哪两条直线平行,并说明判定的根据是什么?解:(1)由∠2=∠B 可判定AB ∥DE ,根据是同位角相等,两直线平行;(2)由∠1=∠D 可判定AC ∥DF ,根据是内错角相等,两直线平行;(3)由∠3+∠F =180°可判定AC ∥DF ,根据同旁内角互补,两直线平行.5.3 平行线的性质5.3.1 平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.几何符号语言:∵AB ∥CD ∴∠1=∠2(两直线平行,内错角相等)∵AB ∥CD∴∠3=∠2(两直线平行,同位角相等)∵AB ∥CD ∴∠4+∠2=180°(两直线平行,同旁内角互补)例:已知∠1=∠B ,求证:∠2=∠C证明:∵∠1=∠B (已知)∴DE ∥BC (同位角相等,两直线平行) ∴∠2=∠C (两直线平行,同位角相等)例:如图,AB ∥DF ,DE ∥BC ,∠1=65° 求∠2、∠3的度数解:∵DE ∥BC∴∠2=∠1=65°(两直线平行,内错角相等)∵AB ∥DF∴∠3+∠2=180°(两直线平行,同旁内角互补)∴∠3=180°-∠2=180°-65°=115°A B E D F C 1 2 3 A B C D EF 1 2 3 4 AD E B C 12 A D F B E C 1 2 3例:如图,直线AB,CD分别和直线MN相交于点E,F,EG平分∠BEN,FH平分∠DFN.若AB∥CD,你能说明EG和FH也平行吗?错解:∵EG平分∠BEN,∴∠BEG =12∠BEN.同理,∵FH平分∠DFN,∴∠DFH =12∠DFN.又∵AB∥CD,∴∠BEN =∠DFN;从而∠BEG =∠DFH.∴EG∥FH.错解分析:在复杂的图形中正确地找出同位角、内错角或同旁内角,是运用平行线的判定或性质的前提.认清一对同位角、内错角或同旁内角的关键是弄清截线和被截线,截线就是它们的公共边,其余两条边就是被截线.而∠BEG和∠DFH不是直线EG,FH被某条直线所截得的同位角,∴由∠BEG=∠DFH不能判定EG∥FH.正解:∵EG平分∠BEN,∴∠BEG =∠GEN =12∠BEN,同理,∵FH平分∠DFN,∴∠DFH =∠HFN =12∠DFN,又∵AB∥CD,∴∠BEN =∠DFN,从而∠GEN =∠HFN.而∠GEN,∠HFN是直线EG,FH被直线MN所截得的同位角,∴EG∥FH.例:如图,△ABC中,已知∠1+∠2=180°,∠3=∠B,试判断DE与BC的位置关系,并说明理由.错解:∵∠1+∠2=180°,∴EF∥AB.∴∠3+∠BDE =180°.∵∠3=∠B,∴∠B+∠BDE =180°.∴DE∥BC.错解分析:由∠1+∠2=180°,不能得到EF∥AB.虽然∠1和∠2是由直线EF和AB被直线DC所截得的角,但由于它们不是同旁内角,∴尽管∠1+∠2=180°,也不能得到EF∥AB.正解:∵∠1=∠4,∠1+∠2=180°,∴∠2+∠4=180°.∴EF∥DB(同旁内角互补,两直线平行).∴∠3+∠BDE=180°(两直线平行,同旁内角互补).∵∠3=∠B,∴∠B+∠BDE=180°.∴DE∥BC( 同旁内角互补,两直线平行).5.3.2 命题、定理、证明1、命题的概念:判断一件事情的语句,叫做命题.2、命题的组成每个命题都是题设、结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.3、如果题设成立,那么结论一定成立,这样的命题叫真命题.如果题设成立,不能保证结论一定成立,这样的命题叫做假命题.4、经过推理证实而得到的真命题叫做定理.5、在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明.5.4平移1、平移变换①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点③连接各组对应点的线段平行且相等2、平移的特征:①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化.②经过平移后,对应点所连的线段平行(或在同一直线上)且相等.例:如图,△ABC经过平移之后成为△DEF,那么:(1)点A的对应点是点_________;(2)点B的对应点是点______.A DB EC F(3)点_____的对应点是点F;(4)线段AB 的对应线段是线段_______;(5)线段BC的对应线段是线段_______;(6)∠A的对应角是______.(7)____的对应角是∠F.解:(1)D;(2)E;(3)C;(4)DE;(5)EF;(6)∠D;(7)∠ACB.。

人教版相交线与平行线小结

人教版相交线与平行线小结

D
B
24
C
B
2
C1
4
C
∠1= ∠2
A1D∥BC1
∠3= ∠4
AB∥CD
4.(操作与解释)如图,以点B为顶点, 射线BC为一边,利用尺规作∠EBC,使 得∠EBC=∠A,EB与AD一定平行吗?
D
E
1
A
B2 C
F
四.拓展——探索与思考:
❖有一条长方形纸带,按如图所示 沿AB折叠时,当∠1=30°求纸带 重叠部分中∠CAB的度数。
4、连接直线外一点与直线上各点的所有
线段中, 垂线段最短
.
.5、对某一事情作出_判__断___的语句, 叫做命题. 6、命题是由__题__设___和__结__论__两部分组成.
“三线八角” • 两直线被第三直线所截,
构成的八个角中,
①位于两直线同一方、 且在第三直线同一侧的 两个角,叫做 同位角 ;
115° 1
C
三、运用本章知识、技能 解决一些简单问题: B
1.(算算看)已知如图,
C
OB⊥OA,直线CD过O,
∠BOD=110°,
O
A
求∠AOC的度数? D
∠BOD=110° ∠BOC=70° ∠AOC=20°
2.(考考你)图中如果AC∥BD 、
AE ∥BF ,那么∠A与∠B的关系
如何?你是怎样思考的?D E
C
F
O
∠A=∠B
AB
AC∥BD, AE ∥BF ∠A=∠DOE ∠B=∠DOE
∠A=∠B
3.(辨析与比较)如图,是两块相同
的三角尺拼接成的一个图形,请找
出图中互相平行的边。
若其中一块三角尺沿着重合的边向

七年级数学下册第五章相交线与平行线题型总结及解题方法(带答案)

七年级数学下册第五章相交线与平行线题型总结及解题方法(带答案)

