4.5角的比较与补(余)角
2023-2024学年沪科版七年级数学上册教案:4.5角的比较与补(余)角教案
2023-2024学年沪科版七年级数学上册教案:4.5角的比较与补(余)角教案一. 教材分析本节课教材为沪科版七年级数学上册,主要内容是角的比较与补(余)角。
这部分内容是学生在学习了角的概念和分类的基础上,进一步探究角的性质和运算。
通过本节课的学习,学生能够理解补角和余角的概念,掌握求补角和余角的方法,并能运用到实际问题中。
二. 学情分析七年级的学生已经掌握了角的概念和分类,对数学运算也有一定的理解。
但是,对于补角和余角的概念和运算,他们可能还比较陌生。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等方式,自主探索和发现补角和余角的性质和运算规律,从而达到理解掌握的目的。
三. 教学目标1.知识与技能:学生能够理解补角和余角的概念,掌握求补角和余角的方法,并能运用到实际问题中。
2.过程与方法:学生通过自主探索、合作交流,培养观察、思考、交流的能力。
3.情感态度与价值观:学生能够积极参与数学学习,体验成功的喜悦,培养对数学的兴趣。
四. 教学重难点1.重点:学生能够理解补角和余角的概念,掌握求补角和余角的方法。
2.难点:学生能够灵活运用补角和余角的性质和运算规律解决实际问题。
五. 教学方法采用自主探索、合作交流的教学方法,让学生在观察、操作、思考的过程中,发现补角和余角的性质和运算规律,培养学生的观察能力、思考能力和交流能力。
六. 教学准备教师准备PPT,内容包括角的比较与补(余)角的概念、性质和运算规律。
学生准备笔记本,用于记录学习过程中的思考和发现。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题:角的比较与补(余)角。
例如,一个直角三角形,其中一个角为30度,求另一个角的度数。
学生尝试解答,引发对补角和余角的思考。
2.呈现(10分钟)教师通过PPT呈现角的比较与补(余)角的概念、性质和运算规律。
学生认真听讲,记录学习内容。
3.操练(10分钟)教师给出一些练习题,学生独立完成。
4.5《角的比较与补(余)角》
∠BOC=∠AOC+∠AOB
例1 如图,求解下列问题: (1)比较∠AOC与∠BOC,∠BOD与∠COD的大小; (2)将∠AOC写成两个角的和与两个角的差的形式。
解 (1)由图可以看出:
A
B
∠AOC>∠BOC,(OB在∠AOC内)
∠BOD>∠COD.(OC在∠BOD内)
C(2) ∠AOC=∠AOB+∠BOC
O
D
∠AOC=∠AOD-∠DOC
如图,填空:
∠AOC=(∠AOB )+( ∠BOC ) =(∠AOD)- ( ∠COD )
∠BOC=(∠DOB )-( ∠COD )
=(∠AOC )- ( ∠AOB )
D
C
B
O
A
借助一个三角板你能画出 哪些度数的角?
借助一副三角板你还能画 出哪些度数的角?
15°
同角的余角相等
如图,∠α=∠β,∠α的余角∠1,∠β
的余角∠2的大小有什么关系?为什么?
∵∠1=90°-∠α ∠2=90°-∠β
又∵∠α=∠β ∴∠1=∠2
1
2
α
β
这一结论用文字 又怎么叙述?
等角的余角相等
1.如图,点A,O,B在同一条直线上, ∠AOC=∠DOE=90°,找出图中相等 的角,互余的角,互补的角。
如图,∠1+∠2=180°,
1
∠1叫做∠2的补角,
2 ∠2也叫做∠1的补角,
平角
∠1与∠2互补。
看谁答得又对又快
∠α 30° 45° 60°30′ 72°18′39″ x°
∠α的余角
60° 45° 29°30′ 17°41′21″ 90°-x°
∠α的补角
4.5 角的比较与补(余)角
9.(雨花区期末)如图,OC是∠AOB的平分线,∠DOC=3∠BOD,∠BOD =18°,则∠AOD的度数为( C ) A.72° B.80° C.90° D.108°
10.(金安区期末)如图,已知OB,OC是∠AOD内部的两条射线,OM平分 ∠AOB,ON平分∠COD. (1)如果∠BOC=40°,∠MON=80°,那么∠AOD的度数为 120° ; (2)如果∠AOD=x°,∠MON=80°,那么∠BOC的度数为 (160-x)°(用 含x的代数式表示).
