Optimization of NaY zeolite membrane preparation for the separation of methanolm.
添加剂诱导聚偏氟乙烯形成γ结晶相的方法

1 表面活性剂研究表明,选用有机改性硅共聚物L-520作为表面活性剂处理含α结晶相PVDF 粉末,再经溶剂抽提处理,使得PVDF 粉末表面含有<1.8 wt%的表面活性剂[1]。
处理后的粉末在经过热压缓慢升温至熔点以上,然后将淬火后的样品浸泡于甲苯中除去表面活性剂。
预浸表面活性剂的PVDF 粉末在DSC 慢速升温测试过程中,在低温处出现对应α结晶相的熔融吸热峰;在高温处出现了第二个熔融吸热峰,且随着升温速率的下降该峰越发明显,该峰对应的是γ结晶相的熔融。
研究表明:有机改性硅共聚物表面活性剂的引入可诱导PVDF 中大量γ结晶相的形成。
形成机理为表面活性剂诱导α结晶相向γ结晶相发生转变,表面活性剂干扰在熔融过程中α结晶相内分子的扩散,使分子链以松散的片晶形式存在,转变为更稳定的γ结晶相的分子链构象。
2 离子液体离子液体具有低熔点、低蒸气压、高的化学和热稳定性、高的离子导率和宽的电化学势能范围等特点,广泛用于润滑剂、绿色溶剂、电池电解质等领域。
离子液体可用作无机填料与聚合物树脂基体的增溶剂,增强两者的界面相容性,改善无机填料的分散性,尤其是纳米填料如碳纳米管和蒙脱土的分散。
离子液体也可以促进PVDF 中极性结晶相的形成。
离子液体修饰改性的碳纳米管可改变PVDF 的结晶行为。
离子液体的引入不仅有利于碳纳米管的分散,也可诱导非极性晶型向极性晶型的转变,同时离子液体与PVDF 分子链间会形成特定的相互作用。
利用1-丁基-3-甲基咪唑六氟磷酸盐([BMIM][PF 6])离子液体改性PVDF ,将PVDF 与不同比例的[BMIM][PF 6]在190 ℃转速为50 r/min 条件下混合5 min ,将混合后的样品在200 ℃热压成300 μm 厚的薄膜[2]。
红外测试结果表明:纯PVDF 样品中0 引言聚偏氟乙烯(PVDF)是一种电活性的多晶型氟聚合物,分子主链中-CH 2-和-CF 2-链节交替排列。
纳米Y型分子筛的制备

第26卷第3期 硅 酸 盐 通 报 V o.l26 N o.3 2007年6月 B U LLET I N OF THE CH I N ESE CERAM IC SOC I ETY June,2007纳米Y型分子筛的制备甄铁丽1,张树强2,王 宁3(1.济南工程职业技术学院纺织服装系,济南 250200;2.山东潜力化工有限公司,济南 250109;3.山东省动物防疫监督所,济南 250022)摘要:未添加任何添加剂的普通原料,用原位水热法合成出纳米Y型分子筛,讨论了不同的陈化时间,不同的晶化时间以及不同晶化温度对制备纳米Y型分子筛的影响,并考察了纳米Y型分子筛的热稳定性。
结果表明,较适宜的合成条件为:陈化19h,晶化时间为8h,晶化温度为100 。
关键词:纳米Y型分子筛;陈化时间;晶化温度;热稳定性中图分类号:TQ424 文献标识码:A 文章编号:1001-1625(2007)03-0482-04Synthesis of N anoparticle NaY M olecular SieveZ HEN T ie-li1,Z HANG Shu-qiang2,WANG N ing3(1.J i nan E ngi neeri ng Vocati on alTechnical Coll ege,Ji nan250200,Ch i na;2.Sh andong Q i anliCh e m icalC o.,Ltd,J i nan250109,Ch i n a;3.An i m alE pide m ic P reventi on Place of Shandong,Ji nan250022,Ch i na)Abst ract:N anoparticle Na Y m o lecular sieve w ith cr ystal size100nm w as synthesized usi n g static state hydrother m techniques w ith ord i n ary m aterials.The infl u ences of factors,i n cluding ag ing ti m e,crysta llization ti m e and crysta llizati o n te m perature on the for m ati o n o f nanoparticle N a Y m o lecular sieve w ere i n vestigated.The results of XRD and SE M sho w that nanoparticle Na Y m o lecu lar sieve can be obta i n ed by8h crysta llizati o n after19h ag i n g under100 .K ey w ords:nanoparticle Na Y;ag ing ti m e;crystallization te m perature;ther m al stab ility1 引 言纳米Y型分子筛具有较大的比表面积和较高的晶内扩散速率,在催化裂化、加氢裂化和异构化等石油炼制中,拥有反应活性高、对产物选择性强。
乙酸蒸汽催化重整制氢的研究进展

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第5期·1658·化 工 进展乙酸蒸汽催化重整制氢的研究进展王东旭1,肖显斌2,李文艳1(1华北电力大学能源动力与机械工程学院,北京 102206;2华北电力大学生物质发电成套设备国家工程实验室,北京 102206)摘要:通过生物油蒸汽重整制备氢气可以减少环境污染,降低对化石燃料的依赖,是一种极具潜力的制氢途径。
乙酸是生物油的主要成分之一,常作为模型化合物进行研究。
镍基催化剂是乙酸蒸汽重整过程中常用的催化剂,但容易因积炭失去活性,降低了制氢过程的经济性。
本文首先分析了影响乙酸蒸汽重整制氢过程的各种因素,阐述了在这一过程中镍基催化剂的积炭原理,讨论了优化镍基催化剂的方法,包括优化催化剂的预处理过程、添加助剂和选择合适的载体,最后对乙酸蒸汽重整制氢的热力学分析研究进展进行了总结。
未来应重点研究多种助剂复合使用时对镍基催化剂积炭与活性的影响,分析多种助剂的协同作用机理,得到一种高活性、高抗积炭能力的用于生物油蒸汽重整制氢的镍基催化剂。
关键词:生物油;乙酸;制氢;催化剂;热力学中图分类号:TK6 文献标志码:A 文章编号:1000–6613(2017)05–1658–08 DOI :10.16085/j.issn.1000-6613.2017.05.014A review of literatures on catalytic steam reforming of acetic acid forhydrogen productionWANG Dongxu 1,XIAO Xianbin 2,LI Wenyan 1(1 School of Energy ,Power and Mechanical Engineering ,North China Electric Power University ,Beijing 102206,China ;2 National Engineering Laboratory for Biomass Power Generation Equipment ,North China Electric PowerUniversity ,Beijing 102206,China )Abstract :Hydrogen production via steam reforming of bio-oil ,a potential way to produce hydrogen , can reduce environmental pollution and dependence on fossil fuels. Acetic acid is one of the main components of bio-oil and is often selected as a model compound. Nickel-based catalyst is widely used in the steam reforming of acetic acid ,but it deactivates fast due to the carbon deposition. In this paper ,the affecting factors for the steam reforming of acetic acid are analyzed. The coking mechanism of nickel-based catalyst in this process is illustrated. Optimization methods for nickel-baed catalyst are discussed ,including optimizing the pretreatment process ,adding promoters ,and choosing appropriate catalyst supports. Research progresses in the thermodynamics analyses for steaming reforming of acetic acid are summarized. Further studies should be focused on the effects of a combination of a variety of promoters on carbon deposition. Catalytic activity and the synergy mechanism should be analyzed to produce a novel nickel-based catalyst with high activity ,high resistance to caborn deposition for hydrogen production via steam reforming of bio-oil. Key words :bio-oil ;acetic acid ;hydrogen production ;catalyst ;thermodynamics第一作者:王东旭(1994—),男,硕士研究生,从事生物质能利用技术研究。
反渗透膜脱硼技术的研究进展

・50・
山东化工 SHANDONG CHEMICAL INDUSTRY
2021年第50卷
膜技术在脱硼处理时具有广阔的应用前景(10)'
2反渗透膜脱硼技术机理分析
反渗透膜技术之所以作为脱硼处理的代表方法,这是因为 该类膜结构对溶质具有阻碍作用的价值体现。在目前的应用 中,反渗透膜对溶质的阻碍主要包括两部分,即扩散和对流。 对流是将滤液体从主体溶液进行冲击处理,来达到对硼去除的 效果°扩散是冲洗通道的过程中,水分子在低密度的水溶液冲 击下进行溶液扩散,它是高分子链处理的有效形式°以下是从 改变反渗透膜结构的角度出发°
中图分类号:TQ028.8
文献标识码:A
文章编号1008 —021X(2021)12 —0049 —03
Progress4ntheDevelopmentofBoronRemovalby Reverse Osmosis Membrane Technology
An Liyi1,2 ^Meng Jianqiang1,2
(WHO)饮用水水质要求°该方法是增强空间位阻,减少氢键 的结合位点和降低分离层的极性来提高聚酰胺反渗透膜对硼 的截留,并且其方法操作简单有利于大规模生产[⑷’另外& Chong等人研究中,采用四种不同的有机溶剂(正己烷、正庚烷、 环己烷和Isopar —G)来制备反渗透膜,当使用Isopar—G来作 为有机相溶剂时,制备的反渗透膜的脱硼率最高,脱硼率高达 74.31% °该方法是是提高界面聚合的交联度,增加了空间位 阻(15) °
第12期
安礼邁,等:反渗透膜脱硼技术的研究进展
・49・
反渗透膜脱硼技术的研究进展
安礼邁1!!孟建强1!
(1天津工业大学材料科学与工程学院,天津300387 2.天津工业大学省部共建分离膜与膜过程国家重点实验室,天津300387)
High-Performance Zeolite NaA Membranes on Polymer Zeolite Composite

High-Performance Zeolite NaA Membranes on Polymer-Zeolite CompositeHollow Fiber SupportsQinqin Ge,†Zhengbao Wang,*,†and Yushan Yan†,‡Department of Chemical and Biological Engineering,Zhejiang Uni V ersity,Hangzhou310027,P.R.China,and Department of Chemical and En V ironmental Engineering,Uni V ersity of California,Ri V erside,California92521Received September27,2009;E-mail:zbwang@Zeolite NaA membranes are hydrophilic and have shown highselectivity for removal of water from organic solutions1-4andespecially in alcohol dehydration,a necessary and expensive stepin the production of biofuels.Zeolite membranes have usually beensynthesized by a seeded growth method.Seeding on the supportshas been recognized as a crucial processing factor for obtaininghigh-performance zeolite membranes.5-7Many seeding methodshave been reported to date.4However,none of them is a perfectseeding method for synthesizing zeolite membranes with highpervaporation(PV)performance,mainly because of the difficultyin forming a uniform seed distribution on the surface of the supports.On the other hand,zeolite membranes supported on large-diameter(12mm)ceramic tubes have been commercially used in Asia andEurope,1a but the ceramic tubes are large and expensive,and themembranes have lowflux.1b The large diameter and the lowfluxtogether lead to large module size.Very recently,we reported anew seeding method,dipcoating-wiping deposition,which is veryuseful for obtaining high-performance zeolite NaA membranes onceramic hollowfiber(HF)supports.7The high-performance ceramicHF-based zeolite membranes are expected to reduce the modulesize dramatically,but the cost of producing ceramic HF is still ofconcern,and the seeding process is still needed.Here,we report a new strategy:use of polymer-zeolite compositehollowfibers(CHFs)as supports.The zeolite crystals embedded inthe polymer HFs serve as seeds for the zeolite membrane growth,andthey also“anchor”the zeolite membrane to the support to increasethe adhesion of the zeolite membrane.Therefore,a separate and oftencomplex seeding process can be omitted.A very uniform crystaldistribution can be obtained easily,so continuous zeolite membranescan be prepared with high reproducibility.These CHFs can be producedsimply by blending zeolite crystals into the polymer feed before theHF extrusion and thus are expected to be inexpensive.We estimate that by using CHFs to replace the large ceramic tubes,we can reduce the size of the separate module by a factor of30and the cost by a factor of>30.Polyethersulfone(PES)-zeolite NaA CHF supports were pre-pared by spinning a PES solution containing suspended zeolite NaA powders into a HF precursor,which was then washed in water and dried at60°C,according to the literature.8,9The top and cross-sectional views of the CHF supports were examined by scanning electron microscopy(SEM)(Figure1).The outer diameter of the HF is∼2.2mm,and the inner diameter∼1.0mm(Figure1a).The zeolite particles are uniformly distributed inside the polymer wall (Figure1b).The X-ray diffraction pattern of the CHF support is consistent with the structure of zeolite LTA(Figure S1a in the Supporting Information),indicating that no damage to the zeolite crystals occurred during preparation of the CHF supports.If zeolite NaA crystals were added to the feed for making ceramic HFs,they would be damaged because ceramic HFs must be sintered at high temperature(>1400°C).The XRD patterns of zeolite membranes obtained on all the supports were consistent with the zeolite LTA structure(Figure S1b),indicating that zeolite LTA was the only crystalline phase formed during the hydrothermal synthesis.Their peak intensities were higher than those of the parent CHF supports(Figure S1a). The morphology and thickness of the as-synthesized membranes were examined by SEM(Figure1c,d).The zeolite crystals were found to be so well intergrown that they formed a dense layer on the supports,and the typical cubic morphology of zeolite NaA crystals was hardly seen(Figure1c).The cross-sectional SEM image also showed a uniform zeolite layer on top of the CHF support with a thickness of∼3.0µm(Figure1d).PV performance results for the zeolite membranes were obtained, and as shown in Table1(membrane3),the separation factor(R)of the zeolite NaA membrane after the4h synthesis on CHF supports†Zhejiang University.‡University of California,Riverside.Figure1.SEM images of(a,b)the CHF support and(c,d)the zeolitemembrane on it:(a,d)cross-sectional views;(b,c)top views.Zeolitemembrane was synthesized at100°C for4h by in situ hydrothermalcrystallization.Table1.Effects of Synthesis Time on Membrane Propertiesmembrane no.t(h)a D(µm)b J(kg m-2h-1)c R d12 1.08.0100023 2.09.3>1000034 3.09.2>1000045 3.58.1>10000a t,synthesis time.b D,membrane thickness.c J,flux.d R,separationfactor.Pervaporation conditions:90wt%ethanol solution at75°C.Published on Web11/06/200910.1021/ja9082057CCC:$40.75 2009American Chemical Society 170569J.AM.CHEM.SOC.2009,131,17056–17057was very high (>10000),indicating that the zeolite NaA membrane on the CHF support prepared by a single in situ hydrothermal synthesis was continuous and well-intergrown.The flux of this zeolite membrane on the CHF support was 9.2kg m -2h -1,which is much higher than those reported in the literature for zeolite membranes on ceramic tube supports 1and polymer -zeolite mixed-matrix membranes (MMMs).10This is probably due to the higher porosity of the PES -zeolite CHF supports than of ceramic tube supports (∼40%)and polymer -zeolite MMMs (thought to be a dense membrane)and the smaller wall thickness of the CHF supports (0.6mm)than of ceramic tube supports (∼1.5mm).Also,all three zeolite membranes on the CHF supports after the 4h synthesis (Table S1,membranes 3a -c)showed similar high PV selectivities (R >10000),indicating the high reproducibility of the synthesis of zeolite membranes on CHF supports.This shows the advantage of having uniformly embedded zeolite crystals in polymer HF supports.The slight difference in the fluxes of these three membranes is possibly due to subtle differences in the support porosity.As mentioned above,zeolite membranes with high PV performance can readily be obtained in high yield using PES -zeolite CHFs as supports.From the point view of large-scale commercial production,therefore,the reproducibility of the synthesis of zeolite membranes can be increased by using CHF supports.From the viewpoint of basic research,by omission of the seeding process,the effects of the synthesis conditions and composition can easily be elucidated.These studies are ongoing in our laboratory.Here we focus only on the effects of the synthesis time on the quality of the zeolite membranes.Zeolite membranes were synthesized in 2-5h.No significant difference could be found in the morphology of zeolite on the surface of the membranes (Figure 2).There were some pinholes found on the surface of the membrane synthesized at 2h and a second layer on the surface of the membrane synthesized at 5h.From the cross-sectional SEM view,the thickness of zeolite membranes was found to increase from 1.0to3.5µm with the synthesis time (Table 1).Although the R value of 2h-synthesized membrane was low (Table 1,membrane 1),the R values of the zeolite membranes synthesized in >3h are very high (Table 1,membranes 2-4).Zeolite membranes with thicknesses of 2µm synthesized in 3h were already good enough for dehydration of ethanol solution.The fluxes were 8.0-9.3kg m -2h -1.The effects of the thickness of the zeolite membrane on the flux in this range could not be seen (Table S1).The difference in the flux is possibly due to the difference of the support porosity.XRD patterns of the powders from the same autoclave as for making the membranes in 3h (Figure S2)did not show zeolite LTA,but it did appear in syntheses longer than 4h,indicating that the continuous layer of zeolite NaA was mainly produced from the seeds in the CHF supports and the second layer mainly from the synthesis mixture.In conclusion,zeolite membranes with high PV performance have been synthesized on PES -zeolite CHF supports by a single in situ hydrothermal crystallization with good yield,because the CHF supports provided uniform zeolite seed particles on their surfaces.The composite support approach is likely to open up a completely new route without a separate seeding process to prepare high-performance,low-cost,reproduciblezeolitemembranes.Polymer -zeolite CHF supports are also expected to have serious implications for preparing zeolite membranes on their inner surfaces because they also provide a very uniform zeolite seed crystal distribution on their inner surfaces.Zeolite membranes on the inner surfaces of hollow fiber supports can reduce pressure loss during the PV process and provide significant processing advantages as the membranes are naturally protected by the support during handling.The mechanical stabilityofCHFsupportscanbeimprovedbymakingpolymer -zeolite composite monoliths with multiple channels.These efforts are ongoing in our laboratory and will be published in the near future.Acknowledgment.We thank the NNSF of China (20876133)and Qianjiang Rencai (2008R10016)for financial support.Y.Y.thanks the Chinese Ministry of Education for the Visiting Changjiang Scholar Professorship.Supporting Information Available:Main contributions,experi-mental methods,Table S1,and Figures S1and S2.This material is available free of charge via the Internet at .References(1)(a)Morigami,Y.;Kondo,M.;Abe,J.;Kita,H.;Okamoto,K.Sep.Purif.Technol.2001,25,251.(b)Okamoto,K.;Kita,H.;Horii,K.;Tanaka,K.;Kondo,M.Ind.Eng.Chem.Res.2001,40,163.(c)Sato,K.;Nakane,T.J.Membr.Sci.2007,301,151.(2)(a)Sato,K.;Sugimoto,K.;Nakane,T.J.Membr.Sci.2008,307,181.(b)Boudreau,L.C.;Kuck,J.A.;Tsapatsis,M.J.Membr.Sci.1999,152,41.(c)Tavolaro,A.;Drioli,E.Ad V .Mater.1999,11,975.(d)Xu,X.C.;Yang,W.S.;Liu,J.;Lin,L.W.Ad V .Mater.2000,12,195.(e)Shah,D.;Kissick,K.;Ghorpade,A.;Hannah,R.;Bhattacharyya,D.J.Membr.Sci.2000,179,185.(3)(a)Boudreau,L.C.;Tsapatsis,M.Chem.Mater.1997,9,1705.(b)Huang,A.S.;Lin,Y.S.;Yang,W.S.J.Membr.Sci.2004,245,41.(c)Pina,M.P.;Arruebo,M.;Felipe,M.;Flea,F.;Bernal,M.P.;Coronas,J.;Menendez,M.;Santamaria,J.J.Membr.Sci.2004,244,141.(d)Kumakiri,I.;Yamaguchi,T.;Nakao,S.Ind.Eng.Chem.Res.1999,38,4682.(4)Pera-Titus,M.;Llorens,J.;Cunill,F.;Mallada,R.;Santamaria,J.Catal.Today 2005,104,281.(b)Zah,J.;Krieg,H.M.;Breytenbach,J.C.J.Membr.Sci.2006,284,276.(c)Huang,A.S.;Yang,W.S.Mater.Res.Bull.2007,42,657.(5)Yuan,W.H.;Lin,Y.S.;Yang,W.S.J.Am.Chem.Soc.2004,126,4776.(6)Lai,Z.P.;Bonilla,G.;Diaz,I.;Nery,J.G.;Sujaoti,K.;Amat,M.A.;Kokkoli,E.;Terasaki,O.;Thompson,R.W.;Tsapatsis,M.;Vlachos,D.G.Science 2003,300,456.(7)Wang,Z.B.;Ge,Q.Q.;Shao,J.;Yan,Y.S.J.Am.Chem.Soc.2009,131,6910.(8)Tan,X.Y.;Liu,S.M.;Li,K.J.Membr.Sci.2001,188,87.(9)Liu,S.M.;Li,K.;Hughes,R.Ceram.Int.2003,29,875.(10)Huang,Z.;Shi,Y.;Wen,R.;Guo,Y.H.;Su,J.F.;Matsuura,T.Sep.Purif.Technol.2006,51,126.JA9082057Figure 2.SEM images of zeolite membranes on CHF supports synthesized at 100°C for (a,b)2,(c,d)3,and (e,f)5h:(a,c,e)top views;(b,d,f)cross-sectional views.J.AM.CHEM.SOC.9VOL.131,NO.47,200917057C O M M U N I C A T I O N S。
Zeolite micromembrane fabrication on magnetoelastic material using electron beam lithography