七年级数学下册第五章相交线与平行线题型总结及解题方法单选题1、如图,四边形ABCO是矩形,点D是BC边上的动点(点D与点B、点C不重合),则∠BAD+∠DOC∠ADO的值为()A.1B.12C.2D.无法确定答案:A分析:过点D作DE//AB交AO于点E,由平行的性质可知∠BAD=∠ADE,∠DOC=∠ODE,等量代换可得∠BAD+∠DOC∠ADO的值.解:如图,过点D作DE//AB交AO于点E,∵四边形ABCO是矩形∴AB//OC∵DE//AB∴AB//DE,DE//OC∴∠BAD=∠ADE,∠DOC=∠ODE∴∠BAD+∠DOC∠ADO=∠BAD+∠DOC∠ADE+∠ODE=∠BAD+∠DOC∠BAD+∠DOC=1故选:A.小提示:本题主要考查了平行线的性质,灵活的添加辅助线是解题的关键.2、如图,直线a、b被直线c所截,a∥b,∠2=35°,则∠1的度数是()A.135°B.140°C.145°D.150°答案:C分析:根据邻补角的含义先求解∠3=145°,再利用平行线可得∠1=∠3=145°即可.解:如图,∵∠2=35°,∴∠3=180°−35°=145°,∵a∥b,∴∠1=∠3=145°,故选:C.小提示:本题考查的是邻补角的含义,平行线的性质,利用平行线的性质证明∠1=∠3是解本题的关键.3、如图,直线AB、CD相交于点O.若∠1+∠2=100°,则∠BOC的大小为()A.50°B.100°C.130°D.150°答案:C分析:根据对顶角相等,以及∠1+∠2=100°,求得∠1=50°,根据邻补角即可求解.解:∵∠1+∠2=100°,∠1=∠2,∴∠1=50°,∴∠BOC=180°-∠1=180°-50°=130°,故选C.小提示:本题考查了对顶角相等,邻补角,掌握以上知识是解题的关键.4、如图,从位置P到直线公路MN共有四条小道,若用相同的速度行走,能最快到达公路MN的小道是( ).A.PA B.PB C.PC D.PD答案:B根据垂线段最短得,能最快到达公路MN的小道是PB,故选:B.5、如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°答案:C分析:根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项不符合题意;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项不符合题意;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项符合题意;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项不符合题意;故选C.小提示:本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.6、下列命题中,是真命题的有()①两条直线被第三条直线所截,同位角的平分线平行;②垂直于同一条直线的两条直线互相平行;③过一点有且只有一条直线与已知直线平行;④对顶角相等,邻补角互补.A.1个B.2个C.3个D.4个答案:A分析:根据平行线的性质及基本事实,对顶角及邻补角的性质进行判断.两条平行线被第三条直线所截,同位角的平分线平行,故①是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故②是假命题;过直线外一点有且只有一条直线与已知直线平行,故③是假命题;对顶角相等,邻补角互补,故④是真命题.故选A.小提示:本题考查命题的真假判断,熟练掌握平行线的性质,对顶角及邻补角的性质是解题的关键.7、如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是()A.2cmB.3cmC.4cmD.5cm答案:C分析:据平移的性质可得BB′=CC′=1,列式计算即可得解.解:∵△ABC沿BC方向平移1cm得到△A′B′C′,∴BB′=CC′=1cm,∵B′C=2cm,∴BC′=BB′+B′C+CC′=1+2+1=4(cm).故选:C.小提示:本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.8、下列命题是假命题的( )A.在同一平面内,若a∥b,b∥c,则a∥cB.在同一平面内,若a⊥b,b∥c,则a⊥cC.在同一平面内,若a⊥b,b⊥c,则a⊥cD.在同一平面内,若a⊥b,b⊥c,则a∥c答案:C分析:根据平行的判定方法对A、C、D进行判断;根据平行的性质和垂直的定义对B进行判断.A.在同一平面内,若a∥b,b∥c,则a∥c,所以A选项为真命题;B.在同一平面内,若a⊥b,b∥c,则a⊥c,所以B选项为真命题;C.在同一平面内,若a⊥b,b⊥c,则a∥c,所以C选项为假命题;D.在同一平面内,若a⊥b,b⊥c,则a∥c,所以D选项为真命题.故选:C.小提示:本题考查了平行公理及平行线的判定定理,熟练掌握平行线的判定定理是解决本题的关键.9、如图,小明从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东70°方向行走至C处,则∠ABC等于()A.130°B.120°C.110°D.100°答案:C分析:根据方位角和平行线性质求出∠ABE,再求出∠EBC即可得出答案.解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东70°方向行走至点C处,∴∠DAB=40°,∠CBE=70°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+70°=110°,故选:C.小提示:本题考查了方向角及平行线的性质,熟练掌握平行线的性质:两直线平行,内错角相等是解题的关键.10、对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=-3,b=2C.a=3,b=-1D.a=-1,b=3答案:B试题解析:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且-3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>-1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且-1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D 选项中a、b的值不能说明命题为假命题;故选B.考点:命题与定理.填空题11、如图,直线a∥b,AB⊥BC,如果∠1=48°,那么∠2=_______度.答案:42.∵AB⊥BC,∴∠ABC=90°,即∠1+∠3=90°,∵∠1=48°,∴∠3=42°,∵a∥b,∴∠2=∠3=42°.故答案为42.点睛:本题关键利用平行线的性质解题.12、如图,若AB⊥BC,BC⊥CD,则直线AB与CD的位置关系是______.答案:AB∥CD∵AB⊥BC,BC⊥CD,∴∠ABC=∠BCD=90°,∴AB∥CD,故答案为AB∥CD.13、如图,AB∠CD,若GE平分∠DGH,HE平分∠GHB,GF平分∠CGH,若∠CGH=70°,则∠EHB的度数是______,图中与∠DGE互余的角共有______个.答案: 35°##35度 5分析:由平行线的性质可得,∠CGH=∠GHB=70°,∠GFH=∠CGF,利用邻角的补角可得∠DGH=∠GHA= 110°,利用角平分线的性质可得∠EHB=∠GHE=35°,∠CGF=∠GFH=∠HGF=35°,∠DGE=∠HGE= 55°,进而可求得答案.解:∵AB//CD,∴∠CGH=∠GHB=70°,∠DGH=∠GHA,∠GFH=∠CGF∴∠DGH=∠GHA=180°−70°=110°,又∵HE平分∠GHB,∵GE平分∠DGH,HE平分∠GHB,GF平分∠CGH,∴∠EHB=∠GHE=12∠GHB=35°,∠CGF=∠GFH=∠HGF=12∠CGH=35°,∠DGE=∠HGE=12∠DGH=55°,∴∠DGE+∠BHE=90°,∠DGE+∠GHE=90°,∠DGE+∠CGF=90°,∠DGE+∠HGF=90°,∠DGE+∠GFH=90°,∴与∠DGE互余的角共有5个,所以答案是:35°,5.小提示:本题考查了平行线的性质、角平分线的性质以及互余的定义,熟练掌握角平分线的性质及互余的定义是解题的关键.14、如图,将△ABC沿BC方向平移至△DEF处.若EC=2BE=2,则CF的长为_____.答案:1分析:利用平移的性质得到BE=CF,再用EC=2BE=2得到BE的长,从而得到CF的长.解:∵△ABC沿BC方向平移至△DEF处.∴BE=CF,∵EC=2BE=2,∴BE=1,∴CF=1.故答案为1.小提示:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.15、命题“如果a+b=0,那么a,b互为相反数”的逆命题为____________________________.答案:如果a,b互为相反数,那么a+b=0分析:交换原命题的题设与结论即可得到其逆命题.解:逆命题为:如果a,b互为相反数,那么a+b=0.所以答案是:如果a,b互为相反数,那么a+b=0.小提示:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.解答题16、如图,已知AB∥DE,那么∠A+∠C+∠D的和是多少度?为什么?答案:∠A+∠C+∠D的和是360度,理由见解析.分析:如图(见解析),过点C作CF//AB,则CF//DE,先根据平行四边形的性质(两直线平行,同旁内角互补)得出∠A+∠FCA=180°,∠D+∠DCF=180°,再根据角的和差即可得.如图,过点C作CF//AB,则所求的问题变为∠A+∠ACD+∠D的和是多少度∴∠A+∠FCA=180°∵AB//DE∴CF//DE∴∠D+∠DCF=180°∴∠A+∠FCA+∠D+∠DCF=180°+180°=360°即∠A+∠ACD+∠D=360°.小提示:本题考查了平行线的性质、角的和差,熟记平行线的性质是解题关键.17、如图,钱塘江入海口某处河道两岸所在直线(PQ,MN)夹角为20°,在河道两岸安装探照灯B和A,若灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BQ逆时针旋转至BP便立即回转,两灯不停交叉照射巡视.设灯A转动的速度是a度/秒,灯B转动的速度是b度/秒.已知∠BAN=50°.(1)当b=2时,问灯B转动几秒后,射出的光束第一次经过灯A?(2)当a=3,b=6时,若两灯同时转动,在1分钟内(包括1分钟),问A灯转动几秒,两灯的光束互相平行?(3)若A、B两灯同时转动(a>b),在45秒与90秒时,两灯的光束各平行一次,求a,b的值.答案:(1)15秒;(2)1609秒;(3)269,23. 分析:(1)根据B 灯转动30度时第一次经过灯A ,列出方程即可得解;(2)根据内错角相等,两灯的光线平行,构建方程求解可得结果;(3)分两种情形,根据平行线的判定,构建方程解决问题即可.解:(1)设灯B 转动t 秒后,射出的光束第一次经过灯A .由题意得:2t =30,解得:t =15,答:灯B 转动15秒后,射出的光束第一次经过灯A .(2)设A 灯转动x 秒,两灯的光束互相平行.根据题意得:180﹣50﹣3x =6x ﹣30时,两灯的光束互相平行,解得:x =1609,答:A 灯转动1609秒,两灯的光束互相平行.(3)在45秒与90秒时,两灯的光束各平行一次45秒时第一次平行,由题意得:45a ﹣130=30﹣45b ,90秒时第二次平行,由题意得:90a ﹣180﹣50=90b ﹣30,解得:a =269,b =23 答:a ,b 的值分别为269,23.小提示:本题主要考查了平行线的判定以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:内错角相等,两直线平行.18、完成下面的证明:如图,BE 平分∠ABD ,DE 平分∠BDC ,且∠α+∠β=90°,求证:AB ∠CD .证明:∵BE平分∠ABD(已知),∴∠ABD=2∠α()∵DE平分∠BDC(已知),∴∠BDC=().∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°.(已知),∴∠ABD+∠BDC=().∴AB∠CD()答案:角平分线的定义;2∠β;角平分线的定义;等量代换;180°;等量代换,同旁内角互补两直线平行分析:首先根据角平分线的定义可得∠ABD=2∠α,∠BDC=2∠β,根据等量代换可得∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β),进而得到∠ABD+∠BDC=180°,然后再根据同旁内角互补两直线平行可得答案.证明:∵BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义)∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义).∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°.(已知),∴∠ABD+∠BDC=180°(等量代换),∴AB∠CD(同旁内角互补两直线平行).所以答案是:角平分线的定义;2∠β;角平分线的定义;等量代换;180°;等量代换,同旁内角互补两直线平行.小提示:此题主要考查了角平分线的定义,平行线的判定,解题的关键是掌握角平分线定义和平行线的判定方法.。