解:(1)(2)(3)如图所示.
5.按下列要求画图. (1)画直线AB和CD相交于点O(要求∠AOD比∠AOC小); (2)用直尺和圆规作∠EFG,使得∠EFG=∠AOC-∠AOD(保留作图痕迹).
解:(1)如图①所示. (2)如图②,∠EFG即为所求.
3.若两个角互补,则( D ) A.这两个角都是锐角 B.这两个角都是钝角 C.这两个角一定一个是锐角,一个是钝角 D.以上答案都不对
4.已知∠α与∠β互为余角,且它们的度数之比为2∶3,求∠α,∠β的补角 的差.
解:设∠α=2x,则∠β=3x,由题意得∠α+∠β=2x+3x=90°,解 得x=18°.所以∠α=36°,∠β=54°. 所以∠α,∠β的补角的差为 180°-∠α-(180°-∠β)=∠β-∠α=18°.
解:(2)因为 ∠COE=∠DOE-∠DOC=65°, ∠BOC=180°-∠AOC=130°, 所以∠BOE=∠BOC-∠COE=65°. 所以∠COE=∠BOE,所以OE平分∠BOC.
12.如图,射线OB,OC在∠AOD的内部,且∠AOB∶∠BOC∶∠COD=2∶ 5∶3.若射线OM平分∠AOD,且∠BOM=45°,求∠AOD的度数.
4.5.2角的比较与补(余)角
∠BEF = ∠BFE
∠AED = ∠CFG = 90 °
找出图中相等的角并说明理由。
4、 小明从点A出发向北偏西50°方向走 了3米,到达点B,小林从点A出发向南偏西 40°方向走了4米,试画图确定出A、B、C 三点的位置(用1厘米表示3米),并从图上 求出B点到C点的实际距离。
北
2 1
4
若∠1 + ∠2 =180 °, 则 ∠1和∠2互补.(互补定义 ) 若∠1和∠2互补, ° 则∠1 + ∠2 =180 .( 互补定义) 若∠3 + ∠4 =90 °, 则 ∠3和∠4互余 .( 互余定义) 若∠3和∠4互余, ° 则 ∠3 + ∠4 =90 .( 互余定义)
补角性质: 同角或等角的补角相等。
互为余角
如果两个角的和是一个 直角 ,那么这两个 角叫做 互为余角,其中一个角是另一个角 的 余角。
4
若∠3 + ∠4 =90 °, 则 ∠3和∠4互余.( 互余定义) 若∠3和∠4互余, ° 则 ∠3 + ∠4 =90 .( 互余定义)
余角性质:
同角或等角的余角相等。
2
1
2
1
互为余角 如果两个角的和是一个直角,那么这两 个角叫做互为余角,其中一个角是另一个角的 余角。
2
1
图中给出的各角,那些互为余角?
10o
30o
50
o
60o
40
o
80
o
4
3
4
3
4
互为补角 如果两个角的和是一个平角,那么 这两个角叫做互为补角,其中一个角是 另一个角的补角。
3
图中给出的各角,那些互为补角?
