最新2015年滕州市中考第二次模拟考试数学试题及答案
山东2015年中考数学二模试题
A BC 6题图2015年中考数学二模试题第I 卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.32的相反数是 A .32 B .23 C .32- D .23- 2.如图,下面几何体的俯视图是3.下列计算正确的是A .a +a =a 2B .a ²a 2=a 2C .(a 2) 3=a 5D .a 2 (a +1)=a 3+a 24.在平面直角坐标系中,点M (6,-3)关于x 轴对称的点在 A .第一象限 B .第二象限C .第三象限D .第四象限5.如图,直线PQ ∥MN ,点C 是MN 上一点,CE 交PQ 于点A ,CF 交PQ 于点B ,且∠ECF =90°,如果∠FBQ =50°,则∠ECM 的度数为A .60°B .50°C .40°D .30°6.在正方形网格中,ABC △的位置如图所示,则sin∠BAC 的值为A .35B .34C .45D .437.已知关于x 的方程2x +a -9=0的解是x =2,则a 的值为 A .-7 B .7 C .-5 D .5 8.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率A.大于12B.等于12C.小于15 D.无法确定9. 化简111a a a+--的结果为 A .-1 B .1 C .11a a +- D .11a a+- 10.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是2=0.65S 甲,2=0.55S 乙,2=0.50S 丙,2=0.45S 丁,则射箭成绩最稳定的是A .甲B .乙C .丙D .丁A B CEFPQ M N5题图A CDB 12题图 AEF O13题图 B 图1图2Q C B 15题图 11.目前,我国大约有1.3亿高血压病患者,预防高血压不容忽视.“千帕kpa”和“毫米汞柱mmHg”都是表示血压的单位.请你根据表格提供的信息,判断下列各组换算正确的是A .6kpa = 50mmHgB .16kpa = 110mmHgC .20kpa = 150mmHgD .22kpa = 160mmHg 12.在□ABCD 中,AC ⊥AD ,∠B =30°,AC =2,则□ABCD A .4+ B .8 C .8+ D .1613.如图,在△ABC 中,点E 、F 分别为AB 、AC 的中点,连接CE 、BF ,相交于点O .若△OEF 的面积为1,则△ABC 的面积为A .9B .10C .11D .1214.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(0.5,1),下列结论:①ac <0;②a +b =0;③4ac -b 2=4a ;④(a +c )-b 2<0.其中正确的个数是A .1B .2C .3D .4 15.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE —ED —DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm /s.若点P 、Q 同时开始运动,设运动时间为t (s),△BPQ 的面积为y (cm 2).已知y 与t 的函数关系图象如图2,则下列结论错误的是A. AE =6cmB.sin ∠EBC =0.8C.当0<t ≤10时,y =0.4t 2D.当t =12s 时,△PBQ 是等腰三角形第Ⅱ卷(非选择题 共75分)注意事项:1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 二、填空题(本大题共6个小题,每小题3分,共18分.) 16.17.因式分解:3x 2-6x +3=_____________. 18.不等式3(x +2)≥7的解集为_____________.20题图1x 19.3D 打印技术日渐普及,打印出的高精密游标卡尺误差只有±0.000 063米.0.000 063这个数用科学记数法可以表示为_____________. 20.⊙M 的圆心在一次函数122y x =+图象上,半径为1.当⊙M 与y 轴相切时,点M 的坐标为_____________.21.如图,直线2y x =、12y x =分别与双曲线1y x =、2y x=在第一象限的分支交于A 、B 、C 、D 四点,则四边形ABCD 的面积为________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.) 22(1)(本小题满分3分)计算:221tan 60+︒22(2) (本小题满分4分)如图,直线121y x =-与22y kx =+相交于点A (1,a ).求k 的值.AB C D E 23题图1 B 23题图2 E24题图124题图2如图1,△ABC 为等腰三角形,AB =AC , BD 分别平分∠ABC ,CE 分别平分∠ACB ,过点A 分别作BD 、CE 的垂线段,垂足为D 、E .求证:AD =AE .23(2) (本小题满分4分)如图2, ⊙O 是△ABC 的内切圆,点D 、E 、F 为切点,点M 为优弧DEF 上任意一点,∠B =66°,∠C =37°,求∠M 的大小.24.(本小题满分8分)某校准备组织学生到“山青世界”开展素质拓展训练.活动前,针对“学生最喜欢的拓展项目”对部分学生进行了问卷调查.学生在A 手扎绳结、B 心理课程、C 登山抢险、D 军体五项、E 攀岩崖降五个项目中选出自己最喜欢的一项,根据调查情况绘制成如下两幅统计图 (尚不完整). ⑴本次接受问卷调查的学生共有 人;⑵补全条形统计图,并计算扇形统计图中C 部分所对应的圆心角度数;⑶若该校共有1200名学生参与活动,试估计大约有多少同学最喜欢“攀岩崖降”项目?27题备用图 AD F B C P 26题图2E ABC D F 26题图1E 27题图如图,小明将一根长为1.4米的竹条截为两段,并互相垂直固定,作为风筝的龙骨,制作成了一个面积为0.24米2的风筝.请你计算一下将竹条截成长度分别为多少的两段? 26.(本小题满分9分)如图,在等腰Rt△ABC 中,∠BAC =90°,AC = AB =2.在Rt△DEF 中,∠EDF =90°,cos∠DEF =35,EF =10.将△ABC 以每秒1个单位的速度沿DF 方向移动,移动开始前点A 与点D 重合.在移动过程中,AC 始终与DF 重合,当点C 、F 重合时,运动停止.连接DB ,过点C 作DB 的平行线交线段DE 于点P .设△ABC 移动时间为t (s),线段DP 的长为y .⑴t 为何值时,点P 与点E 重合?⑵当CP 与线段DE 相交时,求证:S △ADP -S △ABD =2; ⑶当PA ⊥BC 时,求线段PA 的长.27.(本小题满分9分)如图,抛物线239344y x x =--+与x 轴交于点A 、B ,与y 轴交于点C .经过A 、B 、C 三点的圆与y 轴的负半轴交于点D .(1)求A 、B 、C 三点的坐标;(2)在抛物线对称轴上是否存在一点P 使得PB +PD 的值最小?如果存在,求出P 点的坐标;若不存在,请说明理由;(3)若圆心为点Q ,在平面内有一点E ,使得以D 、E 、P 、Q 为顶点的四边形为平行四边形.求出所有符合条件的E 点坐标.A B C DG E F H P 28题图如图,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH .(1)求证:∠APB =∠BPH ;(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论; (3)设AP 为x ,四边形EFGP 的面积为S .求出S 与x 的函数关系式.试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.数学试题参考答案与评分标准二、填空题 16. 317. 3(x -1)218. x ≥1319. 6.3³10 20. (1,52)或(-1,32) 21. 1 三、解答题22.解:⑴ 分=-()+分=1……………………………………………………………………………3分⑵ 将点A(1,a )代入y 1=2x -1,得a =2³1-1=1………………………………………………………………2分 ∴A(1,1)将点A(1,1)代入y 2=kx +2,得 1= k +2∴k =-1……………………………………………………………………………4分 23. 解: ⑴∵AB =AC∴∠ABC =∠ACB …………………………………………………………………1分 ∵BD 平分∠ABC ,CE 平分∠ACB∴∠ABD =12∠ABC ,∠ACE =12∠ACB∴∠ABD =∠ACE …………………………………………………………………1分∵AD ⊥BD 、AE ⊥CE∴∠D =∠E=90°在△ADB 与△AEC 中D E ABD ACE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEC (AAS )∴AD =AE . ………………………………………………………………………3分⑵连接OD 、OF∵E 、F 均为切点∴OD ⊥AB ,OF ⊥AC …………………………………………………………1分 ∵∠B =66°,∠C =37°∴∠A=180°-∠B-∠C=77°…………………………………………………2分∴∠O=360°-∠A-∠ADO-∠AFO=103°……………………………………3分∵弧DF=弧DF∴∠M=12∠O=51.5°.……………………………………………………………4分24. 解:⑴150……………………………………………………………………………2分⑵条形统计图略. …………………………………………………………………4分45÷150³360°=108°………………………………………………………………6分答:图中C部分所对应的圆心角度数为108°.⑶30÷150³1200=240(人)………………………………………………………8分答:大约有240名同学最喜欢“攀岩崖降”项目.25. 解:设将竹条截成长度分别为x米和(1.4-x)米的两段. ………………………………1分根据题意得12x(1.4-x)=0.48…………………………………………………………………4分解之,得x1=0.6 x2=0.8……………………………………………………6分当x1=0.6时,1-x=0.8当x2=0.8时,1-x=0.6………………………………………………………………8分答:将竹条截成长度分别为0.6米和0.8米的两段.26. 解:解:⑴在Rt△DEF中,DA=t.∵ cos∠DEF=35,EF=10∴DE=6 ………………………………………………………………1分当点P与点E重合,连接CE∵CE∥DB∴∠BDA=∠ECD∵∠BAD=∠EDC=90°∴△BDA∽△ECD∴DA ABDC DE=………………………………………………………………2分∴2 26 t t+ =∴t=1………………………………………………………………3分⑵∵CP∥DB∴∠BDA=∠PCD∵∠BAD=∠PDC=90°∴△BDA∽△PCD………………………………………………………………4分∴DA AB DC PD=∴24t DPt+=∵S△ADP=12AD³DP=12t²24tt+=t+2…………………………………………………5分AD F B CP 26题图2 E GS △ABD =12AD ³AB =t∴S △ADP -S △ABD =2;………………………………………………………………6分 ⑶延长PA 交BC 于G ∵等腰Rt△ABC ∴∠CAG =45°∴∠DAP =45°∴………………………………………………………………7分 ∴PD =AD∴24t t t+=∴t=1分 ∴分27. 解:(1) ∵当x =0时,y =3∴C (0,3) ………………………………………………………………1分∵当y =0时,2393044x x --+=解得x=-4或1∴A (-4,0),B (1,0) ……………………………………………3分 (2) 如图1,连接AD ,BC . ∵圆经过A 、B 、C 、D 四点 ∴∠ADO =∠CBO ∵∠AOD =∠COB =90°∴△AOD ∽△COB ∴OD OB OA OC = 由题意知,AO =4,BO =1,CO =3∴OD =43,∴D (0, -43) (4)设AD 的解析式为y =kx +b将A (-4,0) ,D (0, -43)代入解得k =-13, b =-43,∴y =-13,x -43 ………………………………………………………5分27题图1A BCD GEF H P M 28题图2由题意知,抛物线对称轴为x=32-∵A 、B 关于x=32-对称∴当x=32-时,y =56-,即P (32-,56-)时,PB +PD=PA +PD=PD 最短. ………………6分(3)A (-4,0),B (1,0),C (0,3),D (0, -43) ∴圆心的坐标为Q (32-,56)………………………………………………………………7分∴PQ =53若PQ 为平行四边形的边,∵PQ ∥y 轴,∴E 1(0, 13)或者E 2(0, 3-)………………8分若PQ 为平行四边形的对角线,PQ 的中点坐标为M (32-, 0),∴E 3(3-,43)……………9分28解:(1)∵PE=BE ,∴∠EBP=∠EPB .………………………………1分 又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP .即∠PBC=∠BPH .………………………………2分 又∵AD∥BC , ∴∠APB=∠PBC .∴∠APB=∠BPH .………………………………3分(2)△PHD 的周长不变,为定值 8.………………………………4分 证明:过B 作BQ ⊥PH ,垂足为Q . 由(1)知∠APB=∠BPH ,又∵∠A=∠BQP=90°,BP=BP ,∴△AB P ≌△QBP . ∴AP=QP , AB=BQ .又∵ AB=BC , ∴BC = BQ . 又∵∠C=∠BQH=90°,BH=BH ,∴△BCH ≌△BQH .……………………(5分) ∴CH=QH .∴△PHD 的周长为:PD+DH+PH =AP+PD+DH+HC =AD+CD =8. ……………………(6分) (3)过F 作FM ⊥AB ,垂足为M ,则FM BC AB ==. 又EF 为折痕, ∴EF ⊥BP . ∴90EFM MEF ABP BEF ∠+∠=∠+∠=︒, ∴EFM ABP ∠=∠. 又∵∠A=∠EMF=90°,∴△EFM ≌△BPA .∴EM AP ==x . ………………7分A B C D EF GH P Q∴在Rt△APE 中,222(4)BE x BE -+=. 解得,228x BE =+. ∴228x CF BE EM x =-=+-. 又四边形PEFG 与四边形BEFC 全等, ∴211()(4)4224x S BE CF BC x =+=+-⨯. 即:21282S x x =-+.……………8分 配方得,21(2)62S x =-+,∴当x =2时,S 有最小值6.………………9分。
中考第二次模拟检测《数学试卷》含答案解析
第I 卷(选择题)一、选择题(每题3分,共30分)1.计算()3.6 5.4--的结果是( )A .1.8B .9C .-9D .-1.82.将一个正方形纸片按如图1、图2依次对折后,再按如图3打出一个心形小孔,则展开铺平后的图案是( )A .B .C .D .3.如图,四个图形中的∠1和∠2,不是同位角的是( )A .B .C .D .4.下列计算中,正确的是( )A .235a a a +=B .326a a a ⋅=C .321a a ÷=D .()33a a -= 5.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限 6.如图,在ABC ∆中,CD 平分ACB ∠交AB 于点D ,过点D 作//DE BC 交AC 于点E .若54,48A B ∠=∠=,则CDE ∠的大小为()A .44B .40C .39D .387.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x +b 的解集为( )A .x>-1B .x<-1C .x>3D .x<38.如图,已知AB =3,BC =4,将矩形ABCD 沿对角线BD 折叠点C 落在点E 的位置,则AE 的长度为( )A .85B .125C .3D .759.如图,AB 是O 的直径,CD 是弦,CD AB ,30BCD ∠=︒,6AB =,则AC 的长为( )A .πB .4πC .2πD .15π10.如图,一次函数(0)y kx b k =+≠与抛物线2(0)y ax a =≠交于A,B 两点,且点A 的横坐标是2-,点B 的横坐标是3,则以下结论:①抛物线2(0)y ax a =≠的图象的顶点一定是原点;②0x >时,一次函数(0)y kx b k =+≠与抛物线2(0)y ax a =≠的函数值都随x 的增大而增大;③AB 的长度可以等于5;④当32x -<<时,2ax kx b +<.其中正确的结论是( )A .①②③B .①②④C .①③④D .①②③④第II 卷(非选择题)二、填空题(每题3分,共12分)11______.12.如图,是某个正多边形的一部分,则这个正多边形是_______边形.13.已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=2x的图象上运动,当线段PA 与线段PB 之差的绝对值最大时,点P 的坐标为_____. 14.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,AM 长为半径作弧,交OC 于点M ';③以点M '圆心,MN 长为半径作弧,在COB ∠内部交前面的弧于点N ';④过点N '作射线ON '交BC 于点E .若8AB =,则线段OE 的长为__________.三、解答题(15,16,17,18题每题5分,19,20,21,22题每题7分,23题8分,24题10分,25题12分,共78分)15.计算:()()-20201921-2 3.14---12π⎛⎫++ ⎪⎝⎭ 16.解方程: 22142x x x +=-- 17.如图,点C,D 分别在射线OA 、OB 上,求作⊙P,使它与OA 、OB 、CD 都相切.(使用直尺、圆规、直角板作图并保留作图痕迹)18.如图,菱形ABCD 中,点E 是边AD 上一点,延长AB 至点F ,使BF =AE ,连结BE ,CF .求证:BE =CF .19.大雁塔南广场玄奘铜像是为纪念唐代高僧玄奘而设计.在一次课外活动中,甲、乙两位同学测量玄奘铜像的高度他们分别在A ,B 两处用高度为1.8m 的测角仪测得铜像顶部C 的仰角分别为30°,60°,两人间的水平距离AB 为10m ,求玄奘铜像的高度CF .(结果保留根号)20.某商场用两个月时间试销某种新型商品,经市场调查,该商品的第x 天的进价y (元/件)与x (天)之间的相关信息如下表:该商品在销售过程中,销售量m (件)与x (天)之间的函数关系如图所示:在销售过程中,商场每天销售的该产品以每件80元的价格全部售出.(1)求该商品的销售量m(件)与x(天)之间的函数关系;(2)设第x天该商场销售该商品获得的利润为w元,求出w与x之间的函数关系式,并求出第几天销售利润最大,最大利润是多少元?(3)在销售过程中,当天的销售利润不低于2400元的共有多少天?21.文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知P(一次拿到7元本)23 =.(1)求这6个本价格的众数.(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法...求嘉嘉两次都拿到7元本的概率.22.某跳高集训队,对集训队员进行了一次跳高测试,经过统计,将集训队员的测试成绩(单位:m),绘制成尚不完整的扇形统计图(图①)与条形统计图(图②).(1)a=________,请将条形统计图补充完整;(2)求集训队员测试成绩的众数;(3)教练发现,测试成绩不包括两名请假的队员,补测后,把这两名队员的成绩(均是0.05的整数倍)与原测试成绩并成一组新数据,求新数据的中位数.23.如图,AE是△ABC外接圆O的直径,连结BE,作AD⊥BC于D.(1)求证:△ABE∽△ADC;(2)若AB=8,AC=6,AE=10,求AD的长.24.如图,线段AB,A(2,3),B(5,3),抛物线y=﹣(x﹣1)2﹣m2+2m+1与x轴的两个交点分别为C,D(点C在点D的左侧)(1)求m为何值时抛物线过原点,并求出此时抛物线的解析式及对称轴和项点坐标.(2)设抛物线的顶点为P,m为何值时△PCD的面积最大,最大面积是多少.(3)将线段AB沿y轴向下平移n个单位,求当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.25.我们知道三角形任意两条中线的交点是三角形的重心.重心有如下性质:重心到顶点的距离是重心到对边中点距离的2倍.请利用该性质解决问题(1)如图1,在△ABC中,AF、BE是中线,AF⊥BE于P.若BP=2,∠F AB=30°,则EP=,FP=;(2)如图1,在△ABC中,BC=a,AC=b,AB=c,AF、BE是中线,AF⊥BE于P.猜想a2、b2、c2三者之间的关系并证明;(3)如图2,在▱ABCD中,点E、F、G分别是AD、BC、CD的中点,BE⊥BG,AB=3,AD求AF的长.答案与解析第I 卷(选择题)二、选择题(每题3分,共30分)1.计算()3.6 5.4--的结果是( )A .1.8B .9C .-9D .-1.8【答案】B【解析】()3.6 5.4 3.6 5.49--=+=;故选择:B.2.将一个正方形纸片按如图1、图2依次对折后,再按如图3打出一个心形小孔,则展开铺平后的图案是( )A .B .C .D .【答案】B【解析】按照图中顺序进行操作,展开后心形图案应该靠近正方形上下两边,且关于中间折线对称,故只有B 选项符合.故选B.3.如图,四个图形中的∠1和∠2,不是同位角的是( )A .B .C .D .【答案】D【解析】A 、∠1、∠2有一条边在一条直线上,另一条边在被截线的同一方,是同位角;C 、∠1、∠2有一条边在一条直线上,另一条边在被截线的同一方,是同位角;D 、∠1、∠2有一条边在一条直线上,另一条边在被截线的同一方,是同位角;D 、∠1、∠2的两条边都不在一条直线上,不是同位角;故选:D4.下列计算中,正确的是( )A .235a a a +=B .326a a a ⋅=C .321a a ÷=D .()33a a -= 【答案】A【解析】A 、235a a a +=,故原题计算正确,符合题意;B 、325a a a ⋅=,故原题计算错误,不合题意;C 、32a a a ÷=,故原题计算错误,不合题意;D 、()33a a -=-,故原题计算错误,不合题意.故选:A.5.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】根据y 随x 的增大而减小得:k <0,又kb >0,则b <0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A .6.如图,在ABC ∆中,CD 平分ACB ∠交AB 于点D ,过点D 作//DE BC 交AC 于点E .若54,48A B ∠=∠=,则CDE ∠的大小为()A .44B .40C .39D .38【答案】C 【解析】∵∠A=54°,∠B=48°,∴∠ACB=180°-∠A -∠B =78°.∵CD 平分∠ACB,∴∠DCB=∠ACD=39°.∵DE ∥BC,∴∠CDE=∠DCB=39°.故选C.7.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x> k1x+b的解集为( )A.x>-1B.x<-1C.x>3D.x<3【答案】B【解析】由图可知两直线交点的横坐标为-1,则k2x>k1x+b的解集为x<-1,故选B.8.如图,已知AB=3,BC=4,将矩形ABCD沿对角线BD折叠点C落在点E的位置,则AE的长度为()A.85B.125C.3D.75【答案】D【解析】设FD=x,则AF=4﹣x,∵将矩形ABCD沿对角线BD折叠点C落在点E的位置,∴∠FBD=∠DBC,BE=BC,∵矩形ABCD,∴AD∥BC,AD=BC,∴∠ADB=∠DBC,BE=AD,∴∠ADB=∠FBD,∴FB=FD=x,在直角△AFB 中,x 2=(4﹣x )2+32,解之得,x =258,AF =4﹣x =78,∵BE=AD,FB=FD,∴AF=EF, ∴AFEF=FD FB ,∵∠AFE=∠DFB,∴△AFE ∽△DFB , ∴AFAE=FD DB ,∴78258解得AE =75.故选:D .9.如图,AB 是O 的直径,CD 是弦,CD AB ,30BCD ∠=︒,6AB =,则AC 的长为()A .πB .4πC .2πD .15π【答案】A【解析】如图,连接OC,则132OC AB ==//CD AB ,30BCD ∠=︒30BCD ABC ∴=∠=∠︒260AOC ABC ∴∠=∠=︒则AC 的长为603180ππ⨯=故选:A .10.如图,一次函数(0)y kx b k =+≠与抛物线2(0)y ax a =≠交于A,B 两点,且点A 的横坐标是2-,点B 的横坐标是3,则以下结论:①抛物线2(0)y ax a =≠的图象的顶点一定是原点;②0x >时,一次函数(0)y kx b k =+≠与抛物线2(0)y ax a =≠的函数值都随x 的增大而增大;③AB 的长度可以等于5;④当32x -<<时,2ax kx b +<.其中正确的结论是( )A .①②③B .①②④C .①③④D .①②③④【答案】B【解析】①抛物线2y ax =,利用顶点坐标公式得顶点坐标为()0,0,正确.②由题图可知,在y 轴右侧,即当0x >时,一次函数与抛物线的函数值都随x 的增大而增大,正确.③如解图,过点A 作x 轴的平行线,过点B 作y 轴的平行线,两线相交于点D.在Rt ABD ∆中,由A 、B 横坐标分别为2-,3,可知5AD =,故5AB >,错误.④直线y kx b =-+与y kx b =+关于y 轴对称,如解图所示,可得出直线y kx b =-+与抛物线交点E 、F 横坐标分别为3-,2,由解图可知当32x -<<时,2ax kx b <-+,即2ax kx b +<,正确. 综上所述,正确的结论有①②④.第II 卷(非选择题)二、填空题(每题3分,共12分)11______.【解析】由相反数的定义可知-,12.如图,是某个正多边形的一部分,则这个正多边形是_______边形.【答案】十【解析】由题意可得:该正多边形的边数为:360°÷36°=10.即该多边形是:十边形.故答案为:十.13.