七年级数学下册第五章相交线与平行线重难点归纳(带答案)

七年级数学下册第五章相交线与平行线重难点归纳(带答案)

七年级数学下册第五章相交线与平行线重难点归纳单选题1、下列说法不正确的是()A.对顶角相等B.两点确定一条直线C.两点之间线段最短D.一个角的补角一定大于这个角答案:D分析:根据对顶角的性质,直线的性质,两点之间线段最短,补角的定义,依次判断即可得到答案.解:A、对顶角相等,故该项不符合题意;B、两点确定一条直线,故该项不符合题意;C、两点之间线段最短,故该项不符合题意;D、一个角的补角不一定大于这个角,说法错误,故该项符合题意;故选:D.小提示:此题考查对顶角的性质,直线的性质,两点之间线段最短,补角的定义,正确理解各性质及定义是解题的关键.2、如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=135°,则∠β等于()A.45°B.60°C.75°D.85°答案:C分析:直接利用平行线的性质以及三角形的性质进而得出答案.由题意可得:∵∠α=135°,∴∠1=45°,∴∠β=180°−45°−60°=75°.故选C.小提示:此题主要考查了平行线的性质,正确得出∠1的度数是解题关键.3、如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则( )A.乙比甲先到B.甲和乙同时到C.甲比乙先到D.无法确定答案:B分析:根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.如图:根据平移可得两只蚂蚁的行程相同,∵甲、乙两只蚂蚁的行程相同,且两只蚂蚁的速度相同,∴两只蚂蚁同时到达.故选B.小提示:本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键.4、如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠3=∠4D.∠1=∠5答案:A分析:根据平行线的性质和对顶角的性质进行判断.解:A、∵∠1与∠2是对顶角,∴∠1=∠2,本选项说法正确;B、∵AD与AB不平行,∴∠2≠∠3,本选项说法错误;C、∵AD与CB不一定平行,∴∠3≠∠4,本选项说法错误;D、∵CD与CB不平行,∴∠1≠∠5,本选项说法错误;故选:A.小提示:本题考查平行线的应用,熟练掌握平行线的性质和对顶角的意义与性质是解题关键.5、如图,已知a//b,∠1=120°,∠2=90°,则∠3的度数是( )A.120°B.130°C.140°D.150°答案:D分析:延长∠1的边与直线b相交,然后根据两直线平行,同旁内角互补求出∠4,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.如图,延长∠1的边与直线b相交,∵a//b,∴∠4=180°−∠1=180°−120°=60°,由三角形的外角性质可得,∠3=90°+∠4=90°+60°=150°.故选:D.小提示:本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键.6、如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离答案:C分析:根据点到直线的距离等于垂线段的长度,垂线段最短逐项分析判断即可.解:A. 线段PB的长是点P到直线a的距离,故该选项正确,不符合题意;B.PA、PB、PC三条线段中,PB最短,故该选项正确,不符合题意;C. 线段AP的长是点A到直线PC的距离,故该选项不正确,符合题意;D. 线段PC的长是点C到直线PA的距离,故该选项正确,不符合题意;故选C小提示:本题考查了点到直线的距离等于垂线段的长度,垂线段最短,掌握垂线段的定义是解题的关键.7、如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3B.∠2与∠3互补C.∠2与∠3互余D.不能确定答案:C分析:根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.解:∵OB⊥CD,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.小提示:本题考查了垂线和余角,解题的关键是掌握垂线的定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.8、如图,下列说法错误的是()A.∠1与∠2是对顶角B.∠1与∠3是同位角C.∠1与∠4是内错角D.∠B与∠D是同旁内角答案:C分析:分别根据对顶角、同位角、内错角以及同旁内角的定义判断即可.解:A、∠1与∠2是对顶角,正确,故该选项不合题意;B、∠1与∠3是同位角,正确,故该选项不合题意;C、∠1与∠4是内错角,错误,故该选项符合题意;D、∠B与∠D是同旁内角,正确,故该选项不合题意;故选:C.小提示:本题主要考查了对顶角、同位角、内错角以及同旁内角的定义,熟记定义是解答本题的关键.9、如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°答案:A分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.10、如图,直线a,b被直线c所截,a//b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°答案:B分析:根据平行线的性质可得解.详解:∵a//b∴∠1=∠2又∵∠1=60°,∴∠2=60°故选B.点睛:两条平行线被第三条直线所截,同位角相等.填空题11、如图a∥b,∠1+∠2=75°,则∠3+∠4=______________.答案:105°分析:根据平行线的性质和等量代换可以求得∠3+∠4=∠5+∠4,所以根据三角形内角和是180°进行解答即可.如图,∵a∥b,∴∠3=∠5,又∠1+∠2=75°,∠1+∠2+∠4+∠5=180°,∴∠5+∠4=105°,∴∠3+∠4=∠5+∠4=105°,故答案是:105°.小提示:本题考查了平行线的性质和三角形内角和定理.解题的技巧性在于把求(∠3+∠4)的值转化为求同一三角形内的(∠5+∠4)的值.12、如图,将三角尺与两边平行的直尺(EF∥HG)贴在一起(∠ACB=90°)在直尺的一边上.若∠2=47°,则∠1的大小为 _____度.答案:43分析:先根据平行线的性质求出∠2的度数,再由∠1与∠3互余即可得出结论.解:如图所示:∵EF//HG,∠2=47°,∴∠2=∠3=47°又∵∠ACB=90°,∠1+∠3=∠ACB=90°,∴∠1=∠ACB−∠3=90°−47°=43°,∴∠1=43°.所以答案是:43.小提示:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.13、如图,添加一个你认为合适的条件______使AD//BC.答案:∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一,写一个正确的即可)分析:根据平行线的判定方法即可求解.第一种情况,同位角相等,两直线平行,即∠ADF=∠C时,AD//BC;第二种情况,内错角相等,两直线平行,即∠A=∠ABE时,AD//BC;第三种情况,同旁内角互补,两直线平行,即∠A+∠ABC=180°或∠C+∠ADC=180°时,AD//BC;故答案为∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°.小提示:本题考查了平行线的判定方法,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.14、如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是_____.答案:20cm分析:根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.所以答案是:20cm.小提示:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15、如图,已知直角三角形ABC,∠A=90∘,AB=4cm,BC=5cm.将△ABC沿AC方向平移1.5cm得到△A′B′C′,求四边形BCC′B′的面积为________cm2.答案:6分析:根据题意,再结合平移的性质,可得AB=A′B′,AA′=BB′=CC′=1.5cm,BB′∥CC′,S△ABC=S△A′B′C′,然后再根据等量代换,得出S四边形AA′OB =S四边形OCC′B′,然后再根据等量代换,得出S四边形BCC′B′=S四边形AA′B′B,然后再根据长方形的特征,得出四边形AA′B′B是长方形,然后再根据长方形的面积公式,算出长方形AA′B′B的面积,即可得出四边形BCC′B′的面积.解:如图,∵△ABC沿AC方向平移1.5cm得到△A′B′C′,∴A的对应点为点A′,点B的对应点为点B′,点C的对应点为点C′,∴由平移的性质,可得:AB=A′B′=4cm,AA′=BB′=CC′=1.5cm,BB′∥CC′,又∵△ABC沿AC方向平移1.5cm得到△A′B′C′,∴S△ABC=S△A′B′C′,又∵S△ABC=S四边形AA′OB+S△A′OC,S△A′B′C′=S四边形OCC′B′+S A′OC,∴S四边形AA′OB =S四边形OCC′B′,∵S四边形BCC′B′=S四边形OCC′B′+S△BOB′,S四边形AA′B′B =S四边形AA′OB+S△BOB′,∴S四边形BCC′B′=S四边形AA′B′B,∵AB=A′B′,AA′=BB′,∠A=90∘,∴根据长方形的特征,可得:四边形AA′B′B是长方形,∴S长方形AA′B′B=AB⋅AA′=4×1.5=6cm2,∴S四边形BCC′B′=S四边形AA′B′B=6cm2所以答案是:6小提示:本题考查了平移的性质,等量代换,根据长方形的特征判定长方形,长方形的面积公式,解本题的关键在熟练掌握平移的性质.平移的性质:1、形状大小不变;2、对应点的连线平行(或在同一直线上)且相等;3、对应线段平行(或在同一直线上)且相等,对应角相等.解答题16、已知:如图,∠1=∠2.求证:AB//CD.分析:如图,欲证AB//CD,只要证∠1=______.证明:∵∠1=∠2,(已知)又∠3=∠2,()∴∠1=__________.()∴AB//CD.(__________,____________)答案:∠3;对顶角相等;∠3;等量代换;同位角相等,两直线平行.分析:根据等量代换和同位角相等,两直线平行即可得出结果.分析:如图,欲证AB//CD,只要证∠1=∠3.证明:∵∠1=∠2,(已知)又∠3=∠2,(对顶角相等)∴∠1=∠3.(等量代换)∴AB//CD.(同位角相等,两直线平行)小提示:本题主要考查平行线的判定,属于基础题,掌握平行线的判定定理是解题的关键.17、如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,求∠BOF的度数;(2)若∠BOF=36°,求∠AOC的度数;答案:(1)∠BOF=33°(2)∠AOC=72°分析:(1)先根据对顶角相等求出∠BOD=76°,再由角平分线定义得∠DOE=∠BOE=38°,由邻补角得∠COE=142°,再根据角平分线定义得∠EOF=71°,从而可得结论.(2)利用角平分的定义得出∠BOE=∠EOD,∠COF=∠FOE,进而表示出各角求出答案.(1)∵∠AOC、∠BOD是对顶角,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∠BOD=38°∴∠DOE=∠BOE=12∴∠COE=142°,∵OF平分∠COE.∠COE=71°,∴∠EOF=12又∠BOE+∠BOF=∠EOF,∴∠BOF=∠EOF−∠BOE=71°−38°=33°,(2)∵OE平分∠BOD,OF平分∠COE,∴∠BOE=∠EOD,∠COF=∠FOE,∴设∠BOE=x,则∠EOD=x,故∠COA=2x,∠EOF=∠COF=x+36°,则∠AOC+∠COF+∠BOF=2x+x+36°+36°=180°,解得x=36°,故∠AOC=72°.小提示:本题考查了角平分线的定义和对顶角的性质,解决本题的关键是掌握对顶角的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线).18、完成下面的证明如图.已知:AD∥EF,∠1=∠2,求证:AD平分∠BAC.证明:∵AD∥EF(),∴∠2=(),∠1=().∵∠1=∠2(已知),∴∠BAD=∠CAD().即AD平分∠BAC.答案:已知;∠CAD,两直线平行,同位角相等;∠BAD,两直线平行,内错角相等;等量代换.分析:根据平行线的性质进行推理即可解答.解:∵AD∥EF(已知),∴∠2=∠CAD(两直线平行,同位角相等),∠1=∠BAD(两直线平行,内错角相等),∵∠1=∠2(已知),∴∠CAD=∠BAD(等量代换),即AD平分∠BAC(角平分线的定义).小提示:本题主要考查了平行线的性质,掌握两直线平行、内错角相等,两直线平行、同位角相等成为解答本题的关键.。