Zeolite micromembrane fabrication on magnetoelastic material using electron beamlithographyVassiliki Tsukala a ,b ,Dimitris Kouzoudis b ,⇑a Foundation for Research and Technology Hellas,Institute of Chemical Engineering and High-Temperature Chemical Process,P.O.Box 1414,GR 26504Patras,Greece bDepartment of Chemical Engineering,University of Patras,GR-26504Patras,Greecea r t i c l e i n f o Article history:Received 1February 2014Received in revised form 8May 2014Accepted 2June 2014Available online 26June 2014Keywords:Micromembrane LTAElectron beam lithography Secondary growth Magnetoelastica b s t r a c tIn the present study,electron beam lithography (EBL)is employed in the manufacturing of patterns of continuous Linde Type A (LTA)zeolite membranes.The patterns are down to the micrometer scale and they are composed of LTA micromembranes having all three dimensions in the micrometer scale.The control of the size and location of zeolite films or membranes onto specific substrates,will lead to new aspects for their use in microsensing,microelectronics and microreactor applications.Our focus is on the microsensing field,where a magnetoelastic ribbon (Metglas)is used as the sensing platform,since the Metglas/zeolite film composite has been successfully used for the detection of gases and VOCs in the past.Here we report on the first LTA zeolite micromembrane attached onto a previously EBL pat-terned PMMA coated Metglas substrate.The sensing ability of such a sensor could be significantly improved by using lower amount of zeolite film since it could lead to shorter response and recovery times.The conditions for the manufacturing of the LTA micromembranes onto the Metglas substrate are investigated and discussed in terms of EBL,seeding and hydrothermal synthesis parameters.Ó2014Published by Elsevier Inc.1.IntroductionBecause of their interesting and unique properties [1],zeolites and their continuous films have attracted great scientific interest [2]over the past decades,which is demonstrated on their various industrial applications such as catalysts in fine chemical and petrochemical industry [3],adsorbents [4],and membranes for separations or as reactors [5].Their molecular sieving ability,con-trollable surface properties,well-defined porosity,large surface area along with chemical,thermal and mechanical stability can also be utilized in new advanced applications like microreactors [6],chemical or gas sensors [7],microseparators [8],low dielectric constant materials for microelectronic devices [9],electrodes [10],biomedical science [11]and fuel cells [12].Nevertheless,the exploitation of zeolites in such advanced applications is often prevented due to the powder form of synthetic zeolites,directing efforts in the development of continuous zeolite films of small size so as to be implemented in the so-called microchemical systems that also include other microdevices such as micromixers,microheat exchangers,microactuators and microsensors [13].Tailoring and controlling zeolite membranes size in the micro-scale range offers numerous advantages in many of the above advanced applications [14].Among the benefits of micromem-branes,the most obvious one is the elimination of defects (cracks and holes),as the probability of a defect-free surface increases for smaller membrane areas [15].Other significant aspects,espe-cially for microreactor applications,are the elimination of temper-ature gradients thus minimizing hot spots,enhancing heat and mass transfer properties and finally,improving yield,conversion and selectivity through the reaction-permeation mechanism of the desired product through the channels [16].In the field of zeo-lite membranes used for sensing applications,micromembranes are of great demand,since lower mass could result in shorter response time and subsequently shorter recovery [7].Thus,the sensitivity of the sensor could increase,especially when used as microbalance (cantilever-based or Quartz Crystal Microbalance,QCM)but also the selectivity of specific components can be enhanced allowing for molecular recognition [17](as ‘‘electronic nose’’sensors).Important efforts have been made to fabricate patterned zeolite films or layers of crystals on solid substrates by combining both zeolite-substrate adhesion techniques and pattern definition methods adopted from microelectronics technology.The most common substrates that have been used for patterned zeolite membranes are silicon and glass,while siliceous zeolites are preferred,mainly because of the chemical affinity.In order to attach zeolites onto them,two adhesion techniques are commonly/10.1016/j.micromeso.2014.06.0171387-1811/Ó2014Published by Elsevier Inc.⇑Corresponding author.Tel.:+302610996880;fax:+302610996846.E-mail address:kouzoudi@upatras.gr (D.Kouzoudis).used:casting and secondary growth.For thefirst approach,the most facile method is the direct attachment method,where the zeolite crystals are assembled through covalent or ionic bonding. The most widely used way of ionic bonding is simply by rubbing [18]zeolite crystals on a patterned smooth substrate resulting in uniformly,fully-packed layers of crystals.In a similar manner, ultrasound agitation[19]and dip or spin coating methods of colloi-dal seed solutions have also been used but with less success in terms of uniformity and coverage.The second approach is the sec-ondary growth method,where zeolite crystals are intergrown to form continuousfilms attached onto the patterned substrates under hydrothermal conditions.The zeolite type is controlled by the seed type and synthesis conditions.In order to pattern the substrate’s surface for zeolite crystals attachment,three pattern definition methods have been mostly employed that are also compatible with sensor technology: microcontact printing,photoetching and lithography(photolithog-raphy or electron beam lithography),resulting in different resolution and structure sizes[20].Since the resolution of the classic photolithography is limited by the wavelength of the light used,electron beam lithography(EBL)has provided scientists with a powerful tool for creating nano-scale structures.EBL utilizes a highly focused electron beam to expose a resist-coated substrate thus making it soluble(positive tone resist)or insoluble(negative tone resist)to a photoresist developer.As the trend for ever-increasing levels of miniaturization needs to be met also for zeolite technology,in order to be integratedvices,the demand for high-throughputsample mass[21]can be achievedadvantages of EBL are the precise andusing software tools and direct exposuresubstrate[22]without the tediouspreparation.The majority of the studies onfilms have focused on siliceous MFI typelite-1)and employed the previouslyniques.The most common substrateswafers due to their smooth surfacethe above siliceous ing(dimethylsiloxane)(PDMS)stamp,Yoonattached b-oriented ZSM-5crystals on Siself-assembled(from their ethanolonto the wafer surface,forming5l m width[23].Similarly,Yeung andordered silicalite micromembranes andthrough secondary or direct growth andand etching techniques,in order toand membrane microseparators,whilephotopattern silicalite-1membranes onsmall zeolite arrays[25].Anotherby Yoon and co-workers employingchemical degradation of organiclent bonding of ZSM-5crystals andof continuous ZSM-5membrane withture[26].A different approach,using TEMdepositions,was employed by Yan andcontinuous,b-oriented silicalitewafer,exploiting the weak interaction ofzeolites[27].Photoetching(both dryinvestigated by Pellejero et al.for thecalitefilm on Si wafer,after the10l m structures[28].More recently,deciler et al.[31]fabricated monolayerstals of LTA and BEA type zeolites,method,onto Si wafers patterned usingwith500nm features.In the present study,a magnetoelastic material(Metglas)was chosen as a substrate,which was successfully utilized by our group as a sensing platform together with zeolitefilms for the detection of CO2[32],VOCs[33]and stress[34].Another reason for using Metglas in the present study is the excellent adhesion of continu-ous LTAfilms on it.A major drawback in these sensing applications was the relatively slow response time,of the order of tens of seconds,resulting from the slow adsorption and diffusion of the detected species through the zeolite layer.A smaller size zeolite feature,down to micro scale,could probably result in much shorter diffusion time which is one of the objectives of micropatterning LTAfilms on a Metglas substrate.Three novel ideas are introduced in the present work:(a) electron beam lithography is employed for thefirst time for the in situ synthesis of micropatterned,continuous zeolitefilms through the secondary growth.(b)It is also thefirst time that an LTAfilm is synthesized in the micrometer scale,revealing new aspects of its future use in microsensing,microelectronics and microreactor applications.Most of the zeolite micro-patterning in the literature involves either MFI membranes or LTA microcrystals, not LTA membranes.It should also be noted that LTA has a number of industrial applications thus its micro-manipulation is of paramount importance.And c)this is thefirst time that a metallic magnetoelastic material is used as a substrate for zeolite microm-embrane patterning ually conventional substrates such as Silicon wafers or glass are used.1.Schematic representation of the experimental procedure for the fabricationzeolite micromembranes on Metglas using EBL technology and secondary growth.214V.Tsukala,D.Kouzoudis/Microporous and Mesoporous Materials197(2014)213–220(c)E-beam exposure(d)PMMA development(e)LTA seeding(f)LTA synthesis(g)Ultrasound CleaningEach individual step is described in detail in the following paragraphs.2.1.PMMA coating on MetglasSeveral Metglas2826MBA(Fe40Ni38Mo4B18)ribbons from Allied Signal with dimensions6mmÂ20mmÂ28l m were cut and thoroughly washed with trichloroethylene(C2HCl3,Sigma–Aldrich)and methanol(CH3OH,Sigma–Aldrich)in ultrasonic bath (SONOREX DIGITEC DT100)for several15-min cycles and were finally dried at80°C(Fig.1a).For the e-beam lithography process, a solution of5%wt.of poly(methyl methacrylate)(PMMA,MW 350K,Sigma–Aldrich),in propylene glycol methyl ether acetate (PGMEA,Sigma–Aldrich)solution was prepared after36h of stir-ring at room temperature.Any un-dissolved PMMA particles were removed byfiltration(Chromafil Xtra PTFE-45/25)and approxi-mately0.5l L was spin-coated(Spin150,SPS)on the Metglas sur-face at4000rpm for60s(Fig.1b).The PMMA-coated Metglas was then hot-baked at130°C for30min in order to remove the PGMEA solvent.The PMMAfilm thickness was measured using White Light Reflectance Spectroscopy(FR-Basic,ThetaMetrisis)to be approximately450nm.2.2.Electron beam lithographyThe system for the electron beam lithography(EBL),Xedraw2 (XENOS Semiconductor Technologies GmbH),consists of the3-axis movable stage(XeMove),the beam blanking system(XeSwitch), equipped with a Faraday cup,and the pattern generator software (Exposure Control Program,ECP).The XeSwitch is mounted on a JSM-6610LV(JEOL)scanning electron microscope for the beam control and the beam current is measured through the Faraday cup connected to a Keithley6430multimeter.The PMMA-coated Metglas was attached on the XeMove stage and the exposure was performed after appropriate adjustment of the SEM’s accelerating voltage,spot size,beam focus and astigma-tism correction and suitable pattern definition,where the dwell time is calculated for given:field size,beam current and exposing dose(Fig.1c).After the exposure,the patterned surfaces were developed by isopropanol/water(IPA/H2O,7/3)solution for60s and dried with nitrogen(Fig.1d).All tests were performed using accelerating voltage of10kV, the beam load current was kept constant at40mA,the tension of the beam blanker was adjusted at35V and the spot size was set to50which resulted in a Keithley reading of approximately 200pA.For the determination of the most suitable dose for the PMMA resist exposure,several doses in the range of10–200l C/cm2 were tested.2.3.LTA seed synthesisTypically the LTAfilm synthesis begins with seeding,i.e.the use of previously prepared crystals which later develop,during the synthesis,and form a continuousfilm.Following the lithography and development processes,seeding was applied by LTA seeds of two different sizes:micro-sized and nano-sized one.The crystals were prepared via the hydrothermal method using the conditions described by:(1)Thompson et al.[35]and(2)by Jafari et al.[36] resulting in micro-sized and nano-sized crystals respectively. For micro-sized ones,sodium hydroxide(NaOH pellets,98%,Sigma–Aldrich)was dissolved in distilled water(Millipore,Milli-Q8)and divided in two equal parts in polypropylene bottles.The silicon source(TEOS98%,Sigma–Aldrich)was added to one part, while aluminum source(sodium aluminate,Al2O3$55%, Na2O$45%,Sigma–Aldrich)was added to the other one.Both solutions were stirred in room temperature until clear for approx-imately4h.Then,the aluminum solution was added to the silicate one under stirring to form the synthesis gel with molar ratio:3.165 Na2O/Al2O3/1.926SiO2/128H2O.The gel was aged for1h under stirring at room temperature and then heated at80°C for24h in sealed polypropylene bottle.Following the synthesis,the crystals were collected using vacuumfiltration(Whatman No.2)and washed with distilled water until pH reached9.Afterwards,the crystals were dried at100°C for several hours,characterized (XRD and SEM),pulverized and re-dispersed in water(1%wt.)to form the seeding solution.Slightly different conditions were used for the synthesis of nano-sized crystals.Briefly,sodium hydroxide(NaOH pellets, 98%,Sigma–Aldrich)was dissolved in distilled water(Millipore, Milli-Q8)and the organic template(tetra-methyl-ammonium hydroxide,TMAOH,25%,Sigma–Aldrich)was added.This solution was divided in two equal parts in polypropylene bottles and the silicon source(LUDOX SM-30,Sigma–Aldrich)was added to one part,while aluminum source(aluminum isopropoxide,Al(OiPr)3, 98%,Sigma–Aldrich)was added to the other one.Both solutions were stirred in room temperature until clear for approximately 2h.Then,the silicate solution was added to the aluminum one under stirring to form the synthesis gel with molar ratio:0.32 Na2O/Al2O3/6SiO2/7.27(TMA)2O/350H2O.The gel was aged for 4days under stirring at room temperature and then heated at 80°C for24h.Following the synthesis,the crystals were collected after several cycles of:(i)centrifugation(8000rpm for15min, Eppendorf Centrifuge5804),(ii)re-dispersion in water and(iii) ultrasonication(Elmasonic S30H),until pH reached9.Afterwards, the crystals were dried at100°C for several hours,pulverized and characterized.After their characterization,the nanocrystals were re-dispersed in water(1%wt.)to form the seeding solution. Then,the entire patterned PMMA-coated Metglas was drop-casted (2times)with one of the above solutions and dried for approxi-mately10min at85°C(Fig.1e)in order to promote crystallization of homogeneous zeolitefilm and to accelerate the growth rate.2.4.LTA membrane synthesisFollowing the seeding,the zeolite membrane was hydrother-mally synthesized on the patterned substrate by the secondary growth.The seeded and patterned PMMA-coated Metglas was transferred on a polypropylene bottle with the seeded side facing downwards in order to avoid agglomeration from the bulk.The sample was kept elevated in the horizontal position with the aim of two exterior placed magnets(Metglas is iron rich so it is attracted by magnets).Two basic(NaOH)aqueous solutions were prepared separately under stirring at50°C:one containing the silica source(Sodium Silicate Solution,Sigma–Aldrich)and one with the aluminum source(Sodium Aluminate,Sigma–Aldrich).The aluminum solution wasfiltered(Whatman No.2) and slowly added to the silica solution under stirring resulting in thefinal synthesis gel with molar ratio: 2.68Na2O/Al2O3/2.53 SiO2/150H2O.Subsequently,the synthesis gel was transferred in the polypropylene bottle containing the Metglas sample and the hydrothermal synthesis was carried out at100°C for various crystallization times(Fig.1f).At the end of the synthesis,the sample and the bulk crystals(for further examination)were separated from the mother liquor under vacuumfiltration (Fig.1g),washed with distilled water several times using ultra-sound bath andfinally dried at100°C overnight so as to revealV.Tsukala,D.Kouzoudis/Microporous and Mesoporous Materials197(2014)213–220215LTA micromembranes on the exposed Metglas surface and dry crystals correspondingly.3.Results and discussionIn order to achieve precise and accurate exposure of the desired patterns using e-beam lithography,several factors need to be con-sidered:type of resist,substrate,developer,e-beam energy,dose, development time and temperature[37].Since the most com-monly used positive resist is PMMA,the appropriate development conditions(developer type,time and temperature)are well docu-mented[38].High e-beam energy(accelerating voltage)creates numerous backscattered electrons thus giving rise to significant proximity effect(developed pattern is wider than the scanned pat-tern).On the other hand,low e-beam energy results in divergence of the beam from mutual electrostatic repulsion by the electrons. Therefore,an intermediate value of10kV accelerating voltage has been chosen in order to minimize those effects.What still needs to be determined is the dose(energy deposited per unit area that is actually measured in terms of current deposited per unit 2SEM’s measurement tool.The mean width of all the stripes at each dose was calculated and the percent error from the10l m pro-grammed value is plotted against exposure dose,as shown in Fig.3.The relation is almost linear in the range of20–50l C/cm2 while the percent error minimizes at about40l C/cm2and thus this optimum dose was chosen for the rest of the current work.Since seeding is critical for the membrane formation,the crys-tals collected(using the above mentioned methodologies for micro and nano-sized seeds)were examined and characterized with SEM and XRD.Their average size was estimated using SEM’s software tool to be about3.5l m for the micro-sized crystals and about 90nm for the nano-sized crystals,as can be seen in Fig.4a and b, respectively.Their crystallinity and anticipated chemical formula were confirmed using XRD measurements(Fig.5a and b)through the database PDF-2(01-073-2340).The effect of seeding was examined on three samples treated under the same hydrothermal conditions for3h at100°C:(a) without any seeds,(b)with micro-sized seeds and(c)with nano-sized seeds.As can be seen in Fig.6,the effect of seeding is a deter-mining factor for the membrane synthesis,since no membrane is grown onto the unseeded sample(Fig.6a)after the hydrothermal synthesis.Nevertheless,in the sample seeded with the micro-sizedFig.2.SEM images of the patterns generated with exposure dose ranging from20to90l C/cm2. 216V.Tsukala,D.Kouzoudis/Microporous and Mesoporous Materials197(2014)213–220Fig.3.The relationship between the percent error and the exposure dose.Fig.4.SEM images of the micro-sized(a)and the nano-sized(b)LTA seed crystals.Fig.5.XRD spectra of the micro-sized(a)and the nano-sized(b)LTA seed crystals.Fig.6.SEM images after3h of hydrothermal synthesis at100°C for the un-seeded sample(a),micro-seeded sample(b)and nano-seeded sample(c).as the membrane grows,more crystals are incorporated and since those crystals protrude,thefilm growth over them produces a non-uniform membrane with uneven height.Subsequently,optimum hydrothermal synthesis duration should be around3h,at the con-ditions examined.Preliminary observation of the continuity of the films,in terms of micro-cracks and holes,was performed using the back-scattered electrons detector attached on the JSM-6610LV microscope.The image analysis using this detector is very helpful when examining different materials since the contrast depends on the average atomic number of each material.Thus for different materials(zeolite/Metglas),cracks give a very sharp contrast. Down to our SEM resolution limit(about90nm for these samples) no cracks were observed.Nevertheless,defects in the nano-scale may be present,as the accuracy of this technique is limited to only a surface observation and the SEM’s specifications.It is noteworthy that in all cases,the LTAfilm was synthesized only onto the exposed parts of the substrate,where the PMMAfilm was minute or absent.This remarkable effect,the selective synthe-sis of LTA on the exposed Metglas areas and not on the PMMA unexposed areas,can perhaps be explained in terms of repulsive forces.LTA is known to be a highly polar material with extra neg-ative ions in its structure,due to its high aluminum content[40] thus its precursors are also negatively charged in alkali media [41].On the other hand,as already mentioned,developed PMMA has a slight negative charge,thus repelling the LTA seeds and precursors during seeding and synthesis respectively.Therefore, the traditional chemical lift-off process,typically needed to all lithographic procedures in order to totally remove the PMMAfilm, can thus be eliminated.Only an ultrasound-aided cleaning with water is needed so as to remove the extra‘‘debris’’of LTA precipi-tates left from the synthesis solution.This process leaves the PMMA layer intact,available for a second lithographic step without any further coating or pattern alignment for a second exposure.For example,the left over PMMA can be utilized to develop micro channels in order to connect the LTA micromembranes in our sam-ples,a study that will be examined in the future.Characteristic example of the unnecessary PMMA removal step in order to reveal the micro-structures,is shown in Fig.9.The images show a micromembrane on the same sample(hydrothermally treated for 3,5h at100°C)before(Fig.9a)and after(Fig.9b)the lift-off in acetone ultrasound bath.However,PMMAfilm must be removed if no further exposure is needed,since it would affect the sensor’s performance and in addition,undesired sediments are washed away.In order to exploit those LTA micromembranes in sensing applications,the entire surface of the Metglas must be uniformly covered with them.As an example,since the typical dimensions of a Metglas strip are20mmÂ6mm,a5%coverage with LTAimages of the patterned surface seeded with nano-sized crystals(a)and higher magnification of the exposed Metglas/PMMA Fig.8.SEM images of the LTA micromembranes synthesized after:(a)1h,(b)2h,(c)3h,(d)3.5h,(e)4h and(f)5h.micromembranes would translate into approximately3000square micromembranes with44.75l m side.In Fig.10,a characteristic small fraction of such a sensor,showing48of the3000micromem-branes,is given,prior the lift-off process.The corresponding XRD spectrum of the sensor is given in Fig.11,where the amorphous background is characteristic of the Metglas,confirming the crystallization of LTA type membrane.As it is evident from this figure,the reproducibility of the patterned Nevertheless,statistically minor defects, micromembrane in one of the features, eliminated.4.ConclusionsIn the present study,electron beam lithography in the manufacturing of micropatterned, membranes on a Metglas magnetoelastic substrate. was chosen because it has been successfully coated with a continuous LTA membranelayer for sensing applications.Even though further improvement,the patterns are composed LTA membranes and are down to micrometerstep towards developing faster contactless methodology could be applied in the manufacturingFig.9.SEM images of the LTA micromembranes before(a)and after(b)the lift-off process.10.SEM image of a Metglas sample showing a small area with48LTAmicromembranes.Fig.11.XRD spectrum of the Metglas sample with the LTA micromembranes.direction will be the development of microchannels between the micromembranes using a second lithography process on the unexposed PMMAfilm.AcknowledgmentsThe present study isfinancially supported by the Research Committee of the University of Patras under the‘‘K.Karatheodori’’grant(Project Code D-153).References[1]S.Mintova,C.Cejka,Stud.Surf.Sci.Catal.168(2007)301.[2]C.M.Lew,R.Cai,Y.Yan,Acc.Chem.Res.43(2)(2010)210–219.[3]E.G.Derouane,G.Crehan,C.J.Dillon,D.Bethell,H.He,S.B.D.A.Hamid,J.Catal.194(2000)410.[4]J.Kuhn,K.Yajima,T.Tomita,J.Gross,F.Kapteijn,J.Membr.Sci.321(2008)344.[5]L.O.Connor,Zeolites–Industry Trends and Worldwide Markets to2010,Hewin International Report,John Willey and Sons,2000.[6]N.C.Pérez,E.E.Miró,J.M.Zamaro,Appl.Catal.B Environ.129(2013)416.[7]M.Vilaseca,J.Coronas,A.Cirera,A.Cornet,J.R.Morante,J.Santamaria,Sens.Actuators B Chem.133(2008)435.[8]i,G.Bonilla1,I.Diaz1,J.G.Nery,K.Sujaoti,M.A.Amat,E.Kokkoli,O.Terasaki,R.W.Thompson,M.Tsapatsis,D.G.Vlachos,Science300(2003)456.[9]Z.Li,M.C.Johnson,Y.Yan,Angew.Chem.Int.45(2006)6329.[10]J.C.Yang,P.K.Dutta,Sens.Actuators B Chem.123(2007)929.[11]G.Zhang,T.Tanii,T.Zako,T.Funatsu,I.Ohdomari,Sens.Actuators B Chem.97(2004)243.[12]W.Han,S.M.Kwan,K.L.Yeung,Top.Catal.53(2010)1394.[13]W.Ehrfeld,V.Hessel,H.Löwe,Microreactors:New Technology for ModernChemistry,VCH,Weinheim,2000.[14]Z.Ming,Z.BaoQuan,L.XiuFeng,Chin.Sci.Bull.53(2008)801.[15]R.Mallada,M.Menendez(Eds.),Membrane Science and Technology,Series13,Inorganic Membranes,Synthesis,Characterization and Applications,Elsevier, 2008.[16]J.Coronas,J.Santamaria,Chem.Eng.Sci.59(2004)4879.[17]J.R.Huang,G.Y.Li,Z.Y.Huang,X.J.Huang,J.H.Liu,Sens.Actuators B Chem.1059(2006)114.[18]J.S.Lee,J.H.Kim,Y.J.Lee,N.C.Jeong,K.B.Yoon,Angew.Chem.Int.Ed.46(2007)3087.[19]J.S.Lee,K.Ha,Y-J Lee,K.B.Yoon,Adv.Mater.17(2005)837.[20]K.B.Yoon,Acc.Chem.Res.40(2007)29–40.[21]G.J.Zhang,T.Tanii,T.Zako,T.Funatsu,I.Ohdomari,Sens.Actuators B Chem.97(2004)243.[22]S.M.Sze,Semiconductor Devices:Physics and Technology,second ed.,Wiley,New York,2001.p.404.[23]K.Ha,Y.J.Lee,D.Y.Jung,J.H.Lee,K.B.Yoon,Adv.Mater.12(2000)1614.[24]Y.S.S.Wan,J.L.H.Chau,A.Gavriilidis,K.L.Yeung,Micropor.Mesopor.Mater.42(2001)157.[25]J.L.H.Chau,Y.S.S.Wan,A.Graviilidis,K.L.Yeung,Chem.Eng.J.88(2001)187.[26]K.Ha,Y.J.Lee,Y.S.Chun,Y.S.Park,G.S.Lee,K.B.Yoon,Adv.Mater.13(2001)594.[27]S.Li,C.Demmelmaier,M.Itkis,Z.Liu,R.C.Haddon,Y.Yan,Chem.Matter15(2003)2687.[28]I.Pellejero,M.Urbiztondo,M.Villarroya,J.Sese,M.P.Pina,J.Santamaria,Micropor.Mesopor.Mater.114(2008)110.[29]S.Ozturk,B.Akata,Micropor.Mesopor.Mater.126(2009)228.[30]S.K.Kirdeciler,C.Ozen,B.Akata,Micropor.Mesopor.Mater.191(2014)59.[31]S H.Kirdeciler,Preparation of functional surfaces using zeolite nanocrystals forbiosensor and biomedical applications(Thesis),Middle East Technical University,July2012.[32]I.G.Giannakopoulos, D.Kouzoudis, C.A.Grimes,V.Nikolakis,Adv.Funct.Mater.15(2005)1165.[33]T.Baimpos,L.Gora,V.Nikolakis,D.Kouzoudis,Sens.Actuators A Phys.186(2012)21.[34]T.Baimpos,V.Tsukala,V.Nikolakis,D.Kouzoudis,Sens.Lett.10(2012)879.[35]R.W.Thompson,M.J.Huber,J.Cryst.Growth56(1982)711.[36]M.Jafari,A.Nouri,M.Kazemimoghadam,T.Mohammadi,Powder Technol.237(2013)442.[37]M.A.Mohammad,M.Muhammad,S.K.Dew,M.Stepanova,Fundamentals ofelectron beam exposure and development,in:Nanofabrication,Springer-Verlag,Wien,2012.[38]A.Olzierski,I.Raptis,Microelectron.Eng.73–74(2004)244.[39]E.Yilmaz,H.Sezen,S.Suzer,Angew.Chem.Int.Ed.51(2012)5488.[40]M.Moliner,Basic principles of zeolite synthesis,in:C.Martinez Sanchez,J.Pérez Pariente(Eds.),Zeolites and Ordered Porous Solids:Fundamentals and Applications,Universitat Politècnica de València,2011,pp.37–65.[41]V.Valtchev,S.Mintova,Micropor.Mesopor.Mater.43(2001)41.220V.Tsukala,D.Kouzoudis/Microporous and Mesoporous Materials197(2014)213–220。
需求侧响应下主动配电网优化调度