已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P在反比例函数y=2x的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为_____.【答案】(1,2)或(-2,-1)【解析】如图,设直线AB的解析式为y=kx+b,将A(0,1)、B(-1,0)代入,得:1-0b k b =⎧⎨+=⎩, 解得:11k b =⎧⎨=⎩, ∴直线AB 的解析式为y=x ﹣1, 直线AB 与双曲线y=2x的交点即为所求点P,此时|PA ﹣PB|=AB,即线段PA 与线段PB 之差的绝对值取得最大值,由+12y x y x =⎧⎪⎨=⎪⎩可得12x y =⎧⎨=⎩或-2-1x y =⎧⎨=⎩, ∴点P 的坐标为(1,2)或(-2,-1),14.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,AM 长为半径作弧,交OC 于点M ';③以点M '圆心,MN 长为半径作弧,在COB ∠内部交前面的弧于点N ';④过点N '作射线ON '交BC 于点E .若8AB =,则线段OE 的长为__________.【答案】4【解析】由题意可得出:'''',,AM OM AN ON MN M N ===∴''MAN M ON ≅ ∴''MAN M ON ∠=∠ ∴//OE AB ∵O 为AC 的中点 ∴OE 为ACB △的中位线 ∵8AB =∴142OE AB == 故答案为:4.四、解答题(15,16,17,18题每题5分,19,20,21,22题每题7分,23题8分,24题10分,25题12分,共78分)15.计算:()()-2201921-2 3.14---12π⎛⎫++ ⎪⎝⎭【解析】()()-2201921-2 3.14---12π⎛⎫++ ⎪⎝⎭=414(1)++--- =2. 16.解方程:22142xx x +=-- 【解析】两边都乘(x+2)(x -2),得 2+x(x+2)=x 2-4, 2+ x 2+2x= x 2-4, 解得x=-3,经检验:x=-3是方程的解;17.如图,点C,D 分别在射线OA 、OB 上,求作⊙P,使它与OA 、OB 、CD 都相切.(使用直尺、圆规、直角板作图并保留作图痕迹)【解析】如图,作∠DOC 的平分线OM ,∠ODC 的平分线DN ,OM 交DN 于点P 1,作P 1F ⊥OD ,以P 1为圆心,P 1F 为半径作⊙P 1即可;同法作出⊙P 2.1P ,2P 即为所求;18.如图,菱形ABCD 中,点E 是边AD 上一点,延长AB 至点F ,使BF =AE ,连结BE ,CF .求证:BE =CF .【解析】∵四边形ABCD 是菱形,∴AD ∥BC ,AB =BC ,∴∠A =∠CBF .在△ABE 和△BCF 中,∵AE =BF ,∠A =∠CBF ,AB =BC ,∴△ABE ≌△BCF (SAS),∴BE =CF .19.大雁塔南广场玄奘铜像是为纪念唐代高僧玄奘而设计.在一次课外活动中,甲、乙两位同学测量玄奘铜像的高度他们分别在A ,B 两处用高度为1.8m 的测角仪测得铜像顶部C 的仰角分别为30°,60°,两人间的水平距离AB 为10m ,求玄奘铜像的高度CF .(结果保留根号)【解析】设CG=x m, 在Rt △CGD 中,tan ∠CDG=CGDG,∴DG=CGtan CDG∠,在Rt △CGE 中,tan ∠CEG=CGGE,∴EG=3CG x tan CEG ∠=,由题意得,10x +=,解得,x =,即 ,∴CF=CG+GF=1.82+,答:玄奘铜像的高度CF 为 1.8⎫⎪⎪⎝⎭m . 20.某商场用两个月时间试销某种新型商品,经市场调查,该商品的第x 天的进价y (元/件)与x (天)之间的相关信息如下表:该商品在销售过程中,销售量m (件)与x (天)之间的函数关系如图所示: 在销售过程中,商场每天销售的该产品以每件80元的价格全部售出.(1)求该商品的销售量m (件)与x (天)之间的函数关系;(2)设第x 天该商场销售该商品获得的利润为w 元,求出w 与x 之间的函数关系式,并求出第几天销售利润最大,最大利润是多少元?(3)在销售过程中,当天的销售利润不低于2400元的共有多少天? 【解析】(1)设该商品的销售量m 与x 之间的函数关系为()0m kx b k =+≠ 由图可知,点()0,120,()50,20在m kx b =+上 将点()0,120,()50,20代入得1205020b k b =⎧⎨+=⎩解得2120k b =-⎧⎨=⎩则该商品的销售量m 与x 之间的函数关系为2120m x =-+; (2)由题意,分以下两种情况:①当130x ≤<时()()()2808070212021001200w y m x x x x =-⋅=+-⋅-+=-++()22252450x =--+由二次函数的性质可知,当25x =时,w 取得最大值,最大值为2450 ②当3050x ≤≤时()()80402120804800w x x =-⋅-+=-+∵800k =-< ∴w 随x 的增大而减小则当30x =时,w 取得最大值,最大值为803048002400-⨯+= 因24502400>故第25天时利润最大,最大利润为2450元综上,w 与x 之间的函数关系式为221001200(130)804800(3050)x x x w x x ⎧-++≤<=⎨-+≤≤⎩,第25天时利润最大,最大利润为2450元;(3)①当130x ≤<时,()22252450w x =--+ 则()222524502400x --+= ∴120x =或230x =∴2030x ≤<,利润不低于2400元即此时,共有10天的销售利润不低于2400元 ②当3050x ≤≤时,804800w x =-+ 则8048002400x -+≥ 解得30x ≤30x ∴=即此时,只有1天的销售利润不低于2400元 综上,共有11天的销售利润不低于2400元.21.文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知P (一次拿到7元本)23 =.(1)求这6个本价格的众数.(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法...求嘉嘉两次都拿到7元本的概率.【解析】(1)∵P(一次拿到7元本)2 3 =,∴7元本的个数为6×23=4(个),按照从小到大的顺序排列为4,5, 7,7,7,7,∴这6个本价格的众数是7.(2)①相同;∵原来4、5、7、7、7、7,∴中位数为777 2+=,5本价格为4、5、7、7、7,中位数为7,∴77=,∴相同.②见图∴P(两次都为7)63 2010 ==.22.某跳高集训队,对集训队员进行了一次跳高测试,经过统计,将集训队员的测试成绩(单位:m),绘制成尚不完整的扇形统计图(图①)与条形统计图(图②).(1)a =________,请将条形统计图补充完整; (2)求集训队员测试成绩的众数;(3)教练发现,测试成绩不包括两名请假的队员,补测后,把这两名队员的成绩(均是0.05的整数倍)与原测试成绩并成一组新数据,求新数据的中位数. 【解析】(1)25;补全条形统计图如解图所示:()%110%20%30%15%25%a =-+++=,故25a =;测试成绩为1.50m 的有2人,占总人数的10%,故总人数为210%20÷=(人).则测试成绩为1.55m 的人数为2020%4⨯=(人). (2)由条形统计图可知,集训队员测试成绩的众数为1.65m ; (3)当两名请假队员的成绩均大于或等于1.65m 时,中位数为1.60 1.651.625(m)2+=;当两名请假队员的成绩均小于1.65m 或一个小于1.65m,一个大于或等于1.65m 时,中位数为1.60m. 23.如图,AE 是△ABC 外接圆O 的直径,连结BE,作AD ⊥BC 于D . (1)求证:△ABE ∽△ADC ;(2)若AB=8,AC=6,AE=10,求AD 的长.【解析】(1)如图,∵AE是△ABC外接圆O的直径,且AD⊥BC,∴∠ABE=∠ADC=90°;而∠E=∠C,∴△ABE∽△ADC.(2)∵△ABE∽△ADC,∴AB AEAD AC,而AB=8,AC=6,AE=10,∴AD=4.8.24.如图,线段AB,A(2,3),B(5,3),抛物线y=﹣(x﹣1)2﹣m2+2m+1与x轴的两个交点分别为C,D(点C在点D的左侧)(1)求m为何值时抛物线过原点,并求出此时抛物线的解析式及对称轴和项点坐标.(2)设抛物线的顶点为P,m为何值时△PCD的面积最大,最大面积是多少.(3)将线段AB沿y轴向下平移n个单位,求当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.【解析】(1)当y=﹣(x﹣1)2﹣m2+2m+1过原点(0,0)时,0=﹣1﹣m2+2m+1,得m1=0,m2=2,当m1=0时,y=﹣(x﹣1)2+1,当m2=2时,y=﹣(x﹣1)2+1,由上可得,当m=0或m=2时,抛物线过原点,此时抛物线的解析式是y=﹣(x﹣1)2+1,对称轴为直线x=1,顶点为(1,1);(2)∵抛物线y=﹣(x﹣1)2﹣m2+2m+1,∴该抛物线的顶点P为(1,﹣m2+2m+1),当﹣m2+2m+1最大时,△PCD的面积最大,∵﹣m 2+2m+1=﹣(m ﹣1)2+2,∴当m=1时,﹣m 2+2m+1最大为2,∴y=﹣(x ﹣1)2+2,当y=0时,0=﹣(x ﹣1)2+2,得x 1,x 2=1,∴点C 的坐标为(1,0),点D 的坐标为,0)∴)﹣(1,∴S △PCD =22,即m 为1时△PCD 的面积最大,最大面积是;(3)将线段AB 沿y 轴向下平移n 个单位A(2,3﹣n),B(5,3﹣n)当线段AB 分成1:2两部分,则点(3,3﹣n)或(4,3﹣n)在该抛物线解析式上,把(3,3﹣n)代入抛物线解析式得,3﹣n=﹣(3﹣1)2﹣m 2+3m+1,得n=m 2﹣2m+6;把(4,3﹣n)代入抛物线解析式,得3﹣n=﹣(3﹣1)2﹣m 2+3m+1,得n=m 2﹣2m+11;∴n=m 2﹣2m+6或n=m 2﹣2m+11.25.我们知道三角形任意两条中线的交点是三角形的重心.重心有如下性质:重心到顶点的距离是重心到对边中点距离的2倍.请利用该性质解决问题(1)如图1,在△ABC 中,AF 、BE 是中线,AF ⊥BE 于P .若BP =2,∠F AB =30°,则EP = ,FP = ;(2)如图1,在△ABC 中,BC =a ,AC =b ,AB =c ,AF 、BE 是中线,AF ⊥BE 于P .猜想a 2、b 2、c 2三者之间的关系并证明;(3)如图2,在▱ABCD 中,点E 、F 、G 分别是AD 、BC 、CD 的中点,BE ⊥BG ,AB =3,AD 求AF 的长.【解析】(1)∵在△ABC 中,AF 、BE 是中线,∴BP =2EP =2,AP =2FP ,∴EP =1,∵AF ⊥BE ,∠F AB =30°,∴AB=2BP=4,∴AP =∴FP =12AP ;故答案为:(2)a 2+b 2=5c 2;理由如下:连接EF ,如图1所示:∵AF ,BE 是△ABC 的中线,∴EF 是△ABC 的中位线,∴EF ∥AB ,且EF =12AB =12c , ∴12PE PF PB PA ==, 设PF =m ,PE =n ,∴AP =2m ,PB =2n ,在Rt △APB 中,(2m )2+(2n )2=c 2,即4m 2+4n 2=c 2,在Rt △APE 中,(2m )2+n 2=(12b )2,即4m 2+n 2=14b 2, 在Rt △FPB 中,m 2+(2n )2=(12a )2,即m 2+4n 2=14a 2, ∴5m 2+5n 2=14(a 2+b 2)=54c 2, ∴a 2+b 2=5c 2;(3)连接AC、EC,如图2所示:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵点E,F分别是AD,BC,CD的中点,∴AE=CE,∴四边形AFCE是平行四边形,∴AF=CE,∵AD∥BC,∴△AEQ∽△CBQ,∴12 AQ EQ AECQ BQ BC===,设AQ=a,EQ=b,则CQ=2a,BQ=2b,∵点E,G分别是AD,CD的中点,∴EG是△ACD的中位线,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,由勾股定理得:AB2﹣AQ2=BC2﹣CQ2,即9﹣a22﹣4a2,∴3a2=11,∴a2=11 3,∴BQ2=4b22﹣4×113=163,∴b2=163×14=43,在Rt△EQC中,CE2=EQ2+CQ2=b2+4a2=16,∴CE=4,∴AF=4.。
2015中考数学模拟试题含答案(精选5套)
2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
山东省枣庄市滕州市滕西中学2014_2015学年度八年级数学下学期第二次月考试题(含解析)新人教版
山东省枣庄市滕州市滕西中学2014-2015学年度八年级数学下学期第二次月考试题一、选择题:(每题3分,共30分)1.在下列各式中,是分式的有()A.2个B.3个C.4个D.5个2.要使分式有意义,则x的取值范围是()A.x=B.x> C.x< D.x≠3.若分式的值为零,则x等于()A.2 B.﹣2 C.±2D.04.若x满足=1,则x应为()A.正数 B.非正数C.负数 D.非负数5.已知=3,则的值为()A. B.C.D.﹣6.化简÷(1+)的结果是()A.B.C.D.7.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.8.把a千克盐溶于b千克水中,得到一种盐水,若有这种盐水x千克,则其中含盐()A.千克B.千克C.千克D.千克9.把分式化简的正确结果为()A.B.C.D.10.分式方程的解是()A.x=3 B.x=﹣3 C.x=D.x=二、填空题:(每题3分,共30分)11.若分式的值为0,则a= .12.使分式方程产生增根,m的值为.13.要使与的值相等,则x= .14.化简:= .15.在函数中,自变量x的取值范围是.16.已知关于x的方程的解是负数,则n的取值范围为.17.关于x的方程的解为x=1,则a= .18.计算:= .19.已知a2﹣6a+9与(b﹣1)2互为相反数,则式子()÷(a+b)的值是.20.一个容器装有1升水,按照如下方法把水倒出:第1次倒出升水,第2次倒出水量是升的,第3次倒出水量是升的,第4次倒出水量是升的,…,第n次倒出水量是升的.按照这种倒水的方法,n次倒出的水量共为升.三、解答题:21.计算:(1)();(2)÷(2+)22.解方程:(1);(2)=1.23.已知a=,求的值.24.先化简,再求值:÷,其中a=﹣1.25.若关于x的方程有增根,试求k的值.26.A、B两地相距80千米,一辆公共汽车从A地出发开往B地,2小时后,又从A地开来一辆小汽车,小汽车的速度是公共汽车的3倍.结果小汽车比公共汽车早40分钟到达B地.求两种车的速度.27.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?28.如图,E、F是平行四边形ABCD对角线AC上的两点,且BE∥DF,求证:BF=DE.山东省枣庄市滕州市滕西中学2014~2015学年度八年级下学期第二次月考数学试卷参考答案与试题解析一、选择题:(每题3分,共30分)1.在下列各式中,是分式的有()A.2个B.3个C.4个D.5个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.找到分母含有字母的式子的个数即可.【解答】解:,这3个式子分母中含有字母,因此是分式.(x+1)÷(x+2),它只表示一种除法运算,而不能称之为分式,其它式子分母中均不含有字母,是整式,而不是分式.故选:A.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数,注意π不是字母,故不是分式.2.要使分式有意义,则x的取值范围是()A.x=B.x> C.x< D.x≠【考点】分式有意义的条件.【专题】计算题.【分析】本题主要考查分式有意义的条件:分母不能为0,即3x﹣7≠0,解得x.【解答】解:∵3x﹣7≠0,∴x≠.故选D.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.3.若分式的值为零,则x等于()A.2 B.﹣2 C.±2D.0【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,2x﹣4=0,∴x=2不满足条件.当x=﹣2时,2x﹣4≠0,∴当x=﹣2时分式的值是0.故选:B.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.4.若x满足=1,则x应为()A.正数 B.非正数C.负数 D.非负数【考点】分式的值;绝对值.【分析】根据=1可以得到x=|x|,根据绝对值的定义就可以求解.【解答】解:若x满足=1,则x=|x|,x>0,故选A.【点评】此题是分式方程,在解答时要注意分母不为0.5.已知=3,则的值为()A. B.C.D.﹣【考点】分式的基本性质.【专题】计算题.【分析】先把分式的分子、分母都除以xy,就可以得到已知条件的形式,再把=3,代入就可以进行计算.【解答】解:根据分式的基本性质,分子分母都除以xy得,==.故选B.【点评】解答本题关键在于利用分式基本性质从所求算式中整理出已知条件的形式,再进行代入计算,此方法2016届中考题中常用,是热点.6.化简÷(1+)的结果是()A.B.C.D.【考点】分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.7.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.【考点】列代数式(分式).【专题】应用题.【分析】房间数=住进房间人数÷每个房间能住的人数;一人无房住,那么住进房间的人数为:m﹣1.【解答】解:住进房间的人数为:m﹣1,依题意得,客房的间数为,故选A.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.8.把a千克盐溶于b千克水中,得到一种盐水,若有这种盐水x千克,则其中含盐()A.千克B.千克C.千克D.千克【考点】列代数式(分式).【专题】溶液问题.【分析】盐=盐水×浓度,而浓度=盐÷(盐+水),根据式子列代数式即可.【解答】解:该盐水的浓度为,故这种盐水x千克,则其中含盐为x×=千克.故选A.【点评】解决问题的关键是找到所求的量的等量关系.本题需注意浓度=溶质÷溶液.9.把分式化简的正确结果为()A.B.C.D.【考点】分式的加减法.【分析】先确定最简公分母是(x+2)(x﹣2),然后通分化简.【解答】解:==;故选A.【点评】分式的加减运算中,异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.分式方程的解是()A.x=3 B.x=﹣3 C.x=D.x=【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.二、填空题:(每题3分,共30分)11.若分式的值为0,则a= ﹣2 .【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可,据此可以解答本题.【解答】解:∵=0,∴∴∴a=﹣2.故答案为﹣2.【点评】此题考查的是对分式的值为0的条件的理解,该类型的题易忽略分母不为0这个条件.12.使分式方程产生增根,m的值为±.【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣3),得x﹣2(x﹣3)=m2∵原方程有增根,∴最简公分母x﹣3=0,即增根是x=3,把x=3代入整式方程,得m=±.故答案为:±.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.要使与的值相等,则x= 6 .【考点】解分式方程.【专题】计算题.【分析】根据题意可列方程:,确定最简公分母为(x﹣1)(x﹣2),去分母,化为整式方程求解.【解答】解:根据题意可列方程:,去分母,得5(x﹣2)=4(x﹣1),解得x=6,经检验x=6是方程的解,所以方程的解为:x=6,故答案为:6.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.14.化简:= 1 .【考点】分式的加减法.【专题】计算题.【分析】先将第二项变形,使之分母与第一项分母相同,然后再进行计算.【解答】解:原式=.故答案为1.【点评】本题考查了分式的加减运算,要注意将结果化为最简分式.15.在函数中,自变量x的取值范围是x≠3.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.【考点】分式方程的解.【分析】求出分式方程的解x=n﹣2,得出n﹣2<0,求出n的范围,根据分式方程得出n﹣2≠﹣,求出n,即可得出答案.【解答】解:,解方程得:x=n﹣2,∵关于x的方程的解是负数,∴n﹣2<0,解得:n<2,又∵原方程有意义的条件为:x≠﹣,∴n﹣2≠﹣,即n≠.故答案为:n<2且n≠.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出n﹣2<0和n﹣2≠﹣,注意题目中的隐含条件2x+1≠0,不要忽略.17.关于x的方程的解为x=1,则a= ﹣3 .【考点】分式方程的解.【分析】根据方程的解的定义,把x=1代入方程,即可得到一个关于a的方程,即可求解.【解答】解:根据题意得:=,去分母得:4(2a+3)=3(a﹣1),解得:a=﹣3.故答案是:﹣3.【点评】本题考查了方程的解的定义,正确解关于a的方程是关键.18.计算:= 1 .【考点】分式的混合运算.【专题】计算题.【分析】先算除法,再进行减法计算.分式除以分式,把除式的分子、分母颠倒相乘,在相乘的过程中,注意结合因式分解的知识进行约分.【解答】解:原式=﹣•=+=1.【点评】对于一般的分式混合运算来讲,其运算顺序与整式混合运算一样,是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.19.已知a2﹣6a+9与(b﹣1)2互为相反数,则式子()÷(a+b)的值是.【考点】配方法的应用;非负数的性质:偶次方;代数式求值.【分析】由互为相反数的意义,可得:(a﹣3)2+(b﹣1)2=0,然后由非负数的性质可得a、b的值,然后解答即可.【解答】解:∵a2﹣6a+9与(b﹣1)2互为相反数,∴(a﹣3)2+(b﹣1)2=0,∵(a﹣3)2≥0,(b﹣1)2≥0,∴a=3,b=1,∴()÷(a+b)=(3﹣)÷(3+1)=.故答案为:.【点评】考查了配方法的应用,非负数的性质及代数式求值的知识,解题的关键是能够对代数式进行正确的配方,难道不大.20.一个容器装有1升水,按照如下方法把水倒出:第1次倒出升水,第2次倒出水量是升的,第3次倒出水量是升的,第4次倒出水量是升的,…,第n次倒出水量是升的.按照这种倒水的方法,n次倒出的水量共为升.【考点】分式的加减法.【分析】根据题目中第1次倒出升水,第2次倒出水量是升的,第3次倒出水量是升的,第4次倒出水量是升的,…,第n次倒出水量是升的可知按照这种倒水的方法,这1升水经n次后还有+×+×+×+…+×升水.【解答】解:由题意得+×+×+×+…+×=+﹣+﹣+﹣+…+﹣=1﹣=.故答案为:.【点评】此题考查分式的加减法,解答此题的关键是根据题目中的已知条件找出规律,按照此规律再进行计算即可.三、解答题:21.计算:(1)();(2)÷(2+)【考点】分式的混合运算.【专题】计算题;分式.【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=•=;(2)原式=•=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.解方程:(1);(2)=1.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x+2=4,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:2﹣x﹣1=x﹣3,解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.已知a=,求的值.【考点】分式的化简求值.【专题】计算题.【分析】本题的关键是正确进行分式的通分、约分,并准确代值计算.根据a与b的特殊形式,可以先求出a+b与ab的值,化简分式后再整体代入可简化计算.【解答】解:由a+b=2,a•b=1,得:=.【点评】本题所考查的内容“分式的运算”是数与式的核心内容,全面考查了有理数、整式、分式运算等多个知识点,要合理寻求简单运算途径的能力及分式运算.当条件中的两个字母的值用无理数表示的形式特点为:a=+n,b=﹣n;一般情况下,是先求出a+b、ab的值再整体代入化简后的分式求值.24.先化简,再求值:÷,其中a=﹣1.【考点】分式的化简求值.【专题】计算题.【分析】将括号内的部分通分后相减,再将除法转化为乘法后代入求值.【解答】解:原式=[﹣]•=•=•=.当a=﹣1时,原式==1.【点评】本题考查了分式的化简求值,熟悉通分、约分及因式分解是解题的关键.25.若关于x的方程有增根,试求k的值.【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出k的值.【解答】解:方程两边都乘(x﹣3),得k+2(x﹣3)=4﹣x,∵原方程有增根,∴最简公分母x﹣3=0,即增根为x=3,把x=3代入整式方程,得k=1.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.26.A、B两地相距80千米,一辆公共汽车从A地出发开往B地,2小时后,又从A地开来一辆小汽车,小汽车的速度是公共汽车的3倍.结果小汽车比公共汽车早40分钟到达B地.求两种车的速度.【考点】分式方程的应用.【专题】行程问题.【分析】根据题意可得到:从A到B地,小汽车用的时间=公共汽车用的时间﹣2小时﹣40分钟,由此可得出方程.【解答】解:设公共汽车的速度为x千米/时,则小汽车的速度为3x千米/时,由题意可列方程为,解得x=20.经检验,x=20是原方程的解,故3x=60;答:公共汽车的速度为20千米/时,小汽车的速度为60千米/时.【点评】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.找到关键描述语,找到等量关系是解决问题的关键.此题涉及的公式是:路程=速度×时间.27.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?【考点】分式方程的应用.【专题】工程问题;压轴题.【分析】如果设甲工厂每天加工x件产品,那么根据乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍,可知乙工厂每天加工1.5x件产品.然后根据等量关系:甲工厂单独加工完成这批产品的天数﹣乙工厂单独加工完成这批产品的天数=10列出方程.【解答】解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得﹣=10,解得:x=40.经检验:x=40是原方程的根,且符合题意.所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.【点评】本题考查了分式方程在实际生产生活中的应用.理解题意找出题中的等量关系,列出方程是解题的关键.注意分式方程一定要验根.28.如图,E、F是平行四边形ABCD对角线AC上的两点,且BE∥DF,求证:BF=DE.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题.【分析】由平行四边形的性质和已知条件证明△CEB≌△AFD,所以可得BE=DF,进而证明四边形BFED 是平行四边形,即BF=DE.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠BCE=∠DAF又∵BE∥DF,∴∠BEC=∠DFA在△CEB和△AFD中,∠BCE=∠DAF,∠BEC=∠DFA,BC=DA∴△CEB≌△AFD(AAS)∴BE=DF故BFED为平行四边形.∴BF=DE.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,是2016届中考常见题型.。