第五章_相交线与平行线_全章知识点归纳及典型题目练习(含答案)

第五章_相交线与平行线_全章知识点归纳及典型题目练习(含答案)

第五章相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: _________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.14. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.19. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )20. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠PAG 的大小.21. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.22. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直 有且只有 垂线段最短4.点到直线的距离5.同位角 内错角 同旁内角6.平行 相交 平行7.平行 这两直线互相平行8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行.9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项 题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm 8cm 10cm 4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16. OD ⊥OE 理由略 17. 1(两直线平行,内错角相等)DE ∥CF (平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a ∥b (同位角相等 两直线平行) ⑵∵a ∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°.21.,AD BC FE BC ⊥⊥ 90EFB ADB ∴∠=∠= //EF AD ∴23∴∠=∠//,31DG BA ∴∠=∠ 1 2.∴∠=∠ 22. ∠A =∠F.∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。

第五章相交线与平行线知识点归纳及典型例题

第五章相交线与平行线知识点归纳及典型例题

第五章相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:_________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________. 14. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________; b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________; c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD与OE 的位置关系,并说明理由.17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2 即∠B +∠E =∠BCE .18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.19. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,∴∠MEB =∠MFD ( ) 又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2, 即 ∠MEP =∠______∴EP ∥_____.( )20. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.21. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.22. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.【难题巧解点拨】1、求证三角形的内角和为180度。