4.5.1角的比较与补(余)角
定义:在角的内部,以角的顶点为端点的一条射 线把 这个角分成两个相等的角,这条射线叫做这个角 的平分线。
∵∠1= ∠2
符号表达:
∴OB平分∠AOB (角平分线的定义)
∵ OB平分∠AOB ∴∠1= ∠2
(角平分线的性质)
类似地:还有角的三等分线
D C
如图
B
3 2 ⌒
O
1
A
OB、OC是∠AOD的三等分线
D
A
B ( )
( ) C
E
F
ED落在∠ABC的外部,则∠DEF > ∠ABC。
例如:比较∠ABC
和 ∠DEF的大小
把∠DEF移动,使它的顶点E和∠ABC的顶点B重合,一边EF 和BC重合,另一边ED和BA落在BC的同旁。
A( )
D
B ( )
( ) C
E
F
ED与BA重合,则∠DEF =∠ABC。
例如: 比较∠ABC
D C O 图1 B A
3) ∠D0C+∠COB 4)∠A0B+∠BOC= 5)∠A0C+∠COD= 6)∠B0D-∠COD= 7)∠A0D- ∠BOD
例1 如图:O是直线AB上一点,∠AOC=53°17′ C 求∠BOC的度数
A
O
B
解:因为∠AOB是平角 ∠AOB=∠AOC+∠BOC 所以∠BOC=∠AOB-∠AOC =180°-53°17′ =126°43′
D C B O A
D C B O A
实践活动:
借助一副三角尺,大家都能画出哪些度 数的角?
75°
和 ∠DEF的大小
把∠DEF移动,使它的顶点E和∠ABC的顶点B重合,一边EF 和BC重合,另一边ED和BA落在BC的同旁。
沪科版七上数学 角的比较与补(余)角
再结合角平分线的定义,
易得到∠MOC+∠CON=
1 2
∠AOB.
在有关角的计算中,几何图形与等式的性
质同时使用,问题会迎刃而解.
解:因为点 A,O,B 在一条直线上,所以∠AOB=180°.
因为∠AOC+∠BOC=∠AOB,
所以∠AOC+∠BOC=180°.
又因为 OM,ON 分别是∠AOC 和∠BOC 的平分线,
角 的 比 较
角的比较 角平分线 互余与互补
度量 叠法合法
概念 与角有关的和、差、 倍、分的计算
互余:两角之和为直角
互补:两角之和为平角 性质:同(等)角的补 (余)相等.
A.30°
B.35°
C.20°
D.40°
4. 若一个角的补角等于它的余角的 4 倍,求这个角 的度数. 解:设这个角是 x°,则它的补角是(180°-x°), 余角是(90°-x°).
根据题意,得 180°-x°= 4 (90°-x°). 解得 x = 60. 答:这个角的度数是 60°.
课堂小结
当堂练习
1. 如图,∠AOB=50°,OC 平分∠AOB,则∠AOC=_2_5_°.
AB
C
D O 2.如图,∠1=∠3,那么( C ).
A.∠1=∠2 C.∠AOC=∠BOD
B. ∠2=∠3 D. ∠1= 1 BOD
2
3.如图,直线 AB,CD 相交于点 O,OA 平分
∠EOC,∠EOC=70°,则∠BOD 等于( B )
不变.
结论:角的两边张开越大,角就越大,与所 画边的长短无关.