第41卷 第2期吉林大学学报(信息科学版)Vol.41 No.22023年3月Journal of Jilin University (Information Science Edition)Mar.2023文章编号:1671⁃5896(2023)02⁃0207⁃10需求侧响应下主动配电网优化调度收稿日期:2022⁃06⁃10基金项目:黑龙江省自然科学基金资助项目(LH2019E016)作者简介:高金兰(1978 ),女,山西运城人,东北石油大学副教授,主要从事电力系统运行与稳定㊁新能源发电研究,(Tel)86⁃136****6089(E⁃mail)jinlangao@㊂高金兰,孙永明,薛晓东,刁 楠,侯学才(东北石油大学电气信息工程学院,黑龙江大庆163318)摘要:针对电网运行中能量调度不佳的问题,首先基于需求侧响应不确定性特点,引入非经济因素以及消费心理学特征,建立需求侧响应模型;其次使用拉丁超立方抽样(LHS:Latin Hypercube Sampling)改善初始种群质量,引入正弦因子提高局部搜索能力,并实行变异操作优化全局搜索精度,以解决麻雀算法(SSA:Sparrow Search Algorithm)的早熟等问题;最后需求侧响应以电网运行成本和环境成本最小为目标建立主动配电网优化调度模型,并使用改进的麻雀算法进行求解㊂仿真结果验证了提出模型的准确性,算法的高效性,有效解决了能量调度不佳的问题㊂关键词:需求侧响应;改进麻雀算法;主动配电网;非经济因素中图分类号:TP302;TM734文献标志码:AOptimal Dispatch of Active Distribution Network under Demand Side ResponseGAO Jinlan,SUN Yongming,XUE Xiaodong,DIAO Nan,HOU Xuecai(School of Electrical and Information Engineering,Northeast Petroleum University,Daqing 163318,China)Abstract :Demand side response is an important means of active distribution network optimization scheduling.Aiming at the problem of poor energy scheduling in power grid operation,firstly,based on the uncertainty characteristics of demand side response,introducing non⁃economic factors and characteristics of consumer psychology,the active distribution network optimization is modeled with the minimum power grid operation cost and environmental cost as the objective function;secondly,aiming at the premature problem of sparrow algorithm,latin hypercube sampling is used to improve the initial population quality,sine factor is introduced to improve the local search ability of the algorithm,and mutation operation is implemented to optimize the global search accuracy of the algorithm;finally,the improved sparrow search algorithm is applied to the solution of the active power grid optimization model.The simulation results verify the accuracy of the proposed model and the efficiency of the algorithm,and effectively solve the problem of poor energy scheduling.Key words :demand side response;improved sparrow search algorithm;active distribution network;non⁃economic factors 0 引 言随着电力改革的深入发展,新的电力需求也随之而来㊂对分布式电源广泛接入电网带来的能量调度问题,主动配电网的提出对改善该问题是一个行之有效的手段[1]㊂需求侧响应技术是主动配电网的一种典型调度方式,可通过不同的定价措施以及政策导向引导用户改变用电习惯[2],可协调用户的负荷改善能力,调节整体的峰谷用电曲线,平衡各阶段用电器数量,其经济成本低㊁适用范围广㊂在主动配电网发展迅猛的今天,对需求侧响应技术的研究在改善用电质量㊁提升用户用电体验以及合理调配区域内有限电力资源方面有着重要意义㊂目前,对需求响应有许多学者进行相关研究㊂张智晟等[3]通过对不同时刻的电价信息响应程度进行负荷转移率的求解,将用户消费习惯与需求响应进行有效结合,通过实验证明了需求响应中考虑多种因素的重要性㊂许汉平等[4]主要应用政策激励进行需求响应,以整体能源的利用率㊁经济成本为优化目标,建立多方面调度模型㊂张超等[5]依据电力市场定义下,用电量以及电力价格的线性关系进行需求响应技术实施㊂在忽略储能成本的前提下,进行分布式能源㊁储能㊁电网等大规模功率交互条件下的综合优化㊂艾欣等[6]在直接负荷控制下进行整体的耦合系统优化模型建立,通过实验结果验证了需求响应能进行高低时段负荷调节,可有效缓解高峰时段用电压力,使负荷供需趋于平衡㊂朱超婷等[7]通过对电价弹性矩阵的建立进行负荷需求模拟,考虑用电量交互㊁需求响应成本等建立电网成本最低优化目标㊂上述研究并未考虑价格型响应在经济因素以外的影响,以及多种响应协调优化的情况㊂笔者在上述研究的基础上,引入非经济因素影响的电价型响应,以及攀比心理㊁从众心理影响的激励型响应,建立以经济㊁环境成本最小为目标的主动配电网优化模型㊂为精确求解模型,提出一种改进的麻雀算法,在基本算法中加入拉丁超立方抽样㊁正弦因子和变异操作㊂通过IEEE33节点算例,验证了笔者提出的模型和算法的准确性㊂1 需求侧响应1.1 价格型响应在消费心理学的描述中,价格的高低会影响消费者的选择㊂对电价而言,电价的差值大小和浮动范围都会影响需求响应的波动㊂用户的主观意愿在价格的影响下会频繁的改变,具有强烈的不确定性,其行为用曲线表示会有相应的上下限,定义为乐观曲线与悲观曲线[3],以不同时段的价格变化为基础,对应相应的负荷变化率,利用Logistic函数对负荷转移率进行描述如下:λpv(Δp pv)=a1+e-(Δp pv-c)/μ+b,(1)其中a为限制变化范围值;b为可变化参数;c为电价近似中间值;μ为调节参数;λpv为电价响应负荷转移率,Δp pv为电价差值㊂对不同响应区用户行为特征的负荷转移如下:λzpv=λmax pv+λmin pv2,0≤Δp pv≤a pv,λmin pv+λmaxpv+λmin pv2(1+m),a pv≤Δp pv≤b pv,λmax pv,Δp pv≥b pvìîíïïïïïï,(2)m=Δp pv-a pvb pv-a pv,(3)其中a pv㊁b pv分别为不同电价差分段点;λzpv为负荷峰谷转移率;λmax pv为最大峰谷转移率;λmin pv为最小峰谷转移率㊂同理,分别求出峰转平㊁平转谷的实际负荷转移率λzpf㊁λzfv㊂在需求侧响应过程中,用户并不只会从价格差值方面改变负荷大小㊂上述模型只能表示用户受经济因素影响进行相应决策,而实际电网运行过程中用户所面临的影响远远不止经济因素一种㊂在实际过程中,用户在价格差异的刺激下想要进行负荷转移,但存在由于条件限制没办法完成此操作的情况,如后续时间段有其他任务无法在当前时间段转移负荷,即各种非经济因素导致的约束㊂为符合实际负荷转移情况,笔者提出非经济因素影响的负荷转移曲线,并引入心理学特征,实际负荷转移曲线类似于倒S型曲线,其负荷转移概率(λfz)与非经济因素(f)关系如图1所示㊂图1可用公式表示为λfz=h(1+e1-l/f)-1,(4)其中h为基础系数;l为条件系数㊂802吉林大学学报(信息科学版)第41卷图1 负荷转移概率曲线Fig.1 Load transfer probability curve 综合考虑经济因素以及非经济因素对负荷转移概率的影响,可得用户响应的转移量Q t =-λzpf L p λfz -λzpv L p λfz ,t ∈T p ,λzpf L p λfz -λzfv L f λfz ,t ∈T f ,λzpv L p λfz +λzfv L f λfz,t ∈T v ìîíïïïï㊂(5)以及转移后负荷总量L t =L 0+Q t ,(6)其中λzpf 为峰转平时段转移率;λzfv 为平转谷时段转移率;L p ㊁L f 分别为峰㊁平时段原始平均负荷;T p ㊁T f ㊁T v 分别为峰㊁平㊁谷3时段,L 0为电价响应前负荷㊂1.2 激励型需求响应直接负荷控制(DLC:Direct Load Control)㊁可中断负荷(IL:Interruptible Load)激励响应适应条件简洁,应用较为广泛㊂二者均是与电力公司或电网管理部门提前签署的负荷控制协议㊂前者相对后者协议的自由度更高,并且没有IL 在不按照协议规定动作时的违约惩罚政策㊂1.2.1 直接负荷控制为在储能设备应用频繁的情况下充分发挥其双向交互的优势[8],签订DLC 协议的用户在满足基本的协议容量要求下,可在一定限度内通过储能设备人为增减响应程度㊂传统的激励型响应并未考虑人本身的不确定因素,为此笔者引入心理学中攀比心理以及从众心理因素,即在同一区域内用户签订相应供电协议后,会根据其他参与协议人数的变化在约定改变负荷期间进行相应变化㊂结合响应人群的心理特点,构建响应模型如下:D DLC =∑24t =1D DLC t +∑24t =1(E +t +E -t )α,(7)其中D DLC t 为DLC 协议响应量;D DLC 为响应后负荷;E +t ,E -t 为不同时间段增减负荷大小;α为响应系数㊂1.2.2 中断负荷在IL 规划中考虑违约协议部分,并依据上述心理学因素,在DLC 响应量变化时IL 也会随之变化,二者协同作用,建立中断负荷情况下的负荷响应模型如下:Q IL =∑24t =1(P IL,t -P wx,t ),P IL,t =rP wx,t {,(8)其中P IL,t 为IL 协议响应量;P wx,t 为中断响应未响应负荷;r 为违约响应系数㊂2 考虑需求侧响应的主动配电网优化模型2.1 目标函数目标函数包括经济与环境成本两部分,经济成本主要为储能维护㊁新能源发电㊁需求侧响应补偿和网络损耗成本,表达式为F 1=min ∑24t =1P x ,t C pvq +∑24t =1P bat,t C cn +∑24t =1P grid,t C g,t +B MG +B DLC +B IL +B []loss ,(9)其中P x ,t ㊁P bat,t ㊁P grid,t 分别为新能源出力㊁储能出力㊁向上级电网购电量;C pvq ㊁C cn ㊁C g,t 为相应成本系数;B DLC 为DLC 成本;B IL 为IL 成本;B loss 为网损成本;B MG 为燃气轮机运行成本㊂新能源设备出力情况:P x ,t =P pv,t +P wind,t ,(10)其中P pv,t ㊁P wind,t 分别为光伏㊁风机发电功率㊂燃气轮机运行成本:902第2期高金兰,等:需求侧响应下主动配电网优化调度B MG =∑24t =1P MG,t ηMG L p gas ,(11)其中ηMG 为效率;L 为热值;p gas 为气价;P MG,t 是燃气轮机功率㊂需求侧响应成本:B DLC =∑24t =1C DLCD DLC t +∑24t =1(E +t d +t +E -t d -t )α,(12)B IL =∑24t =1(C IL P IL,t -C wx P wx,t ),(13)其中C DLC 为DLC 补偿价格;d +t ㊁d -t 为增减负荷价格;C IL ㊁C wx 为IL 补偿价格㊁惩罚价格㊂网损成本:B loss =∑24t =1C g,t ∑Nj =1u j ,t ∑k ∈Ωj u k ,t G jk cos δjk ,t ,(14)其中N 为节点总数;u j ,t ㊁u k ,t 为t 时刻节点j ㊁k 电压幅值;G jk 为节点j ㊁k 间电导;Ωj 为以节点j 为首节点的尾节点集合;δjk ,t 为t 时刻节点j ㊁k 间电压相角差㊂环境成本即污染物处理成本最低,表达式为F 2=min ∑24t =1P grid,t W g C 1+∑24t =1P MG,t W MG C []2,(15)其中W g ㊁W MG 分别为向上级购买电量产生的污染物系数㊁燃气轮机污染系数;C 1㊁C 2为成本系数㊂2.2 动态权重调整主动配电网优化目标包括经济和环境成本两方面,可采用引入动态权重因子对综合成本进行实时优化[9]㊂对整个周期相同时间范围内的成本函数进行归一化处理,即可得到F 1(t )㊁F 2(t ),通过动态权重因子进行实时优化得到总目标函数:min f =∑24t =1[xF 1(t )+yF 2(t )],x =c 1+c 2F 1(t ),y =1-x ìîíïïïï,(16)其中x 为经济权重系数;y 为环境权重系数;c 1㊁c 2为变化因子㊂2.3 约束条件功率平衡约束为P MG +P pv +P wind +P bat +P grid =P load +P loss +P DR ,(17)其中P MG ㊁P pv ㊁P wind ㊁P bat ㊁P grid ㊁P load ㊁P loss ㊁P DR 分别为燃气轮机㊁光伏㊁风机㊁储能㊁上级电网传输㊁初始负荷㊁网损和需求响应功率㊂储能运行约束为E bat,t =E bat,t -1+(P c,t ηc -P d,t ηd )Δt ,(18)E min bat ≤E bat ≤E max bat ,(19)其中E max bat ㊁E min bat 分别为储能元件最大最小储量;E bat,t 为当前时刻储能元件储量;E bat,t -1为储能元件上一时刻余量;ηc ,ηd 分别为充放电效率;P c,t ㊁P d,t 分别为充放电功率㊂燃气轮机约束为P min ≤P MG ≤P max ,(20)其中P min ,P max 分别为燃气轮机出力上下限㊂除上述约束外,其他诸如节点电压约束等如文献[7]所描述㊂3 模型求解3.1 原始麻雀算法麻雀算法(SSA:Sparrow Search Algorithm)是对麻雀种群觅食过程中发生的一系列行为的分步012吉林大学学报(信息科学版)第41卷分析[10],具体原理如下㊂发现者位置更新:X t+1i,d=X t i,d exp-iαT()max,R2<S,X t i,d+Q L,R2≥Sìîíïïï,(21)其中X t i,d为第i只麻雀d维位置;T max为迭代次数上限值;α∈(0,1]为随机数;R2㊁S分别为危险值和正常值;Q为随机数;L为1×D的矩阵㊂跟随者位置更新:X t+1i,d=Q exp X t W i,d-X t i,diæèçöø÷2,i>n2,X t bi,d+X tb i,d-X t i,d A+L,其他ìîíïïïï,(22)其中X t Wi,d 为最差位置;X t bi,d为最好位置;A+=A T(A T A)-1,A为全为1或-1的矩阵㊂预警者位置更新:X t+1i,d=X t i,d+βX ti,d-X b t i,d,X t i,d+K X t i,d-X W t i,d(f i-f w)+æèçöø÷ε,ìîíïïïï(23)其中β为(0,1)的正态分布随机数;K为[-1,1]的随机数;f i为当前个体适应度;f g为最优个体适应度;f w为最差个体适应度㊂3.2 改进算法3.2.1 改善初始种群对智能算法,初始种群较差会对算法寻优过程产生一定负面影响,为避免由于初始种群造成局部最优现象,采用拉丁超立方抽样产生初始种群,具体步骤如下:1)确定一个初始种群规模T;2)将每一维量的可行区域分割成T个长度均一的区域,即H