中考数学模拟试卷精选汇编:操作探究答案
图1图2操作探究一.选择题1.(2015•山东滕州羊庄中学•4月模拟)如图1,⊙O 的半径为1,点O 到直线m 的距离为2,点P 是直线m 上的一个动点,PB 切⊙O 于点B ,则PB 的最小值是A .1B .3C .2D .5答案:B ;二.填空题1.(2015•山东滕州东沙河中学•二模)如图2,以点P (2,0)为圆心,3为半径作圆,点M (a ,b )是⊙P 上的一点,则ab的最大值是____.答案:3;三.解答题1.(2015·江苏高邮·一模)(本题满分12分)数学课上,老师和同学们对矩形纸片进行了图形变换的以下探究活动:(1)如图1,若连接矩形ABCD 的对角线AC 、BD 相交于点O ,则Rt △ADC 可由Rt △ABC经过旋转变换得到,这种旋转变换的旋转中心是点▲、旋转角度是▲°;(2)如图2,将矩形纸片ABCD 沿折痕EF 对折、展平.再沿折痕GC 折叠,使点B 落在EF 上的点B ′处,这样能得到∠B ′GC .求∠B ′GC 的度数.(3)如图3,取AD 边的中点P ,剪下△BPC ,将△BPC 沿着射线BC 的方向依次进行平移变换,每次均移动BC 的长度,得到了△CDE 、△EFG 和△GHI (如图4).若BH =BI ,BC =a ,则:①证明以BD 、BF 、BH 为三边构成的新三角形的是直角三角形;②若这个新三角形面积小于5015,请求出a 的最大整数值.解:(1)点O 、180°……………………2分(2)连接BB',由题意得EF 垂直平分BC ,故BB'=B'C ,由翻折可得,AB CDO(图1)EF ADB CB ′G(图2)PBC (图3)B PCIE DG FHa (图4)ADB'C =BC ,∴△BB'C 为等边三角形.∴∠B'CB =60°,(或由三角函数FC :B'C =1:2求出∠B'CB =60°也可以.)∴∠B'CG =30°,∴∠B'GC =60°……………………4分(3)①分别取CE 、EG 、GI 的中点P 、Q 、R ,连接DP 、FQ 、HR 、AD 、AF 、AH ,∵△ABC 中,BA =BC ,根据平移变换的性质,△CDE 、△EFG 和△GHI 都是等腰三角形,∴DM ⊥CE ,FQ ⊥EG ,HN ⊥GI .在Rt △AHN 中,AH =AI =4a ,AH 2=HN 2+AN 2,HN 2=154a 2,则DM 2=FQ 2=HN 2=154a 2,AD 2=AM 2+DM 2=6a 2,AF 2=AQ 2+FQ 2=10a 2,新三角形三边长为4a 、6a 、10a .∵AH 2=AD 2+AF 2∴新三角形为直角三角形.……………………4分(或通过转换得新三角形三边就是AD 、DI 、AI ,即求△GAI 的面积或利用△HAI 与△HGI 相似,求△HAI 的面积也可以)②其面积为126a 10a =15a 2.∵15a 2<5015∴a 2<50∴a 的最大整数值为7.……………………2分2.(2015·江苏江阴·3月月考)提出问题:如图,在“儿童节”前夕,小明和小华分别获得一块分布均匀且形状为等腰梯形和直角梯形的蛋糕(AD ∥BC ),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将自己的这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).图1AB CD图2ABCD背景介绍:这条分割直线..既平分了梯形的面积,又平分了梯形的周长,我们称这条线为梯形的“等分积周线”.尝试解决:ABCIEDGFHaMQN(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中作出这条“等分积周线”,从而平分蛋糕.(2)小华觉得小明的方法很好,所以模仿着在自己的蛋糕(图2)中画了一条直线EF 分别交AD 、BC 于点E 、F .你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.(3)通过上面的实践,你一定有了更深刻的认识.若图2中AD ∥BC ,∠A =90°,AD <BC ,AB=4cm ,BC =6cm ,CD =5cm .请你找出梯形ABCD 的所有“等分积周线”,并简要的说明确定的方法.答案:解:(1)作线段AD (或BC )的中垂线即可.(2)小华不会成功.直线平分梯形ABCD 面积,则21(AE +BF )AB=21(ED +CF )AB ∴AE +BF =ED +CF ,又∵AB <CD ,∴此时AE +BF +AB <ED +CF +CD ∴小华不可能成功(3)可求得:S 梯形ABCD =18,C 梯形ABCD =18,由(2)可知直线分别交AD 、BC 于点E 、F 时不可能,只要分以下几种情况:①当直线分别交AD 、AB 于E 、F 时有S △AEF ≤S △ABD ,又∵S △ABD =6<9,∴不可能同理,当直线分别交AD 、CD 于E 、F 时S △AEF ≤S △ACD <9,∴不可能②当直线分别交AB 、BC 于E 、F 时设BE =x ,则BF =9−x由直线平分梯形面积得:12x (9−x )=9求得:x 1=3,x 2=6>4(舍去)∴BE =3③当直线分别交CD 、BC 于E 、F 时设CE =x ,可得:S △ECF =12×4x5×(9−x )=92x 2-18x +45=0此方程无解,∴不可能④当直线分别交AB 、CD 于、E 、F 时设CF =x ,可得:S BFEC =12×(3−x 5)(6−3x 5)+6x 225=9∴x1=0,与②同x2=5,BF=−2,舍去综上所述,符合条件的直线共有一条3.(2015·江苏江阴要塞片·一模)对于半径为r的⊙P及一个正方形给出如下定义:若⊙P 上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C 在点D的左侧.(1)当r=①在P1(0,-3),P2(4,6),P3(2)中可以成为正方形ABCD的“等距圆”的圆心的是_______________;②若点P在直线2y x=-+上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为_______________;(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P在y轴上截得的弦长;②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是_______________.答案:解(1)10×1.5+(18﹣10)×2=31,········2分(2)①当x≤10时,y=1.5x,········3分②当10<x≤m时,y=10×1.5+(x﹣10)×2=2x﹣5,········4分③当x>m时,y=10×1.5+(m﹣10)×2+(x﹣m)×3=3x﹣m﹣5,········5分(3)①当40≤m≤50时,此时选择第二种方案,费用=2×40﹣5=75,符合题意,········6分②当20≤m<40时,此时选择第三种方案,费用=3x﹣m﹣5,则:70≤3x﹣m﹣5≤90,········7分∴25≤m≤45,········9分综合①、②可得m的取值范围为:25≤m≤50.········10分4(2015·福建漳州·一模)动手操作:用两种不同的方法,将下图中一个等腰三角形分割成四个等腰三角形.解:答案:解:每画一个图正确得4分5(2015•山东滕州东沙河中学•二模)如图3,四边形ABCD为矩形,点E在边BC上,四边形AEDF为菱形.(1)求证:ΔABE≌ΔDCE;(2)试探究:当矩形ABCD长宽满足什么关系时,菱形AEDF为正方形?请说明理由答案:解:(1)略(2)AD=2AB.6.(2015•山东滕州羊庄中学•4月模拟)如图4-1,正方形ABCD的对角线AC与BD相交于点M,正方形MNPQ与正方形ABCD全等,将正方形MNPQ绕点M顺时针旋转,在旋转过程中,射线MN与射线MQ分别交正方形ABCD的边于E、F两点。
山东省滕州市九年级数学第二次模拟考试试题(扫描版)
山东省滕州市2015届九年级数学第二次模拟考试试题绝密☆启用前二〇一五年初中学业考试模拟试题数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.62.510-⨯ 14.332 15.16 16.1016064(或10082) 17.① ③④ 18. 7三、解答题:(本大题共7小题,共60分)19.(本题满分8分)解:原式=ba , …………………………………………………………4分 ∵031=-++b a ,∴a +1=0,b ﹣=0,解得a =﹣1,b =,……6分 当a =﹣1,b = 时,原式=﹣=﹣……………………8分20.(本题满分8分)(1)证明:∵AB =AC ,∴∠B =∠ACB .又 ∵四边形ABDE 是平行四边形∴AE ∥BD , AE =BD ,∴∠ACB =∠CAE =∠B ,∴⊿DBA ≌⊿EAC (SAS) ……………4分(2)过A 作AG ⊥BC ,垂足为G .设AG =x ,在Rt△AGD 中,∵∠ADC =450,∴AG =DG=x ,在Rt△AGB 中,∵∠B =300,∴BG =x 3,又∵BD =10. ∴BG -DG =BD ,即103=-x x ,解得AG =x =5351310+=- …………6分∴S 平行四边形ABDE =BD ·AG =10×(535+)=50350+.…………8分21.(本题满分8分)解:(1)由题意,得AM =AE+DE =36+36=72(cm ).故AM 的长为72 cm ;…………2分(2)∵AP 平分∠BAC ,∠BA C=104°,∴∠EAD =∠BAC =52°.过点E 作EG ⊥AD 于G ,∵AE =DE =36,∴AG =DG ,AD =2A G .…………4分在△AEG 中,∵∠AGE =90°,∴AG =AE •cos∠EAG =36•cos52°=36×0.6157=22.1652, …………………………………………6分∴AD =2AG =2×22.1652≈44(cm ).故AD 的长约为44cm .………………………………8分22.(本题满分8分)解:(1)被调查的人数=330÷22%=1500人,a =1500﹣450﹣420﹣330=1500﹣1200=300人; ………………………………3分(2)360°××100%=108°; ………………………………6分(3)∵12﹣35岁网瘾人数约为2000万,∴12~23岁的人数约为2000万×=400万. ………………………………8分 23. (本题满分8分)解:(1)∵点B (3,3)在反比例函数y 1=x k 1的图像上,∴k 1=3×3=9; 此反比例函数的关系式为y 1=x9;………………2分 过B 作BN ⊥x 轴于N ,则BN =3,∵AB =13,∴AN =2,∴OA =1;过D 作DM ⊥x 轴于M , 则∠DMA =∠ANB =90°,∵四边形ABCD 是正方形,∴∠DAB =90°,AD =AB ,∴∠MDA +∠DAM =90°,∠DAM +∠BAN =90°,∴∠ADM =∠BAN ,∴△ADM ≌△BAN (AAS ),∴MA = BN =3,MD =AN =2,∴MO =3﹣1=2,∴点D 的坐标是(-2,2).∵点D (-2,2)在反比例函数y 2=x k 2的图像上,∴k 2=-2×2=-4; 此反比例函数的关系式为y 2=x4-;………………………………………5分 (2)过B 作BP ⊥y 轴于P ,同理可得△BCP ≌△BAN ,∴BP =BN =3,CP =AN =2,∴CO =5,设直线DC 的关系式为5+=kx y ,代入点D (-2,2)得:k =23,∴直线DC 的关系式为523+=x y .………………………………………8分24. (本题满分10分) (1)证明:连接OE ,∵AC 与圆O 相切,∴OE ⊥AC ,∵BC ⊥AC ,∴OE ∥BC ,又∵O 为DB 的中点,∴E 为DF 的中点,即OE 为△DBF 的中位线,∴OE =BF ,又∵O E =BD ,则BF =BD ; ………………………………………5分(2)解:设BC =3x ,根据题意得:AB =5x ,又∵CF =1,∴BF =3x +1,由(1)得:BD =BF ,∴BD =3x +1,∴OE =OB =,AO =AB ﹣OB =5x ﹣=,∵OE ∥BF ,∴∠A OE =∠B ,∴cos ∠AOE =cos B ,即=, 即=,解得:x=,则圆O 的半径为=.………………………………10分25.(本题满分10分)解:(1)∵tan ∠BAC =2,∴OC =2OA =4,∴C (0,-4)将A (2-,0)、B (4,0)、C (0,-4)三点坐标分别代入c bx ax y ++=2, 得⎪⎩⎪⎨⎧-==++=+-40416024c c b a c b a , 解得:⎪⎪⎩⎪⎪⎨⎧-=-==4121c b a ∴抛物线的解析式为:4212--=x x y ……………………………3分 (2)设运动时间为t 秒,由题意可知: 40<<t则t PB t OP -==4,,t BQ =,过点Q 作AB QD ⊥,垂直为D , OC =4,OB =4,∴∠O BC =45o , t DQ 22=∴, ∴2)2(4224222)4(212122+--=+-=⋅-=⋅=∆t t t t t DQ PB S PBQ , ∴当运动2秒时,△PBQ 面积最大,最大值为2. ……………………………6分(3)假设存在点M ,使得点M 到BC 的距离MH=423,如图,设PM 交直线BC 于点N ,易得∠H MN =45o ,∴MN =2MH=4232⋅=23,求得直线BC 的关系式为y=x-4,所以N 点坐标为(t ,t -4),M 点坐标为(t ,4212--t t ), ∴ MN = (t-4)-(4212--t t ),∴(t-4)-(4212--t t )=23, 解得:,11=t ,32=t所以存在点M 满足条件,坐标为(1,29-),(3,25-). ………………………10分。
2015中考模拟考试试题数学科参考答案
2014—2015学年度第二学期综合测试九年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分):1B 、 2B 、 3C 、 4C 、 5D 、 6A ; 7B 、 8D 、 9D 、 10B二、填空题(本题共6小题,每小题4分,共24分):11; 12、26(1)x +; 13、120; 14、12y x =- ; 15、42°; 16、4123π-三、解答题(本题共3小题,每小题6分,共18分):17、解:原式=2(1)12(1)(1)2x x x x x x x +-⨯-++-+……………………………………………………2分 =122x x x x +-++ ……………………………………………………3分 =12x + ……………………………………………………4分……………………………………………………5分…………………………………6分(解答到此给6分)1……………………(试卷讲评时要求分母有理化至最简结果)19、解:(1)作图(略)给分说明:作对一条线段得1分,作对∠C 得1分,作对△ABC 得1分,本问满分4分。
(2)过点A 作AD ⊥BC 于点D在△ACD 中,sin sin AD AC C b β=∠=∠ ………………………………………………5分∴△ABC的面积:111sin 642222S BC AD a b β===⨯⨯⨯= ……………………6分21、(1)样本平均数是__2.6___万元; ……………………………………………………2分(2)根据样本平均数估计这个商场四月份的月营业额约为___78__万元; ………………3分(3)解:设每月营业额增长率为x ,依题意,得方程:………………………………………4分 278(1)78(1)18.72x x +-+= ……………………………………………………5分 化简,得:2-0.24=0x x + 配方,得:2+0.5)0.49x =( 解得:120.2, 1.2x x ==-(舍去) ……………………………………………………6分 答:每月营业额增长率是20%。
2015届中考二模数学试题含答案
第二学期第二次模拟题九 年 级 数 学说明:全卷共 4 页,考试时间为 100 分钟,满分 120 分.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的倒数为( ▲ ) A .21-B .21C .2D .12.已知空气的单位体积质量为1.24×10-3克/厘米3,将1.24×10-3用小数表示为( ▲ )A .0. 000124B .0.0124C .一0.00124D .0.00124 3.如图是一个几何体的三视图,则这个几何体的形状是( ▲ ).A .圆柱B .圆锥C .圆台D .长方体4.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是( ▲ )A .等边三角形B .矩形C .菱形D .正方形5.直线2y x =-不经过( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 6.下列计算正确的是( ▲ )A .532a a a =+ B .1234)(a a =C .632a a a =⋅D .326a a a =÷7.不等式421->+x x 的解集是( ▲ ) A .5<x B .5>x C .1<xD .1>x8.如图,已知AB ∥CD ,E 是AB 上一点,DE 平分∠BEC交CD 于D ,∠BEC=100°,则∠D 的度数是( ▲ ) A .100° B .80° C .60° D .50°9.如图,DC 是⊙O 直径,弦AB ⊥CD 于F ,连接BC ,DB ,则下列结论错误的是( ▲ )第8题图A . AD⌒ =BD ⌒ B .AF=BF C .OF=CF D .∠DBC=90° 10.若x y ,为实数,且30x +=,则2014⎪⎭⎫ ⎝⎛x y 的值为( ▲ )A .1B . 1-C . 2D . 2-二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.若一个多边形外角和与内角和相等,则这个多边形是 ▲ . 12.分式方程312=+x x的解是 ▲ . 13.如图,DE 是△ABC 的中位线,若BC 的长是10cm ,则DE 的长是 ▲ .14.一组数据1,3,2,5,2,a 的众数是a ,这组数据的中位数是 ▲ .15.若关于x 的一元二次方程022=-+k x x 没有实数根,则k 的取值范围是 ▲.16.已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点. 若四边形EFDC 与矩形ABCD 相似,则AD = ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:011134-⎛⎫⎛⎫︒+ ⎪ ⎪⎝⎭⎝⎭18.先化简,再求值:)1)(1()2(2a a a +-++,其中43-=a19.如图,在Rt △ABC 中,∠C =90°.(1)根据要求用尺规作图:过点C 作斜边AB 边上的高CD ,垂足为D(不写作法,只保留作图痕迹); (2)证明:△CAD ∽△BCD第16题图第9题图E ABCD 第13题图四、解答题(二)(本大题3小题,每小题7分,共21分)20.如图,AC 是操场上直立的一个旗杆,从旗杆上的B 点到地面C 涂着红色的油漆,用测角仪测得地面上的D 点到B 点的仰角是∠BDC=45°,到A 点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,求旗杆的高度?21.在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是31. (1)求暗箱中红球的个数.(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树形图或列表法求解).22.某种仪器由1种A 部件和1个B 部件配套构成.每个工人每天可以加工A 部件1000个或者加工B 部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A 部件和B 部件配套?五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图, 抛物线c bx x y ++=221与x 轴交于A (-4,0) 和B(1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式;(2)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q 点,当P 点运动到什么位置时,线段PQ 的长最大,并求此时P 点的坐标.24.如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF =∠ABC . (1)求证:AB =AC ;(2)若AD =4, cos ∠ABF =54,求DE 的长.25.如图,在平面直角坐标系xoy 中,抛物线c bx ax y ++=2交y 轴于点C (0,4), 对称轴2=x 与x 轴交于点D ,顶点M 的纵坐标为6. (1)求该抛物线的解析式;(2)设点P (x ,y )是第一象限内该抛物线上的一个动点,△PCD 的面积为S ,求S 关于x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下,若经过点P 的直线PE 与y 轴交于点E ,是否存在以O 、P 、E 为顶点的三角形与△OPD 全等?若存在,请求出直线PE 的解析式;若不存在,请说明理由.九年级数学第二次模拟题参考答案和评分标准一、ADBDC BADCA二、11、四边形 12、3-=x 13、5 cm 14、2 15、1-<k 16 三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解:原式=11242+⨯+ ······················· 4分 =6 ·························· 6分18.解:原式=22144a a a -+++ ···················· 3分=54+a ························· 4分当43-=a 时,原式=54+a =5)43(4+-⨯=2 ············ 6分 19.(1)正确尺规作图. ························ 3分(2)证明:∵Rt △ABC 中,CD 是斜边AB 边上的高,∴∠ADC =∠BDC =90°, ················· 4分 ∴∠ACD +∠A =∠ACD +∠BCD =90°,∴∠A =∠BCD , ····················· 5分 ∴△CAD ∽△BCD , ····················· 6分 四、解答题(二)(本大题3小题,每小题7分,共21分)20.解:在Rt △BDC 中, ∵∠BDC=45°, ∴DC=BC=3米, ························· 3分 在Rt △ADC 中, ∵∠ADC=60°,∴AC=DCtan60° ························· 5分=3× (米). ························ 6分 答:旗杆的高度为3米 ························ 7分 21.解:(1)设红球有x 个,根据题意得,31111=++x ······················ 2分解得1=x ····················· 3分(2)根据题意画出树状图如下:一共有9种情况, ························· 5分 两次摸到的球颜色不同的有6种情况, ·················· 6分 所以,P (两次摸到的球颜色不同)3296==··············· 7分 22.解:设安排x 人生产A 部件,安排y 人生产B 部件,由题意,得 ······· 1分⎩⎨⎧==+y x y x 600100016··························· 4分 解得:⎩⎨⎧==106y x ···························· 6分答:设安排6人生产A 部件,安排10人生产B 部件,才能使每天生产的A 部件和B部件配套. ···························· 7分五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 解:(1)由二次函数c bx x y ++=221与x 轴交于(4,0)A -、(1,0)B 两点可得:⎪⎩⎪⎨⎧=++⨯=+--⨯012104)4(2122c b c b ················· 2分解得: ⎪⎩⎪⎨⎧-==223c b 故所求二次函数的解析式为223212-+=x x y . ·· 3分 (2) 由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2). ····· 4分若设直线AC 的解析式为b kx y +=,则有⎩⎨⎧+-=+=-b k b 4002 解得:⎪⎩⎪⎨⎧-=-=221b k故直线AC 的解析式为221--=x y . ·············· 5分若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭, ············· 6分又Q 点是过点P 所作y 轴的平行线与直线AC 的交点, 则Q 点的坐标为(1,2)2a a --.