典例精析 例1 如图,求解下列问题: (1) 试比较∠AOC 与∠BOC,∠BOD 与∠COD 的大小; (2) 将∠AOC 写成两个角的和与两个角的差的式.解:(1Leabharlann 由图可看出:∠AOC>∠BOC,
沪科版数学七年级上册(培优练习)4.5《角的比较与补(余)角》
《4.5 角的比较与补(余)角》培优练习1. 如图①,∠1=∠2,∠3=∠4,则下列结论:①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AF平分∠BAC;⑤AE平分∠BAC中,正确的有( ).图①A.4个B.3个C.2个D.1个2. 如图②,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置,若∠DEF=75°,则∠AED′等于( ).图②A. 75°B. 65°C. 30°D. 25°3. 如果∠α和∠β互补,且∠α>∠β,则下列表示角的式子中:①90°-∠β;②∠α-90°;③12(∠α+∠β);④12(∠α-∠β).不能表示∠β的余角的是( ).A. ①B. ②C. ③D. ④4. 如图③,OC是∠AOD的平分线,OE是∠BOD的平分线.(1)如果∠AOB=130°,那么∠COE是多少度?(2)在(1)的条件下,如果∠DOC=20°,那么∠BOE是多少度?图③5. 如图④,已知∠AOB在∠AOC内部,∠BOC=90°,OM,ON分别是∠AOB,∠AOC 的平分线,∠AOB与∠COM互补,求∠BON的度数.图④答案和解析【答案】1. C2. C3. C4. (1)65°;(2)45°.5. 15°【解析】1. 解:因为∠1=∠2,所以AE平分∠DAF,③正确;又因为∠3=∠4,所以∠1+∠3=∠2+∠4,即∠BAE=∠CAE,所以AE平分∠BAC,⑤正确.故正确的有2个.故选C.由角的平分线的几何表示可知:当∠1=∠2时,AE平分∠DAF;再由∠3=∠4可得∠1+∠3=∠2+∠4,即∠BAE=∠CAE,因此AE平分∠BAC.判断一条射线是不是角的平分线,只要看这条射线是否将角分成相等的两个角.2. 解:由折叠的性质可知,∠D′EF=∠DEF,因为∠DEF=75°,所以∠D′EF=75°,所以∠AED′=180°-∠D′EF-∠DEF=180°-75°-75°=30°.故选C.由于∠AED′=180°-∠D′EF-∠DEF,∠DEF为已知角,而∠D′EF=∠DEF,易求得∠AED′的度数.折叠问题中的折痕平分被折边与原边的夹角.3. 解:由定义知∠β的余角为90°-∠β,故①正确;因为∠α和∠β互补,且∠α>∠β,所以∠α+∠β=180°,∠α>90°,所以∠β=180°-∠α,所以∠β的余角为90°-(180°-∠α)=∠α-90°,故②正确;因为∠α+∠β=180°,所以12(∠α+∠β)=90°,所以∠β的余角为90°-∠β=12(∠α+∠β)-∠β=12(∠α-∠β),故④正确,而③错误.故选C.此题考查的是余角、补角的定义,能够正确找到角之间的和差关系,理解余角、补角的定义是解题的关键.4. 解:(1)因为OC平分∠AOD,所以∠DOC=12∠AOD.因为OE平分∠BOD,所以∠DOE=12∠BOD.所以∠COE=∠DOC+∠DOE=12(∠AOD+∠BOD)=12∠AOB=12×130°=65°.(2)由(1)可知∠COE=65°,因为∠DOC=20°, 所以∠DOE=∠COE-∠DOC=45°.因为OE平分∠BOD,所以∠BOE=∠DOE=45°.(1)由已知可知∠DOC=12∠AOD,∠DOE=12∠BOD.由于∠COE=∠DOC+∠DOE,因此,∠COE=12∠AOD+12∠BOD=12∠AOB.(2)结合(1)的结论可求出∠DOE的度数,从而求出∠BOE的度数.利用角平分线进行计算时,要灵活运用角平分线的几种不同表达方式.在计算角的大小时,常常要用到等量代换,用已知角代替与它相等的未知角.5. 解:由∠AOB与∠COM互补,得∠AOB+∠COM=180°.由角的和差,得∠AOB+∠BOM+∠COB=180°,∠AOB+∠BOM=90°.由OM是∠AOB的平分线,得∠BOM=12∠AOB,即∠AOB+12∠AOB=90°.解得∠AOB=60°.由角的和差,得∠AOC=∠BOC+∠AOB=90°+60°=150°.由ON平分∠AOC,得∠AON=12∠AOC=12×150°=75°.由角的和差,得∠BON=∠AON-∠AOB=75°-60°=15°.根据补角的性质,可得∠AOB+∠COM=180°,根据角的和差,可得∠AOB+∠BOM=90°,根据角平分线的性质,可得∠BOM=12∠AOB,根据解方程,可得∠AOB的度数,根据角的和差,可得答案.本题考查了余角与补角及角平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合.。
角的比较与补(余)角课件沪科版数学七年级上册
三、概念剖析
想一想
(1)已知∠1与∠2,∠3都互为补角.那么∠2和∠3的大小有什么关系?