n个超立方体;3)建立矩阵B(H×n),其每行即为一个被抽到的超立方体;4)在不同抽中的超立方体中随机得到样本,即为初始种群的值㊂3.2.2 引入正弦权重系数为避免麻雀算法早熟现象,先引入粒子群算法的粒子移动概念,将跳跃到最优解的方式变为正常移动,并去除向原点收敛操作㊂再引入正弦变化的权重系数,具体如下㊂发现者:X t+1i,d=X t i,d(1+Q),R2<S,ωX t i,d+Q,R2≥S{㊂(24) 跟随者:X t+1i,d=ωX tb i,d+1D∑D d=1(K(X t b i,d-X t i,d))㊂(25) 权重系数:ω=ωmin+ωmax+ωmin2sinπt t()max,(26)其中ωmax为权重峰值;ωmin为权重谷值;t为当前迭代次数;t max为迭代次数峰值㊂对预警者改变跟随方式:X t+1i,d=X t i,d+β(X t i,d-X t bi,d),f i≠f g,X t i,d+β(X t Wi,d-X t bi,d),f i=f g{㊂(27)112第2期高金兰,等:需求侧响应下主动配电网优化调度3.2.3 变异操作变异操作能在一定程度上改善个体均一性,提升整体寻优效果[11⁃12]㊂在算法流程中引入变异概念对当前适应度最差的10%个体进行替换,并且按照自然进化的方式对变异概率进行合理变化,以平衡寻优进程,变异过程和概率为X new i ,d =X now i ,d +p m X now i ,d ,(28)p m =p max -∑N i =1(f i -f avg )2N p ,(29)其中X new i ,d 为变异后个体;X now i ,d 为变异前个体;P max 为变异频率上限;f i ㊁f avg 分别为个体的适应度㊁种群中所有个体的平均适应度;p 为变异频率调节参数㊂3.3 基于改进SSA 的主动配电网优化调度求解步骤依据主动配电网优化调度模型选取合适控制变量,麻雀个体位置的优劣代表目标函数的优化程度㊂通过麻雀群体避让天敌的行为进行位置更新,迭代到最优位置,即最佳优化调度结果,其流程图如图2所示,具体步骤如下:Step 1 输入主动配电网参数,包括新能源㊁储能设备等出力大小和负荷大小,以及分时电价㊁补偿价格等;Step 2 设置改进麻雀算法的初始数据,即迭代次数㊁权重系数㊁种群大小和变异概率等;Step 3 采用LHS 初始麻雀种群;Step 4 进行改进麻雀算法操作,根据粒子移动概念进行发现者㊁跟随者位置更新;在全维度进行警戒者位置更新;Step 5 判断是否进行终止操作,是则输出最优结果;Step 6 未达到截至条件,进行变异操作,将部分劣等个体进行变异,替代变异前个体,重新返回Step4进行循环,直至达到截至条件㊂图2 主动配电网优化调度流程图Fig.2 Optimal dispatching flow chart of active distribution network 4 算例分析4.1 仿真参数笔者采用修改后的IEEE33节点系统(见图3)验证整体模型的效果㊂节点17㊁18㊁24㊁25接入价格响应负荷;节点30㊁31㊁32接入激励响应用户;光伏接入节点15;风机接入节点4;燃气轮机接入节点21;储能设备接入节点23㊂DLC 补偿成本为0.3元/(kW㊃h),IL 的补偿成本为0.5元/(kW㊃h)㊂24h 的风光出力㊁负荷情况如图4所示,需求侧模型参数设置㊁区域内电价划分方式参照文献[13]㊂储能设备允许的SOC(State Of Charg)波动为0.2~0.9;燃气轮机的效率为0.85;光伏风机的维护成本为0.3元/(kW㊃h)㊂212吉林大学学报(信息科学版)第41卷图3 改进IEEE33节点图Fig.3 Improved IEE33node diagram 图4 主动配电网新能源出力、负荷曲线Fig.4 New energy output and load curve of active distribution network 4.2 仿真分析设置4种场景㊂场景1:电网不执行需求响应及优化㊂场景2:电网执行价格型需求响应㊂场景3:电网执行激励型需求响应㊂场景4:电网执行多种需求响应㊂场景1㊁4的总体调度情况如图5所示㊂图5 不同场景主动配电网优化调度图Fig.5 Optimal dispatching diagram of active distribution network in different scenarios 场景1中,在夜间时段以及用电器数量增加时,储能装置进行放电调节,在用电器数量减少以及新能源出力充足时进行充电调节,充分发挥其高发低储作用㊂燃气轮机在新能源出力不足及负荷升高时进行出力,减少相应的购电功率㊂在场景4中,需求侧响应技术的加入,在负荷高峰8⁃14h㊁20⁃23h 负荷相应减少,且部分负荷转移到1⁃6h㊂由于考虑环境成本以及动态优化条件,所以燃气轮机出力减少㊂对比场景1,场景4仅在20h㊁21h 燃气轮机工作㊂由图5可知,笔者提出的模型可有效调节不同阶段设备出力情况,合理实现一个周期内的总体调度㊂大电网㊁新能源发电以及储能设备协同作用,对区域内进行整体负荷供电㊂不同情况下需求侧响应前后负荷对比如图6㊁图7所示㊂可以看出3种情况均有削峰填谷效果,单一的需求响应在削峰填谷综合方面都有一定局限性㊂312第2期高金兰,等:需求侧响应下主动配电网优化调度图6 单一需求侧响应负荷变化曲线Fig.6 Response load curve of single demandside 图7 多种需求侧响应负荷变化曲线Fig.7 Response load change curves of multiple demand side 价格型响应下,7⁃11h 负荷减少约5%,12⁃14h几乎无变化,夜晚峰时段负荷减少约3%,谷时段1⁃7h 负荷提升3.3%㊂激励型响应下,夜晚峰时段负荷减少约5%,7⁃11h 几乎无变化,谷时段1⁃7h 负荷无升高㊂而综合两种响应模式所得结果在峰谷时段优于单一模式,峰时段均有5%以上负荷削减量,低谷时段负荷也有序上升㊂不同情况下的综合成本值如表1所示,与不进行需求侧响应相比,单一型需求响应以及多种需求响应结合可以通过响应措施进行负荷改变,使成本降低10%~20%㊂相比于场景1,场景4成本减少1242元,可有效降低整体的综合成本㊂表1 不同场景下成本情况 Tab.1 Cost under different scenarios 元场景1234经济成本4050.53791.83797.73109.6环境成本1756.31532.31425.11355.2总成本5706.85324.15222.84464.8 在调度周期内经济㊁环境权重变化情况如图8所示㊂在1⁃9h 经济权重递增趋势较大,从0.33递增到0.359,减少相应经济成本;17⁃21h 环境权重上升,对污染排放加以限制㊂对动态权重在一个调度周期内进行不间断调节,以减少整体成本㊂图8 动态权重变化图Fig.8 Dynamic weight change diagram 笔者分别采用灰狼优化算法(GWO:Grey Wolf Optimizer)㊁原始麻雀算法㊁鲸鱼优化算法412吉林大学学报(信息科学版)第41卷 图9 算法对比图 Fig.9 Algorithm comparison (WOA:Whale Optimization Algorithm)以及笔者的改进麻雀算法进行主动配电网优化,对比结果如图9所示㊂从图9中可看出,改进SSA 在整体迭代过程中稍优于其他算法㊂LHS㊁引入正弦权重㊁变异操作让算法中麻雀个体具备初始优势,在前期可达到较高的收敛速度;变异㊁正弦权重的引入可让其具备更好的全局寻优能力㊂对比发现,GWO 与WOA 前期收敛能力不强,原始SSA 的寻优速度与改进SSA 较为接近,但改进SSA 寻优精度更高㊂5 结 论笔者在考虑多种因素影响需求响应的基础上,构建主动配电网优化模型,采用改进麻雀算法进行求解,通过IEEE33算例进行仿真验证,证明了笔者模型㊁算法的准确性,结论如下:1)笔者提出的模型可有效实现主动配电网的优化调度,当需求响应加入运行时,可与其他设备进行协同优化,增加削峰填谷效果,配合动态权重因子的实时优化,可降低电网的整体成本;2)采用LHS㊁正弦因子㊁变异策略改进麻雀算法,可改善种群丰富程度,提高算法的收敛效果,与WOA㊁GWO㊁SSA 算法相比,改进的麻雀算法可以更好地进行主动配电网优化调度,有效降低综合成本㊂参考文献:[1]吕智林,廖庞思,杨啸.计及需求侧响应的光伏微网群与主动配电网双层优化[J].电力系统及其自动化学报,2021,33(8):70⁃78.LÜZ L,LIAO P S,YANG X.Bi⁃Level Optimization of Photovoltaic Microgrid Group and Active Distribution Network Considering Demand Side Response [J].Journal of Power System and Automation,2021,33(8):70⁃78.[2]刘伟,王俊,龚成生,等.基于激励机制的家庭能量系统优化策略研究[J].吉林大学学报(信息科学版),2021,39(5):525⁃530.LIU W,WANG J,GONG C S,et al.Research on Optimization Strategy of Family Energy System Based on IncentiveMechanism [J].Journal of Jilin University (Information Science Edition),2021,39(5):525⁃530.[3]张智晟,于道林.考虑需求响应综合影响因素的RBF⁃NN 短期负荷预测模型[J].中国电机工程学报,2018,38(6):1631⁃1638,1899.ZHANG Z S,YU D L.RBF⁃NN Short⁃Term Load Forecasting Model Considering Comprehensive Influencing Factors of Demand Response [J].Chinese Journal of Electrical Engineering,2018,38(6):1631⁃1638,1899.[4]许汉平,李姚旺,苗世洪,等.考虑可再生能源消纳效益的电力系统 源⁃荷⁃储”协调互动优化调度策略[J].电力系统保护与控制,2017,45(17):18⁃25.XU H P,LI Y W,MIAO S H,et al.Power System Source Load Storage”Coordinated Interactive Optimal Dispatching Strategy Considering Renewable Energy Consumption Benefits [J ].Power System Protection and Control,2017,45(17):18⁃25.[5]张超,左高,腾振山,等.基于需求侧响应的配电网优化调度研究[J].智慧电力,2020,48(2):53⁃57,91.ZHANG C,ZUO G,TENG Z S,et al.Research on Optimal Dispatching of Distribution Network Based on Demand SideResponse [J].Smart Power,2020,48(2):53⁃57,91.[6]艾欣,陈政琦,孙英云,等.基于需求响应的电⁃热⁃气耦合系统综合直接负荷控制协调优化研究[J].电网技术,2019,43(4):1160⁃1171.AI X,CHEN Z Q,SUN Y Y,et al.Research on Coordinated Optimization of Integrated Direct Load Control of Electric Thermal Pneumatic Coupling System Based on Demand Response [J].Power Grid Technology,2019,43(4):1160⁃1171.[7]朱超婷,杨玲君,崔一铂,等.考虑需求响应用户参与度的主动配电网优化调度[J /OL].电测与仪表:1⁃9[2022⁃06⁃08].https:∥ /kcms /detail /23.1202.TH.20201217.1641.003.html.512第2期高金兰,等:需求侧响应下主动配电网优化调度612吉林大学学报(信息科学版)第41卷ZHU C T,YANG L J,CUI Y B,et al.Optimal Dispatching of Active Distribution Network Considering Demand Response and User Participation[J/OL].Electric Measurement and Instrument:1⁃9[2022⁃06⁃08].https:∥/kcms/detail/ 23.1202.TH.20201217.1641.003.html.[8]范宏,邓剑.不确定性的激励型需求响应对配电网可靠性的影响[J].现代电力,2020,37(4):416⁃424. FAN H,DENG J.Influence of Uncertain Incentive Demand Response on Distribution Network Reliability[J].Modern Power, 2020,37(4):416⁃424.[9]杨雪.计及柔性负荷的多时间尺度主动配电网优化调度研究[D].北京:北京交通大学电气工程学院,2018. YANG X.Research on Optimal Dispatch of Multi⁃Time Scale Active Distribution Network Considering Flexible Load[D]. Beijing:School of Electrical Engineering,Beijing Jiaotong University,2018.[10]薛建凯.一种新型的群智能优化技术的研究与应用[D].上海:东华大学信息科学与技术学院,2020.XUE J K.Research and Application of a New Swarm Intelligence Optimization Technology[D].Shanghai:College of Information Science and Technology,Donghua University,2020.[11]黄治翰,汪晗,李启迪,等.基于改进遗传算法的主动配电网经济优化调度[J].山东电力技术,2021,48(10): 12⁃16,65.HUANG Z H,WANG H,LI Q D,et al.Economic Optimal Dispatch of Active Distribution Network Based on Improved Genetic Algorithm[J].Shandong Electric Power Technology,2021,48(10):12⁃16,65.[12]王彦琦,张强,朱刘涛,等.基于改进鲸鱼优化算法的GBDT回归预测模型[J].吉林大学学报(理学版),2022,60 (2):401⁃408.WANG Y Q,ZHANG Q,ZHU L T,et al.GBDT Regression Prediction Model Based on Improved Whale Optimization Algorithm[J].Journal of Jilin University(Science Edition),2022,60(2):401⁃408.[13]徐青山,曾艾东,王凯,等.基于Hessian内点法的微型能源网日前冷热电联供经济优化调度[J].电网技术,2016, 40(6):1657⁃1665.XU Q S,ZENG A D,WANG K,et al.Hessian Interior Point Method Based Economic Optimal Dispatch of Day Ahead Combined Cooling,Heating and Power Generation in Micro Energy Network[J].Power Grid Technology,2016,40(6): 1657⁃1665.(责任编辑:刘俏亮)。
单价选择性阳离子交换膜的制备及工艺优化