人教版七年级数学下册 第五章 相交线与平行线 全章知识点归纳总结

人教版七年级数学下册 第五章 相交线与平行线 全章知识点归纳总结

相交线与平行线 全章知识点归纳总结5.1相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足. 符号语言记作:如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记) ⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线. 注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上.画法:⑴一靠:用三角尺一条直角边靠在已知直线上,A B C D O⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离 记得时候应该结合图形进行记忆.如图,PO ⊥AB ,同P 到直线AB 的距离是PO 的长.PO 是垂线段.PO 是点P 到直线AB 所有线段中最短的一条.现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用.5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念分析它们的联系与区别⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度. 联系:具有垂直于已知直线的共同特征.(垂直的性质)⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间. 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离.⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同.5.2平行线1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b . 2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行. 因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定: ①有且只有一个公共点,两直线相交; ②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线) 3、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行 4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行如左图所示,∵b ∥a ,c ∥aPA BOa bc∴b ∥c 注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行.5、三线八角两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角.如图,直线b a ,被直线l 所截①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做同位角(位置相同) ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内)内且交错)③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做同旁内角.④三线八角也可以成模型中看出.同位角是“A ”型;内错角是“Z ”型;同旁内角是“U ”型.6、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全. 例如:如图,判断下列各对角的位置关系:⑴∠1与∠2;⑵∠1与∠7;⑶∠1与∠BAD ;⑷∠2与∠6;⑸∠5与∠8.我们将各对角从图形中抽出来(或者说略去与有关角无关的线),得到下列各图.如图所示,不难看出∠1与∠2是同旁内角;∠1与∠7是同位角;∠1与∠BAD 是同旁内角;∠2与∠6是内错角;∠5与∠8对顶角.ab l1 2 3 4 5 6 7 81 6 B A D23 45 7 89 F EC A B2 1 A C 1 7A B C D 2 6A DB F 1 BAF E5 8 C注意:图中∠2与∠9,它们是同位角吗?不是,因为∠2与∠9的各边分别在四条不同直线上,不是两直线被第三条直线所截而成.7、两直线平行的判定方法方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简称:同位角相等,两直线平行方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 简称:内错角相等,两直线平行方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 简称:同旁内角互补,两直线平行几何符号语言:∵ ∠3=∠2 ∴ AB ∥CD (同位角相等,两直线平行) ∵ ∠1=∠2 ∴ AB ∥CD (内错角相等,两直线平行) ∵ ∠4+∠2=180°∴ AB ∥CD (同旁内角互补,两直线平行)请同学们注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行.平行线的判定是写角相等,然后写平行.注意:⑴几何中,图形之间的“位置关系”一般都与某种“数量关系”有着内在的联系,常由“位置关系”决定其“数量关系”,反之也可从“数量关系”去确定“位置关系”.上述平行线的判定方法就是根据同位角或内错角“相等”或同旁内角“互补”这种“数量关系”,判定两直线“平行”这种“位置关系”.⑵根据平行线的定义和平行公理的推论,平行线的判定方法还有两种: ① 如果两条直线没有交点(不相交),那么两直线平行.② 如果两条直线都平行于第三条直线,那么这两条直线平行.典型例题:判断下列说法是否正确,如果不正确,请给予改正: ⑴不相交的两条直线必定平行线.⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交. ⑶过一点可以且只可以画一条直线与已知直线平行解答:⑴错误,平行线是“在同一平面内不相交的两条直线”.“在同一平面内”是一项重要条件,不能遗漏. ⑵正确⑶不正确,正确的说法是“过直线外一点”而不是“过一点”.因为如果这一点不在已知直线上,是作不出这条直线的平行线的.典型例题:如图,根据下列条件,可以判定哪两条直线平行,并说明判定的根据是什么?解答:⑴由∠2=∠B 可判定AB ∥DE ,根据是同位角相等,两直线平行;A B C DE F 1 2 3 4⑵由∠1=∠D 可判定AC ∥DF ,根据是内错角相等,两直线平行;⑶由∠3+∠F =180°可判定AC ∥DF ,根据同旁内角互补,两直线平行.5.3平行线的性质1、平行线的性质:性质1:两直线平行,同位角相等; 性质2:两直线平行,内错角相等; 性质3:两直线平行,同旁内角互补. 几何符号语言: ∵AB ∥CD∴∠1=∠2(两直线平行,内错角相等) ∵AB ∥CD ∴∠3=∠2(两直线平行,同位角相等)∵AB ∥CD ∴∠4+∠2=180°(两直线平行,同旁内角互补) 2、两条平行线的距离如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离.注意:直线AB ∥CD ,在直线AB 上任取一点G ,过点G 作CD 的垂线段GH ,则垂线段GH 的长度也就是直线AB 与CD 间的距离.3、命题:⑴命题的概念:判断一件事情的语句,叫做命题. ⑵命题的组成每个命题都是题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果……,那么……”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显.对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式. 注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.A B C DE F 1 2 3 4 A E G BC FH D4、平行线的性质与判定①平行线的性质与判定是互逆的关系 两直线平行同位角相等;两直线平行内错角相等; 两直线平行同旁内角互补.其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.典型例题:已知∠1=∠B ,求证:∠2=∠C证明:∵∠1=∠B (已知)∴DE ∥BC (同位角相等,两直线平行) ∴∠2=∠C (两直线平行 同位角相等) 注意,在了DE ∥BC ,不需要再写一次了,得到了DE ∥BC ,这可以把它当作条件来用了.典型例题:如图,AB ∥DF ,DE ∥BC ,∠1=65°求∠2、∠3的度数 解答:∵DE ∥BC (已知)∴∠2=∠1=65°(两直线平行,内错角相等)∵AB ∥DF (已知) ∴AB ∥DF (已知)∴∠3+∠2=180°(两直线平行,同旁内角互补) ∴∠3=180°-∠2=180°-65°=115°5.4平移1、平移变换①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点 ③连接各组对应点的线段平行且相等 2、平移的特征:①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化.②经过平移后,对应点所连的线段平行(或在同一直线上)且相等.典型例题:如图,△ABC 经过平移之后成为△DEF ,那么:⑴点A 的对应点是点_________;⑵点B 的对应点是点______. ⑶点_____的对应点是点F ;⑷线段AB 的对应线段是线段_______;⑸线段BC 的对应线段是线段_______;A D F BE C 1 2 3⑹∠A的对应角是______.⑺____的对应角是∠F.解答:⑴D;⑵E;⑶C;⑷DE;⑸EF;⑹∠D;⑺∠ACB.思维方式:利用平移特征:平移前后对应线段相等,对应点的连线段平行或在同一直线上解答.。

七年级数学下册第五章相交线与平行线考点总结(带答案)

七年级数学下册第五章相交线与平行线考点总结(带答案)