则有: )22321()221(2-+---=a a a PQ =a a 2212-- ····················· 7分=2)2(212++-a ················· 8分当2-=a 时,线段PQ 的长取最大值,此时P 点的坐标为(-2,-3) ·· 9分24.(1)证明:连接BD , ························· 1分 由AD ⊥AB 可知BD 必过点O ···················· 2分∵BF 相切于⊙O ,∴∠ABD 十∠ABF =90º∵AD ⊥AB ,∴∠ABD +∠ADB =90º,∴∠ABF =∠ADB ········· 3分 ∵∠ABC =∠ABF ,∴∠ABC =∠ADB ················· 4分 又∠ACB =∠ADB ,∴∠ABC =∠ACB ,∴AB =AC ············ 5分 (2)在Rt △ABD 中,∠BAD =90ºcos ∠ADB =BD AD ,∴BD =ADB AD ∠cos =ABFAD∠cos =544=5 ···· 6分∴AB =3 ·························· 7分 在Rt △ABE 中,∠BAE=90º Cos ∠ABE =BE AB ,∴BE =ABE AB∠cos =543=415∴AE =223)415(-=49················· 8分∴DE =AD -AE =4-49=47·················· 9分25.解:(1)由题意得:顶点M 坐标为(2,6). ············ 1分设抛物线解析式为:6)2(2+-=x a y ∵点C (0,4)在抛物线上,∴644+=a 解得21-=a ···················· 2分 ∴抛物线的解析式为:6)2(212+--=x y =42212++-x x ····· 3分(2)如答图1,过点P 作PE ⊥x 轴于点E∵ P (x ,y ),且点P 在第一象限, ∴PE=y ,OE=x ,∴DE=OE﹣OD=2-x ·························· 4分 S=S 梯形PEOC ﹣S △COD ﹣S △PDE=y x x y ⋅--⨯⨯-⋅+)2(214221)4(21 42-+=x y将42212++-=x x y 代入上式得:S=x x 4212+- ············ 5分 在抛物线解析式42212++-=x x y 中,令0=y ,即422102++-=x x ,解得322±=x设抛物线与x 轴交于点A 、B ,则B (322+,0), ∴3220+<<x∴S 关于x 的函数关系式为:S=x x 4212+-(3220+<<x ). ····· 6分 (3)存在.若以O 、P 、E 为顶点的三角形与△OPD 全等,可能有以下情形: (I )OD=OP .由图象可知,OP 最小值为4,即OP≠OD,故此种情形不存在. ······· 7分 (II )OD=OE .若点E 在y 轴正半轴上,如答图2所示: 此时△OPD ≌△OPE , ∴∠OPD=∠OPE ,即点P 在第一象限的角平分线上, ∴直线PE 的解析式为:221+=x y 若点E 在y 轴负半轴上,易知此种情形下,两个三角形不可能全等, 故不存在. ······························ 8分(III )OD=PE . ∵OD=2, ∴第一象限内对称轴右侧的点到y 轴的距离均大于2,则点P 只能位于对称轴左侧或与顶点M 重合. 若点P 位于第一象限内抛物线对称轴的左侧,易知△OPE 为钝角三角形, 而△OPD 为锐角三角形,则不可能全等; 若点P 与点M 重合,如答图3所示,此时△OPD ≌OPE ,四边形PDOE 为矩形, ∴直线PE 的解析式为:6=y综上所述,存在以O 、P 、E 为顶点的三角形与△OPD 全等, 直线PE 的解析式为221+=x y 或6=y . ················ 9分。
山东省滕州市2015届九年级下学期学业考试模拟数学试题(扫描版)
绝密☆启用前二〇一五年初中学业考试模拟试题数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分. 3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.62.510-⨯ 14.332 15.16 16.1016064(或10082) 17.① ③④ 18. 7三、解答题:(本大题共7小题,共60分) 19.(本题满分8分) 解:原式=ba, …………………………………………………………4分 ∵031=-++b a ,∴a +1=0,b ﹣=0,解得a =﹣1,b =,……6分当a =﹣1,b =时,原式=﹣=﹣……………………8分20.(本题满分8分)(1)证明:∵AB =AC ,∴∠B =∠ACB .又 ∵四边形ABDE 是平行四边形∴AE ∥BD , AE =BD ,∴∠ACB =∠CAE =∠B , ∴⊿DBA ≌⊿EAC (SAS) ……………4分 (2)过A 作AG ⊥BC ,垂足为G .设AG =x ,在Rt △AGD 中,∵∠ADC =450,∴AG =DG=x ,在Rt △AGB 中,∵∠B =300,∴BG =x 3, 又∵BD =10. ∴BG -DG =BD ,即103=-x x ,解得AG =x =5351310+=- …………6分∴S 平行四边形ABDE=BD ·AG =10×(535+)=50350+.…………8分21.(本题满分8分)解:(1)由题意,得AM =AE+DE =36+36=72(cm ).故AM 的长为72 cm ;…………2分(2)∵AP 平分∠BAC ,∠BA C=104°,∴∠EAD =∠BAC =52°.过点E 作EG ⊥AD 于G , ∵AE =DE =36,∴AG =DG ,AD =2A G .…………4分 在△AEG 中,∵∠AGE =90°,∴AG =AE •cos ∠EAG =36•cos52°=36×0.6157=22.1652, …………………………………………6分 ∴AD =2AG =2×22.1652≈44(cm ).故AD 的长约为44cm .………………………………8分 22.(本题满分8分)解:(1)被调查的人数=330÷22%=1500人,a =1500﹣450﹣420﹣330=1500﹣1200=300人; ………………………………3分 (2)360°××100%=108°; ………………………………6分(3)∵12﹣35岁网瘾人数约为2000万, ∴12~23岁的人数约为2000万×=400万. ………………………………8分23. (本题满分8分)解:(1)∵点B (3,3)在反比例函数y 1=xk 1的图像上,∴k 1=3×3=9; 此反比例函数的关系式为y 1=x9;………………2分 过B 作BN ⊥x 轴于N ,则BN =3, ∵AB =13,∴AN =2,∴OA =1;过D 作DM ⊥x 轴于M , 则∠DMA =∠ANB =90°, ∵四边形ABCD 是正方形,∴∠DAB =90°,AD =AB ,∴∠MDA +∠DAM =90°, ∠DAM +∠BAN =90°,∴∠ADM =∠BAN , ∴△ADM ≌△BAN (AAS ),∴MA = BN =3,MD =AN =2,∴MO =3﹣1=2, ∴点D 的坐标是(-2,2). ∵点D (-2,2)在反比例函数y 2=xk 2的图像上,∴k 2=-2×2=-4; 此反比例函数的关系式为y 2=x4-;………………………………………5分(2)过B 作BP ⊥y 轴于P ,同理可得△BCP ≌△BAN ,∴BP =BN =3,CP =AN =2,∴CO =5,设直线DC 的关系式为5+=kx y ,代入点D (-2,2)得:k =23, ∴直线DC 的关系式为523+=x y .………………………………………8分24. (本题满分10分)(1)证明:连接OE ,∵AC 与圆O 相切,∴OE ⊥AC , ∵BC ⊥AC ,∴OE ∥BC ,又∵O 为DB 的中点,∴E 为DF 的中点, 即OE 为△DBF 的中位线,∴OE =BF ,又∵O E =BD ,则BF =BD ; ………………………………………5分 (2)解:设BC =3x ,根据题意得:AB =5x , 又∵CF =1,∴BF =3x +1,由(1)得:BD =BF ,∴BD =3x +1, ∴OE =OB =,AO =AB ﹣OB =5x ﹣=,∵OE ∥BF ,∴∠A OE =∠B , ∴cos ∠AOE =cos B ,即=,即=,解得:x=,则圆O 的半径为=.………………………………10分25.(本题满分10分) 解:(1)∵tan ∠BAC =2,∴OC =2OA =4,∴C (0,-4) 将A (2-,0)、B (4,0)、C (0,-4)三点坐标分别代入c bx ax y ++=2,得⎪⎩⎪⎨⎧-==++=+-40416024c c b a c b a , 解得:⎪⎪⎩⎪⎪⎨⎧-=-==4121c b a∴抛物线的解析式为:4212--=x x y ……………………………3分 (2)设运动时间为t 秒,由题意可知: 40<<t则t PB t OP -==4,,t BQ =,过点Q 作AB QD ⊥,垂直为D , OC =4,OB =4,∴∠O BC =45o , t DQ 22=∴, ∴2)2(4224222)4(212122+--=+-=⋅-=⋅=∆t t t t t DQ PB S PBQ , ∴当运动2秒时,△PBQ 面积最大,最大值为2. ……………………………6分(3)假设存在点M ,使得点M 到BC 的距离MH=423,如图,设P M 交直线BC 于点N ,易得∠H MN =45o ,∴MN =2MH=4232⋅=23,求得直线BC 的关系式为y=x-4,所以N 点坐标为(t ,t -4),M 点坐标为(t ,4212--t t ),∴ MN = (t-4)-(4212--t t ),∴(t-4)-(4212--t t )=23,解得:,11=t ,32=t所以存在点M 满足条件,坐标为(1,29-),(3,25-). ………………………10分。
中考数学二模试题(含解析) (2)
中考数学二模试题一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.计算2m2n﹣3nm2的结果为()A.﹣1 B.﹣5m2n C.﹣m2n D.不能合并2.已知,如图,AC与BD相交于点O,AB∥CD,如果∠C=30.2°,∠B=50°56′,那么∠BOC 为()A.80°18′ B.50°58′ C.30°10′ D.81°8′3.长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是()A.12cm2B.8cm2C.6cm2D.4cm24.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数小于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.乙运动员的成绩比甲运动员的成绩稳定5.已知y是关于x的函数,函数图象如图,则当y>0时,自变量x的取值范围是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<26.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中4×7方格中的格点的连线中,能够与该圆弧相切的格点个数有()A.1个B.2个C.3个D.4个7.超市有一种“喜之郎”果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,横截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,那么要制作这样一个包装盒至少纸板()平方厘米.(不计重合部分)A.253 B.288 C.206 D.2458.如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD 并延长交BC于点F.则下列结论正确的有()①∠CBD=∠CEB;② =;③点F是BC的中点;④若=,tanE=.A.①② B.③④ C.①②④D.①②③二、填空题:本大题共6小题,每小题3分,共18分.请把答案填在题中横线上9.因式分解:x2y﹣7y= .10.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为.11.函数y=与y=x﹣2的图象交点的横坐标分别为a,b,则+的值为.12.如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为23°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于度;(2)求A、B两点间的距离等于(结果精确到0.1米,参考数据:≈1.41,≈1.73 tan37°≈0.75,tan23°≈1.59,sin37°≈1.60,cos37°≈0.80).13.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x 轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为.14.如图,菱形ABCD的边长为12cm,∠A=60°,点P从点A出发沿线路AB→BD做匀速运动,点Q从点D同时出发沿线路DC→CB→BA做匀速运动.已知点P,Q运动的速度分别为2cm/秒和2.5cm/秒,经过12秒后,P、Q分别到达M、N两点时,点P、Q再分别从M、N同时沿原路返回,点P的速度不变,点Q的速度改为vcm/秒,经过3秒后,P、Q分别到达E、F两点,若△BEF与△AMN相似,则v的值为.三、解题题:本大题共8小题,共78分.解答应写出文字说明,证明过程或演算步骤15.(1)计算:﹣2tan60°﹣(﹣1)2015;(2)解不等式组,并把不等式组的解集在数轴上表示出来.16.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(m,3),B(﹣3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x的不等式>kx+b的解集.17.杭州市相关部门正在研究制定居民用水价格调整方案,小明想为政府决策提供信息,于是在某小区内随机访问了部分居民,就每月的用水量,可承受的水价调整的幅度等进行调查,并把调查结果整理成图1和图2,已知被调查居民美誉每月的用水量在5m3﹣35m3之间,被调查的居民中对居民用水价格调整幅度抱“无所谓”态度的有8户,试回答下列问题:①上述两个统计图表是否完整,若不完整,试把它们补全;②若采用阶梯式累进制调价方案(如表1所示),试估计该小区有百分之几的居民用水费用的增长幅度不超过50%?18.如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC,交AC于点E,交PC于点F,连接AF.(1)求证:AF是⊙O的切线;(2)已知⊙O的半径为4,AF=3,求线段AC的长.19.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置关系;(2)求线段B′C的长,并求△B′EC的面积.20.阅读对话,解答问题.(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)小冬抽出(a,b)中使关于x的一元二次方程x2﹣ax+2b=0根为有理数的是小丽赢,方程的根为无理数的是小兵赢,你觉得游戏是否公平?若公平,请说明理由;若不公平,请修改游戏方案.21.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是三角形;(2)若抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=﹣x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.22.如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.(1)图中是否存在与△ODM相似的三角形,若存在,请找出并给于证明.(2)设DM=x,OA=R,求R关于x 的函数关系式;是否存在整数R,使得正方形ABCD内部的扇形OAM围成的圆锥地面周长为π?若存在请求出此时DM的长;不存在,请说明理由.(3)在动点O逐渐向点D运动(OA逐渐增大)的过程中,△CMN的周长如何变化?说明理由.2015年山东省菏泽市鄄城县中考数学二模试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.计算2m2n﹣3nm2的结果为()A.﹣1 B.﹣5m2n C.﹣m2n D.不能合并【考点】合并同类项.【分析】两项是同类项,根据合并同类项的法则把系数相加即可.【解答】解:2m2n﹣3nm2=﹣m2n,故选:C.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.2.已知,如图,AC与BD相交于点O,AB∥CD,如果∠C=30.2°,∠B=50°56′,那么∠BOC 为()A.80°18′ B.50°58′ C.30°10′ D.81°8′【考点】平行线的性质;三角形的外角性质.【分析】先由两直线平行,内错角相等得出∠D=∠B=50°56′,再根据三角形的一个外角等于和它不相邻的两个内角的和得到∠BOC=∠C+∠D,即可求解.【解答】解:∵AB∥CD,∴∠D=∠B=50°56′,∴∠BOC=∠C+∠D=30.2°+50°56′=81°8′.故选D.【点评】本题考查了平行线的性质及三角形外角的性质,比较简单,注意单位的换算.3.长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是()A.12cm2B.8cm2C.6cm2D.4cm2【考点】由三视图判断几何体.【专题】压轴题.【分析】主视图的矩形的两边长表示长方体的长为4,高为2;左视图的矩形的两边长表示长方体的宽为3,高为2;那么俯视图的矩形的两边长表示长方体的长与宽,那么求面积即可.【解答】解:根据题意,正方体的俯视图是矩形,它的长是4cm,宽是3cm,面积=4×3=12(cm2),故选A.【点评】解决本题的关键是根据所给视图得到俯视图的矩形的边长.4.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数小于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.乙运动员的成绩比甲运动员的成绩稳定【考点】折线统计图;算术平均数;中位数;极差;方差.【分析】结合折线统计图,利用数据逐一分析解答即可.【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,此选项正确,不符合题意;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,此选项错误,符合题意;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,此选项正确,不符合题意;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,所以此选项正确,不符合题意.故选B.【点评】此题主要结合折线统计图,利用极差、中位数、平均数以及方差来进行分析数据,找到解决问题的突破口.5.已知y是关于x的函数,函数图象如图,则当y>0时,自变量x的取值范围是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<2【考点】函数的图象.【分析】观察图象和数据即可求出答案.【解答】解:y>0时,即x轴上方的部分,∴自变量x的取值范围分两个部分是x<﹣1,1<x<2.故选D.【点评】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件.6.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中4×7方格中的格点的连线中,能够与该圆弧相切的格点个数有()A.1个B.2个C.3个D.4个【考点】切线的性质;勾股定理;垂径定理.【专题】网格型.【分析】由弦AB与弦BC的垂直平分线的交点为圆心,找出圆心O′的位置,确定出圆心坐标,过点B与圆相切时,根据切线的判定方法得到∠O′BF为直角时,BF与圆相切,根据网格找出满足条件的F坐标即可.【解答】解:根据过格点A,B,C作一圆弧,由图形可得:三点组成的圆的圆心为:O′(2,0),只有∠O′BF=∠O′BD+∠EBF=90°时,BF与圆相切,此时△BO′D≌△FBE,EF=BD=2,∴F点的坐标为:(5,1)或(1,3)或(7,0),则点B与下列格点的连线中,能够与该圆弧相切的是(5,1)或(1,3)或(7,0),共3个.故选C.【点评】此题考查了切线的判定与性质,勾股定理,全等三角形的判定与性质,以及点的坐标与直角坐标系,其中确定出圆心O′的坐标是本题的突破点.7.超市有一种“喜之郎”果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,横截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,那么要制作这样一个包装盒至少纸板()平方厘米.(不计重合部分)A.253 B.288 C.206 D.245【考点】二次函数的应用.【分析】图,“喜之郎”果冻礼盒是一长方体.2个底面为矩形A′B′C′D′(如图3),2个侧面为矩形ABCD(如图2),2个侧面是以AB为高,AE为底的矩形.【解答】解:建立如图(2)所示的平面直角坐标系,过切点K作KH⊥OD于点H.依题意知 K(x,2).易求开口向上抛物线的解析式:y=x2,所以 2=x2,解得 x=或x=﹣(舍去),∴OH=HG=,∴BC=BO+OH+HG+GC=3+++3=6+3,∴S矩形ABCD=AB•BC=4×(6+3)=24+12(平方厘米).如图3,S矩形A′B′C′D′=6BC=6×(6+3)(平方厘米).所以,2S矩形ABCD+2S矩形A′B′C′D′+2AB•AE=178+80(平方厘米).2×(24+12)+2×(36+18)+2×4×6=168+60≈253(平方厘米).故选:A.【点评】本题考查了二次函数的应用.此题采用逆向思维,通过补全图形来计算包装盒的表面积.8.如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD 并延长交BC于点F.则下列结论正确的有()①∠CBD=∠CEB;② =;③点F是BC的中点;④若=,tanE=.A.①② B.③④ C.①②④D.①②③【考点】圆的综合题.【分析】(1)运用直角及圆周角的关系证出∠CBD=∠CEB.(2)运用△EBC∽△BDC求证即可,(3)运用反正法来判定.(4)设BC=3x,AB=2x,得出OB、OD及OC、CD的值,运用=得出tanE=.【解答】证明(1)∵BC⊥AB于点B,∴∠CBD+∠ABD=90°,∵∠BAD+∠ABD=90°∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,故①正确.(2)∵∠C=∠C,∠CEB=∠CBD,∴△EBC∽△BDC,∴=,故②正确,(3)∵∠EBD=∠BDF=90°,∴DF∥BE,假设点F是BC的中点,则点D是EC的中点,∴ED=DC,∵ED是直径,长度不变,而DC的长度是不定的,∴DC不一定等于ED,故③是错误的.(4)∵=,设BC=3x,AB=2x,∴OB=OD=x,∴在RT△CBO中,OC=x,∴CD=(﹣1)x∵由(2)知, =∴===,∵tanE=∴tanE=,故④正确,故选:C.【点评】本题主要考查了圆的综合题,涉及相似三角形的判定与性质、圆周角定理、锐角三角函数定义等知识点,解题的关键在于通过求证三角形相似根据对应边成比例的性质求出tan∠E的值.二、填空题:本大题共6小题,每小题3分,共18分.请把答案填在题中横线上9.因式分解:x2y﹣7y= y(x﹣)(x+).【考点】实数范围内分解因式.【分析】首先提取公因式,再进一步利用平方差公式分解因式.【解答】解:x2y﹣7y=y(x2﹣7)=y(x﹣)(x+).故答案为:y(x﹣)(x+).【点评】此题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.10.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及两次摸出的小球上两个数字乘积是负数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况,∴两次摸出的小球上两个数字乘积是负数的概率为: =.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.11.函数y=与y=x﹣2的图象交点的横坐标分别为a,b,则+的值为 6 .【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】根据反比例函数与一次函数的交点问题得到,利用代入法得到=x﹣2,整理得x2﹣2x﹣1=0,再利用根与系数的关系得a+b=2,ab=﹣1,然后把+变形得到=,再利用整体代入的方法计算即可.【解答】解:根据题意得方程组,消去y得=x﹣2,整理得x2﹣2x﹣1=0,∴a+b=2,ab=﹣1,∴+====6.故答案为6.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了根与系数的关系.12.如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为23°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于30 度;(2)求A、B两点间的距离等于26.0米(结果精确到0.1米,参考数据:≈1.41,≈1.73 tan37°≈0.75,tan23°≈1.59,sin37°≈1.60,cos37°≈0.80).【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】(1)根据俯角以及坡度的定义即可求解;(2)在直角△PHB中,根据三角函数即可求得PB的长,然后在直角△PBA中利用三角函数即可求解.【解答】解:(1)∵tan∠ABC=1:,∴∠ABC=30°;(2)由题意得:∠PBH=60°,∵∠ABC=30°,∴∠ABP=90°,又∠APB=60°﹣23°=37°.