第41卷第1期2021年2月膜科学与技术MEMBRANE SCIENCE AND TECHNOLOGYVol.41No.1Feb.2021单价选择性阳离子交换膜的制备及工艺优化张引弓,李福勤$,朱敏,李佳宾(河北工程大学能源与环境工程学院,邯郸056038)摘要:以8咯为改性材料,采用浸渍表面改性法,对普通均相阳离子交换膜进行表面改性来制备单价选择性阳离子交换膜.通过电渗析试验,研究不同制备因素对改性膜选择分离性能的影响,从而优化制膜条件;并在最佳制备条件下,对改性膜进行膜面表征与基本性能测试.结果表明,最佳制膜条件为浸渍温度40C,浸渍时间6h,8咯浓度0.2mol/L,氧化剂浓度与种类为0.8mol/L的FeCl3;膜改性后表面更为平整,离子交换容量、含水率与溶胀度分别为0.78 mmol/g a7.3%与&5%;Ca2+的泄漏率仅为7.7%,Na c的透过率为60.3%,选择透过性系数可达7.8,有优良的离子选择分离性能.关键词:8咯;浸渍表面改性法;均相阳离子交换膜;单价选择性阳离子交换膜;选择分离性能中图分类号:TQ028.8文献标志码:A文章编号:10078924(2021)01005707doi:10.16159/ki.issnl007-8924.2021.01.008离子交换膜技术作为膜分离技术的重要组成,由于其具有操作简单、成本效益高、能耗低、环境友好等优点,已在环境保护、资源回收、能源生产等方面得到广泛应用:2—4(,但在某些领域如饮用水生产中的选择性除盐、海水浓缩制氯化钠、锂的提取、废液中的酸回收以及特定离子去除等5则需要离子交换膜具有单/多价离子选择性能,而单价选择性离子交换膜弥补了普通离子交换膜这一缺陷•尽管已有商品化的单价选择性离子交换膜应用于工业领域,但它们的分离性能和价格并不令人满意.近年来,国内外大量学者和机构展开了对高性能单价选择性离子交换膜的研究.针对单价选择性阳离子交换膜,阳离子之间的选择性分离主要取决于它们对膜的亲和力和离子在膜中的迁移率阳离子选择性分离过程的机理可概括为'—7:(1)静电斥力效应,(2)空间孔径筛分效应,(3)Gibbs水合能效应.因此,基于以上3种分离机理,离子交换膜的改性可分为膜基体改性和膜表面改性•膜基体改性主要包括共价交联'—10(、聚合物共混'1—2,膜表面改性主要包括浸渍法'3—6、电沉积法'7—20、层层自组装法:21—23等•近年来,一些新的方法如光诱导法'4(、退火法'5(、重氮诱导锚定法'6(等也用于离子交换膜的改性•相对于膜基体改性,膜表面改性更为简单、经济与有效•目前单价选择性阳离子交换膜的改性材料主要为导电高聚物,如聚毗咯'4,8—30(、聚苯胺皿、聚乙烯亚胺'6(、壳聚糖、聚季R盐'0(等.本文以简单有效的浸渍法为改性方法,以稳定性高、易于合成的聚毗咯为改性材料,通过对普通均相阳离子交换膜进行表面改性,制备单价选择性阳收稿日期:2020-03-13;修改稿收到日期:2020-09-30基金项目河北省重点研发计划项目(19213602D)第一作者简介:张引弓(1994-),男,河北唐山市人,硕士生,研究方向为膜分离理论与技术,E-mail:1028271666@,通讯作者,E-mail:*******************引用本文:张引弓,李福勤,朱敏,等•单价选择性阳离子交换膜的制备及工艺优化'(•膜科学与技术,021,1(1):57—63&Citation:Zhang Y G,Li F Q,Zhu M,t al Preparation and process optimization of monovalent selective cation exchange membrane'].Membrane Science and Technology(Chinese),2021,41(1):57一63.・58・膜科学与技术第41卷离子交换膜,并与改性前的膜及商品化单价选择性阳离子交换膜进行离子选择分离性能比较"通过单因素实验优化制膜条件•同时,在最佳制备条件下对膜改性前后进行了膜面表征与基本性能测试.1实验部分1.1实验试剂与仪器卩比咯(C4H5N)、N^Cl、CaCl2)NaOH)FeCl3) (NH4)2S2O8、Na S2O8、KIO3、H2O2、HCl)H2SO4、EDTA、NH4Cl、氨水、铭黑T、酚L等,均相阳离子交换膜(未改性膜)由山东天维膜技术有限公司提供;商品化单价选择性阳离子交换膜(商品膜)由日本ASTOM公司提供.自制电渗析装置、自制电渗析搅拌器、数显恒温水浴锅;直流稳压电源、振荡器、磁力搅拌器、电子天平、真空干燥箱、扫描电子显微镜、电感耦合等离子光谱发生仪.1.2试验与分析方法1. 2.1单价选择性阳离子交换膜的制备方法预处理过程:将均相阳离子交换膜裁剪成10cmX13.5cm大小,浸入去离子水中12h使其充分延展,取出后浸入0.5mol/L H2SO4溶液中2h待其完全氢化后反复用去离子水冲洗表面残留的酸.膜制备过程:在30C恒温水浴条件下,将预处理后的膜浸入200mL浓度为0.2mol/L的毗咯溶液中,向卩比咯溶液加入20mL浓度为0.06mol/L 的HCl溶液作为质子酸掺杂剂,待其混合均匀后"伴随搅拌向毗咯溶液缓慢滴加20mL浓度为0.2mol/L的FeCl3溶液,滴加速度为2mL/min,滴加完后,使毗咯在膜表面充分反应6h反应结束后取出膜用去离子水反复冲洗,去除表面残留氧化剂"放入去离子水中备用.1.2.2电渗析装置与试验方法电渗析试验采用自制四室电渗析装置(如图1所示)装置阴、阳极板材料分别为不锈钢与钛涂钉"中间放置的C$EM为1.2.1制备的单价选择性阳离子交换膜(或未改性膜、商品膜)两侧放置的AEM为阴离子交换膜,膜的有效面积是7X9cm?.两侧极室内的极液为0.2mol/L Na SO-淡室溶液为0.1mol/L CaCl2和0.1mol/L NaCl,浓室为0.05mol/L NaCl,各室溶液体积均为500mL,电渗析时间为2h电流密度为10mA/cm2.------------------+直流电源---------图1电渗析试验装置示意图Fig.1Schematic diagram of electrodialysis test device 1.2.3膜面表征与基本性能测定1)扫描电子显微镜(SEM)观察膜表面形貌将膜用去离子水反复冲洗后放入真空干燥箱"在30C条件下将其干燥24h对处理好的膜进行喷金处理,随后进行扫描电子显微镜观察•2)离子交换容量(EC)的测定离子交换容量反映膜与反离子交换能力的高低,其测定方法为:(1)先用1mol/L HCl反复冲洗膜3次;(2)将膜浸入1mol/L HCl中浸泡24h;(3)膜用离子水3"除膜残留的H十;⑷将膜样再浸入50mL浓度为1mol/L 的NdCl溶液中24h每6h换1次NdCl溶液;(5)浸泡完后,收集浸泡液,以酚L为指示剂,用0.01mol/L NaOH滴定浸泡液中H十,即为n H十(mmol);(6)将膜再用1mol/L NaCl溶液浸泡2h,使其转化为Na型,用去离子水反复冲洗膜表面;(7)将膜在30C条件下真空干燥24h称取干重记>4/%dry(Na,g)•离子交换容量按公式(1)计算:iec=6h+(mmol)(1)%dry(Na,g)3)含水率和溶胀度的测定把膜准确裁剪成5cmX5cm大小,放于去离子水中浸泡24h将膜取出后用滤纸轻轻擦去膜表面水分用电子天平称量,己为湿重W湿,同时测量湿膜尺寸并计算其膜面积+湿;称量后的湿膜在30C条件下真空干燥24h至恒重,称量,己为干重W干,测膜尺寸并计算膜积+含水率&w(%)按公式(2)计算:&w(%)=W J干⑵溶胀度3(%)按公式(3)计算:第1期张引弓等:单价选择性阳离子交换膜的制备及工艺优化・59・S r(%)=A AA⑶4)膜对离子分离性能的测定离子透过率$(%)的测定:7(%)=$$(4)5i式中:%G表示电渗析试验前后i离子的浓度差"mol/L;C01表示电渗析试验前淡室i离子的初始浓度mol/L.选择透过性系数D N»用来表示膜对本试验中Na十/Ca2c两种价态离子的选择透过性能,其数值越大,表示膜对Na十/CJ十选择分离能力越高,其计算如公式(5)所示:△C j十/C j十△C ea2十/C a2十5)式中:%C Na十与△C j2十分别表示电渗析试验前后Na十与Ca2c的浓度差,mol/L;C j十与G/十分别表示电渗析试验前Na十与Ca2+的初始浓度,mol/L.Nd十浓度的测定采用电感耦合等离子光谱发生仪(ICP)测定;Ca2十浓度的测定依据《水和废水检测分析方法》(第四版),采用EDTA滴定法测定.2结果与讨论2.1改性条件对膜选择分离性能的影响因素分析2.1.1未改性膜与商品膜选择分离效果为便于膜改性条件的比较与分析,通过电渗析试验对未改性膜与商品膜进行离子选择分离性能的测定,其结果如表1所示.表1膜选择分离性能Table1Membraneselectiveseparationperformance项目a十透过率/%CJ+泄漏率/%性系数D C(+性膜65545614膜44121620由表1可知,未改性膜的选择透过性系数为1.4,其对Nd十/CJ十基本无选择分离作用,而商品膜选择透过性系数为2.0,其对Na十/Ca?十的选择分离作用优于未改性膜昇旦其在降低CJ十泄漏率的同时,也减少了Na十的透过率,因此其选择分离性能也不太理想.21.2浸渍温度对改性膜选择分离性能的影响保证其它制膜条件不变,通过电渗析试验分别测定不同浸渍温度条件下制备的单价选择性阳离子交换膜对CJ十/Na十体系选择分离性能,其结果如2&图2浸渍温度对改性膜选择分离性能的影响Fig.2Effect of impregnation temperature on selective separation performance of modified membrane从图2可以看出,CJ十的泄漏率随浸渍温度的上升呈现先减小后增加的趋势,这是因为毗咯的聚合反应受温度影响大,温度过低抑制反应进行,导致在膜表面合成的聚毗咯产物低,影响了改性膜对Ca2c的截留效果,而反应温度过高"比咯聚合反应过快,其分子链不能正常增长,导致合成聚毗咯的共辄结构不稳定,使膜表面形成的聚G咯有结构缺陷,从而增加了CJ十的泄漏率.Na十的透过率在不同浸渍温度条件下基本不变,且和未改性膜水平保持一致,说明浸渍温度对Na十的透过率基本没有影响,离子的化"数随温度的升高呈现先增加后减小的趋势,并在所研究温度范围内均优于未改性膜和日本膜.40C为最佳膜制备温度,此时CJ十的泄漏率和选择透过性系数均达到最优,分别为14.6%和4.5,优于未改性膜的45.6%与1.4,并优于商品膜的216%和2.0.21.3浸渍时间对改性膜选择分离性能的影响保证其它制膜条件不变,通过电渗析试验分别测定不同浸渍时间条件下制备的单价选择性阳离子交换膜对CJ十/Na十体系选择分离性能,其结果如3&从图3可以看出,改性膜对CJ十的泄漏率随浸渍时间的增加减小"6h以"漏化明显,这是因为在2〜6h内,随着浸渍时间的增加, G咯单体不断发生聚合反应,在膜表面不断形成致密聚毗咯层,膜的改性效果不断提高,在6h时"比咯单体反应基本结束,膜改性效果趋于稳定•从图3・60・膜科学与技术第41卷还可以看出,Na+的透过率在不同浸渍时间下依然保持较高稳定性,选择透过性系数随浸渍时间增加不断提高,在2〜6h变化较快,在6h以后变化较为缓慢,在浸渍时间为12h时,改性膜选择透过性数45"性膜和膜&图3浸渍时间对改性膜选择分离性能的影响Fig3Efectofimpregnationtimeonselectiveseparation performance of modified membrane2.1.4氧化剂浓度对改性膜选择分离性能的影响聚卩比咯由卩比咯在氧化剂作用下聚合而成,氧化剂与毗咯浓度相互关联影响着膜的改性效果•故本文将毗咯浓度固定不变,并不断改变氧化剂的浓度,从而改变氧化剂与G咯浓度的比例关系,同时保证其它制膜条件不变,通过电渗析试验测定制备的单价选择性阳离子交换膜对ca十/a十体系选择分离性能,其结果如图4所示.4氧化度对性膜分离性的影响Fig.4Effect of oxidant concentration on selective separation performance of modified membrane从图4可以看出,改性膜对ca十的泄漏率与Na十的透过率均随氧化剂浓度的增加而呈现先减小后增加的趋势,Na十的变化幅度小于Ca2+,Na十的透过率并未像图2与图3呈现的结果那样保持较高的稳定性•在氧化剂浓度为0.8mol/L(氧化剂与G 咯浓度比为4:1)时C j2十泄漏率最低,仅为84%,明显优于未改性膜的45.6%与商品膜的21.6%,有效地截留了Ca2+,此时N q十的透过率为61.4%,略低于改性膜的65.5%,但明显高于商品膜的44.1%.产生这种变化趋势的原因是随着氧化剂浓度的增加,加快了膜表面聚毗咯的合成,膜表面能形成致密的聚毗咯层,从而降低了CJ十的泄漏率,而由于聚G咯层过于致密,其对N el十的透过也产生阻碍作用,而当氧化剂浓度过高时(大于0.8mol/L) G咯单体的化学聚合速度过快,发生过氧化反应,从而破坏了聚G咯的共辄结构,导致CJ十泄漏率与Na十的透过率增加.选择透过性系数随氧化剂浓度的增加而先增加后减小,在氧化剂浓度为0.8mol/ L时达到最佳,系数达到7.4,明显优于未改性膜的1.4与商品膜的2.0.2.1.5氧化剂种类对改性膜选择分离性能的影响保证其它制膜条件不变,通过电渗析试验分别测定氧化剂为FeC—KIO2、NaSzOs、(NH4)2s2O8、H2O2时制备的单价选择性阳离子交换膜对CJ十/a十体系选择分离性能,其结果如图5所示.9080706050403020100%/»談atf ofrtf54321图5氧化剂种类对改性膜选择分离性能的影响Fig.5Effect of oxidant types on selectiveseparation performance of modified membrane从图5可以看出,不同氧化剂种类对膜的改性效果差异明显,以CJ十泄漏率和选择透过系数作为考察改性膜选择分离性能指标,不同氧化剂对膜改性效果由好到坏依次为FeCl〉KIO2〉H2O2& (NH4)2S2O8〉Na2S2O8,当氧化剂为NaS2O8和(NH4)2S2O8时,其改性效果较差,对膜改性效果无第1期张引弓等:单价选择性阳离子交换膜的制备及工艺优化・61・明显提升.只有氧化剂为FeCl3时"莫改性后Ca十漏率(15.3%)小膜的21.6%,改性膜保留了性膜对a十较高,当氧化FeCl、KIO2和H2O2时,改性膜分离性膜2.2膜面表征与性能测定2.1结果,将浸渍时间为6h浸渍温度为40°C,氧化剂种类为FeC3氧化剂浓度为0.8mol/L"比咯浓度为0.2mol/L膜改性的,并对下的单价性阳离子交换膜进行膜征与性能测2.2.1扫描电子显微镜(SEM)观测膜表面形貌6为膜 性前与下进行改性制得的单价性阳离子交换膜放大2000倍的膜表形貌图.由图6可以看出"莫改性后较改性前表面较为光滑,这是由于膜生成的聚毗咯填充了膜的,并形成的聚毗咯,使膜形成一个更的结构.(a)改性前(b)改性后图6膜改性前后表面SEM观测图Fig6SEM observation of surface before andaftermembranemodification2.2.2离子交换容量(EC)膜改性前后离子交换容量分0.89和0.78mmol/g,膜改性后离子交换容量较改性前降低了10.1%,这是聚毗咯在膜形成一层正电荷层,能够中和性膜中部分带负电的官,有效离子交换减少,离子交换容量•2.2.3含水率和溶胀度膜改性前水率分别20.0%和17.3%,溶胀度分10.1%和&5%,膜的含水率与溶胀度改性后较之前均有下降,这是膜形成高度致的聚毗咯结,降低了膜的亲水性,同时增加膜的机械强度,导致膜改性水率与溶度•膜的含水率和溶胀度对膜的离子性能有较大影响,与水率或低溶胀度的膜,高溶胀度和高水率的膜通常具有较高的电导率,但离子选择性较2.2.4分离性通过电渗,对最优条件下制备的单价选性阳离子交换膜进行离子分离性能测£结:Na十60.3%,C j2十漏寸7.7%,性系数为7.&与性膜相比,其在a十仅 5.2个百分点的同时,使C j2十漏了37.9个百分点,性系数大大提高,离子分离性能大大提高;与膜相有更高的Nd十和更低的Ca十漏率,分离性膜3结论1)以聚毗咯性,浸渍法性方法,了单价 性阳离子交换膜,通过对膜的研究,确膜:浸渍温度为40C浸渍时间为6h,比咯浓度为0.2mol/L,氧化度与类08mol/L的FeCl32)Na十的膜影响小下保持较高性,Ca十膜影响较大,古性系数的变化主要Ca十的化3)下性膜形成聚卩比咯,这导性膜较改性前膜粗糙度减小离子交换容量、水与溶度有性膜对Ca十漏率和性系数分7.7%和78性膜的456%和14并膜的216%和20有较高的离子性与方法有行性参考文献:[叮葛倩倩,葛亮,汪耀明,等.离子交换膜的发展态势与应用展望'(•化工进展,2016,35(6):1774—1785.[2(Ran J,Wu L,He Y,et2.Ion Exchange membranes: New developments and applications[J].J Membr Sci, 2017522:267—291[3(Nagarale R K,Gohil G S,Shahi V K.Recent developments on ion-exchange membranes and electro-membrane processes[J].Adv Colloid Interf Sci,2006,119 (2/3):97—130.关文学,王三反,李艳红.概述离子交换膜的发展及前景应用'(应用化工,2019,48(4):888—892.[5]He Y,Ge L,Fu Z,et2.Monovalent cations permse・62・膜科学与技术第41卷lective membranes with zwitterionic side chains[J].J Membr Sci,2018,563:320—325.[6(Ge L,W u B,Y u D,et al Monovalent cation perm-selective membranes(MCPMs):New developments and perspectives[J(.Chinese J Chem Eng,2017,25(11):1606—1615[7(Hao L,Liao J,Jiang Y,et al.''Sandwich"-like structure modified anion exchange membrane with enhanced monovalent selectivity and fouling resistant[J(.J Mem- brSci"2018"556:98—106&[8(Sata T.Modification of properties of ion-exchange membranes.+.Change of transport properties of cation-exchange membranes by various polyelectrolytes[J(.JPolymSciPartAPolymChem"1978"16(5):1063—1080.[9(Sata T,Sata T,Yang W.Studies on cation e xchange membraneshavingpermselectivitybetweencationsinelec-trodialysis[J(.J Membr Sci,2002,206(1/2):31—60.[10(Kumar M,Tripathi B P,Shahi V K.Ionic transport phenomenon acrosssol-gelderived organic-inorganiccompositemono-valentcationselectivemembranes[J(& JMembrSci"2009"340(1/2):52—61&[11(Balster J,Krupenko O,Punt I,et al.Preparation and characterisationofmonovalentionselectivecationex-change membranes based on sulphonated poly(ether ether ketone)[J(&J Membr Sci"2005"263(1/2):137—145&[12(Gohil G S,Nagarale R K,Binsu V V,et al Prepara-tionandcharacterizationofmonovalentcationselectivesulfonated poly(ether ether ketone)and poly(ethersulfone)composite membranes[J(.J Colloid InterfSci"2006"298(2):845—853.[13(Chapotot A,Pourcelly G,Gavach C,et al Electro-transpott of proton and divalent cations through modi-fiedcation-exchange membranes[J(.J ElectroanalytChem,1995,386(1/2):25—37.[14(Gohil G S,Binsu V V,Shahi V K.Preparation and characterization of mono-valent ion selective polypyr-rolecompositeion-exchangemembranes[J(&J MembrSci2006280(1/2):210—218&[15(姚婷婷•长效型单价选择性阳离子交换膜的制备与表征[D(.青岛:中国海洋大学2013.[16(Amara M,Hacene K.Modified membranes applied to meta l icionseparationand mineralacidconcentrationby electrodialysis[(.Sep Purif Technol,2002,29(1):79—87[17(Lambert J,Avila-Rodriguez M,Durand G,etal.Separation of sodium ions from trivalent chromium by electrodialysis using monovalent cation selective mem-branes[J(.JMembrSci2006280(1/2):219—225. [18(胡圆•单价选择性阳离子交换膜的制备及应用初探[D(.青岛:中国海洋大学2009.[19(王汉敏,高学理,胡圆,等.单价选择性均相阳离子交换膜的制备及性能[(•膜科学与技术,2011,31(5):—1233&[20(李健.单价选择性阳离子交换膜的制备和表征[D(.杭州:浙江工业大学2015.[21(ChengC WhiteN ShiH et1l Cationseparationsin electrodialysis through membranes coated with polyelectrolyte multilayers[J(.Polymer,2014,55(6):1397—1403&[22(White N,Misovich M,Yaroshchuk A,et al.Coating of nafion membranes with polyelectrolyte multilayerstoachievehighmonovalent/divalentcationelectrodial-ysis selectivities[J(&ACS Appl Mater Interf20157(12):6620—6628&[23(AfsaraN U Shehzada M A Irfana M et1l&Cation exchangemembraneintegratedwithcationicandanion-iclayersforselectiveionseparationviaelectrodialysis[J(&Desalination2019458:25—33&[24(WangM JiaYX YaoTT et1l&Theendowmentofmonovalentselectivitytocationexchangemembranebyphoto-induced covalent immobilization and sei--crosslinkingofchitosan[J(.JMembrSci2013442:39—47.[25(葛亮•单价阳离子选择性分离膜的制备与表征[D(.:中国科学技术大学2014.[26(Le X T,Viel P,Jegou P,et al.Diazonium-inducedanchoringprocess:anapplicationtoimprovethemon-ovalentselectivityofcationexchangemembranes[J(&JMaterChem201020(18):3750&[27(Luo T,Abdu S,Wessling M.Selectivity of ion ex-changemembranes:Areview[J(.JMembrSci2018201555:429—454.[28(Kameche M,X u F,Innocent C,et al.Characterisation of Nafion®117membrane modified chemically witha conducting polymer:An application to the demineralisation of sodium iodide organic solutions[J(.Sep P u-rifTechnol200752(3):497—503&[29(任丽,张雪峰,王立新,等.化学氧化法聚G咯导电性能与导电机理[(•半导体学报,2007,28(9):1396—1401&[30(苏琬.离子交换膜表面改性的研究一聚卩比咯浸渍改性阳膜[D(.兰州:兰州交通大学,2017.第1期张引弓等:单价选择性阳离子交换膜的制备及工艺优化・63・[31(Farrokhzad H,Moghbeii M R,Van Gerven T,et al Surfacemodificationofcompositeionexchange membranes by polyaniline[J(.React Funct Polym,2015,86:161—167.[32(Hu Y,Wang M,Wang D,et al.Feasibility study on surfacemodificationofcationexchangemembranesby quaternized chitosan for improving its selectivity[J(.JMembrSci,2008,319(1/2):5—9.Preparation and process optimization of monovalent selectivecation exchange membraneZHANG Yingong,LI Fuqin,ZHU Min,LI Jiabin(Co l egeofEnergyandEnvironmentalEngineering"HebeiUniversityofEngineering"Handan056038"China)Abstract:Using pyrrole as the modification material and surface impregnation as the modification method, themonovalentselectivecationexchangemembranesarepreparedbymodifyingtheordinaryhomogeneous cation exchange membrane.The influence of different factors on the separation performance of the membranesisstudiedbytheelectrodialysisexperiment,thereby optimizing the membranepreparation conditions.Under the optimal preparation conditions the surface characterization and basic properties of the modified membrane are tested.The results show that the optimum condition of membrane preparation sdeterminedasfo l ows:theimpregnationtemperatureis40C"theimpregnationtimeis6hours"thepyrrole concentration is0.2mol/L,the oxidant concentration and type is0.8mol/L FeCl3#he surface of modified membrane is smoother,the ion exchange capacity,water content and swelling degree are0.78mmol/g,17.3% and8.5%,respectively;the leakage rate of Ca2c is only7.7%,the transmission rate of Na c is60.3%,and the selective permeability coefficient is7.8,It has excellent ion selective separation performance.Key words:pyrrole;impregnation surface modification;homogeneous cation exchange membrane;monovalent selective cation exchange membrane;selective separation performance致谢2020年,《膜科学与技术》期刊在中国蓝星(集团)股份有限公司和中国膜工业协会的领导下,在期刊编委会的支持下,由审稿专家严格把关,顺利完成了全年6期的编辑出版任务,策划多个热点专题,新媒体融合发展效果显著,文章实现增强出版。
张瑛,女,1977 年出生,博士后,教授,博士生导师,理学院