解:因为∠1与∠2和∠3都互为补角, 那么 ∠2=180º-∠1,∠3=180º-∠1, 所以∠2=∠3.
三、概念剖析
(2)已知∠1与∠2互补,∠3与∠4互补.若∠1=∠3,那么∠2和∠4 相等 吗?为什么?
∴∠COD=∠AOD=
1 2
∠AOC
∠COE=∠BOE=
1 2
∠BOC
∴∠COD+∠COE=∠DOE=90° ∴∠DOB的补角:∠AOD、∠COD.
而∠AOB=180°
∠BOE的余角:∠AOD、∠COD;
【当堂检测】
1. 关于下图的说法正确的是( C ) A. ∠AOC是∠DOC的补角 B. ∠COB是∠AOD的余角 C. ∠AOC是∠BOC的补角 D. ∠DOC是∠AOD的余角
五、课堂总结
1.角的大小比较方法:①度量法;②叠合法。 2.角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射 线,叫这个角的平分线,角平分线必须是一条射线.
3.余角和补角 (1)如果两个角的和等于180°,那么我们就称这两个角互为补角,简称互补. (2)如果两个角的和等于90°,那么我们就称这两个角互为余角,简称互余.
∴∠1=90°﹣50°=40°,
∵∠2的补角是150°,
∴∠2=180°﹣150°=30°,
∴∠1>∠2.
四、典型例题
例题3:一个角比它的余角大25°,那么这个角的补角的度数是?
【分析】不明确这个角的具体度数,我们可以假定一个值,然后根据补角、余角的 定义表示出它的补角、余角就能快速解题了。
解:设这个角为a, 则x=90°-x+25°, 解得:x=57.5°, 这个角的补角=180°-57.5° =122.5°.
沪科版数学七年级上册《4.5 角的比较与补(余)角》教学设计1
沪科版数学七年级上册《4.5 角的比较与补(余)角》教学设计1一. 教材分析《4.5 角的比较与补(余)角》是沪科版数学七年级上册的重要内容,这部分内容主要让学生了解角的补角和余角的概念,学会用补角和余角来解决实际问题。
教材通过丰富的实例,引导学生探究、发现并证明补角和余角的关系,进而提高学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了角的基本概念,如锐角、直角、钝角等。
同时,他们对平行线的性质、同位角、内错角等也有了一定的了解。
因此,在学习本节课时,学生可以借助已有的知识体系来更好地理解和掌握补角和余角的概念。
三. 教学目标1.让学生掌握补角和余角的概念,理解它们之间的联系和区别。
2.培养学生运用补角和余角解决实际问题的能力。
3.提高学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.重点:补角和余角的概念及其应用。
2.难点:补角和余角的证明及其在实际问题中的运用。
五. 教学方法1.采用问题驱动法,引导学生主动探究补角和余角的概念。
2.使用多媒体辅助教学,展示丰富的实例,让学生更直观地理解补角和余角。
3.小组讨论,培养学生团队合作精神,提高解决问题的能力。
4.利用课后习题,巩固所学知识。
六. 教学准备1.准备多媒体课件,包括角的补角和余角的实例。
2.准备相关习题,用于课后巩固和拓展。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如篮球比赛中的犯规,引出补角和余角的概念。
提问:“请问同学们知道什么是补角和余角吗?”让学生回顾已学的知识,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过多媒体课件,展示一系列关于补角和余角的实例,如两个角互为补角、互为余角等。
在展示过程中,教师引导学生关注补角和余角的特征,让学生直观地理解补角和余角的概念。
3.操练(10分钟)教师学生进行小组讨论,要求每个小组找出一些互为补角或互为余角的例子,并说明它们的性质。