在直角△PHB中,PB===20.在直角△PBA中,AB=PB•tan∠APB=20×0.75≈26.0(米).故答案为30,26.0米.【点评】本题主要考查了俯角的问题,坡度的定义,解直角三角形,难度适中.正确利用三角函数是解题的关键.13.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x 轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为17 .【考点】反比例函数系数k的几何意义.【分析】连结AD,过D点作DG∥CM,根据等高的三角形的面积与底成正比,可得△ACD的面积是5,再根据平行线分线段成比例和相似三角形的性质可得△ODF的面积是,根据等量关系可得四边形AMGF的面积=,再根据平行线分线段成比例和相似三角形的性质可得△AOM的面积,根据反比例函数系数k的几何意义可得△BOE的面积,依此即可求解.【解答】解:连结AD,过D点作DG∥CM.∵=,△AOC的面积是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面积是5,△ODF的面积是15×=,∴四边形AMGF的面积=,∴△BOE的面积=△AOM的面积=×=12,∴△ADC与△BOE的面积和为5+12=17.故答案为:17.【点评】考查了反比例函数系数k的几何意义,涉及的知识点有:等高的三角形的面积与底成正比,平行线分线段成比例和相似三角形的性质,反比例函数系数k的几何意义,综合性较强,有一定的难度.14.如图,菱形ABCD的边长为12cm,∠A=60°,点P从点A出发沿线路AB→BD做匀速运动,点Q从点D同时出发沿线路DC→CB→BA做匀速运动.已知点P,Q运动的速度分别为2cm/秒和2.5cm/秒,经过12秒后,P、Q分别到达M、N两点时,点P、Q再分别从M、N同时沿原路返回,点P的速度不变,点Q的速度改为vcm/秒,经过3秒后,P、Q分别到达E、F两点,若△BEF与△AMN相似,则v的值为1或3或6 .【考点】相似三角形的判定与性质;菱形的性质.【专题】动点型.【分析】易得△ABD是等边三角形,经过12秒后,P、Q分别到达M、N两点,则AP,BF都可以求出,就可以判断N,F的位置,根据直角三角形的性质,判断△AMN的形状;然后根据△BEF与△AMN相似得到△BEF为直角三角形,就可以求出S Q的长,已知时间,就可以求出速度.【解答】解:∵∠A=60°,AD=AB=12,∴△ABD为等边三角形,故BD=12,又∵V P=2cm/s∴S P=V P t=2×12=24(cm),∴P点到达D点,即M与D重合v Q=2.5cm/s S Q=V Q t=2.5×12=30(cm),∴N点在AB之中点,即AN=BN=6(cm),∴∠AND=90°即△AMN为直角三角形,∵V P=2m/s t=3s,∴S P=6cm,∴E为BD的中点,又∵△BEF与△AMN相似,∴△BEF为直角三角形,且∠EBF=60°,∠BPF=30°,①Q到达F1处:S Q=BP﹣BF1=6﹣=3(cm),故V Q=1(cm/秒);②Q到达F2处:S Q=BP=9,故V Q=3(cm/秒);③Q到达F3处:S Q=6+2BP=18,故V Q=6(cm/秒).故答案为:1或3或6.【点评】本题考查了菱形的性质、相似三角形的判定和性质,此题也是图形与函数相结合的问题,正确根据条件得出方程是解题关键.三、解题题:本大题共8小题,共78分.解答应写出文字说明,证明过程或演算步骤15.(1)计算:﹣2tan60°﹣(﹣1)2015;(2)解不等式组,并把不等式组的解集在数轴上表示出来.【考点】实数的运算;负整数指数幂;在数轴上表示不等式的解集;解一元一次不等式组;特殊角的三角函数值.【专题】计算题.【分析】(1)原式第一项化为最简二次根式,第二项利用负整数指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用乘方的意义计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)原式=2﹣2﹣2+1=﹣1;(2),由①得:x>﹣;由②得:x≤1,则不等式组的解集为﹣<x≤1,【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(m,3),B(﹣3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x的不等式>kx+b的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A和B代入反比例函数解析式即可求得坐标,然后用待定系数法求得一次函数的解析式;(2)不等式>kx+b的解集就是:对于相同的x的值,反比例函数的图象在上边的部分自变量的取值范围.【解答】解:(1)∵A(m,3),B(﹣3,n)两点在反比例函数y2=的图象上,∴m=2,n=﹣2.∴A(2,3),B(﹣3,﹣2).根据题意得:,解得:,∴一次函数的解析式是:y1=x+1;(2)根据图象得:0<x<2或x<﹣3.【点评】本题综合考查一次函数与反比例函数的图象与性质,同时考查用待定系数法求函数解析式.本题需要注意无论是自变量的取值范围还是函数值的取值范围,都应该从交点入手思考;需注意反比例函数的自变量不能取0.17.杭州市相关部门正在研究制定居民用水价格调整方案,小明想为政府决策提供信息,于是在某小区内随机访问了部分居民,就每月的用水量,可承受的水价调整的幅度等进行调查,并把调查结果整理成图1和图2,已知被调查居民美誉每月的用水量在5m3﹣35m3之间,被调查的居民中对居民用水价格调整幅度抱“无所谓”态度的有8户,试回答下列问题:①上述两个统计图表是否完整,若不完整,试把它们补全;②若采用阶梯式累进制调价方案(如表1所示),试估计该小区有百分之几的居民用水费用的增长幅度不超过50%?【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】①根据扇形统计表中角度的比例关系可得出统计样本的总数,继而可补充完整两个统计表;②设每月每户用水量为xm3的居民调价后用水费用的增长幅度不超过50%,由表一可知分x≤15与x>15两部分讨论,再结合图一可得出结论.【解答】解:①上述表格不完整,360°﹣40°﹣120°=200°.8×﹣15﹣22﹣9﹣6﹣3=72﹣15﹣22﹣9﹣6﹣3=17.补全表格如下.②∵设每月每户用水量为xm3的居民调价后用水费用的增长幅度不超过50%,当x≤15时,水费的增长幅度为×100%<50%,当x>15时,则≤50,解得:x≤20.∵从调查数据看,每月的用水量不超过20m3的居民有54户,∴=75%,又∵调查是随机抽取,∴该小区有75%的居民用水费用的增长幅度不超过50%.【点评】本题考查了条形和扇形统计图以及解一元一次不等式,解题的关键是:①由样本中某项数据得出样本数;②结合表一得出关于x的一元一次不等式.本题难度不大,属于基础题,解决该类型的题目需要熟悉各种统计表.18.如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC,交AC于点E,交PC于点F,连接AF.(1)求证:AF是⊙O的切线;(2)已知⊙O的半径为4,AF=3,求线段AC的长.【考点】切线的判定与性质;勾股定理;相似三角形的判定与性质.(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,【分析】再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.【解答】(1)证明:连接OC,如图所示:∵AB是⊙O直径,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切线;(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴OF===5∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面积=AF•OA=OF•AE,∴3×4=5×AE,解得:AE=,∴AC=2AE=.【点评】本题考查了切线的判定、全等三角形的判定与性质、勾股定理、垂径定理以及三角形面积的计算;熟练掌握切线的判定,并能进行推理计算是解决问题的关键.19.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置关系;(2)求线段B′C的长,并求△B′EC的面积.【考点】相似三角形的判定与性质;矩形的性质;翻折变换(折叠问题).【分析】(1)由折线法及点E是BC的中点,可证得△B'EC是等腰三角形,再有条件证明∠AEF=90°即可得到AE⊥EF;(2)连接BB′,通过折叠,可知∠EBB′=∠EB′B,由E是BC的中点,可得EB′=EC,∠ECB′=∠EB′C,从而可证△BB′C为直角三角形,在Rt△AOB和Rt△BOE中,可将OB,BB′的长求出,在Rt△BB′C中,根据勾股定理可将B′C的值求出,【解答】解:(1)由折线法及点E是BC的中点,∴EB=EB′=EC,∠AEB=∠AEB′,∴△B'EC是等腰三角形,又∵EF⊥B′C∴EF为∠B'EC的角平分线,即∠B′EF=∠FEC,∴∠AEF=180°﹣(∠AEB+∠CEF)=90°,即∠AEF=90°,即AE⊥EF;(2)连接BB'交AE于点O,由折线法及点E是BC的中点,∴EB=EB′=EC,∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;又∵△BB'C三内角之和为180°,∴∠BB'C=90°;∵点B′是点B关于直线AE的对称点,∴AE垂直平分BB′;在Rt△AOB和Rt△BOE中,BO2=AB2﹣AO2=BE2﹣(AE﹣AO)2将AB=4cm,BE=3cm,AE=5cm,∴AO=cm,∴BO==cm,∴BB′=2BO=cm,∴在Rt△BB'C中,B′C==cm,由题意可知四边形OEFB′是矩形,∴EF=OB′=,∴S△B′EC=×B′C•EF=××=.【点评】本题考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.20.阅读对话,解答问题.(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)小冬抽出(a,b)中使关于x的一元二次方程x2﹣ax+2b=0根为有理数的是小丽赢,方程的根为无理数的是小兵赢,你觉得游戏是否公平?若公平,请说明理由;若不公平,请修改游戏方案.【考点】游戏公平性;列表法与树状图法.【分析】(1)首先根据题意列出表格,然后由表格即可求得所有等可能的结果;(2)由表格,结合一元二次方程根的情况,即可求得小丽赢与小兵赢的概率,比较概率的大小,即可知游戏是否公平;设计方案只要赢得概率一样,即游戏就公平.【解答】解:(1)(a,b)对应的表格为:1 2 3ab1 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)4 (4,1)(4,2)(4,3)(2)游戏不公平,∵符合有理数根的有2种,而符合无理数根的只有1种;。
2015年中考第二次模拟考试数学试题及答案
2015年山东省滕州市东沙河中学九年级第二次模拟考试数学试题(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3的相反数是 A .-3B .31-C .3D .312.下列计算正确的是A .6428)2(a a =B .43a a a =+C .a a a =÷2D .222)(b a b a -=-3.估算5的值在A .1与2之间B .2与3之间C .3与4之间D .4与5之间4.下列各图,不是轴对称图形的是ABCD5.为了帮助本市一名患“白血病”的高中生,某班45名同学积极捐款,他们捐款数额如下表:关于这15名学生所捐款的数额,下列说法正确的是 A .众数是100 B .平均数是30C .极差是20D .中位数是206.下列命题是真命题的是A .-32πx 2y 3z 的系数为-32 B .若分式方程12-x a =3的解为正数,则a 的取值范围是a>-23C .两组对角分别相等的四边形是平行四边形D .同位角相等第Ⅱ卷(非选择题 共132分)二、填空题(本大题共10小题,每小题3分,共30分.请把答案填在题中的横线上) 7.在函数y =11-x 中,自变量x 的取值范围是____. 8.钓鱼岛是中国的固有领土,位于中国东海,面积约6344000平方米,数据6344000用科学记数法表示为____. 9.分解因式:2a 2-8b 2=____.10.同时抛掷两枚硬币正面均朝上的概率为____.11.如图,Rt ΔOAB 的直角边OA 在y 轴上,点B 在第一象限内,OA=2,AB=1,若将△OAB 绕点O 按逆时针方向旋转90°,则点B 的对应点的坐标为____.12.若一个圆锥的轴截面是一个腰长为6 cm ,底边长为2 cm 的等腰三角形,则这个圆锥的表面积为____cm 2.13.若直线y =2x +3b +c 与x 轴交于点(-3,0),则代数式2-6b -2c 的值为____. 14.如图,点P (a ,a )是反比例函数y =x16在第一象限内的图象上的一个点,以点P 为顶点作等边△PAB ,使A ,B 落在x 轴上,则△POA 的面积是____.15.如图,以点P (2,0)为圆心,3为半径作圆,点M (a ,b )是⊙P 上的一点,则ab的最大值是____.16.如图,已知在Rt △ABC 中,AB=AC=32,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD ,PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段耐的中点Q ,在△QHI 内作第三个内接正方形;……依次进行下去,则第2014个内接正方形的边长为____.三、解答题(本大题共10小题,共l02分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分12分)(1)计算:27-2cos30°+(21)-2-31-; (2)先化简,再求值:(132+-x x -2)÷11+x ,其中x 满足x 2-2x -4=0.18.(本小题满分8分)解方程245--x x =63104-+x x -1. 19.(本小题满分8分)某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.请你根据不完整的表格,回答下列问题:(1)补全表格和频率分布直方图;(2)若将得分转化为等级,规定50≤x <60评为“D ”,60≤x <70评为“C ”,70≤x <90评为“B ”,90≤x <100评为“A ”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D ”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩等级哪一个等级的可能性大?请说明理由. 20.(本小题满分8分)如图,四边形ABCD 为矩形,点E 在边BC 上,四边形AEDF 为菱形.(1)求证:ΔABE ≌ΔDCE ;(2)试探究:当矩形ABCD 长宽满足什么关系时,菱形AEDF 为正方形?请说明理由.21.(本小题满分10分)一对姐弟中只能有一人参加夏季夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有l ,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.试用列表法或树状图分析这种方法对姐弟俩是否公平. 22.(本小题满分10分)如图所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平线夹角为θ1,且在水平线上的射影AF 为1.4 m .现已测量出屋顶斜面与水平面夹角为θ2,并已知tan θ1=1.082,tan θ2=0.412.如果安装工人已确定支架AB 高为25 cm ,求支架CD的高(结果精确到1 cm )?23.(本小题满分10分)如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD ,AC 分别交于点E ,F ,且∠ACB=∠DCE .(1)判断直线CE 与⊙O 的位置关系,并证明你的结论; (2)若tan ∠ACB=22,BC=2,求⊙O 的半径.24.(本小题满分10分)某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y (元)与种植面积m (亩)之间的函数关系如图l 所示;小李种植水果所得报酬z (元)与种植面积n (亩)之间的函数关系如图2所示.图1 图2(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是____元,小张应得的工资总额是____元;此时,小李应得的报酬是____元;(2)当10<n<30时,求z与n之间的函数关系式;(3)设农庄支付给小张和小李的总费用为W(元),当l0<m≤30时,求W 与m之间的函数关系式.25.(本小题满分12分)如图,在□ABCD中,AB=12 cm,AD=6 cm,∠BAD=60°,点P从点A出发,以2 cm/s的速度沿A—B—C运动,点Q从点A出发,以a cm/s的速度沿A—D—C运动,点P,Q从A点同时出发,当其中一点到达点C时,另一点也停止运动,设运动的时间为t s.(1)求证:BD⊥AD;(2)若a=1,以点P为圆心,PB为半径画⊙P,以点Q为圆心,QD为半径画⊙Q,当⊙P和⊙Q相切时,求t的所有可能值;(3)若在点P,Q运动的过程中总存在t,使PQ∥BD,试求a的值或范围.26.(本小题满分l4分)如图,在平面直角坐标系中,点O为坐标原点,直线y=-x+n与x轴、y轴分别交于B,C两点,抛物线y=ax2+bx+3(a≠0)过C,B两点,交x轴于另一点A,连接AC,且tan∠CAO=3.点P是线段CB上一点(不和B,C重合),过点P 作x轴的垂线,垂足为H,交抛物线于Q.(1)求抛物线的解析式;(2)小明认为当点Q 恰好为抛物线的顶点时,线段PQ 的长最大,你认为小明的说法正确吗?如果正确,请说明理由;如果不正确,试举出反例说明;(3)若△CPQ 是直角三角形,求点P 的坐标;(4)设PH 和PQ 的长是关于y 的一元二次方程:y 2-(m +3)y +41(5m 2-2m +13)=0(m 为常数)的两个实数根,点M 在抛物线上,连接MQ ,MH ,PM ,若MP 恰好平分∠QMH ,求出此时点M 的坐标.2015年山东省滕州市东沙河中学九年级第二次模拟考试数学试题参考答案1.A 2.C 3.B 4.B 5.D 6.C7.x ≠1 8.6.344× 1069.2(a +2b )(a -2b ) 10.41 11.(-2,1) 12.7π 13.-10 14.8-338 15.3 16.201221 17.解:(1)3+5. (6分)(2)-1. (6分) 18.解:x =2增根. (8分) 19.解:(1)略. (4分)(2)150,A . (8分) 20.解:(1)略. (4分)(2)AD=2AB . (8分) 21.解:不公平. (10分)22.解:119 cm . (10分) 23.解:(1)相切. (5分)(2)46. (10分) 24.解:(1)140 2800 1500. (3分)(2)z =120n +300. (6分) (3)当10<m <20时,W =-2m 2+60m +3900;当20≤m ≤30时,W =-2m 2+30m +4500. (10分) 25.解:(1)略. (4分)(2)9-33 33-3 9. (8分) (3)1≤a <2. (12分) 26.解:(1)y =-x 2+2x +3. (3分)(2)不正确. (6分) (3)(1,2). (9分)(4)(1+2,2),(1-2,2). (14分)。
2015年中考模拟(二) 数学试卷附答案
2015年中考模拟(二) 数学试卷考生须知:本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.答题时,不能使用计算器,在答题卷指定位置内写明校名,姓名和班级,填涂考生号.所有答案都做在答题卡标定的位置上,请务必注意试题序号和答题序号相对应.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标(-a b 2,ab ac 442-) 圆锥的侧面积公式:S =πr l (其中S 是侧面积,r 是底面半径,l 是母线长)一.仔细选一选 (本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列各几何体中,主视图是圆的是( )2.如图,已知Rt △ABC 边长分别为1,2,3,则下列三角函数表示正确的是( )A .sinA =23B .cosA =36C .tanA =2D .tanA =223.已知圆的面积为7π,估计该圆的半径r 所在范围正确的是( )A .1<r <2B .2<r <3C .3<r <4D .4<r <54.若反比例函数图象经过二次函数742+-=x x y 的顶点,则这个反比例函数的解析式为( )A .x y 6=B .xy 6-= C .x y 14= D .x y 2-= 5.如图,已知直线a ∥b ,同时与∠POQ 的两边相交,则下列结论中错误的是( )A .∠3+∠4=180°B .∠2+∠5>180°C .∠1+∠6<180°D .∠2+∠7=180°6.在一次演讲比赛中,某班派出的5名同学参加年级竞赛的成绩如下表(单位:分),其中隐去了3号同学的成绩,但得知5名同学的平均成绩是21分,那么5名同学成绩的方差是( )A .2.4B .6C .6.8D .7.57.若不等式组⎪⎩⎪⎨⎧-+≤+<+132211x x a x 的解是x <a -1,则实数a 的取值范围是( ) A .a ≤-6 B .a ≤-5 C .a ≤-4 D .a <-48.如图是某市11月1日至10日的空气质量指数折线图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月7日中的某一天到达该市旅游,到达的当天作为第一天连续停留4天.则此人在该市停留期间恰好有两天空气质量优良的概率是( )A .72B .73C .52D .94 9.已知关于x 的一元二次方程02)(2=-+++c a bx x c a ,其中a 、b 、c 分别为△ABC 三边的长. 下列关于这个方程的解和△ABC 形状判断的结论错误的是( )A .如果x =-1是方程的根,则△ABC 是等腰三角形;B .如果方程有两个相等的实数根,则△ABC 是直角三角形;C .如果△ABC 是等边三角形,方程的解是x =0或 x =-1;D .如果方程无实数解,则△ABC 是锐角三角形.10.已知□ABCD 中,AD =2AB ,F 是BC 的中点,作AE ⊥CD ,垂足E 在线段CD 上,连结EF 、AF ,下列结论:①2∠BAF =∠BAD ;②EF=AF ;③S △ABF ≤S △AEF ;④∠BFE =3∠CEF.中一定成立的是( )A .①②④B .①③C .②③④D .①②③④二.认真填一填 (本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(1)用科学记数法表示0.000 048为 ;(2)计算+-2)3(3)2(-= .12.(1)已知53=b a ,则=+bb a ; (2)若两个相似三角形面积之比为1︰2,则它们的周长之比为 .13.已知五月某一天,7个区(市)的日平均气温(单位℃)是20.1, 19.5, 20.2, 19.8,20.1,21.3,18.9 ,则这7个区(市)气温的众数是 ;中位数是 .14.如图,是一个半圆和抛物线的一部分围成的“芒果”,已知点A 、B 、C 、D 分别是“芒果”与坐标轴的交点,AB 是半圆的直径,抛物线的解析式为23232-=x y ,则图中CD 的长为 . 15.若函数k x k x k y ++++=)1()2(2的图象与x 轴只有一个交点,那么k的值为 .16.如图,PQ 为⊙O 的直径,点B 在线段PQ 的延长线上,OQ =QB =1,动点A 在⊙O 的上半圆运动(含P 、Q 两点),连结AB ,设∠AOB =α.有以下结论:①当线段AB 所在的直线与⊙O 相切时,AB =3;②当线段AB 与⊙O 只有一个公共点A 点时,α的范围是0°≤α≤60°;③当△OAB 是等腰三角形时,tan α=215; ④当线段AB 与⊙O 有两个公共点A 、M 时,若AO ⊥PM ,则AB =6.其中正确结论的编号是 .三.全面答一答 (本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本小题6分)如图是某企业近五年的产值年增长率折线统计图和年产值条形统计图(不完整).(1)员工甲看了统计图说2013年的产值比2012年少,请你判断他的说法是否正确(不必说理);(2)补全条形统计图(条形图和数字都要补上);(3)求这5年平均年产值是多少万元.18.(本小题8分)填空和计算:(1)给出下列代数式:21,xx 212+,21+x ,5-x ,122-x ,22+-x x ,其中有 个是分式; 请你从上述代数式中取出一个分式为 ,对于所取的分式:①当x 时分式有意义;②当x =2时,分式的值为 .(2)已知223-=x ,223+=y ,求代数式226y xy x ++的值.19.(本小题8分)(1)尺规作图:以线段a 为斜边,b 为直角边作直角三角形(不写画法,保留痕迹);(2)将所作直角三角形绕一条直角边所在直线旋转一周,设a =5,b =3,求所得几何体的表面积.20.(本小题10分)如图,已知点A (1,4),点B (6,32)是一次函数b kx y +=图象与反比例函数)0(>=m xm y 图象的交点,AC ⊥y 轴于点C ,BD ⊥x 轴于点D .(1)根据图象直接回答:在第一象限内,当x 取何值时,一次函数的值小于反比例函数的值?(2)求一次函数解析式及m 的值;(3)设P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB面积相等,求点P 坐标.21.(本小题10分)如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,AB =AD =6,∠BAD =60°:(1)证明:BC =CD ;并求BC 的长;(2)设点E 、F 分别是AB 、AD 边上的中点,连结EF 、EC 、FC ,求△CEF 三边的长和cos ∠ECF 的值.22.(本小题12分)如图,面积为8cm 2的正方形OABC 的边OA ,OC 在坐标轴上,点P 从点O 出发,以每秒1个单位长度的速度沿x 轴向点C 运动;同时点Q 从C 点出发以相同的速度沿x 轴的正方向运动,规定P 点到达点C 时,点Q 也停止运动,过点Q 作平行于y 轴的直线l .