硕导简介
张瑛,女,1977年出生,博士后,教授,博士生导师,理学院副院长。
2005年博士毕业于中国石油大学(北京)化工学院,2008-2009期间在美国加州大学河滨分校做博士后,导师为国际著名的多孔材料专家Pingyun Feng教授。
主要研究方向为多孔催化材料的制备和表征以及高分子合成。
以第一负责人承担完成了国家自然科学青年基金1项和北京市自然科学基金1项,目前正承担国家自然科学基金项目2项,教育部归国留学人员启动基金1项,中原油田分公司项目1项。
曾多次参与了国家973基础研究、国家自然科学基金、中国石油天然气集团公司以及中国石油天然气股份公司等项目。
已在国内外期刊上发表和接收学术论文共40余篇,SCI收录30篇;会议论文共17篇,国际会议论文12篇。
发明专利6项。
获山西省科技进步三等奖一项。
近3年代表性论文:。
NaA分子筛渗透汽化膜

蒸发、干燥等分离过程,可节约能丙醇脱水为例
由87(wt)%异丙醇生产99.7(wt)%异丙醇两种方法经济成本比较(日本Ohgaki公司)
red 名称
渗透汽化法 (日元/kg)
共沸蒸馏 (日元/kg)
te 低压蒸汽
0.9
4.8
is 电耗
0.6
0.2
g 冷凝水
0.55
1.0
使用场合
有机物/水溶液中选择性 脱有机物的膜,硅橡胶 (如PDMS)、聚偏氟乙 烯、聚丙烯之类的疏水 膜。
有机物/有机物分离的膜 如改良纤维素酯等。这类 膜必须根据不同的分离体 系特殊设计。
渗透汽化的应用
分离问题
应用实例
溶剂和溶剂混合物(醇、有机酸、酮、醚、酯等)的脱
水
水的分离
tered 有机物的分离 UnRegis 有机混合物的分离
几种透水膜的性能比较
乙醇/水体系渗透汽化膜
膜材料
料 液 中 乙 温度 渗透侧压 选择性 H2O 通量
d 聚乙烯醇
(GFT)
e 二醋酸纤维素 r 三醋酸纤维素 te 羧甲基纤维素
醇 浓度(wt%)
60~100
0~100 5~95 81~95
(℃)
75~100
25 20 25
力 (kPa) 0.02-5
3、不凝载气吹扫推动
4、可凝的载气吹扫
ed 原料液
液相
截流液 渗透液
原料液
液体
截流液 两相分离器
ter 蒸汽相
两相分离器
蒸汽
膜
冷凝器
冷凝器
渗透液
is 不凝性载体
eg 优缺点:利用原料液与惰性吹扫气之间
产生的蒸汽分压差,但由于不能通过足
一种铝箔基铝-富马酸MOF吸附剂涂层及其混合溶剂原位合成方法与应

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201911155833.4(22)申请日 2019.11.22(71)申请人 华南理工大学地址 510640 广东省广州市天河区五山路381号(72)发明人 梁向晖 谭冰琼 方玉堂 汪双凤 高学农 张正国 (74)专利代理机构 广州粤高专利商标代理有限公司 44102代理人 何淑珍 冯振宁(51)Int.Cl.B01J 20/22(2006.01)B01J 20/28(2006.01)B01J 20/32(2006.01)(54)发明名称一种铝箔基铝-富马酸MOF吸附剂涂层及其混合溶剂原位合成方法与应用(57)摘要本发明公开了一种铝箔基铝-富马酸MOF吸附剂涂层及其混合溶剂原位合成方法与应用。
该方法包括:将富马酸加入氮,氮-二甲基甲酰胺中,将铝盐加入水中,将两者混合均匀,得到混合液,调节pH为酸性,得到均匀酸性反应液;将铝箔浸没在所述均匀酸性反应液中,加热处理,取出,洗涤,烘干活化,得到所述铝箔基铝-富马酸MOF 吸附剂涂层。
本发明制备的铝箔基铝-富马酸MOF 吸附剂涂层,厚度可调,在铝箔上分布均匀、密实,与基材结合强度高;吸附剂涂层具有吸附能力强、吸附速度快、解吸温度低、循环稳定性好等特点。
可用于空气处理系统如加热、通风和空调(HVAC)的吸附剂涂层基板,以及吸附式热泵系统的吸附剂涂层铝箔翅片换热器中。
权利要求书1页 说明书11页 附图4页CN 110975817 A 2020.04.10C N 110975817A1.一种铝箔基铝-富马酸MOF吸附剂涂层的混合溶剂原位合成方法,其特征在于,包括如下步骤:(1)将富马酸加入氮,氮-二甲基甲酰胺中,混合均匀,得到富马酸溶液;将铝盐加入水中,混合均匀,得到铝盐溶液;然后将所述富马酸溶液与铝盐溶液混合均匀,得到混合液,调节所述混合液的pH为酸性,得到均匀酸性反应液;(2)将铝箔表面的氧化膜刮去,得到抛光后的铝箔,然后将抛光后的铝箔浸泡在氢氧化钠溶液中进行脱脂处理,取出,浸泡在盐酸溶液中进行活化处理,洗涤,干燥得到预处理后的铝箔;(3)将步骤(1)所述均匀酸性反应液置于反应釜中,将步骤(2)所述预处理后的铝箔浸没在所述均匀酸性反应液中,调节预处理后的铝箔箔面与反应釜底面的角度为30°-85°,密封反应釜,加热进行晶化处理,冷却至室温,取出得到负载铝-富马酸MOF涂层的铝箔;洗涤所述负载铝-富马酸MOF涂层的铝箔,然后进行烘干活化处理,得到所述铝箔基铝-富马酸MOF吸附剂涂层。
Science-2003-Lai-456-60