七年级数学下册第五章相交线与平行线考点总结单选题1、设a,b,c为互不相等的实数,且b=45a+15c,则下列结论正确的是()A.a>b>c B.c>b>a C.a−b=4(b−c)D.a−c=5(a−b)答案:D分析:举反例可判断A和B,将式子整理可判断C和D.解:A.当a=5,c=10,b=45a+15c=6时,c>b>a,故A错误;B.当a=10,c=5,b=45a+15c=9时,a>b>c,故B错误;C.a−b=4(b−c)整理可得b=15a−45c,故C错误;D.a−c=5(a−b)整理可得b=45a+15c,故D正确;故选:D.小提示:本题考查等式的性质,掌握等式的性质是解题的关键.2、如图,直线AB,CD相交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理依据是( )A.同角的余角相等B.对顶角相等C.同角的补角相等D.等角的补角相等答案:C根据同角的补角相等推出即可.答:∵∠1+∠3=180°,∠2+∠3=180°,∴∠1=∠2(同角的补角相等),故选C.3、永定河,“北京的母亲河”.近年来,我区政府在永定河治理过程中,有时会将弯曲的河道改直,图中A,B 两地间的河道改直后大大缩短了河道的长度.这一做法的主要依据是()A.两点确定一条直线B.垂线段最短C.过一点有且只有一条直线与已知直线垂直D.两点之间,线段最短答案:D分析:根据线段的性质分析得出答案.由题意中改直后A,B两地间的河道改直后大大缩短了河道的长度,其注意依据是:两点之间,线段最短,故选:D.小提示:此题考查线段的性质:两点之间线段最短,掌握题中的改直的结果是大大缩短了河道的长度的含义是解题的关键.4、将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA//EF,则∠AOF等于()A.75°B.90°C.105°D.115°答案:A分析:根据平行线的性质和三角形外角的性质进行计算,即可得到答案.解:∵BA//EF,∠A=30°,∴∠FCA=∠A=30°.∵∠F=∠E=45°,∴∠AOF=∠FCA+∠F=30°+45°=75°.故选A.小提示:本题考查平行线的性质和三角形外角的性质,解题的关键是掌握平行线的性质和三角形外角的性质.5、如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=135°,则∠β等于()A.45°B.60°C.75°D.85°答案:C分析:直接利用平行线的性质以及三角形的性质进而得出答案.由题意可得:∵∠α=135°,∴∠1=45°,∴∠β=180°−45°−60°=75°.故选C.小提示:此题主要考查了平行线的性质,正确得出∠1的度数是解题关键.6、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于()A.40°B.36°C.44°D.100°答案:A分析:首先根据∠1=∠2=40°得到PQ∥MN,然后根据两直线平行,同旁内角互补即可求出∠4的度数.∵∠1=40°,∠2=40°,∴∠1=∠2,∴PQ∥MN,∴∠4=180°﹣∠3=40°,故选:A.小提示:本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.7、如图,下列说法错误的是().A.∠1与∠2是内错角B.∠1与∠4是同位角C.∠2与∠4是内错角D.∠2与∠3是同旁内角答案:B分析:根据同位角、内错角及同旁内角的定义:两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形即可得出答案.解:由图形可得:∠1与∠2是内错角,故A选项正确;∠1与∠4既不是同位角,也不是内错角,也不是同旁内角,故B选项错误;∠2与∠4是内错角,故C选项正确;∠2与∠3是同旁内角,故D选项正确,故选:B.小提示:此题考查了同位角、内错角及同旁内角的知识,属于基础题,掌握定义是关键.8、图所示,在四边形ABCD中,BD是它的一条对角线,若∠1=∠2,∠A=55°,则∠ADC=()A.110°B.115°C.125°D.135°答案:C分析:利用平行线的判定和性质即可解决问题.解:∵∠1=∠2,∴CD∥AB,∴∠A+∠ADC=180°,∵∠A=55°,∴∠ADC=125°.故选C.小提示:本题主要考查了平行线的判定和性质.掌握内错角相等,两直线平行,是解题关键.9、下列说法不正确...的是()A.对顶角相等B.两点确定一条直线C.一个角的补角一定大于这个角D.垂线段最短分析:根据对顶角的性质,直线的性质,补角的定义,垂线段的性质依次判断即可得到答案.解:A、对顶角相等,故该项不符合题意;B、两点确定一条直线,故该项不符合题意;C、一个角的补角一定不大于这个角,故该项符合题意;D、垂线段最短,故该项不符合题意;故选:C.小提示:此题考查对顶角的性质,直线的性质,补角的定义,垂线段的性质,正确理解各性质及定义是解题的关键.10、如图,若∠1=∠2,DE//BC,则:①FG//DC;②∠AED=∠ACB;③CD平分∠ACB;④∠1+∠B= 90°;⑤∠BFG=∠BDC,其中正确的结论是()A.1个B.2个C.3个D.4个答案:C分析:由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出∠2=∠DCB,得出FG//DC,①正确;由平行线的性质得出⑤正确;即可得出结果.解:∵DE//BC,∴∠DCB=∠1,∠AED=∠ACB,故②正确;∵∠1=∠2,∴∠2=∠DCB,∴FG//DC,故①正确;∴∠BFG=∠BDC,故⑤正确;而CD不一定平分∠ACB,∠1+∠B不一定等于90°,故③,④错误;小提示:本题考查了平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质,并能进行推理论证.填空题11、如图,如果∠A+_____=180°,那么AD//BC.答案:∠B分析:根据平行线的判定定理即可得到结论.解:∵∠A+∠B=180°,∴AD∥BC.所以答案是:∠B.小提示:本题考查了平行线的判定定理,熟练掌握平行线的判定定理是解题的关键.12、若∠1与∠2是对顶角,∠3与∠2互余,且∠3=40°,那么∠1=_____.答案:50°分析:根据对顶角相等以及余角的定义,即可求解.∵∠1与∠2是对顶角,∴∠1=∠2,∵∠3与∠2互余,∴∠3+∠2=90°,∴∠3+∠1=90°,∵∠3=40°,∴∠1=50°.故答案是:50°.小提示:本题主要考查对顶角的性质以及余角的定义,掌握对顶角相等以及余角的定义,是解题的关键.13、“等边三角形是锐角三角形”的逆命题是_________.答案:锐角三角形是等边三角形分析:交换题目中的题设和结论即可.解:原命题“等边三角形是锐角三角形”的条件是“一个三角形是等边三角形”,结论是“这个三角形是锐角三角形”,互换条件和结论可得到逆命题“如果一个三角形是锐角三角形,那么这个三角形是等边三角形”.简化为“锐角三角形是等边三角形”,所以答案是:锐角三角形是等边三角形.小提示:本题考查了命题与逆命题,能准确找到命题中的题设和结论是解题的关键.14、若∠α与∠β是对顶角,且∠α+∠β=120°,则∠β=_______°.答案:60分析:根据对顶角相等解答即可.解:∵∠α与∠β是对顶角,∴∠α=∠β,∵∠α+∠β=120°,∴∠α=∠β=60°.所以答案是:60.小提示:本题主要考查了对顶角相等的性质,熟记性质是解题的关键.15、已知:如图,∠1=∠2=∠3=54°,则∠4的度数是___________.答案:126°.分析:由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l1∥l2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l1∥l2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.所以答案是:126°.小提示:本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键.解答题16、已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+1∠FGN,求∠MHG的度数.2答案:(1)见解析;(2)见解析;(3)60°分析:(1)根据已知条件和对顶角相等即可证明;(2)如图2,过点M作MR∥AB,可得AB∥CD∥MR.进而可以证明;(3)如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,过点H作HT∥GN,可得∠MHT=∠N=2α,∠GHT=∠FGN=2β,进而可得结论.(1)证明:如图1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)证明:如图2,过点M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.(3)解:如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,∵射线GH是∠BGM的平分线,∴∠FGM=12∠BGM=12(180°−∠AGM)=90°−α,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵∠M=∠N+1∠FGN,2∴2α+β=2α+1∠FGN,2∴∠FGN=2β,过点H作HT∥GN,则∠MHT=∠N=2α,∠GHT=∠FGN=2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CHG=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.小提示:本题考查了平行线的判定与性质,对顶角的性质,角平分线的性质,解决本题的关键是掌握平行线的判定与性质.17、已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM∥FN.(1)如图1,求证:AB∥CD;(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.答案:(1)见解析(2)∠AEM,∠GEM,∠DFN,∠HFN解析:(1)证明:∵EM∥FN,∴∠EFN=∠FEM.∵EM平分∠BEF,FN平分∠CFE,∴∠CFE=2∠EFN,∠BEF=2∠FEM.∴∠CFE=∠BEF.∴AB∥CD.(2)解:∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°,∵FN平分∠CFE,∴∠CFE=2∠CFN,∵∠AEF=2∠CFN,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=45°,∴∠DFN=∠HFN=180°﹣45°=135°,∵∠BEF=180°-∠AEF=90°,ME平分∠BEF,∴∠BEM=∠FEM=45°,∴∠AEM=∠AEF+∠FEM=90°+45°=135°,∠GEM=∠GEB+∠BEM=∠AEF+∠BEM=90°+45°=135°,∴∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.小提示:本题考查平行线的判定与性质,角平分线有关的计算,掌握平行线的判定与性质,角平分线有关的计算是解题关键.18、已知:如图,∠1=∠2.求证:AB//CD.分析:如图,欲证AB//CD,只要证∠1=______.证明:∵∠1=∠2,(已知)又∠3=∠2,()∴∠1=__________.()∴AB//CD.(__________,____________)答案:∠3;对顶角相等;∠3;等量代换;同位角相等,两直线平行.分析:根据等量代换和同位角相等,两直线平行即可得出结果.分析:如图,欲证AB//CD,只要证∠1=∠3.证明:∵∠1=∠2,(已知)又∠3=∠2,(对顶角相等)∴∠1=∠3.(等量代换)∴AB//CD.(同位角相等,两直线平行)小提示:本题主要考查平行线的判定,属于基础题,掌握平行线的判定定理是解题的关键.。