连结AP ,过P 作AP 的垂线交l 于点D ,连结AD ,AD 交BC 于点E.设点P 运动的时间为t 秒.(1)计算和推理得出以下结论(直接填空):①点B 的坐标为 ;②在点P 的运动过程中,总与△AOP 全等的三角形是 ; ③用含t 的代数式表示点D 的坐标为 ;④∠PAD = 度;(2)当△APD 面积为5 cm 2时,求t 的值;(3)当AP =AE 时,求t 的值(可省略证明过程,写出必要的数量关系列式求解).23.(本小题12分)如图,直线42+=x y 与x 轴、y 轴相交于B 、C 两点,抛物线c ax ax y +-=32过点B 、C ,且与x 轴另一个交点为A ,过点C 作x 轴的平行线l ,交抛物线于点G .(1)求抛物线的解析式以及点A 、点G 的坐标;(2)设直线m x =交x 轴于点E (m >0),且同时交直线AC 于点M ,交l 于点F ,交抛物线于点P ,请用含m 的代数式表示FM 的长、PF 的长;(3)当以P 、C 、F 为顶点的三角形与△MEA 相似时,求出m 的值.2015中考二模数学答案一.选择题(每小题3分) CCBAD CCBDD二.填空题 (每小题4分) 11.(1)4.8×10-5 ;(2)1 ; 12.(1)58;(2)1︰2; 13.20.1;20.1 ;14.25; 15.3323±-或-2; 16.①②④17.(6分) (1)不正确--------------------------------------------1分(2)补全条形统计图、数字500、 900---------3分(3)784(万元)------------------------------------2分18.(8分)(1) 3 ;取出一个分式为(xx 212+,122-x ,22+-x x 之一),①分别(对应)x ≠0;x ≠±1;x ≠-2时分式有意义;②当x =2时,分式的值为(对应)45;32;0 (共4分,每空1分)(2)原式=xy y x 4)(2++=(+-223223+)2+4(⨯-223223+)=3+4 ×41=4-------4分,直接代值硬算不扣分;如果算错了,但能化为 xy y x 4)(2++或xy y x 8)(2+-得1分19.(8分)(1)尺规作图(略)---------------------------------------------------4分(2) 分类,分别绕不同的直角边:① 24π;②36π ---------4分(各2分)20.(10分)(1)一次函数的值小于反比例函数的值时x 取范围是0<x <1或6<x <7--------------------2分(2)待定系数法得到:31432+-=x y --------------------------2分, m =4 ----------------------2分 (3)设P (x ,31432+-x ), S △PCA =)314324(121-+⨯⨯x ----1分,S △PDB =)6(3221x -⨯⨯-----1分 解得P (37,27)-------------------------------------------------------------------------------------2分 21.(10分)(1) 连结AC ,在△ABC 和△ADC 中,∠B =∠D =90°,AB =AD ,AC =AC ,∴△ABC ≌△ADC (HL )-------------2分 ;∴BC =CD , -----------------1分∵△ABC ≌△ADC ,∴∠CAB =30°,AB =6,∴BC =32 -----------2分(2) ∵∠BAD =60°,AE =AF =3,∴EF =3,--------------------------------1分EC =FC ==+22)32(321 ---------------------------------------------------2分作EG ⊥CF ,设CG =x ,则 212-x 2=EG 2=32-2)21(x - 解得x =142111------------1分∴cos ∠ECF =142111/21=1411------------------------------------------------------------------------1分22.(12分)(1)①点B (22 ,22), 写(8,8)不扣分; ②与△AOP 全等的三角形是△PDQ ;③点D (22+t , t );④∠PAD =45度;-------------------------4分(每空1分)(2)∵PD =22QD PQ +=28t +,S △APD =21PD 2 =5, -----------2分∴8+t 2=10,∴t =2-------------------------------------------------2分(3)解法1:过D 作DG ⊥y 轴,则由三角形相似得GD AB EG BE = EG =t 222---------------1分;t 22222t =-t-----------1分; 解得t =4―22----------2分 解法2:当AP =AE 时,△AOP ≌△ABE (HL );连结PE ,作AG ⊥PE ,可得5个三角形全等,PC =EC =22―t ,∴PE =2OP ,∴PE =2PC =2(22―t )=4―2t -----------1分又PE =2OP =2 t--------------------------------------------1分∴4―2t =2 t ,解得t =4―22-----------------------2分(解题过程不必分析证明,只要数量关系正确即可。
2015年中考数学模拟考试试题和答案
2015年中考数学模拟数学试卷总分:120分 时间:120分钟一、选择题:(每小题3分,共36分)1、若分式52-x 有意义,则x 的取值范围是( ) A .5≠x B .5-≠x C .5>x D .5->x2、关于x 的一元二次方程0222=+-k x x 有实数根,则k 的取值范围是( ) A .21<k B.21≤k C.21>k . D.21≥k 3、下面与3是同类二次根式的是( )A.2B.12C.13-D.18 4、下列运算正确的是( )A.624a a a =⋅ B 23522=-b a b a C.523)(a a =- D.63329)3(b a ab =5、甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同, 但乙的成绩比甲的成绩稳定,那么两者的方差的大小关系是( )。
A.22乙甲S S <B.22乙甲S S >C.22乙甲S S = D.不能确定6、如图,已知直线a ∥b,直线c 与a 、b 分别交于A 、B ,且1201=∠,则=∠2( ) A .60B .150C . 30D .1207、在Rt △ABC 中,∠C=90°,sinA=54,则cosB 的值等于( ) A .53 B. 54 C. 43 D. 55 8、下列图形中,既是轴对称图形又是中心对称图形的是( ) A . 等边三角形 B . 平行四边形 C . 正方形 D . 等腰梯形9、已知关于x 的一元二次方程02=+-c bx x 的两根分别为,2,121-==x x 则b 与c 的值分别为( )A .2,1=-=c bB .2,1-==c bC .2,1==c bD .2,1-=-=c b10、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )。
11、如图,直线)0(>=t t x 与反比例函数xy x y 1,2-==的图象分别交于B 、C 两点,A 为y 轴上的任意一点,则∆ABC 的面积为( ) A .3 B .t 23 C .23D .不能确定12、如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O ,设AB=a ,CG=b (a >b ).下列结论:①△BCG ≌△DCE ;②BG ⊥DE ;③CEGOGC DG =;④a b S S BCG EOF =∆∆.其中结论正确的个数是( )A . 4个B . 3个C . 2个D . 1个二、选择题:(每小题3分,共18分)13、因式分解:=-a a 43.14、某市棉花产量约378000吨,将378000用科学计数法表示应是______________吨. 15、已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m+n= . 16、如图,AB 是⊙O 的弦,OC ⊥AB 于C ,若cm AB 52=,cm OC 1=,则⊙O 的半径长为 。
滕州市2015~2016第二学期期中考试七年级数学试题
2015~2016学年度第二学期期中考试七年级数学试卷一、 选择题:每题3分,共45分.在每小题的四个选项中,只有一项是符合题目要求的.1. 下列运算中与34a a -⋅结果相同的是()3443255A.() B.() C.() D.()a a a a a a ---⋅-⋅2. 下列计算正确的是()2222222222A.()2B.(41)1681C.(23)4129D.(2)24x y x xy y x x x x x x a b a ab b--=---+=++-=+-+=++3.若(2)(1)x a x -+-中不含x 的一次项,则() A .a =1B.a =-1C.a =-2D.a =24.若a x =3,b 2x =2,则232()()xx a b -的值为()A .0B.1C.3D.55.长方形的一边长为2a +b ,另一边比它小a -b ,则长方形面积为()2222222A.2+ B.2+ C.4+4 D.2+52a ab b a ab a ab b a ab b -++6.已知x +y =-6,x -y =5,则下列各式成立的是()2222A.()36B.()10C. 2.75D.25x y y x xy x y +=--=-=-=7.下列算式正确的是()55102224222121A. B.(3)6C.()() D.4222nn n x x x pq p q bc bc b c-++=-=--÷-=-⨯⨯=8.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的质量x (kg )之间有下面的关系:下列说法不正确的是A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂生物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5 cm9.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()10.下列图形中,由AB∥CD,能使∠1=∠2成立的是()11.如图,下列推理错误的是()A.∵∠1=∠2,∴c∥dB.∵∠3=∠4,∴c∥dC.∵∠1=∠3,∴a∥bD.∵∠1=∠4,∴a∥b12.如图,有一块含有45°角的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30° B.25° C.20° D.15°D.C.B.A.A BCA BCA. B. C. D.d第13题图第12题图第11题图nm13.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式: ①(2a +b )(m +n ) ② 2a (m +n )+b (m +n ) ③ m (2a +b )+n (2a +b ) ④2am +2an +bm +bn 其中正确的有() A .①②B.③④C.①②③D.①②③④14.如图,利用直尺和三角尺过直线外一点画已知直线的平等线,这种画法依据的是( ) A .同位角相等,两直线平行B.两直线平行,同位角相等C.内错角相等,两直线平行 D .两直线平行,内错角相等15.现定义运算“△”,对于任意有理数a 、b ,都有a △b =a 2-ab +b ,例如:235335511∆=-⨯+=,由此算出(x -1)△(2+x )等于()A .2x -5B.2x -3C.-2x +5D.-2x +3二.填空题:每题4分,共24分,将答案填在题目中的横线上. 16.如图,AD ∥BC ,∠B =30°,DB 平分∠ADE ,则∠ADE 的度数为.17.如果一个角的补角是130°,那么这个角的余角的度数是. 18.已知4x 2-mx +25是完全平方式,则常数m 的值为____________. 19.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则∠ACB =.20.雾霾(PM 2.5)含有大量的有毒有害物质,对人体健康危害很大,被称为大气元凶.雾霾的直径大约是0.000 002 5m ,把数据0.000 002 5用科学记数法表示为. 21.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如从第二行起,它的每一行的数字正好对应了(a +b )n (n 为正整数)的展开式中a 按次数从大到小排列的项的系数.例如,222()2a b a ab b +=++展开式中的系数1、2、1恰好对应图中第三行的数字;再如,33223()33a b a a b ab b +=+++展开式中系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出4()a b +=__________________________.第16题图BC第19题图第21题图……111三.解答题:共7小题,满分51分,解答应写出文字说明,说理过程或演算步骤. 22.(本题满分8分,每小题各4分)20-12016323321(1)24(1)(2)(2)(2)(2)(2)2x y xy x y x -⎛⎫-+⨯-⨯-⋅-+-÷ ⎪⎝⎭23.(本题满分6分)先化简,再求值:212()(2)(2)(2)(3),,22a b a b a b a b b a a b +--++--==-其中.24.(本题满分5分)如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC ,DE ∥FB .求证:AB ∥DC . 请根据条件进行推理,得出结论,并在括号内注明理由.证明:∵BF 、DE 分别平分∠ABC 与∠ADC , ∴∠1=12∠ABC ,∠2=12∠ADC .(____________________________) ∵∠ABC =∠ADC ,∴________________________________. ∵DE ∥FB∴∠1=∠3,(________________________________) ∴∠2=________________________________.(等量代换) ∴AB ∥CD .25.(本题满分5分)已知:如图,CD 平分∠ACB ,DE ∥BC ,∠AED =80°.求∠EDC 度数.26.(本题满分8分)(1)如图1,若大正方形的边长为a ,小正方形的边长为b ,则阴影部分的面积是_______________.若将图中1中的阴影部分裁剪下来,重新拼成如图2的一个矩形,则它的面积是______________________.(2)由(1)可以得到一个公式________________________________.(3)利用你得到的公式计算:22016-20172015.27.(本题满分9分)中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元∕分(不足1分钟按1分钟时间收费).下表是超出部分国内拨打的收费标准:(1) 这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?B图2图1(2) 如果用x 表示超出时间,y 表示超出部分的电话费,那么y 与x 的表达式是什么? (3) 由于业务多,小明的爸爸上月打电话已超出了包月费.如果国内拨打电话超出25分钟,他需付多少电话费?(4) 某用户某月国内拨打电话的费用超出部分是54元,那么他当月打电话超出多少分钟?28.(本题满分10分)如图,已知AB ∥CD ,BE ∥FG .(1) 如果∠1=53°,求∠2和∠3的度数;(2) 本题隐含着一个规律,请你根据(1)的结果进行归纳,使用文字语言表达出来; (3) 利用(2)的结论解答:如果两个角的两边平行,其中一个角比另一个角的2倍小30°,求这两个角的大小.温馨提示:考完了吗?请重新认真仔细地检查一遍,也许你会做得更好!B E DG。
2015年山东省滕州市官桥中学中考模拟考试(五)数学试题(含答案)
2015年山东省滕州市官桥中学中考模拟考试(五)数学试题本试卷满分150分,考试时间l20分钟.第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.估计5在()A.0~1之间B.1~2之间C.2~3之间D.3~4之间2.下列运算正确的是A.a3•a2=a5B.a6÷a2=a3C.(a3)2=a5D.(3a)3=3a3 3.地球与月球的平均距离大约为384000km,将384000用科学记数法表示应为()A.0.384×106B.3.84×106C.3.84×105D.384×103 4.沿圆柱体上面直径截去一部分的物体如图所示,它的俯视图是5.如图,已知AB∥DE,BC交直线DE于点F,∠ABC=80°,∠CDE=140°,则∠BCD=A.30°B.40°C.50°D.60°6.如图,AB为圆O的直径,AB=AC,AC交圆O于点D,∠BAC=45°,则∠DBC的度数是A .67.5°B .60°C .45°D .22.5°7.AE ,CF 是锐角△ABC 的两条高,如果AE :CF =3:2,则 sin ∠BAC :sin ∠ACB 等于A .3:2B .2:3C .9:4D .4:98.我们定义⎪⎪⎭⎫⎝⎛d c b a =ad +bc ,例如⎪⎪⎭⎫⎝⎛5432=2×5+3×4=22,若x 满足-2≤⎪⎪⎭⎫ ⎝⎛-x 324<2,则整数x 的值有A .0个B .l 个C .2个D .3个9.一个由几个相同小正方体叠成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小正方体的个数.那么x y 的值为 (x ,y 为正整数)主视图俯视图 A .1B .3C .3或6D .3或910.如图,反映的是我市某中学八年级(8)班学生参加音乐、美术、体育课外兴趣小组人数的直方图(部分)和扇形分布图,则下列说法错误的是A .八年级(8)班参加音乐兴趣小组的学生人数为6人B .八年级(8)班参加这三个课外兴趣小组的学生总人数为30人C .若该校八年级参加这三个兴趣小组的学生共有200人,那么估计全年级参加美术兴趣小组的学生约有60人D .在扇形统计图中,八年级(8)班参加音乐兴趣小组的学生人数所占的圆心角度数为60°第Ⅱ卷(非选择题 共110分)二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上) 11.计算:sin30°+cos45°=____. 12.分解因式:2mx 2-4mx +2m =____.13.若一组数据6,7,2,4,x ,3的平均数是5,则这组数据的中位数是____. 14.如图,四边形ABCD 为平行四边形,DE :EC =1:2,F 是BC 的中点,AF 交BE 于G 点,则:①△EBF 与△EFC 面积相等,②△BEC 的面积是平行四边形ABCD 面积的32, ③△ABF 的面积是平行四边形ABCD 面积的41,④△BFG 的面积是△BGA 面积的31,以上结论正确的是____(只填序号).三、解答题(本大题共9小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分8分)解分式方程23--x x +1=x-23. 16.(本小题满分8分)如图,在Rt △OAB 中,∠OAB =90°,且点B 的坐标为(4,2).①画出△OAB向上平移3个单位后的△O1A1B1;②画出△OAB绕点O顺时针旋转90°后的△OA2B2,并求点A旋转到点A2所经过的路线长(结果保留π).17.(本小题满分8分)为落实国务院房地产调控政策,A市加快了廉租房的建设力度.2012年该市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2014年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求该市政府平均每年投资的增长率;(2)若这三年内的建设成本不变,求2013,2014这两年共建设了多少万平方米的廉租房?18.(本小题满分8分)下图是用橡皮筋在格点中围成的五个图形,图形内部的格点,称为内格点;图形边界上的格点称为外格点.(每个最小格点正方形的边长为一个单位,以下同)图(1)(1)请统计“第18题图(1)”中每个图形内格点数L、外格点数N.计算出这些图形的面积S,并完成下表:图(2)(2)从表格中的数,可以猜想出每个图形的面积S 与该图形的内格点数L 、外格点数N 之间的关系式是__________________.(3)运用上述关系式,计算“第l8题图(2)”中格点图形F 的面积. 19.(本小题满分10分)如图,用三个能够重合的正方形AB GH ,BCF G ,CDEF 拼成矩形ADE H ,连接AE 与B G ,CF 分别交于点P ,Q .(1)若AB =6 c m ,求线段BP 的长;(2)观察图形,共有多少对全等三角形?请选出一对给予证明. 20.(本小题满分10分)如图,一次函数y =kx +b 的图象与反比例函数y =xa的图象交于A ,B 两点,已知点A 的坐标为(2,1),点B 的坐标为(m ,-2).(1)求反比例函数和一次函数的解析式. (2)请你直接写出不等式kx +b >xa的解集. 21.(本小题满分12分)小华和小军玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小华先从中抽出一张,小军从剩余的3张牌中再抽出一张.(1)请用树状图或列表表示出两人抽牌可能出现的所有结果;(2)求摸出两张牌面整体图形都是中心对称图形的纸牌的概率.22.(本小题满分12分)矩形ABCD中,AD=4 c m,AB=3 c m,动点E从点C开始沿边CB向点B以2 c m/s 的速度运动至点B停止,动点F从点D同时出发沿边DC向点C以1 c m/s的速度运动至点C停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2).(1)请求出y与x之间的函数关系式,并写出x的取值范围;(2)试求出y的最小值;(3)是否存在某一时间x,使得矩形ABCD去掉矩形CFHE后剩余部分的面积为原矩形面积的一半?若存在,求出此时x值;若不存在,请说明理由.23.(本小题满分14分)阅读下列解题过程,并解答后面的问题:如下图,在平面直角坐标系xOy中,A(x1,y1),B(x2,y2),C为线段AB的中点,求C点的坐标.解:分别过A ,C 作x 轴的平行线,过B ,C 作y 轴的平行线,两组平行线的交点如图所示.设C (x 0,y 0),则D (x 0,y 1),E (x 2,y 1),F (x 2,y 0), 由图可知:x 0=212x x -+x 1=221x x +, y 0=212y y -+y 1=221y y +, ∴C (221x x +,221y y +).问题:(1)已知A (-1,4),B (3,-2),则线段AB 的中点坐标为____.(2)□ABCD 中,点A ,B ,C 的坐标分别为(1,-4),(0,2),(5,6),求点D 的坐标.(3)如下图,B (6,4)在函数y =21x +1的图象上,A (5,2),C 在x 轴上,D 在函数 y =21x +1的图象上,以A ,B ,C ,D 四个点为顶点构成平行四边形,直接写出所有满足条件的D 点的坐标.2015年山东省滕州市官桥中学中考模拟考试(五)数学试题参考答案1.C 2.A 3.C 4.C 5.B 6.D 7.B 8.B 9.D l0.D 11.221+ 12.2m (x -1)2 13.5 14.①③④15.解:去分母得x -3+x -2=-3;移项,合并同类项,得2x =2; 系数化为l ,得x =1 (6分)经检验,原方程的根是x =1. (8分) 16.解:①如图. (4分)②如图,路线长为180490⨯π=2π (8分)17.解:(1)设该市政府平均每年投资的增长率为x ,根据题意,得: (1分) 2+2(1+x )+2(1+x )2=9.5,解得x 1=-3.5(舍),x 2=0.5. (5分) (2)(9.5-2)÷2×8=30万平方米. (7分) 答:(1)该市政府平均每年投资的增长率为50%,(2)2013,2014这两年共建设了30万平方米的廉租房. (8分) 18.解:(1)(3分)(2)根据C ,D ,当L 不变时,S -L =2N-1; 根据A ,B ,E ,当N 不变时,S -2N=L -1. 综上,得S =L +2N-l . (6分) (3)当L =10,N =12时,S =10+6-1=15. (8分) 19.解:(1)∵正方形ABGH ,BCFG ,CDEF 是全等正方形,∴BC =CD =DE =AB =6, ∴AD =3AB =3×6=18.∵BG ∥DE ,∴∠ABG =∠D ,∠APB =∠AED . ∴△ABP ∽△ADE ,∴ADABDE BP =. ∴BP =cm DE AD AB 26186=⨯=⋅ (4分) (2)图中共有三对全等三角形:△ABP ≌△EFQ ,△EGP ≌△ACQ ,△ADE ≌△EHA .证明:∵正方形ABGH ,BCFG ,CDEF 是全等的正方形. (7分) ∴AB =BC =EF =FG ,∴AB +BC =EF +FG , 即AC =EG .∵AD ∥HE ,∴∠AEH =∠EAD . ∵BG ∥CF ,∴∠GPE =∠CQA .∴△EGP ≌△ACQ .(选另外两对也可) (10分) 20.解:(1)将A 的坐标为(2,1)代入y =xa,得l=2a,则a =2. ∴反比例函数的解析式是y =x 2. (3分) 将B (m ,-2)代入y =x 2中,得-2=m2∴m =-l ,∴B 的坐标为(-1,-2).∵点A (2,1),B (-1,-2)都在直线y =kx +b 上,∴⎩⎨⎧=+-=+-,12,2b k b k解得⎩⎨⎧-==,1,1b k∴一次函数的解析式为y =x -1. (7分)(2)根据图象,不等式的解集为x >2或-l<x <0. (10分)21.解:用a 表示方片3,用b 表示梅花5,用c 表示红桃6,用d 表示黑桃10,(1)画树状图为(6分)列表为:(6分)(2)因为方片3,黑桃l0是中心对称图形,而梅花5,红桃6不是中心对称图形, (9分)所以摸出两张牌面图形都是中心对称图形的纸牌的情况只有(a ,d ),(d ,a )两种,概率P =122=61. (12分) 22.解:(1)由题意,CE =2x cm ,DF =x cm .∴CF =(3-x )cm ,动点E 的运动时间为24=2(s ), 动点F 的运动时间为13=3(s ). 当0≤x ≤2时,y =3×4-2x (3-x )=2x 2-6x +12. (2分)当2≤x ≤3时,y =3×4-4(3-x )=4x . (4分)(2)①当0≤x ≤2时,y =3×4-2x (3-x )=2x 2-6x +12=2(x -23)2+215. ∴当x=23时,y 最小=215. (6分) ②当2≤x ≤3时,y =4x ,y 随x 的增大而增大,∴当x =2时,y 最小=8. (8分)综上,∴当x=23时,y 最小=215 (cm 2).(10分) (3)不存在,由(2)可知,当x=23时,y 最小=215. ∵215>6,∴不存在某一时间x ,使得矩形ABCD 去掉矩形CFHE 后剩余部分的面积为原矩形面积的一半. (12分)23.解:(1)直接套用中点坐标公式,答案为(1,1). (5分)(2)根据平行四边形的性质:对角线互相平分,可知AC ,BD 的中点重合,所以由中点坐标公式有: 22D B C A x x x x +=+;22D B C A y y y y +=+ 代入数据,得20251D x +=+;22264D y +=+-, ∴x D =6.y D =0.所以点D 的坐标为(6,0). (8分(3)当AB 为该平行四边形一边时,则CD ∥AB ,对角线为AD ,BC 或AC ,BD ;22D B C A x x x x +=+;22D BC Ay y y y +=+或22C B D Ax x x x +=+;22CB D A yy y y +=+∴y C -y D =y A -y B =2或y D -y C =y A -y B =2.∵y C =0,∴y D =2或-2.代入到y =21x +1中,可得D (2,2)或D (-6,-2).当AB 为该平行四边形的一条对角线时,则CD 为另一条对角线; 22D C B A x x x x +=+;22DC B Ayy y y +=+y C +y D =y A +y B =2+4,∵y C =0,∴y D =6.代入到y =21x +1中,可得D (10,6).综上,符合条件的D 点坐标为D (2,2)或D (-6,-2), D (10,6). (14分)(每写出一个给两分)。