DOI: 10.1126/science.1082169, 456 (2003);300 Science et al.Zhiping Lai Vapor Separation Microstructural Optimization of a Zeolite Membrane for OrganicThis copy is for your personal, non-commercial use only.clicking here.colleagues, clients, or customers by , you can order high-quality copies for your If you wish to distribute this article to othershere.following the guidelines can be obtained by Permission to republish or repurpose articles or portions of articles): July 11, 2014 (this information is current as of The following resources related to this article are available online at/content/300/5618/456.full.html version of this article at:including high-resolution figures, can be found in the online Updated information and services, /content/300/5618/456.full.html#related found at:can be related to this article A list of selected additional articles on the Science Web sites /content/300/5618/456.full.html#ref-list-1, 3 of which can be accessed free:cites 33 articles This article 323 article(s) on the ISI Web of Science cited by This article has been /content/300/5618/456.full.html#related-urls 11 articles hosted by HighWire Press; see:cited by This article has been/cgi/collection/mat_sci Materials Sciencesubject collections:This article appears in the following registered trademark of AAAS.is a Science 2003 by the American Association for the Advancement of Science; all rights reserved. The title Copyright American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the Science o n J u l y 11, 2014w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o mMicrostructural Optimization of a Zeolite Membrane for OrganicVapor SeparationZhiping Lai,1Griselda Bonilla,1*Isabel Diaz,1*Jose Geraldo Nery,1*Khristina Sujaoti,1Miguel A.Amat,1Efrosini Kokkoli,1Osamu Terasaki,2†Robert W.Thompson,3Michael Tsapatsis,1‡Dionisios G.Vlachos 4A seeded growth method for the fabrication of high-permeance,high-separa-tion-factor zeolite (siliceous ZSM-5,[Si 96O 192]-MFI)membranes is reported.The method consists of growing the crystals of an oriented seed layer to a well-intergrown film by avoiding events that lead to a loss of preferred ori-entation,such as twin overgrowths and random anic polycations are used as zeolite crystal shape modifiers to enhance relative growth rates along the desirable out-of-plane direction.The polycrystalline films are thin (ϳ1micrometer)with single grains extending along the film thickness and with large in-plane grain size (ϳ1micrometer).The preferred orientation is such that straight channels with an open diameter of ϳ5.5angstroms run down the membrane parison with previously reported membranes shows that these microstructurally optimized films have superior performance for the separation of organic mixtures with components that have small differences in size and shape,such as xylene isomers.Zeolites are crystalline microporous aluminosili-cates with periodic arrangements of cages and channels that find extensive industrial uses as catalysts,adsorbents,and ion exchangers (1).Zeolite films have been targeted for potential applications as selective membranes,chemical sensors,and components in microelectronic de-vices (2–11).Among other emerging membrane technologies like polymer-inorganic composites (12,13),carbon films (14),and micro-and mesoporous silica films (15,16),zeolite mem-branes offer outstanding potential for molecular recognition at the subnanometer level and the ability to operate at high temperatures.However,the crystallinity of zeolites that provides these attractive features imposes challenges for film fabrication,including control of thickness (17),grain size,and orientation (18–20);minimization of the effect of grain boundary defects (such as channel blockages or intercrystalline paths withopenings that are larger than the zeolite pores)on permeation properties;and avoiding stress-in-duced crack formation (10).Most of the early efforts focused on multiple hydrothermal depo-sitions to gradually eliminate nonzeolitic trans-port pathways,and posttreatments for crack and other defect caulking (21–23).Although these approaches have been proven successful in dem-onstrating highly selective separations,they are of limited practical potential because of prohib-itive low fluxes.Although submicrometer-thick zeolite films (17)with high fluxes have been reported,it appears that there is considerable room for improvement with respect to selectivity and defect elimination.As a result,high-flux,high-selectivity zeolite membranes with molec-ular sieving applications are still to be achieved.We demonstrate a modified seeded growth procedure that allows fabrication of thin and oriented supported zeolite films of siliceous ZSM-5(24)([Si 96O 192]-MFI)(25)with superi-or performance.Most of the zeolite membrane studies in the past decade focused on ZSM-5because it has a channel system with pore open-ings near the sizes of many industrially impor-tant organic molecules (Fig.1A).Moreover,because of its multidimensional channel net-work,it is an excellent model system for funda-mental studies on achieving preferred orienta-tion in zeolite films and elucidating its effect on permeation properties.Crystal shape control.In the ZSM-5structure,sinusoidal channels (a-direction)ofcircular cross section are interconnected with straight channels (b-direction)of elliptical cross section (Fig.1A).A tortuous path is present along the c-direction.ZSM-5is typically syn-thesized in the presence of tetrapropylammo-nium hydroxide (TPA),which acts as a struc-ture-directing agent (SDA)through incorpora-tion at the channel intersections (Fig.1A).The charge distribution,size,and geometric shape of the SDA are believed to induce its structure-directing properties (26,27).Siliceous ZSM-5crystals,synthesized with TPA as the SDA,have a characteristic coffin shape (Fig.1B).Varying the synthesis conditions (e.g.,temper-ature,silica/TPA and silica/water ratios,and pH of the solution)leads to only minor changes in the crystal shape.The crystal dimensions are consistently longer along the c axis and smaller along the b axis (L c ϾL a ϾL b ).Kuhl (28)introduced hexapropylhexameth-ylenediammonium (dimer-TPA)cations as an alternate SDA for the synthesis of ZSM-5.Crys-tals synthesized with this SDA were reported to have a poorly developed morphology and a small L a /L b ratio (29).Beck and Davis (30)studied the effect of the dimer-and trimer-TPA on the morphology of ZSM-5nanocrystals.They reported that the materials synthesized with these SDAs were aggregates of smaller crystals with nonuniform crystal growth planes.Although these experiments were conducted for zeolite nanocrystals that do not develop distinct facets,they provide clear evidence for crystal shape modification by the use of different SDAs.Con-sequently,we performed a systematic study of ZSM-5seeded growth with these SDAs,with the objective of controlling crystal morphology and hence membrane microstructure.We started with a colloidal suspension of calcined,nearly spherical 100-nm siliceous ZSM-5seeds that were initially formed in the presence of TPA (31).The growth of these seed particles was subsequently monitored over time while subjected to different growth conditions (e.g.,silica/SDA ratio,silica/water ratio,and pH of the solution)and SDAs at temperatures of 130°C to 175°C.ZSM-5synthesis with the dimer-or trimer-TPA resulted in well-developed oval-shaped crystals (Fig.1C)instead of the characteristic coffin shape of monomer-TPA–grown crystals.High-resolution transmission electron micros-copy (HRTEM)images taken along the b axis of the trimer-TPA–grown crystals show that the curvature observed in the low-resolution TEM image is essentially a stepped surface comprising (h0h)and (h00)crystal faces.Im-ages taken down the same zone axis for TPA-grown crystals reveal the presence of (00l)faces as well,whereas these faces are rare in the dimer-and trimer-TPA–grown crystals.Under typical synthesis conditions,replace-1Department of Chemical Engineering,University of Massachusetts,Amherst,MA 01003,USA.2Depart-ment of Physics,Graduate School of Science,Tohoku University,Sendai 980-8578,Japan.3Department of Chemical Engineering,Worcester Polytechnic Insti-tute,Worcester,MA 01609,USA.4Department of Chemical Engineering,University of Delaware,New-ark,DE 19716,USA.*These authors contributed equally to this work.†Present address:Structural Chemistry,Arrhenius Laboratory,Stockholm University,10691Stockholm,Sweden.‡To whom correspondence should be addressed.E-mail:tsapatsi@R ESEARCH A RTICLE18APRIL 2003VOL 300SCIENCE 456ment of TPA with the dimer-and trimer-TPA decreases the L c /L b ratio from ϳ3.8to 2.1to 1.4,respectively (Fig.1D).Simultaneously,the L a /L b aspect ratio decreases from 2.4to 0.5[i.e.,the shortest dimension of the crystal is along the a axis in agreement with (29)].These results clearly demonstrated that the trimer-TPA significantly enhanced the growth rate along the b axis relative to that along the other axes,establishing an L b /L a ratio greater than 1and an L c /L b ratio approaching 1.The L b /L a ratio increase may be attributed to a better fit of the trimer in the straight versus the sinusoidal channel,as was previously suggest-ed for the dimer-TPA (29).Preliminary exam-ination of the (0k0)faces of TPA-,dimer-TPA-and trimer-TPA –grown crystals by atomic force microscopy reveals an increased roughness and density of steps for the latter,suggesting increased two-dimensional nucle-ation on this face with increasing SDA length.The latter can be attributed to trimer-TPAdepositing on (0k0)with its long axis perpen-dicular to this face.This arrangement is con-sistent with a better fit in the straight channels and similar to the one proposed for the dimer-TPA in (29).As a result of this enhancement of growth rate along the b axis,use of trimer-TPA enables the fabrication of well-inter-grown b-oriented ZSM-5films.Film growth.For the growth of mem-branes,we used a seeded growth procedure (8,17,32).A homemade ␣-alumina support (pore size 200nm)(23)(Fig.2A)was coated with a top layer of mesoporous silica (pore size,2nm)by using the sol-gel technique developed by Brinker and co-workers (16)(Fig.2B).The mesoporous silica layer provides a smooth surface that can be functionalized for the deposition of the seeds.In addition,it acts as a barrier for avoiding zeolite deposit formation in the interior of the support and reduces leaching of the aluminum from the support during the secondary growth procedure.We also found that the presence of the silica layereliminated stress-induced crack formation during calcination at the support-zeolite interface.A lay-er of seed particles with their b axes perpendic-ular to the support surface (b-oriented)was sub-sequently deposited on top of the mesoporous silica surface.The seeds with particle dimensions of ϳ500nm by 200nm by 100nm were synthe-sized by hydrothermal growth at 130°C for 12hours in a mixture with a molar composition of 5SiO 2:1TPAOH:500H 2O:20EtOH.They were subsequently washed by repeated centrifugation and decanting,and then they were calcined at a temperature of 525°C for 10hours before seed layer deposition.Several different strategies can be used to prepare oriented zeolite seed layers,such as slow dip coating (33),deposition after cationic polymer adsorption (8),and covalent bonding on functionalized surfaces (34).For the size and shape of seeds used here,the method of Ha et al.(34)gave superior results in terms of surface coverage and uniformity of the monolay-er because it does not require a stable suspension of the zeolite seeds.Such a suspension cannot be easily prepared because of the relatively large size of the seeds used here.Figure 2C shows that the precursor layer comprises nearly a monolayer of ZSM-5crystals oriented with their b axes perpendicular to the substrate.The density of defects,including empty spots,a-oriented grains,incorporation of twinned seeds,and seed deposi-tion in excess of a monolayer,is estimated to be ϳ10%by analysis of scanning electron micros-copy (SEM)images.Figure 2,D and E,and Fig.2,F and G,show typical top views of the films prepared after secondary growth of the seed layer with TPA and trimer-TPA,respectively.At early stages of sec-ondary growth,the TPA-grown films show con-siderable twinning (a-oriented overgrowth)and incomplete grain intergrowth.Upon further sec-ondary growth,a film with an a-oriented and eventually a c-oriented (Fig.2E)top layer was obtained,depending on the time and temperature of secondary growth.The higher the temperature and the longer the time of secondary growth,the more pronounced is the c-oriented layer forma-tion.This failure to preserve the orientation of the seed layer until a well-intergrown film can be obtained has been reported before for TPA-grown films of ZSM-5(8).We propose that it may be attributed to the slow growth of the b-oriented seed layer perpendicular to the support (b-direction)when TPA is used.The low relative growth rate along the b-direction and the con-comitant slow consumption of nutrients in the vicinity of the film allow (i)nucleation and growth of a-oriented twins and (ii)nucleation in solution near the solution-support interface.The latter leads to the incorporation of randomly ori-ented seeds that eventually resulted in films of c-orientation by van der Drift ’s evolutionary se-lection (19).In contrast,the use of trimer-TPA by enhancing the relative growth rate along the b axis (compared with nucleation rate in solution and growth rate along the othercrystallographicFig.1.(A )A schematic representation of ZSM-5crystal structure.(B )SEM images of the characteristic shape of a ZSM-5crystal synthesized in the presence of TPA The crystals were grown at 140°C for 24hours with a molar composition of 40SiO 2:9TPAOH:9500H 2O:160EtOH.(C )Crystals grown with trimer-TPA (at 175°C with a molar composition of 40SiO 2:4TrimerTPAOH:9500H 2O:160EtOH)have a different shape from those grown with TPA.HRTEM images were taken with a JEM 1250operated at 1.25MeV.(D )The effect of the different SDAs on the crystal shape is quantified in a comparison of the aspect ratios of the crystals [height/depth (L c /L b )and width/depth (L a /L b )]synthesized in the presence of TPA,dimer-TPA,and trimer-TPA.The error bars are calculated from measurements of 20to 25crystals.Synthesis compositions were the same as those mentioned above,for secondary growth at 175°C for 1day.R E S E A R C H A R T I C L E SCIENCE VOL 30018APRIL 2003457Fig.2.SEM top view of(A)a porous␣-aluminasupport,(B)a mesoporous silica coating,and(C)a b-oriented seed layer.(D)Secondarygrowth of the b-oriented layer with TPA asSDA leads to a-oriented twin overgrowths be-fore complete intergrowth of the seed layercan be achieved.(E)The a-oriented twins andrandomly nucleated grains dominate and laterform an intergrown overlayer.(F and G)Incontrast,use of trimer-TPA allows the forma-tion of a well-intergrown b-orientedfilm.Thehigher magnification SEM shows evidence forenlargement of the original seed crystals byepitaxial in-plane and out-of-plane growth.Theflat grains are now larger than the originalseeds,with a shape intermediate to that ofseeds and oval-shaped trimer-grown crystals.Also note that the overgrown oval-shapedgrains are b-oriented and that twinning is re-duced.The membranes shown in(D)and(E)were formed by secondary growth at175°Cfor2and24hours,respectively,using a solu-tion with a molar composition of40SiO2:8TPAOH:8000H2O:160EtOH.The membraneshown in(F)and(G)was made by secondarygrowth at175°C for24hours in a solution with a molar composition of40SiO2:5TrimerTPAOH:8KOH:9500H2O: 160EtOH.The entire membrane samples were dried in air,calcined at480°C for4hours(heating/cooling rate 1°C/min),and sputter-coated with gold for observation with a JEOL5400scanning electronmicroscope.Fig.3.SEM cross section of membranes and corresponding XRD traces of the seed layers(bottom traces)and of the membranes(top traces)made by secondary growth of the seed layers.The XRD data were collected with a well-aligned Philips X’Pert diffractometer operating with(Cu K␣)ϭ1.5406Å.In the diffraction geometry used,the observed peaks correspond to out-of-plane crystal directions or,equivalently,crystal planes parallel to the membrane surface.If a randomly oriented seed layer is used[bottom XRD trace in(A)and(B)],depending on the secondary growth conditions,(A)c-oriented to(B)[h0h]-orientedfilms are obtained[top XRD traces in(A)and(B),respectively].Thesefilms have a columnar grain microstructure with increasing grain size and degree of preferred orientation withfilm thickness as a result of the evolutionary selection in a van der Drift’s type growth(23).Starting with b-oriented seed layers,the membranes obtained after secondary growth can be b-and a-oriented if TPA is used(C)and b-oriented if trimer-TPA is used(D).The enlarged insets of the top XRD traces show resolved (400)and(040)peaks in(C)indicating a-and b-out-of-plane compo-nents,and the absence of the(400)peaks in(D).Note also the fractures in cross section SEM of the b-orientedfilm in(D)indicating single grains extending throughout thefilm thickness,whereas a bilayer is evident in (C).The SEM images were collected after cross sectioning calcined membranes(with a diamond saw)following a procedure otherwise similar to that described in Fig.2.The asterisks(*)on the XRD traces indicate peaks of the␣-alumina support.R E S E A R C H A R T I C L E18APRIL2003VOL300SCIENCE 458directions)leads to well-intergrown films of b-orientation as shown in Fig.2,F and G.The presence of an a-oriented component for the TPA and its absence for the trimer-TPA grown films is confirmed by x-ray diffraction (XRD)analysis(Fig.3,C and D).For purposes of comparison,Fig.3also shows the SEM and XRD analysis of[h0h]-and c-oriented films prepared by seeded growth of randomly orient-ed seed layers with TPA(23).Previous studies have shown that good qual-ity b-oriented ZSM-5films can be prepared by in situ(unseeded)growth on certain nonporous supports,such as aluminum and silicon(7). However,similar films on porous supports and with quality appropriate for molecular sieving separations have not been prepared.Although one cannot exclude the possibility that appropri-ate synthesis conditions and/or processing schemes can be developed for that to be accom-plished,the lack of success in the last decade indicates that this is a difficult task for typical batch hydrothermal growth.The introduction of trimer-TPA in the secondary growth of b-orient-ed seed layers enables the reproducible prepara-tion of well-intergrown b-oriented membranesof ZSM-5on a porous support.This membranemicrostructure and those previously reportedprovide an opportunity to attempt a comparisonof the performance for films with drasticallydifferent preferred orientations.Separation performance.Xylene isomerseparation by ZSM-5membranes is a widelyaccepted test for benchmarking their molecularsieving ability.Xylene isomer separation inZSM-5membranes relies on intracrystalline mo-lecular sieving.Therefore,it is an ideal probe ofnanometer-scale defects and intracrystallinetransport pathways,unlike other separations(e.g.,butane isomers,nitrogen and sulfur hexafluoride)that can be performed satisfactorily by defectivemembranes.For example,high n-butane/i-butaneand N2/SF6selectivities can be obtained byZSM-5films despite the presence of grainboundary defects detected by fluorescent confo-cal optical microscopy(FCOM),whereas thepresence of these defects correlates with poorxylene isomer separation performance(23).Inaddition to its fundamental importance,xyleneisomer separation is of industrial importance forpara-xylene production(3,17,23).In compari-son with permeation properties of microstruc-tures that have been previously studied extensive-ly,there is a dramatic improvement in the per-formance of the b-oriented films(Fig.4).Theb-oriented films grown by trimer-TPA combinethe highest separation factor with fluxes ap-proaching those through the alumina support.Although further tests at higher temperatures andxylene pressures are needed,the retention of highselectivity and flux at high temperatures providespromise for commercial feasibility.The improved performance of the trimer-TPA–grown films can be attributed to(i)thesmall membrane thickness(ϳ1m)and thepreferential orientation of the straight channelsrunning across the membrane,allowing for fastertransport of para-xylene that does not have to turnat channel intersections as in the other micro-structures(35);(ii)the large in-plane grain size(0.5to1m)enabled by the use of relativelylarge seed crystals,reducing the density of non-selective grain boundaries;.and(iii)the absenceof cracks formed during calcination because ofstresses at the support-zeolite interface(10).Fig.4.ZSM-5membrane performance in xylene isomer separation.Para-xylene,ortho-xylene permeance,and mixture separation factor(SP)are plotted versus temperature of permeation for typical(A)c-oriented,(B)[h0h]-oriented,(C)a-and b-oriented,and(D)b-orientedfilm.Thefeed partial pressure is0.45kPa for para-xylene and0.35kPa forortho-xylene.The permeation conditions,setup,and analysis proce-dure are described in(23)and references therein.Permeance versusseparation factor for para-xylene/ortho-xylene mixtures for support-ed composite MFIfilms is given in(E).The b-orientedfilms made bythe use of trimer-TPA show the highest selectivity andfluxes ap-proaching those of the alumina support.The para-xylene permeancethrough the support used in this study is about twice as high as theflux through the composite MFI membranes.The high separationfactor andflux are retained throughout the temperature range tested,in contrast to previous studies that showflux maxima at intermediatetemperatures.R E S E A R C H A R T I C L E SCIENCE VOL30018APRIL2003459Permporosimetry performed following the techniques of(17)indicated that the trimer-TPA–grown films are free of cracks and pin-holes detectable by this technique.FCOM performed after impregnation with fluoresce-in(23)revealed only a small number of grain boundary defects.These findings for the tri-mer-TPA–grown films are in sharp contrast with the corresponding ones for the c-orient-ed films,which showed the presence of a large density of grain boundary defects,and for the[h0h]-oriented films,which showed the presence of microcracks formed during calcination.We previously attributed the poor xylene separation performance of the c-oriented films to the presence of the grain boundary defects detectable by FCOM(23). We also found that to obtain high separation factors from[h0h]-oriented films,a crack reparation post treatment should be used(23) but that this led to considerable variation in flux and separation factors(23).This varia-tion is seen by the scattered permeation data associated with area(4)in Fig.4E.The im-proved reproducibility in the separation per-formance of the trimer-TPA–grown films is reflected by the smaller spread associated with area(7)in Fig.4E.Improved functionality ZSM-5membranes, as demonstrated by high-flux,high-selectivity xylene isomer separation,can be achieved by appropriate channel orientation throughout a thin film.The films were synthesized by seeded growth of oriented particle monolayers and use of SDAs that,in addition to directing the for-mation of the zeolite structure,act as crystal growth rate modifiers to achieve the appropriate balance between in-plane and out-of-plane growth.The implementation of crystal shape engineering by the use of SDA polycations as shape or habit modifiers should be applicable for the fabrication of other improved zeolite and molecular sieve films.References andNotes1.M.E.Davis,Nature417,813(2002).2.T.Bein,Chem.Mater.8,1636(1996).3.M.Tsapatsis et al.,CATTECH3,148(2000).4.J.Caro,M.Noack,P.Kolsch,R.Schafer,Micropor.Mesopor.Mater.38,3(2000).5.G.A.Ozin,A.Kuperman,A.Stein,Angew.Chem.Int.Ed.Engl.28,359(1989).6.C.J.Gump,V.A.Tuan,R.D.Noble,J.L.Falconer,Ind.Eng.Chem.Res.40,565(2001).7.Z.Wang,Y.Yan,Chem.Mater.13,1101(2001).8.S.Mintova,V.Valtchev,V.Engstrom,B.J.Schoeman,J.Sterte,Micropor.Mater.11(3-4),149(1997). 9.M.Kondo,M.Komori,H.Kita,K.Okamoto,J.Membr.Sci.133,133(1997).10.J.Dong,Y.S.Lin,M.Z.C.Hu,R.A.Peascoe,E.A.Payzant,Micropor.Mesopor.Mater.34,241(2000).11.Z.Wang,H.Wang,A.Mitra,L.Huang,Y.Yan,Adv.Mater.13,746(2001).12.T.C.Merkel et al.,Science296,519(2002).13.J.W.Koros,R.Mahajan,J.Membr.Sci.175,181(2000).14.M.B.Shiflett,H.C.Foley,Science285,1902(1999).15.R.M.de Vos,H.Verweij,Science279,1710(1998).16.Y.Lu et al.,Nature389,364(1997).17.J.Hedlund et al.,Micropor.Mesopor.Mater.52,179(2002).18.L.T.Y.Au,W.Y.Mui,u,C.T.Ariso,K.L.Yeung,Micropor.Mesopor.Mater.47,203(2001).19.A.Gouzinis,M.Tsapatsis,Chem.Mater.10,2497(1998).20.M.Noack et al.,Micropor.Mesopor.Mater.49,25(2001).21.Y.Yan,M.E.Davis,G.R.Gavalas,J.Membr.Sci.123,95(1997).22.M.Nomura,T.Yamaguchi,S.Nakao,Ind.Eng.Chem.Res.36,4217(1997).23.G.Xomeritakis,i,M.Tsapatsis,Ind.Eng.Chem.Res.40,544(2001).24.E.M.Flanigen et al.,Nature271,512(1978).25.W.M.Meier,D.H.Olson,Ch.Baerlocher,Atlas ofZeolite Framework Types(Elsevier,London,1996).26.B.M.Lok,T.R.Cannan,C.A.Messina,Zeolites3,282(1983).27.S.L.Burkett,M.E.Davis,J.Phys.Chem.98,4647(1994).28.G.H.Kuhl,C.Hill,U.S.Patent4,585,638(1986).29.E.de Vos Burchart,J.C.Jansen,B.van de Graaf,H.vanBekkum,Zeolites13,216(1993).30.L.W.Beck,M.E.Davis,Micropor.Mesopor.Mater.22,107(1998).31.B.J.Schoeman,J.Sterte,J.E.Otterstedt,J.Chem.mun.12,994(1993).32.M.C.Lovallo,M.Tsapatsis,AIChE J.42,3020(1996).33.L.C.Boudreau,M.Tsapatsis,Chem.Mater.9,1705(1997).34.K.Ha,Y.J.Lee,H.J.Lee,K.B.Yoon,Adv.Mater.12,1114(2000).35.L.J.Song,Z.L.Sun,L.V.C.Rees,Micropor.Mesopor.Mater.55,31(2002).36.K.Keizer,A.J.Burggraaf,Z.A.E.P.Vroon,H.Verweij,J.Membr.Sci.147,159(1998).37.Funding for this work was provided by NSF(CTS-0091406and CTS-0103010)and NASA-Microgravity(98HEDS-05-218).I.D.acknowledges support from aFulbright Fellowship,R.W.T.thanks WPI for grantinghim a sabbatical leave to the University of Massa-chusetts,and M.T.acknowledges support from a Ca-mille Dreyfus Teacher Scholar Award and thanks E.W.Corcoran and H.Deckman of ExxonMobil Researchand Development,Annandale,NJ,for advice regard-ing permporosimetry.8January2003;accepted24February2003Published online6March2003;10.1126/science.1082169Include this information when citing this paper. R EPORTSOn the Origins of MorphologicalComplexity in Block CopolymerSurfactantsSumeet Jain and Frank S.Bates*Amphiphilic compounds such as lipids and surfactants are fundamental buildingblocks of soft matter.We describe experiments with poly(1,2-butadiene-b-ethylene oxide)(PB-PEO)diblock copolymers,which form Y-junctions andthree-d imensional networks in water at weight fractions of PEOintermed iateto those associated with vesicle and wormlike micelle morphologies.Fragmen-tation of the network produces a nonergodic array of complex reticulatedparticles that have been imaged by cryogenic transmission electron microscopy.Data obtained with two sets of PB-PEOcompound s ind icate that this type ofself-assembly appears above a critical molecular weight.These block copoly-mers represent versatile amphiphiles,mimicking certain low molecular weightthree-component(surfactant/water/oil)microemulsions,without addition of aseparate hydrophobe.The manipulation of interfacial curvatureand topology plays a central role in thecreation of soft materials(1).Living cells,mayonnaise,and fracturing fluids used inoil recovery are representative examples ofheterogeneous systems containing coexistinghydrophilic and hydrophobic domains assem-bled in precise ways through the action ofubiquitous amphiphilic compounds such aslipids,soaps,and other surfactants(2).Mac-romolecular surfactants,such as poly(buta-diene-b-ethylene oxide)(PB-PEO)diblockcopolymers,offer important materials ad-vantages not associated with conventionallow molecular weight amphiphiles(3).Forexample,vesicles and wormlike micellescan be chemically cross-linked withoutstructural disruption,leading to dramaticmodifications of static and dynamic me-chanical properties(4,5).Over the pastdecade,Eisenberg and co-workers(6–8)have demonstrated that block copolymersalso afford access to a cornucopia of com-plex morphological assemblies throughclever processing strategies.For several years we have explored var-ious similarities and differences in the ther-modynamic and processing properties ofconventional and polymeric amphiphiles(4,9–11).Here,we document a surprising Department of Chemical Engineering and MaterialsScience,University of Minnesota,Minneapolis,MN55455,USA.*To whom correspondence should be addressed.E-mail:bates@R E S E A R C H A R T I C L E18APRIL2003VOL300SCIENCE 460。
采用含氟体系制备NaY分子筛膜