相交线与平行线+小结(一)教学课件

相交线与平行线+小结(一)教学课件
2
A C
1
O
B
10、直线AB、CD相交于点O,OE⊥AB 于点O ,且∠COE= 5∠EOD,求 ∠COB的度数。 E D
A C
O
B
知识及运 用
11、图中能表示点到直线的距离的线 段有( D ) A 2条 C B 3条 C 4条 D 5条 A B D
知识及运用 12、(1)小勇准备在C处牵牛到河边AB 饮水,请你画出最短线路; (2)若他要到D处,线路又怎样?
D
作业布置
教科书P35页第1,2,3,4,5,6题。
E
D
A C
O
B
知识及运用 7、已知∠AOB和OB上(外)一点P,过 点P分别画OA、OB的垂线。 A A P O
P 画垂线的关键:(1)经过哪一点; (2)与哪一条线垂直。
B
B
O
知识及运用 8、分别过点A、B、C画对边BC、 AC、 AB的垂线,垂足分别为D、E、F。 A B

9、直线AB、CD相交于点O,OE是射 线 ,∠1= 32° ,∠2=58° ,则OE与 AB的位置关系是 垂直 。 E D
第五章.相交线与平行线.小 结与复习(一)
执教:南昌一中 罗文英
知识结构
两条直线相交 平 相交线 面 内 直 线 的 位 置 关 平行线 系
邻补角 对顶角
垂线及 其性质
对顶角 相等 点到直 线距离
两条直线被第 三条直线所截
同位角 内错角 同旁内角 条件 性质
平行公理
平移
知识及运用
1、平面内两条直线的位置关系 是 相交和平行 。 m n
a O 相交 平行 b
知识及运用
2、“同一平面内两条直线的位置关 系有相交、垂直、平行三种。”这 句话对吗?为什么? a m

相交线与平行线小结

相交线与平行线小结

代数法
通过求解两条直线的方程, 判断其是否有解来确定是 否相交。
向量法
利用向量的点积或叉积来 判断两条直线是否相交。
平行线的判定方法
观察法
通过直接观察两条直线是 否始终保持相同的距离且 不相交来判断。
斜率法
两条直线的斜率相等且截 距不相等,则两直线平行。
向量法
两条直线上的向量平行 (即方向相同或相反), 则两直线平行。
06
相交线与平行线小
结与展望
相交线与平行线的小结
定义与性质
相交线是在同一平面内,两条直线有且仅有一个公共点;平行线则是在同一平面内,两条 直线永不相交。相交线与平行线是几何学中的基本概念,对于理解空间形态和解决实际问 题具有重要意义。
判定方法
相交线的判定主要依据直线的斜率,如果两条直线的斜率不相等,则它们必定相交;平行 线的判定则可以通过直线的斜率或者截距来判断,两条直线斜率相等且不重合时,它们就 是平行的。
判定方法的比较与选择
观察法简单直观,但 可能受到图形复杂性 和视觉误差的影响。
在实际应用中,可以 根据问题的具体要求 和条件选择合适的判 定方法。
代数法和向量法更为 精确,但需要一定的 数学基础。
04
相交线与平行线的
性质定理
相交线的性质定理
对顶角相等
如果两条直线相交,那么它们所形成的对顶角相等。
建筑设计
平行线在建筑设计中用于描述同 一平面内相互平行的线条,如窗 户、门框等,营造出和谐统一的
视觉效果。
电路设计
在电路设计中,平行线用于表示 电线或电路板的走向,确保电流 的稳定传输和设备的正常运行。
应用实例的分析与讨论
交通标志识别
三维建模

相交线与平行线+小结(二)教学课件

相交线与平行线+小结(二)教学课件

F
1 2
D B
A
G
巩固练习
3、已知AB∥CD,分别探讨下面四个图 形中∠APC、∠PAB、∠PCD之间的关系。
A
B D
A
B
P
C C
P D B D
P
P
A C B
A C
D
作业布置
教科书P36页第7,8,9,题;
P37页第10,11题。
E F B
1 2Biblioteka DC巩固练习
2、如图,EAB是直线,AD∥BC, AD平分∠EAC,试判定∠B与∠C E 的大小关系。
A
D
B
C
7、如图,A、B、C三点在同一直线上, ∠1 =∠2 , ∠3 =∠D,试说明 BD∥CE。 E D
2 3
1
A
B
C
知识及运用 8、平移四边形ABCD,使点A与 点E重合。
知识及运用 2、“过一点有且只有一条直线与已 知直线平行”这句话对吗?为什么?
P
P l 直线外一点 l
知识及运用 3、如图,AB∥CD,EF分别交AB、 CD于M、N,∠EMB=50°,MG平 分∠BMF,MG交CD于G,求∠1的 E 度数。 M A B C F 1
N
G
D
知识及运用 4、如图,AB∥CD,∠ABE=120°, ∠DCE=15°,则∠BEC= 75° 。 A F C B
E
C D
A
B
巩固练习
1、把一张长方形ABCD沿EF折叠后, ED交BC于点G,点D、C分别落在D′、 C′位置上,若∠EFG=55°,求 ∠ AEG和∠ BGE的度数。 E D A G
B
D′
F
C′

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线知识点总结相交线与平行线知识点以理论性为主,只要分清一定的相交线与平行线知识点就能举一反三解出结果了。

下面就随小编一起去阅读相交线与平行线知识点总结,相信能带给大家启发。

相交线与平行线知识点总结一、目标与要求1.理解对顶角和邻补角的概念,能在图形中辨认;2.掌握对顶角相等的性质和它的推证过程;3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。

二、重点在较复杂的图形中准确辨认对顶角和邻补角;两条直线互相垂直的概念、性质和画法;同位角、内错角、同旁内角的概念与识别。

三、难点在较复杂的图形中准确辨认对顶角和邻补角;对点到直线的距离的概念的理解;对平行线本质属性的理解,用几何语言描述图形的性质;能区分平行线的性质和判定,平行线的性质与判定的混合应用。

四、知识框架五、知识点、概念总结1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3.对顶角和邻补角的关系4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。

7.垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。

(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

8.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 小结教学目标1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化, 梳理本章的知识结构.2.通过对知识的疏理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形.3.使学生认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行线的性质,理解平移的性质,能利用平移设计图案. 重点、难点重点:复习正面内两条直线的相交和平行的位置关系,以及相交平行的综合应用. 难点:垂直、平行的性质和判定的综合应用. 教学过程一、复习提问本章相交线、平行线中学习了哪些主要问题?教师根据学生的回答,逐步形成本章的知识结构图,使所学知识系统化. 二、回顾与思考按知识网展开复习.平移判定性质同位角,内错角,同旁内角点到直线的距离垂线及其性质对顶角相等邻补角,对顶角平行公理两三条条 直直线线被所第截两线条相直交平行相交平线 面的 内位两置条关直系1.对顶角、邻补角。

(1)教师提出问题,由幻灯片出示.①两条直线相交、构成哪两种特殊位置关系的角?指出图(1) 中具有这两种位置的角.ODCAODCB Acba4321(1) (2) (3) ②如图(2)中,若∠AOD=90°,那么直线AB,CD 的位置关系如何? ③如图(3)中,∠1与∠2,∠2与∠3,∠3与∠4是怎么位置关系的角?(2)学生回答.(3)教师强调:对顶角、邻补角是由两条相交面而成的具有特殊位置关系的角,要抓住对顶角的特征,有公共顶角,角的两边互为反向延长线;邻补角的特征:有公共顶有一条公共边,另一边互为反向延长线。

(4)对顶角有什么性质?(对顶角相等)如果两个对顶角互补或邻补角相等, 你得到什么结论?让学生明确,对顶角总是相等,邻补角一定互补, 但加上其他条件如对顶角或邻补角相等后,那么问题中每个角的度数就随之确定,为90°角, 这时两条直线互相垂直. 2.垂线及其性质.(1)复习时教师应强调垂线的定义即可以作垂线的制定方法用,也可以作垂线性质用. 作判定用时写成:如图(2),因为∠AOD=90°,所以AB ⊥CD, 这是一个角的“数”到两直线垂直的“形”的判断。