山东2015届中考学业水平模拟数学试题(二)及答案4
2015年山东省滕州市学业水平模拟(二)数学试题(本试卷满分120分,考试时间l20分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题共l0小题。
每小题3分。
共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.我国最长的河流长江全长约6300千米,用科学计数法表示为A .6.3× 102千米B .63 ×102千米C .6.3×103千米D .6.3×104 千米 2.下列运算中,正确的是A .325=-m mB .222)(n m n m +=+C .n mnm =22D .222)(mn n m =⋅3.如图,AB ∥CD ,BC ∥DE ,若∠B=40°,则∠D 的度数是A .40°B .140°C .160°D .60°4.有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,把扑克牌充分洗匀后,随意抽取一张,抽得红心的概率是 A .131 B .41 C .521 D .134 5.不等式组⎩⎨⎧->-<-32512x x 的解集是A .61<<xB .31<<-xC .31<<xD .61<<-x6.某单位3月上旬中的1至6日每天用水量的变化如图所示,那么这6天用水量的中位数是A .31.5B .32C .32.5D .337.分式方程111=-x 的解为 A .2=xB .1=xC .1-=xD .2-=x8.如图,以O 为位似中心将四边形ABCD 放大后得到四边形A′B′C′D′,若OA=4, OA′=8,则四边形ABCD 和四边形A′B′C′D′的周长的比为A .1:2B .1:4C .2:1D .4:19.若0)3()2(22=++-b a ,则2015()a b +的值是 A .0B .1C .-lD .201210.函数m mx y -=与)0(≠=m xmy 在同一坐标系内的图象可能是ABCD第Ⅱ卷(非选择题共90分)二、填空题(本大题共5小题。
山东省枣庄市滕州市2015届中考数学二模试卷解析
2015年山东省枣庄市滕州市中考数学二模试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.2的相反数是()A.4 B.﹣C.D.﹣42.下列运算正确的是()A.3x2+2x3=5x6 B.50=0 C.2﹣3= D.(x3)2=x63.下列四个图形中,对称轴条数最多的一个图形是()A.B.C.D.4.若某几何体的三视图如图,则这个几何体是()A.B.C.D.5.小明在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网5米的位置上,已知她的击球高度是2.4米,则她应站在离网的()A.7.5米处B.8米处C.10米处D.15米处6.在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是()A.B.C.1 D.7.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.B.C.D.8.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.正六边形的内角和是720°C.矩形的对角线互相垂直且平分D.角平分线上的点到角两边的距离相等9.为了更好保护水资源,造福人类,某工厂计划建一个容积V(m3)一定的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:V=Sh(V≠0),则S关于h的函数图象大致是()A.B.C.D.10.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B. 5 C. 3 D.311.如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()A.10cm2 B.20cm2 C.40cm2 D.80cm212.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,直线x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分. 13.PM2.5是指大气中直径小于或等于2.5μm的颗粒物,含有大量有毒、有害物质,也可称可入肺颗粒物,将0.0000025用科学记数法表示为.14.如图,要拧开一个正六边形螺帽,已知扳手张开的开口b长为2cm,螺帽的边长为a 为cm.15.在一次手工制作中,小颖将长为16cm的铁丝首尾相接围成半径为4cm的扇形,则此扇形的面积为cm2.16.观察下列等式:12=1,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2015=.17.如图,在平行四边形ABCD中,AB>AD,按以下步骤作图:以A为圆心,小于AD 的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H;过点H作HM∥BC交AB于M.则下列结论:①AG平分∠DAB,②S△ADH=S四边形ABCH,③△ADH是等腰三角形,④四边形ADHM 为菱形.其中正确的是.18.如图,在Rt△AOB中,OA=OB=4,⊙O的半径为1,点P是AB边上的动点,过点P 作⊙O的一条切线PQ(点Q为切点),则线段PQ长度的最小值为.三、解答题:本大题共5小题,满分44分,解答时,要写出必要的文字说明、证明过程或演算步骤19.先化简,再求值:()÷,其中a,b满足+|b﹣|=0.20.如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.21.如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm伞架DE DF AE AF AB AC长度36 36 36 36 86 86(1)求AM的长.(2)当∠BAC=104°时,求AD的长(精确到1cm).备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.22.如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=1,cosB=,求⊙O的半径.23.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C,tan∠BAC=2.(1)求抛物线的解析式;(2)点P从O点出发,在线段OB上以每秒1个单位长度的速度向B点运动,同时点Q 从B点出发,在线段BC上以每秒1个单位长度向C点运动,其中一个点到达终点时,另一点也停止运动,问运动多少秒时,△PBQ的面积最大?最大面积是多少?(3)过点P向x轴作垂线,交抛物线于一点M,是否存在点M,使得点M到BC的距离等于?若存在,求出点M的坐标;若不存在,请说明理由.2015年山东省枣庄市滕州市中考数学二模试卷参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.2的相反数是()A.4 B.﹣C.D.﹣4考点:相反数;有理数的乘方.分析:根据相反数的性质分析:只有符号不同的两个数互为相反数.解答:解:()2=,的相反数是﹣.故选B.点评:主要考查相反数性质:互为相反数的两个数相加等于0,熟记相反数的性质是解题的关键.2.下列运算正确的是()A.3x2+2x3=5x6 B.50=0 C.2﹣3= D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A;根据非0数的0次幂,可判断B;根据负整指数幂,可判断C;根据幂的乘方,可判断D.解答:解:A、不是同类项,不能合并,故A错误;B、非0数的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.3.下列四个图形中,对称轴条数最多的一个图形是()A.B.C.D.考点:轴对称图形.分析:根据图形的组合特点和对称轴的概念,确定每个图形的对称轴的条数.解答:解:A、有2条对称轴;B、有4条对称轴;C、不是轴对称图形;D、有1条对称轴.故选B.点评:能够根据图形的组合特点,正确说出其对称轴的条数.4.若某几何体的三视图如图,则这个几何体是()A.B.C.D.考点:由三视图判断几何体.分析:如图:该几何体的正视图与俯视图均为矩形,侧视图为三角形和一个矩形,易得出该几何体的形状.解答:解:该几何体的正视图为矩形,俯视图亦为矩形,侧视图是一个三角形和一个矩形,故选:C.点评:本题是个简单题,主要考查的是三视图的相关知识.5.小明在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网5米的位置上,已知她的击球高度是2.4米,则她应站在离网的()A.7.5米处B.8米处C.10米处D.15米处考点:相似三角形的应用.分析:由于人和球网是平行的,可以构成一组相似三角形,利用对应边成比例即可解答.解答:解:设她应站在离网的x米处,根据题意得:,解得:x=10.故选C.点评:本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出球拍的高度.6.在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是()A.B.C.1 D.考点:列表法与树状图法;完全平方式.分析:能构成完全平方式的情况有+,+;﹣,+两种情况,共有的情况为+,+;﹣,﹣;+,﹣;﹣,+共四种情况,利用概率公式求解即可.解答:解:能够凑成完全平方公式,则2xy前可是“﹣”,也可以是“+”,但y2前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选A.点评:此题考查完全平方公式与概率的综合应用,注意完全平方公式的形式.用到的知识点为:概率=所求情况数与总情况数之比;a2±2ab+b2能构成完全平方式.7.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.专题:压轴题.分析:根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人,以及在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,”分别得出等式方程组成方程组,即可得出答案.解答:解:设吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意得:.故选:B.点评:此题主要考查了由实际问题抽象出二元一次方程组,根据吸烟与不吸烟中患肺癌的比例得出正确的等量关系是解题关键.8.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.正六边形的内角和是720°C.矩形的对角线互相垂直且平分D.角平分线上的点到角两边的距离相等考点:命题与定理.分析:根据确定圆的条件对A进行判断;根据多边形内角和公式对B进行判断;根据矩形的性质对C进行判断;根据角平分线的性质对D进行判断.解答:解:A、不在同一直线上的三点确定一个圆,所以A选项为真命题;B、正六边形的内角和=(6﹣2)×180°=720°,所以B选项为真命题;C、矩形的对角线相等且互相平分,所以C选项为假命题;D、角平分线上的点到角两边的距离相等,所以D选项为真命题.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.为了更好保护水资源,造福人类,某工厂计划建一个容积V(m3)一定的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:V=Sh(V≠0),则S关于h的函数图象大致是()A.B.C.D.考点:反比例函数的应用;反比例函数的图象.专题:压轴题.分析:先根据V=Sh得出S关于h的函数解析式,再根据反比例函数的性质解答,注意深度h的取值范围.解答:解:∵V=Sh(V为不等于0的常数),∴S=(h≠0),S是h的反比例函数.依据反比例函数的图象和性质可知,图象为反比例函数在第一象限内的部分.故选:C.点评:本题主要考查了反比例函数的应用和反比例函数的图象性质,要掌握它的性质才能灵活解题.反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.10.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M 是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B. 5 C. 3 D.3考点:圆内接四边形的性质;坐标与图形性质;含30度角的直角三角形.专题:探究型.分析:先根据圆内接四边形的性质求出∠OAB的度数,由圆周角定理可知∠AOB=90°,故可得出∠ABO的度数,根据直角三角形的性质即可得出AB的长,进而得出结论.解答:解:∵四边形ABMO是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵AB是⊙C的直径,∴∠AOB=90°,∴∠ABO=90°﹣∠BAO=90°﹣60°=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径长==3.故选:C.点评:本题考查的是圆内接四边形的性质、圆周角定理及直角三角形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.11.如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()A.10cm2 B.20cm2 C.40cm2 D.80cm2考点:三角形中位线定理;菱形的性质;矩形的性质.分析:矩形对折两次后,再沿两邻边中点的连线剪下,所得菱形的两条对角线的长分别原来矩形长和宽的一半,即5cm,4cm,所以菱形的面积可求.解答:解:矩形对折两次后,所得的矩形的长、宽分别为原来的一半,即为5cm,4cm,而沿两邻边中点的连线剪下,剪下的部分打开前相当于所得菱形的沿对角线两次对折的图形,所以菱形的两条对角线的长分别为5cm,4cm,所以S菱形=×5×4=10 cm2.故选A.点评:本题考查了三角形中位线的性质、矩形、菱形的面积的计算等知识点.易错易混点:学生在求菱形面积时,易把对角线乘积当成菱形的面积,或是错误判断对角线的长而误选.12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,直线x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的个数是()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:①根据直线x=﹣1是对称轴,确定b﹣2a的值;②根据x=﹣2时,y>0确定4a﹣2b+c的符号;③根据x=﹣4时,y=0,比较a﹣b+c与﹣9a的大小;④根据抛物线的对称性,得到x=﹣3与x=1时的函数值相等判断即可.解答:解:①∵直线x=﹣1是对称轴,∴﹣=﹣1,即b﹣2a=0,①正确;②x=﹣2时,y>0,∴4a﹣2b+c>0,②错误;∵x=﹣4时,y=0,∴16a﹣4b+c=0,又b=2a,∴a﹣b+c=﹣9a,③正确;④根据抛物线的对称性,得到x=﹣3与x=1时的函数值相等,∴y1>y2,④正确,故选:C.点评:本题考查的是二次函数的图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分. 13.PM2.5是指大气中直径小于或等于2.5μm的颗粒物,含有大量有毒、有害物质,也可称可入肺颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.如图,要拧开一个正六边形螺帽,已知扳手张开的开口b长为2cm,螺帽的边长为a 为cm.考点:正多边形和圆.分析:根据正六边形的性质,可得∠ABC=120°,AB=BC=a,根据等腰三角形的性质,可得CD的长,根据锐角三角函数的余弦,可得答案.解答:解:如图:作BD⊥AC于D,由正六边形,得∠ABC=120°,AB=BC=a,∠BCD=∠BAC=30°.由AC=2,得CD=1.cos∠BCD==,即=,解得a=,故答案为:.点评:本题考查了正多边形和圆,利用了正六边形的性质得出等腰三角形是解题关键,又利用了正三角形的性质,余弦函数,15.在一次手工制作中,小颖将长为16cm的铁丝首尾相接围成半径为4cm的扇形,则此扇形的面积为16cm2.考点:扇形面积的计算.分析:根据扇形的面积公式S扇形=×弧长×半径求出即可.解答:解:由题意知,弧长=16﹣4×2=8(cm),扇形的面积是×8×4=16(cm2).故答案为:16.点评:本题考查了扇形的面积公式的应用,主要考查学生能否正确运用扇形的面积公式进行计算,题目比较好,难度不大.16.观察下列等式:12=1,1+3=22,1+3+5=32,1+3+5+7=42,...,则1+3+5+7+ (2015)1016064.考点:规律型:数字的变化类.分析:根据1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,可得1+3+5+…+(2n﹣1)=n2,据此求出1+3+5+…+2015的值是多少即可.解答:解:因为1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,所以1+3+5+…+2015=1+3+5+…+(2×1008﹣1)=10082=1016064故答案为:1016064.点评:此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:1+3+5+…+(2n﹣1)=n2.17.如图,在平行四边形ABCD中,AB>AD,按以下步骤作图:以A为圆心,小于AD 的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H;过点H作HM∥BC交AB于M.则下列结论:①AG平分∠DAB,②S△ADH=S四边形ABCH,③△ADH是等腰三角形,④四边形ADHM 为菱形.其中正确的是①③④.考点:平行四边形的性质;等腰三角形的判定;菱形的判定;作图—基本作图.分析:根据作图过程可得得AG平分∠DAB;再根据角平分线的性质和平行四边形的性质可证明∠DAH=∠DHA,进而得到AD=DH,从而得到△ADH是等腰三角形,又由HM∥BC,可证得四边形ADHM为菱形.解答:解:根据作图的方法可得AG平分∠DAB,故①正确;∵AG平分∠DAB,∴∠DAH=∠BAH,∵CD∥AB,∴∠DHA=∠BAH,∴∠DAH=∠DHA,∴AD=DH,∴△ADH是等腰三角形,故③正确;∵AD∥MH,AB∥CD,∴四边形ADHM是平行四边形,∴四边形ADHM为菱形;故④正确;∴S△ADH=S△AMH,且AD与AB的长不知,∴S△ADH不一定等于S四边形ABCH,故②错误.故答案为:①③④.点评:此题考查了平行四边形的性质、菱形的判定以及等腰三角形的判定与性质.注意掌握角平分线的作法.18.如图,在Rt△AOB中,OA=OB=4,⊙O的半径为1,点P是AB边上的动点,过点P 作⊙O的一条切线PQ(点Q为切点),则线段PQ长度的最小值为.考点:切线的性质.分析:首先连接OP、OQ,根据勾股定理知PQ2=OP2﹣OQ2,可得当OP⊥AB时,即线段PQ最短,然后由勾股定理即可求得答案.解答:解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=4,∴AB=OA=4,∴OP==2,∴PQ==,故答案为:7.点评:本题考查了切线的性质、等腰直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意得到当PO⊥AB时,线段PQ最短是关键.三、解答题:本大题共5小题,满分44分,解答时,要写出必要的文字说明、证明过程或演算步骤19.先化简,再求值:()÷,其中a,b满足+|b﹣|=0.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:算术平方根.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=[﹣]•=•=,∵+|b﹣|=0,∴,解得:a=﹣1,b=,则原式=﹣.点评:此题考查了分式的化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.20.如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.考点:平行四边形的性质;全等三角形的判定与性质.专题:几何图形问题.分析:(1)根据平行四边形的性质得出,再利用全等三角形的判定方法得出即可;(2)首先根据锐角三角函数关系得出BG=x,进而利用BG﹣DG=BD求出AG的长,进而得出平行四边形ABDE的面积.解答:(1)证明:∵AB=AC,∴∠B=∠ACB.又∵四边形ABDE是平行四边形∴AE∥BD,AE=BD,∴∠ACB=∠CAE=∠B,在△DBA和△EAC中,∴△DBA≌△EAC(SAS);(2)解:过A作AG⊥BC,垂足为G.设AG=x,在Rt△AGD中,∵∠ADC=45°,∴AG=DG=x,在Rt△AGB中,∵∠B=30°,∴BG=,又∵BD=10.∴BG﹣DG=BD,即,解得AG=x=,∴S平行四边形ABDE=BD•AG=10×()=.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,根据BG ﹣DG=BD得出AG的长是解题关键.21.如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm伞架DE DF AE AF AB AC长度36 36 36 36 86 86(1)求AM的长.(2)当∠BAC=104°时,求AD的长(精确到1cm).备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.考点:解直角三角形的应用.分析:(1)根据AM=AE+DE求解即可;(2)先根据角平分线的定义得出∠EAD=∠BAC=52°,再过点E作EG⊥AD于G,由等腰三角形的性质得出AD=2AG,然后在△AEG中,利用余弦函数的定义求出AG的长,进而得到AD的长度.解答:解:(1)由题意,得AM=AE+DE=36+36=72(cm).故AM的长为72cm;(2)∵AD平分∠BAC,∠BAC=104°,∴∠EAD=∠BAC=52°.过点E作EG⊥AD于G,∵AE=DE=36,∴AG=DG,AD=2AG.在△AEG中,∵∠AGE=90°,∴AG=AE•cos∠EAG=36•cos52°=36×0.6157=22.1652,∴AD=2AG=2×22.1652≈44(cm).故AD的长约为44cm.点评:本题考查了解直角三角形在实际生活中的应用,其中涉及到角平分线的定义,等腰三角形的性质,三角函数的定义,难度适中.22.如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=1,cosB=,求⊙O的半径.考点:切线的性质;圆周角定理.专题:计算题.分析:(1)连接OE,由AC为圆O的切线,利用切线的性质得到OE垂直于AC,再由BC垂直于AC,得到OE与BC平行,根据O为DB的中点,得到E为DF的中点,即OE 为三角形DBF的中位线,利用中位线定理得到OE为BF的一半,再由OE为DB的一半,等量代换即可得证;(2)在直角三角形ABC中,由cosB的值,设BC=3x,得到AB=5x,由BC+CF表示出BF,即为BD的长,再由OE为BF的一半,表示出OE,由AB﹣OB表示出AO,在直角三角形AOE中,利用两直线平行同位角相等得到∠AOE=∠B,得到cos∠AOE=cosB,根据cosB 的值,利用锐角三角函数定义列出关于x的方程,求出方程的解得到x的值,即可求出圆的半径长.解答:(1)证明:连接OE,∵AC与圆O相切,∴OE⊥AC,∵BC⊥AC,∴OE∥BC,又∵O为DB的中点,∴E为DF的中点,即OE为△DBF的中位线,∴OE=BF,又∵OE=BD,则BF=BD;(2)解:设BC=3x,根据题意得:AB=5x,又∵CF=1,∴BF=3x+1,由(1)得:BD=BF,∴BD=3x+1,∴OE=OB=,AO=AB﹣OB=5x﹣=,∵OE∥BF,∴∠AOE=∠B,∴cos∠AOE=cosB,即=,即=,解得:x=,则圆O的半径为=.点评:此题考查了切线的性质,锐角三角函数定义,以及圆周角定理,熟练掌握切线的性质是解本题的关键.23.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C,tan∠BAC=2.(1)求抛物线的解析式;(2)点P从O点出发,在线段OB上以每秒1个单位长度的速度向B点运动,同时点Q 从B点出发,在线段BC上以每秒1个单位长度向C点运动,其中一个点到达终点时,另一点也停止运动,问运动多少秒时,△PBQ的面积最大?最大面积是多少?(3)过点P向x轴作垂线,交抛物线于一点M,是否存在点M,使得点M到BC的距离等于?若存在,求出点M的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)把点A、B、C的坐标分别代入抛物线解析式,列出关于系数a、b的解析式,通过解方程组求得它们的值;(2)设运动时间为t秒.利用三角形的面积公式列出S△PBQ与t的函数关系式S△PBQ=﹣(t﹣2)2+,利用二次函数的图象性质进行解答;(3)首先求出MN的长,进而得出MN=(t﹣4)﹣(t2﹣t﹣4),求出符合题意的答案即可.解答:解:(1)∵tan∠BAC=2,∴OC=2OA=4,∴C(0,﹣4)将A(﹣2,0)、B(4,0)、C(0,﹣4)三点坐标分别代入y=ax2+bx+c,得,解得:∴抛物线的解析式为:y=x2﹣x﹣4;(2)设运动时间为t秒,由题意可知:0<t<4,则OP=t,PB=4﹣t,BQ=t,过点Q作QD⊥AB,垂直为D,∵OC=4,OB=4,∴∠OBC=45°,∴DQ=t,∴S△PBQ=PB•DQ=(4﹣t)×t=﹣t2+t=﹣(t﹣2)2+,∴当运动2秒时,△PBQ面积最大,最大值为;(3)假设存在点M,使得点M到BC的距离MH=,如图,设PM交直线BC于点N,易得∠HMN=45°,则MN=MH=•=,设直线BC的关系式为y=kx﹣d,少年智则中国智,少年强则中国强。