采用含氟体系制备NaY分子筛膜周荣飞;邵佳;徐龙女;胡娜;张飞;陈祥树【摘要】NaY zeolite membrane with high pervaporation performance was synthesized in fluorine containing system by the method of secondary hydrothermal growth. The crystallization of NaY zeolite and the pervaporation performance of NaY membrane synthesized in fluorine containing system were compared with those synthesized in fluorine-free system. Crystallization time and n(SiO2)/n(Al2O3) of the system were also optimized. The as-synthesized NaY zeolite layers were characterized by X-ray diffraction (XRD) , scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results showed that the addition of NH4F in synthesis system suppressed the formation of P-type zeolite, which was bedded in the zeolite membrane as the impurity phase. Five NaY zeolite membranes prepared under optimized synthesis conditions of w(SiO2)/n(Al2O3) of 25, crystallization time of 6. 5 h, showed a high average flux of (5. 3 ± 0. 3) kg/(m2·h) and a good average separation factor of 63 ± 3 for a mixture of water and ethanol with the mass ratio of 10/90 at 75℃, which were higher than those of NaY zeolite membranes prepared in fluorine-free system.%采用二次生长法,在含氟体系中制备了高渗透气化性能的NaY分子筛膜.比较了含氟体系和无氟体系中NaY分子筛的晶化过程和NaY分子筛膜的渗透气化性能,并对晶化时间和溶胶硅/铝摩尔比(n(SiO2)/n(Al2O3))进行了优化.采用X射线衍射(XRD)、扫描电子显微镜(SEM)和能谱仪(EDX)表征了NaY分子筛膜层晶体结构.结果表明,合成体系中添加N H4F,可有效抑制分子筛膜层中P型分子筛杂晶的形成.含氟体系中合成的NaY分子筛膜比无氟体系合成的NaY分子筛膜具有更高的渗透气化性能.在n(SiO2)/n(Al2O3)=25、晶化时间为6.5h条件下,合成的5根NaY分子筛膜应用在75℃、水/乙醇质量比10/90体系中的平均渗透通量和平均分离因子分别为(5.3±0.3) kg/(m2·h)和63±3.【期刊名称】《石油学报(石油加工)》【年(卷),期】2013(029)001【总页数】6页(P56-61)【关键词】分子筛膜;氟化铵;渗透气化;NaY分子筛【作者】周荣飞;邵佳;徐龙女;胡娜;张飞;陈祥树【作者单位】江西师范大学化学化工学院江西省无机膜材料工程技术研究中心,江西南昌330022;江西师范大学化学化工学院江西省无机膜材料工程技术研究中心,江西南昌330022;江西师范大学化学化工学院江西省无机膜材料工程技术研究中心,江西南昌330022;江西师范大学化学化工学院江西省无机膜材料工程技术研究中心,江西南昌330022;江西师范大学化学化工学院江西省无机膜材料工程技术研究中心,江西南昌330022;江西师范大学化学化工学院江西省无机膜材料工程技术研究中心,江西南昌330022【正文语种】中文【中图分类】TQ028.8NaY型分子筛膜在渗透气化分离领域具有广泛的应用前景[1-6]。
超细NaY分子筛的深度脱铝

超细NaY分子筛的深度脱铝王希龙;宋金娜;叶修群;顾海芳;黄曜;牛国兴【期刊名称】《催化学报》【年(卷),期】2012(33)7【摘要】The ultrafine NaY zeolite with 200 nm grain size was dealuminated deeply by the optimized treatment of (NH4)2iSiF6 solution, steamed at 600 ℃, silicon sol + oxalic acid, and steamed at 800 ℃, respectively. The first treatment of (NH4)2iSiF6 solution is very important, which can fix the framework defects of zeolile and strengthen its stability. The amount of (NH4)2iSiF6 and treated number need to be carefully controlled according to the grain size of NaY zeolite. For 200 run NaY zeolite, the best molar ratio of (NH4)2iSiF6 to framework aluminum of zeolite is 0.16 and once treatment is relatively appropriate. The final dealuminated Y zeolite has the high framework Si/Al ratio of 27.3 and surface area of 581.9 m2/g, as well as the crystallinity of 65%. The key factor for the successful deep dealumination of ultrafine Y zeolite is to repair promptly its crystal defects resulting from the dealumination process. The treatments of (NH4)2iSiF6 solution, silicon sol, and steamed at 800 ℃ appear such effect.%通过优化和组合不同脱铝补硅方法,依次经氟硅酸铵处理、600℃水热处理、硅溶胶+草酸处理和800℃水热处理过程,成功实现了200nm超细NaY分子筛的深度脱铝,最终产品骨架硅铝比高达27.3,比表面积为581.9m2/g,分子筛结晶度保持在65%以上.结果表明,对于超细NaY分子筛脱铝,第一步采用氟硅酸铵进行部分缺陷修补尤为重要根据分子筛晶粒尺寸不同,需严格控制氟硅酸铵用量和处理次数.当晶粒为200nm时,氟硅酸铵与分子筛骨架铝的摩尔比为0.16,处理一次较为适宜.在连续脱铝过程中及时补修脱铝产生的缺陷是保障超细NaY分子筛成功脱铝的关键,而采用氟硅酸铵、硅溶胶、800℃高温水热处理,可有效实施这种骨架修正作用.【总页数】7页(P1217-1223)【作者】王希龙;宋金娜;叶修群;顾海芳;黄曜;牛国兴【作者单位】复旦大学材科系,上海 200433;复旦大学材科系,上海 200433;复旦大学材科系,上海 200433;复旦大学材科系,上海 200433;复旦大学材科系,上海200433;复旦大学化学系,上海 200433【正文语种】中文【中图分类】O643【相关文献】1.超细HZSM-5分子筛硅/铝比对其催化甲醇制丙烯反应的影响 [J], 郭强胜;毛东森;孟涛2.超稳Y分子筛脱铝改性的研究进展 [J], 汪颖军;孙羽佳;所艳华;祖新月;席慧瑶3.脱铝超稳Y分子筛负载磷钨酸铯催化水解乙酸甲酯 [J], 巩月伟;付振武;万辉;管国锋4.脱铝超稳Y分子筛催化α-蒎烯水合反应研究 [J], 刘汉文;尹笃林5.脱铝超稳Y分子筛上α-蒎烯烷氧基化反应研究 [J], 刘汉文;尹笃林因版权原因,仅展示原文概要,查看原文内容请购买。
CRG技术在煤制合成天然气中的应用

CRG技术在煤制合成天然气中的应用吴彪【摘要】介绍了甲烷化催化剂的研究现状及其构造,并对甲烷化镍基催化剂失活的原因进行了分析,指出硫中毒和积碳是造成催化剂失活的主要因素。
分析了催化剂中的主要活性组分,载体及助剂的添加对CO甲烷化反应的影响。
对大唐克旗煤制天然气甲烷化催化剂提出了改良的方法。
%The status and components of methanation catalyst were discussed, and nickel-based catalyst deactivation was mainly caused by sulfur poisoning and carbon deposition. The effect of active ingredients, supports and additives on the performances of Ni-based catalysts was studied. Improvement methods of datang keshiketeng catalyst for methanation were proposed.【期刊名称】《广州化工》【年(卷),期】2015(000)002【总页数】2页(P139-140)【关键词】甲烷化催化剂;镍基催化剂;积碳;NiAl2 O4【作者】吴彪【作者单位】大唐克旗煤制天然气公司,内蒙古赤峰 025350【正文语种】中文【中图分类】O643.36天然气是当今前景最为广阔的能源之一,但是在世界某些地区的存储量很小。
CO 甲烷化反应作为一个有效的合成天然气的途径,在过去十年里备受学术界和工业界的广泛关注[1]。
自从Sabatier 等[2]于1902 年发现一氧化碳和氢气在镍催化剂下反应生成甲烷这一开创性工作以来,近年来对于甲烷化合成过程,研究者们一直致力于在大力开发高效催化剂。
高质量的甲烷化催化剂需要在低温(300 ℃)具有高活性,并且在高温(600 ℃)条件下具有高稳定性能。
NaZSM-5分子筛催化乳酸脱水制丙烯酸

NaZSM-5分子筛催化乳酸脱水制丙烯酸袁川;刘华彦;应流渊;陈银飞【摘要】采用离子交换法以Na+改性不同硅铝比的ZSM-5分子筛催化乳酸脱水制丙烯酸,采用XRD、NH3-TPD、TG等手段来表征催化剂结构、表面酸性和积炭情况,在气固相反应装置上评价催化剂活性和稳定性.结果表明:SiO2/Al2O3=75的ZSM-5有较好的催化性能,在反应温度为375℃,LHSV=2.41h-1时,乳酸转化率98.82%,丙烯酸选择性达56.72%,副产物丙酸和2,3-戊二酮较少,且催化剂稳定性好,具有较好的工业化应用前景.【期刊名称】《浙江化工》【年(卷),期】2015(046)011【总页数】5页(P27-31)【关键词】乳酸;脱水;丙烯酸;ZSM-5分子筛【作者】袁川;刘华彦;应流渊;陈银飞【作者单位】浙江工业大学化学工程学院催化反应工程研究所,杭州浙江310014;浙江工业大学化学工程学院催化反应工程研究所,杭州浙江310014;浙江工业大学化学工程学院催化反应工程研究所,杭州浙江310014;浙江工业大学化学工程学院催化反应工程研究所,杭州浙江310014【正文语种】中文丙烯酸作为一种重要的化工原料,主要用于生产增稠剂、胶黏剂及高吸水性树脂等领域,市场前景广阔[1-2]。
目前,工业上主要采用石油基产品丙烯两步氧化法生产丙烯酸,石油越来越紧缺,导致丙烯酸的生产成本上升[3]。
而生物质转化越来越受研究者青睐,乳酸作为一种具有羟基、羧基双功能团的生物质,被广泛应用于转化为乙醛、丙酸、丙烯酸、2,3-戊二酮等物质[4-8]。
所以,研究者逐渐转向以乳酸为原料,一步脱水法来制备丙烯酸,该法环保、经济、符合可持续发展方向而成为研究热点[9]。
1958年,Holmen等最早提出以硫酸盐或磷酸盐为催化剂,催化乳酸脱水制备丙烯酸,以Ca-SO4/Na2SO4(摩尔比25:1)复合盐催化剂催化性能最好,反应温度400℃下,丙烯酸的收率达68%[10]。
NaY分子筛制备及其表征

海南大学毕业论文(设计)题目:改性NaY分子筛研究学号:************名:***年级:2007级学院:材料与化工学院系别:化工专业:化学工程与工艺指导教师:张永明副教授完成日期:2011年5月9日摘要Y型分子筛是裂化催化剂的优良前驱体,其经改性后制备的催化剂广泛应用于催化裂化领域。
因此,其改性技术一直是此领域的研究重点之一。
本文利用原位晶化法制备了NaY分子筛微球;采用离子交换等方法对所制备微球进行改性,得到了改性Y型分子筛,分析了其化学组成及离子交换度,并考察了其使用性能。
利用原位晶化法制备了NaY分子筛微球,并通过分析其晶化反应硅钠比,得到了其结晶度为34.3 %。
利用氢离子、铵根离子、稀土离子、磷离子等对上述微球进行离子改性,得到了改性Y型分子筛(HD-C催化剂)。
利用常规化学分析方法,对其离子交换后母液中硅、铝、稀土等离子含量进行了分析,得到了催化剂组成及离子交换度,催化剂钠、稀土、铝、铁含量分别为0.28%、4.11%、36.24%、0.23%;总Na2O交换度达到96.0%。
利用程序升温脱附法(TPD)考察HD-C及对比剂的酸特性,并对其选择性、活性、抗金属污染等使用性能进行了评价,HD-C总酸度达到3.16;老化4h时HD-C 活性为69.6,QD为79.1,74.2;800℃,100%水蒸汽老化4小时,镍:钒(4:1) 4000ppm 污染量时,HD-C活性为55.7,QD活性为40.8;800℃,100%水蒸汽老化4小时时,HD-C选择性为88.72,QD选择性为85.97。
结果表明,所制备的改性Y型分子筛能完全满足商用要求。
关键词:Y型分子筛;晶化;离子交换;改性AbstractY-type zeolite is synthetic zeolite,it plays an important role in catalytic cracking process. So the modification has been a focus of research in this area . This article was prepared NaY zeolite microspheres in situ crystallization ; the prepared NaY zeolite microspheres were modified by ion exchange method . Their chemical composition and degree of ion exchange were analyzed , and the use of performance was investigated.NaY zeolite microspheres were prepared with situ crystallization method , through the analysis of crystalline reaction of silica than sodium obtained its crystallinity was 34.3%.Using of hydrogen ions, ammonium ions, rare earth ions and phosphate ions and other ions modified microspheres ,got modified zeolite Y(HD-C catalyst) . Using conventional chemical analysis analyzed silicon, aluminum and rare earth ion content of mother liquor after ion-exchange , got the catalyst composition and degree of ion exchange. The sodium, rare earth, aluminum and iron contents of the catalyst were 0.28%, 4.11%, 36.24%, 0.23% respectively , and the total exchange degree reached 96.0% Na2O .Using TPD studied HD-C`s and contrast agent`s acid properties , and its selectivity, activity, anti-metal pollution were evaluated . HD-C`s total acidity reached 3.16, activity was 69.6, selectivity was 88.72. The results showed that the modified Y zeolite had been fully met the business requirements.Key words:Y-type zeolite; Regent; Ion exchange; Modification目录摘要 ............................................................................................................................ I I ABSTRACT (III)目录 (IV)1 文献综述 (1)1.1 引言 (1)1.2沸石分子筛概论 (1)1.3沸石分子筛晶化机制 (5)1.4沸石分子筛的改性 (6)1.5沸石分子筛的性质及应用 (7)1.6Y型沸石分子筛 (9)2 实验部分 (12)2.1试剂与仪器 (12)2.2催化剂样品制备 (13)2.3催化剂分析评价方法 (16)2.4结晶度与离子交换度分析 (17)2.5催化剂理化性质及性能评价 (23)3 结论 (30)致谢 (31)参考文献 (33)1 文献综述1.1 引言1932年,Mc. Bain提出“分子筛(Molecular Sieves)”概念,其指能在分子水平上筛分物质多孔材料。
沸石分子筛膜

Secondary growth
Rangnekar, N., et al. (2015). “Zeolite membranes - a review and comparison with MOFs."
Secondary growth
commercialization
Perspective
Exploitation of organic structure-directing agents (SDAs)
for new materials
The synthesis of zeolites without SDAs
Structure conversion
Van Speybroeck, V., et al. (2015). "Advances in theory and their application within the field of zeolite chemistry."
Doping
Ti,Sn, Ga,Zr
Applications of zeolites.
Applications of zeolites
isomerization and the cracking of hydrocarbons Carbon capture and sequestration
Dehydrate organic solvents Conversion of Biomass Blood-clotting agent