作为性质用时写成:如图(2),因为AB ⊥CD,所以∠AOD=90°。

这是由“形”到“数”的说理。

(2)如图(4),直线AB 、CD 、EF 相交于点O,CD ⊥EF,∠1=35°,求∠2的度数.FE21D CBAlDCBA(4) (5) (6) 鼓励学生用不同方法求解. (3)垂线性质1和性质2.让学生叙述垂线的性质,懂得分清这两个命题的题设和结论,垂线性质一说得过一点已知直线的垂线存在并且唯一的. 学生思考:①请回忆一下后体育课测跳远成绩时,教师是怎样测量的?如图(5),AB ⊥L,BC ⊥L,B 为重足,那么A 、B 、C 三点在同一②条直线上吗?为什么? ③点到直线的距离、两条平行线的距离.初中阶级学习了三种距离,即是距离,就要懂得的共同点:距离都是线段的长度,又要懂得区别:两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是某条直线上的一点到另一点平行线的距离.学生练习:①如图(6),四边形ABCD,AD ∥BC,AB ∥CD,过A 作AE ⊥BC,过A 作AF ⊥CD,垂足分别是E 、F,量出点A 到BC 的距离和AB 、CD 平行线间的距离. ②请归纳一下与垂直有关的知识中,有哪些重要结论?如垂线的性质1、2,又如两种直线都垂直于第三条直线,这两条直线平行, 一条直线与平行线中一条垂直,也与另一条垂直…… 3.同位角、内错角、同旁内角.只要求学生从图形中找出同位角,内错角,同旁内角.练习:如图(7),找出∠1、∠2、∠3中哪两个是同位角、内错角、同旁内角.cba321(7) 4.平行线判定与性质(1)怎样判别两条直线是否平行. (2)平行线有什么特征?(3)对比平行线的性质和直线平行的条件,它们有什么异同?(4)为什么研究平面内两直线的位置关系总是与角联系起来?围绕这些问题展开讨论,交流.教师使学生进一步明确: 平行线的判定也是由“数”即角与角的关系到“形”的判断,而性质则是“形”到“数”的说理,在研究两条直线的垂直或平行时共同点是把研究它们的位置关系转化为研究角或角之间的关系。

学生练习:①填空:如图(8),当_______时,a ∥c,理由是________;当______时, b ∥c,理由是_________;当a ∥b,b ∥c 时,______∥______,理由是_________.cb da4321DCBAB 'DCBA(8) (9) (10)②如图(9),AB ∥CD,∠A=∠C,试判断AD 与BC 的位置关系?为什么? 教师根据学生情况酌情给予引导. 5.关于平移,让学生思考:(1)图形平移时,连接对应点有什么关系? (2)如何确定图形平移的方向和平移的距离? (3)你能用平移设计一些图案吗?练习:如图(10),平移四边形ABCD,使点B 移动到点B′,画出平移后的四边形A′B′C′D′. 三、作业1.课本P39.1~8.2.补充作业: 一、判断题.1.如果两个角是邻补角,那么一个角是锐角,另一个角是钝角.( )2.平面内,一条直线不可能与两条相交直线都平行.( )3.两条直线被第三条直线所截,内错角的对顶角一定相等.( )4.互为补角的两个角的平行线互相垂直.( )5.两条直线都与同一条直线相交,这两条直线必相交.( )6.如果乙船在甲船的北偏西35°的方向线上, 那么从甲船看乙船的方向角是南偏东规定35°.( ) 二、填空题1.a 、b 、c 是直线,且a ∥b,b ⊥c,则a 与c 的位置关系是________.2.如图(11),MN ⊥AB,垂足为M 点,MN 交CD 于N,过M 点作MG ⊥CD,垂足为G,EF 过点N 点,且EF ∥AB,交MG 于H 点,其中线段GM 的长度是________到________的距离, 线段MN 的长度是________到________的距离,又是_______的距离,点N 到直线MG 的距离是___.G H NMF EDC BA FEODCBA(11) (12)3.如图(12),AD ∥BC,EF ∥BC,BD 平分∠ABC,图中与∠ADO 相等的角有_______ 个,分别是___________.4.因为AB ∥CD,EF ∥AB,根据_________,所以_____________.5.命题“等角的补角相等”的题设__________,结论是__________.6.如图(13),给出下列论断:①AD ∥BC:②AB ∥CD;③∠A=∠C.以上其中两个作为题设,另一个作为结论,用“如果……,那么……”形式,写出一个你认为正确的命题是___________.DC BAFEO DCBAclNMb a21(13) (14) (15) 7.如图(14),直线AB 、CD 、EF 相交于同一点O,而且∠BOC=23∠AOC,∠DOF=13∠AOD,那么∠FOC=______度.8.如图(15),直线a 、b 被C 所截,a ⊥L 于M,b ⊥L 于N,∠1=66°,则∠2=________. 三、选择题.1.下列语句错误的是( )A.连接两点的线段的长度叫做两点间的距离B.两条直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成两线段平行且相等2.如图(16),如果AB ∥CD,那么图中相等的内错角是( )A.∠1与∠5,∠2与∠6;B.∠3与∠7,∠4与∠8;C.∠5与∠1,∠4与∠8;D.∠2与∠6,∠7与∠387654321DCBA(16)3.下列语句:①三条直线只有两个交点,则其中两条直线互相平行; ②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直; ③过一点有且只有一条直线与已知直线平行,其中( )A.①、②是正确的命题B.②、③是正确命题C.①、③是正确命题D.以上结论皆错4.下列与垂直相交的洗法:①平面内,垂直于同一条直线的两条直线互相平行; ②一条直线如果它与两条平行线中的一条垂直,那么它与另一条也垂直;③平行内, 一条直线不可能与两条相交直线都垂直,其中说法错误个数有( ) A.3个 B.2个 C.1个 D.0个 四、解答题1.如图(17),是一条河,C 河边AB 外一点:(1)过点C 要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C 处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)BA2.如图(18),ABA ⊥BD,CD ⊥MN,垂足分别是B 、D 点,∠FDC=∠EBA. (1)判断CD 与AB 的位置关系;(2)BE 与DE 平行吗?为什么?NMFE DCBA3.如图(19),∠1+∠2=180°,∠DAE=∠BCF,DA 平分∠BDF.(1)AE 与FC 会平行吗?说明理由.(2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么.F E21DCBA4.在方格纸上,利用平移画出长方形ABCD 的立体图,其中点D′是D 的对应点.(要求在立体图中,看不到的线条用虚线表示)答案 一、1.× 2.∨ 3.× 4,.× 5.× 6.∨ 二、1. 互相垂直2.点M,直线CD 点M,直线EF 平行线AB 、EF 间 线段GN 的长度3.4个 ∠EOB 、 ∠DOF 、∠ABD 、∠CBD4.两条直线都与第三条直线平行,这两条直线也互相平行 CD ∥EF5.两个角是相等两角的补角 这两个角相等6.如果一个四边形的两组对边平行,那么它的对角相等;或若一个四边形的一组对边平行,一组对角相等,那么它的另一组对边也互相平行7.1568.114°三、1.C 2.D 3.A 4.D 四、1. 略 2.(1)CD ∥AB因为CD⊥MN,AB⊥MN,所以CDN=∠ABM=90°所以CD∥AB(2)平行因为∠CDN=∠ABN=90°,∠FDC=EBA所以∠FDN=∠EBN所以FD∥EB3.(1)平行因为∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义)所以∠1=∠CDB所以AE∥FC( 同位角相等两直线平行)(2)平行,因为AE∥CF,所以∠C=∠CBE(两直线平行, 内错角相等)又∠A=∠C 所以∠A=∠CBE所以AF∥BC(两直线平行,内错角相等)(3) 平分因为DA平分∠BDF,所以∠FDA=∠ADB因为AE∥CF,AD∥BC所以∠FDA=∠A=∠CBE,∠ADB=∠CBD所以∠EBC=∠CBD4.略评价与反思全章复习的目的是使学生进一步系统掌握基础知识,基本技能和基本方法,进一步提高综合运用数学知识的灵活地分析和解决问题的能力,因此,在选择教学内容时注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点。

相关文档
最新文档