山东省枣庄市滕州市滕西中学度八年级数学下学期第二次
山东省枣庄市滕州市滕西中学2014-2015学年度八年级数学下学期第二次月考试题一、选择题:(每题3分,共30分)1.在下列各式中,是分式的有()A.2个B.3个C.4个D.5个2.要使分式有意义,则x的取值范围是()A.x=B.x> C.x< D.x≠3.若分式的值为零,则x等于()A.2 B.﹣2 C.±2D.04.若x满足=1,则x应为()A.正数 B.非正数C.负数 D.非负数5.已知=3,则的值为()A. B.C.D.﹣6.化简÷(1+)的结果是()A.B.C.D.7.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.8.把a千克盐溶于b千克水中,得到一种盐水,若有这种盐水x千克,则其中含盐()A.千克B.千克C.千克D.千克9.把分式化简的正确结果为()A.B.C.D.10.分式方程的解是()A.x=3 B.x=﹣3 C.x=D.x=二、填空题:(每题3分,共30分)11.若分式的值为0,则a= .12.使分式方程产生增根,m的值为.13.要使与的值相等,则x= .14.化简:= .15.在函数中,自变量x的取值范围是.16.已知关于x的方程的解是负数,则n的取值范围为.17.关于x的方程的解为x=1,则a= .18.计算:= .19.已知a2﹣6a+9与(b﹣1)2互为相反数,则式子()÷(a+b)的值是.20.一个容器装有1升水,按照如下方法把水倒出:第1次倒出升水,第2次倒出水量是升的,第3次倒出水量是升的,第4次倒出水量是升的,…,第n次倒出水量是升的.按照这种倒水的方法,n次倒出的水量共为升.三、解答题:21.计算:(1)();(2)÷(2+)22.解方程:(1);(2)=1.23.已知a=,求的值.24.先化简,再求值:÷,其中a=﹣1.25.若关于x的方程有增根,试求k的值.26.A、B两地相距80千米,一辆公共汽车从A地出发开往B地,2小时后,又从A地开来一辆小汽车,小汽车的速度是公共汽车的3倍.结果小汽车比公共汽车早40分钟到达B地.求两种车的速度.27.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?28.如图,E、F是平行四边形ABCD对角线AC上的两点,且BE∥DF,求证:BF=DE.山东省枣庄市滕州市滕西中学2014~2015学年度八年级下学期第二次月考数学试卷参考答案与试题解析一、选择题:(每题3分,共30分)1.在下列各式中,是分式的有()A.2个B.3个C.4个D.5个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.找到分母含有字母的式子的个数即可.【解答】解:,这3个式子分母中含有字母,因此是分式.(x+1)÷(x+2),它只表示一种除法运算,而不能称之为分式,其它式子分母中均不含有字母,是整式,而不是分式.故选:A.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数,注意π不是字母,故不是分式.2.要使分式有意义,则x的取值范围是()A.x=B.x> C.x< D.x≠【考点】分式有意义的条件.【专题】计算题.【分析】本题主要考查分式有意义的条件:分母不能为0,即3x﹣7≠0,解得x.【解答】解:∵3x﹣7≠0,∴x≠.故选D.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.3.若分式的值为零,则x等于()A.2 B.﹣2 C.±2D.0【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,2x﹣4=0,∴x=2不满足条件.当x=﹣2时,2x﹣4≠0,∴当x=﹣2时分式的值是0.故选:B.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.4.若x满足=1,则x应为()A.正数 B.非正数C.负数 D.非负数【考点】分式的值;绝对值.【分析】根据=1可以得到x=|x|,根据绝对值的定义就可以求解.【解答】解:若x满足=1,则x=|x|,x>0,故选A.【点评】此题是分式方程,在解答时要注意分母不为0.5.已知=3,则的值为()A. B.C.D.﹣【考点】分式的基本性质.【专题】计算题.【分析】先把分式的分子、分母都除以xy,就可以得到已知条件的形式,再把=3,代入就可以进行计算.【解答】解:根据分式的基本性质,分子分母都除以xy得,==.故选B.【点评】解答本题关键在于利用分式基本性质从所求算式中整理出已知条件的形式,再进行代入计算,此方法2016届中考题中常用,是热点.6.化简÷(1+)的结果是()A.B.C.D.【考点】分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.7.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.【考点】列代数式(分式).【专题】应用题.【分析】房间数=住进房间人数÷每个房间能住的人数;一人无房住,那么住进房间的人数为:m﹣1.【解答】解:住进房间的人数为:m﹣1,依题意得,客房的间数为,故选A.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.8.把a千克盐溶于b千克水中,得到一种盐水,若有这种盐水x千克,则其中含盐()A.千克B.千克C.千克D.千克【考点】列代数式(分式).【专题】溶液问题.【分析】盐=盐水×浓度,而浓度=盐÷(盐+水),根据式子列代数式即可.【解答】解:该盐水的浓度为,故这种盐水x千克,则其中含盐为x×=千克.故选A.【点评】解决问题的关键是找到所求的量的等量关系.本题需注意浓度=溶质÷溶液.9.把分式化简的正确结果为()A.B.C.D.【考点】分式的加减法.【分析】先确定最简公分母是(x+2)(x﹣2),然后通分化简.【解答】解:==;故选A.【点评】分式的加减运算中,异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.分式方程的解是()A.x=3 B.x=﹣3 C.x=D.x=【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.二、填空题:(每题3分,共30分)11.若分式的值为0,则a= ﹣2 .【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可,据此可以解答本题.【解答】解:∵=0,∴∴∴a=﹣2.故答案为﹣2.【点评】此题考查的是对分式的值为0的条件的理解,该类型的题易忽略分母不为0这个条件.12.使分式方程产生增根,m的值为±.【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣3),得x﹣2(x﹣3)=m2∵原方程有增根,∴最简公分母x﹣3=0,即增根是x=3,把x=3代入整式方程,得m=±.故答案为:±.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.要使与的值相等,则x= 6 .【考点】解分式方程.【专题】计算题.【分析】根据题意可列方程:,确定最简公分母为(x﹣1)(x﹣2),去分母,化为整式方程求解.【解答】解:根据题意可列方程:,去分母,得5(x﹣2)=4(x﹣1),解得x=6,经检验x=6是方程的解,所以方程的解为:x=6,故答案为:6.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.14.化简:= 1 .【考点】分式的加减法.【专题】计算题.【分析】先将第二项变形,使之分母与第一项分母相同,然后再进行计算.【解答】解:原式=.故答案为1.【点评】本题考查了分式的加减运算,要注意将结果化为最简分式.15.在函数中,自变量x的取值范围是x≠3.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.【考点】分式方程的解.【分析】求出分式方程的解x=n﹣2,得出n﹣2<0,求出n的范围,根据分式方程得出n﹣2≠﹣,求出n,即可得出答案.【解答】解:,解方程得:x=n﹣2,∵关于x的方程的解是负数,∴n﹣2<0,解得:n<2,又∵原方程有意义的条件为:x≠﹣,∴n﹣2≠﹣,即n≠.故答案为:n<2且n≠.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出n﹣2<0和n﹣2≠﹣,注意题目中的隐含条件2x+1≠0,不要忽略.17.关于x的方程的解为x=1,则a= ﹣3 .【考点】分式方程的解.【分析】根据方程的解的定义,把x=1代入方程,即可得到一个关于a的方程,即可求解.【解答】解:根据题意得:=,去分母得:4(2a+3)=3(a﹣1),解得:a=﹣3.故答案是:﹣3.【点评】本题考查了方程的解的定义,正确解关于a的方程是关键.18.计算:= 1 .【考点】分式的混合运算.【专题】计算题.【分析】先算除法,再进行减法计算.分式除以分式,把除式的分子、分母颠倒相乘,在相乘的过程中,注意结合因式分解的知识进行约分.【解答】解:原式=﹣•=+=1.【点评】对于一般的分式混合运算来讲,其运算顺序与整式混合运算一样,是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.19.已知a2﹣6a+9与(b﹣1)2互为相反数,则式子()÷(a+b)的值是.【考点】配方法的应用;非负数的性质:偶次方;代数式求值.【分析】由互为相反数的意义,可得:(a﹣3)2+(b﹣1)2=0,然后由非负数的性质可得a、b的值,然后解答即可.【解答】解:∵a2﹣6a+9与(b﹣1)2互为相反数,∴(a﹣3)2+(b﹣1)2=0,∵(a﹣3)2≥0,(b﹣1)2≥0,∴a=3,b=1,∴()÷(a+b)=(3﹣)÷(3+1)=.故答案为:.【点评】考查了配方法的应用,非负数的性质及代数式求值的知识,解题的关键是能够对代数式进行正确的配方,难道不大.20.一个容器装有1升水,按照如下方法把水倒出:第1次倒出升水,第2次倒出水量是升的,第3次倒出水量是升的,第4次倒出水量是升的,…,第n次倒出水量是升的.按照这种倒水的方法,n次倒出的水量共为升.【考点】分式的加减法.【分析】根据题目中第1次倒出升水,第2次倒出水量是升的,第3次倒出水量是升的,第4次倒出水量是升的,…,第n次倒出水量是升的可知按照这种倒水的方法,这1升水经n次后还有+×+×+×+…+×升水.【解答】解:由题意得+×+×+×+…+×=+﹣+﹣+﹣+…+﹣=1﹣=.故答案为:.【点评】此题考查分式的加减法,解答此题的关键是根据题目中的已知条件找出规律,按照此规律再进行计算即可.三、解答题:21.计算:(1)();(2)÷(2+)【考点】分式的混合运算.【专题】计算题;分式.【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=•=;(2)原式=•=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.解方程:(1);(2)=1.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x+2=4,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:2﹣x﹣1=x﹣3,解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.已知a=,求的值.【考点】分式的化简求值.【专题】计算题.【分析】本题的关键是正确进行分式的通分、约分,并准确代值计算.根据a与b的特殊形式,可以先求出a+b与ab的值,化简分式后再整体代入可简化计算.【解答】解:由a+b=2,a•b=1,得:=.【点评】本题所考查的内容“分式的运算”是数与式的核心内容,全面考查了有理数、整式、分式运算等多个知识点,要合理寻求简单运算途径的能力及分式运算.当条件中的两个字母的值用无理数表示的形式特点为:a=+n,b=﹣n;一般情况下,是先求出a+b、ab的值再整体代入化简后的分式求值.24.先化简,再求值:÷,其中a=﹣1.【考点】分式的化简求值.【专题】计算题.【分析】将括号内的部分通分后相减,再将除法转化为乘法后代入求值.【解答】解:原式=[﹣]•=•=•=.当a=﹣1时,原式==1.【点评】本题考查了分式的化简求值,熟悉通分、约分及因式分解是解题的关键.25.若关于x的方程有增根,试求k的值.【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出k的值.【解答】解:方程两边都乘(x﹣3),得k+2(x﹣3)=4﹣x,∵原方程有增根,∴最简公分母x﹣3=0,即增根为x=3,把x=3代入整式方程,得k=1.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.26.A、B两地相距80千米,一辆公共汽车从A地出发开往B地,2小时后,又从A地开来一辆小汽车,小汽车的速度是公共汽车的3倍.结果小汽车比公共汽车早40分钟到达B地.求两种车的速度.【考点】分式方程的应用.【专题】行程问题.【分析】根据题意可得到:从A到B地,小汽车用的时间=公共汽车用的时间﹣2小时﹣40分钟,由此可得出方程.【解答】解:设公共汽车的速度为x千米/时,则小汽车的速度为3x千米/时,由题意可列方程为,解得x=20.经检验,x=20是原方程的解,故3x=60;答:公共汽车的速度为20千米/时,小汽车的速度为60千米/时.【点评】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.找到关键描述语,找到等量关系是解决问题的关键.此题涉及的公式是:路程=速度×时间.27.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?【考点】分式方程的应用.【专题】工程问题;压轴题.【分析】如果设甲工厂每天加工x件产品,那么根据乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍,可知乙工厂每天加工1.5x件产品.然后根据等量关系:甲工厂单独加工完成这批产品的天数﹣乙工厂单独加工完成这批产品的天数=10列出方程.【解答】解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得﹣=10,解得:x=40.经检验:x=40是原方程的根,且符合题意.所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.【点评】本题考查了分式方程在实际生产生活中的应用.理解题意找出题中的等量关系,列出方程是解题的关键.注意分式方程一定要验根.28.如图,E、F是平行四边形ABCD对角线AC上的两点,且BE∥DF,求证:BF=DE.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题.【分析】由平行四边形的性质和已知条件证明△CEB≌△AFD,所以可得BE=DF,进而证明四边形BFED 是平行四边形,即BF=DE.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠BCE=∠DAF又∵BE∥DF,∴∠BEC=∠DFA在△CEB和△AFD中,∠BCE=∠DAF,∠BEC=∠DFA,BC=DA∴△CEB≌△AFD(AAS)∴BE=DF故BFED为平行四边形.∴BF=DE.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,是2016届中考常见题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年山东省滕州市中学九年级第二次模拟考试
数学试题
(本试卷满分150分,考试时间120分钟)
第Ⅰ卷(选择题 共18分)
一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3的相反数是 A .-3
B .3
1
-
C .3
D .
3
1 2.下列计算正确的是
A .6428)2(a a =
B .4
3a a a =+ C .a a a =÷2
D .222)(b a b a -=-
3.估算5的值在 A .1与2之间
B .2与3之间
C .3与4之间
D .4与5之间
4.下列各图,不是轴对称图形的是
A
B
C
D
5.为了帮助本市一名患“白血病”的高中生,某班45名同学积极捐款,他们捐款数额如下表:
关于这15名学生所捐款的数额,下列说法正确的是 A .众数是100
B .平均数是30
C .极差是20
D .中位数是20
6.下列命题是真命题的是
A .-
32πx 2y 3
z 的系数为-3
2
B .若分式方程
12-x a =3的解为正数,则a 的取值范围是a>-2
3
C .两组对角分别相等的四边形是平行四边形
D .同位角相等
第Ⅱ卷(非选择题 共132分)
二、填空题(本大题共10小题,每小题3分,共30分.请把答案填在题中的横线上) 7.在函数y =
1
1
-x 中,自变量x 的取值范围是____. 8.钓鱼岛是中国的固有领土,位于中国东海,面积约6344000平方米,数据6344000用科学记数法表示为____. 9.分解因式:2a 2
-8b 2
=____.
10.同时抛掷两枚硬币正面均朝上的概率为____.
11.如图,Rt ΔOAB 的直角边OA 在y 轴上,点B 在第一象限内,OA=2,AB=1,若将△OAB 绕点O 按逆时针方向旋转90°,则点B 的对应点的坐标为____.
12.若一个圆锥的轴截面是一个腰长为6 cm ,底边长为2 cm 的等腰三角形,则这个圆锥的表面积为____cm 2
.
13.若直线y =2x +3b +c 与x 轴交于点(-3,0),则代数式2-6b -2c 的值为____. 14.如图,点P (a ,a )是反比例函数y =
x
16
在第一象限内的图象上的一个点,以点P 为顶点作等边△PAB ,使A ,B 落在x 轴上,则△POA 的面积是____.
15.如图,以点P (2,0)为圆心,3为半径作圆,点M (a ,b )是⊙P 上的一点,则a
b 的最大值是____.
16.如图,已知在Rt △ABC 中,AB=AC=32,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD ,PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段耐的中点Q ,在△QHI 内作第三个内接正方形;……依次进行下去,则第2014个内接正方形的边长为____.
三、解答题(本大题共10小题,共l02分.解答应写出必要的文字说明、证明过程或演算步骤)
17.(本小题满分12分)
(1)计算:27-2cos30°+(
2
1)-2
-31-; (2)先化简,再求值:(1
32+-x x -2)÷11+x ,其中x 满足x 2
-2x -4=0.
18.(本小题满分8分)
解方程
245--x x =6
310
4-+x x -1. 19.(本小题满分8分)
某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.
请你根据不完整的表格,回答下列问题:
(1)补全表格和频率分布直方图;
(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩等级哪一个等级的可能性大?请说明理由.
20.(本小题满分8分)
如图,四边形ABCD为矩形,点E在边BC上,四边形AEDF为菱形.
(1)求证:ΔABE≌ΔDCE;
(2)试探究:当矩形ABCD长宽满足什么关系时,菱形AEDF为正方形?请说明理由.
21.(本小题满分10分)
一对姐弟中只能有一人参加夏季夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有l,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.试用列表法或树状图分析这种方法对姐弟俩是否公平.22.(本小题满分10分)
如图所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB和CD(均与水平面垂直),再将集热板安装在AD上.为使集热板吸热率更高,公司规定:AD与水平线夹角为θ1,且在水平线上的射影AF为1.4 m.现已测量出屋顶斜面与水平面夹角为θ2,并已知tanθ1=1.082,tanθ2=0.412.如果安装工人已确
定支架AB 高为25 cm ,求支架CD 的高(结果精确到1 cm )?
23.(本小题满分10分)
如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD ,AC 分别交于点E ,F ,且∠ACB=∠DCE .
(1)判断直线CE 与⊙O 的位置关系,并证明你的结论; (2)若tan ∠ACB=
2
2
,BC=2,求⊙O 的半径.
24.(本小题满分10分)
某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y (元)与种植面积m (亩)之间的函数关系如图l 所示;小李种植水果所得报酬z (元)与种植面积n (亩)之间的函数关系如图2所示.
图1
图2
(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是____元,小张应得的工资总额是____元;此时,小李应得的报酬是____元;
(2)当10<n <30时,求z 与n 之间的函数关系式;
(3)设农庄支付给小张和小李的总费用为W (元),当l0<m ≤30时,求W 与m 之间的函数关系式.
25.(本小题满分12分)
如图,在□ABCD 中,AB=12 cm ,AD=6 cm ,∠BAD=60°,点P 从点A 出发,以2 cm /s 的速度沿A —B —C 运动,点Q 从点A 出发,以a cm /s 的速度沿A —D —C 运动,点P ,Q 从A 点同时出发,当其中一点到达点C 时,另一点也停止运动,设运动的时间为t s .
(1)求证:BD ⊥AD ;
(2)若a =1,以点P 为圆心,PB 为半径画⊙P ,以点Q 为圆心,QD 为半径画⊙Q ,当⊙P 和⊙Q 相切时,求t 的所有可能值;
(3)若在点P ,Q 运动的过程中总存在t ,使PQ ∥BD ,试求a 的值或范围. 26.(本小题满分l4分)
如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x +n 与x 轴、y 轴分别交于B ,C 两点,抛物线y =ax 2
+bx +3(a ≠0)过C ,B 两点,交x 轴于另一点A ,连接AC ,且tan ∠CAO=3.点P 是线段CB 上一点(不和B ,C 重合),过点P 作x 轴的垂线,垂足为H ,交抛物线于Q .
(1)求抛物线的解析式;
(2)小明认为当点Q 恰好为抛物线的顶点时,线段PQ 的长最大,你认为小明的说法正确吗?如果正确,请说明理由;如果不正确,试举出反例说明;
(3)若△CPQ 是直角三角形,求点P 的坐标;
(4)设PH 和PQ 的长是关于y 的一元二次方程:y 2
-(m +3)y +
4
1(5m 2
-2m +13)=0(m 为常数)的两个实数根,点M 在抛物线上,连接MQ ,MH ,PM ,若MP 恰好平分∠QMH ,求出此时点M 的坐标.
2015年山东省滕州市东沙河中学九年级第二次模拟考试
数学试题参考答案
1.A 2.C 3.B 4.B 5.D 6.C
7.x ≠1 8.6.344× 106
9.2(a +2b )(a -2b ) 10.4
1
11.(-2,1) 12.7π 13.-10 14.8-338 15.3 16.20122
1 17.解:(1)3+5. (6分)
(2)-1. (6分) 18.解:x =2增根. (8分) 19.解:(1)略. (4分)
(2)150,A . (8分) 20.解:(1)略. (4分)
(2)AD=2AB . (8分) 21.解:不公平. (10分)2 2.解:119 cm . (10分) 23.解:(1)相切. (5分)
(2)
4
6
. (10分) 24.解:(1)140 2800 1500. (3分)
(2)z =120n +300. (6分) (3)当10<m <20时,W =-2m 2
+60m +3900;
当20≤m ≤30时,W =-2m 2
+30m +4500. (10分) 25.解:(1)略. (4分)
(2)9-33 33-3 9. (8分)
(3)1≤a<2.(12分)
26.解:(1)y=-x2+2x+3.(3分)
(2)不正确.(6分)
(3)(1,2).(9分)
(4)(1+2,2),(1-2,2).(14分)。