4.5 角的比较与补(余)角
4.5 角的比较与补(余)角【知识与技能】1.会比较两个角的大小,能分析图中角的和差关系.2.理解角平分线的概念,会利用角的平分线求角的度数.3.理解互补、互余的概念,并能利用补(余)角的性质解决问题.【过程与方法】从学生熟悉的线段的比较中得出“角的比较”的方法,并通过各种师生活动加深学生对角平分线和互补(余)的概念的理解;经历概念的形成过程和性质的探究过程,培养观察、归纳、概括能力,发展几何直觉.【情感态度】能通过角的测量、折叠等体验数、符号和图形是描述现实世界的重要手段.通过实际观察、操作体会角的大小,发展几何直觉.能用符号语言叙述角的大小关系,能运用角平分线和互补(余)的性质解决实际问题.【教学重点】重点是认识角的大小,分析角的和差关系,理解角平分线和互补(余)的性质.【教学难点】难点是认识角之间的关系.一、情境导入,初步认识【情境1】实物投影,并呈现问题:(1)怎样比较图中线段AB、BC、CA的长短?那么怎样比较∠A、∠B、∠C的大小呢?(2)如图,图中共有几个角?它们之间有什么关系?【情境2】实物投影,并呈现问题:(1)在一张透明纸上任意画一个角∠AOB,把这张透明纸折叠,使角的两边OA与OB重合,然后把这张纸展开、铺平,画出折痕OC.试比较∠AOC与∠BOC的大小.(2)找出图中的直角和平角,除去直角和平角外,你还能找到相等的角吗?【教学说明】学生独立思考后,小组讨论,教师注意引导学生正确理解角的比较方法、角平分线和互补(余),并用适当的语言表达出来.从而得出角平分线的性质和互补(余)的性质.情境1中(1)度量法和叠合法,AB<AC<BC.度量法:用量角器量出角的度数,然后比较它们的大小.叠合法:把两个角叠合在一起比较大小.(2)图中共有3个角:∠AOB、∠AOC、∠BOC.它们的关系是:∠AOC=∠AOB+∠BOC;∠BOC=∠AOC-∠AOB;∠AOB=∠AOC-∠BOC.情境2中(1)两角相等;(2)∠AOE与∠BOE 是直角,∠AOB与∠COD是平角,∠AOC=∠BOD.【教学说明】通过现实情景再现,让学生体会数学知识的连贯性.学生通过前面的情景引入,在老师的引导下,通过自己的观察,归纳出结论,进而体验到成功的喜悦,同时,也激发了学生学习的兴趣.二、思考探究,获取新知1.角的比较问题1如何比较两个角的大小?问题2用叠合法时应注意什么问题?【教学说明】学生通过回顾旧知识,在经过观察、分析、类比后能得出结论.【归纳结论】比较角的大小的方法:(1)度量法:用量角器分别量出角的度数,然后比较数值的大小.(2)叠合法:把一个角放在另一个角上,使它们的顶点重合,其中的一边也重合,并使两个角的另一边都在这一边的同侧.2.角的平分线问题1什么是角的平分线?问题2如何表示角的平分线?【教学说明】学生通过动手操作,在经过观察、分析、类比后得出结论.【归纳结论】从角的内部,以角的顶点为端点的一条射线把这个角分成两个相等的角,这条射线叫做这个角的角平分线.角平分线的表示:①OC是∠AOB的平分线;②∠AOC=∠COB=12∠AOB,∠AOB=2∠AOC=2∠COB.作角平分线的方法:①利用量角器量出角的度数,取角的度数的一半并画出射线;②折叠:把已知角的两边重合后再折叠,可得已知角的平分线.3.补(余)角问题1怎样的两角互补?怎样的两角互余?问题2补(余)角的性质是什么?【教学说明】学生通过画图,在经过观察、分析、类比后得出结论.【归纳结论】如果两个角的和等于一个平角,那么我们就称这两个角互为补角,简称互补.如果两个角的和等于一个直角,那么我们就称这两个角互为余角,简称互余.同角(或等角)的补角相等,同角(或等角)的余角相等.三、运用新知,深化理解1.已知∠α=18°18′,∠β=18.18°,∠γ=18.3°,下列结论正确的是().A.∠α=∠βB.∠α<∠βC.∠α=∠γD.∠β>∠γ2.一个角的补角和余角的大小关系是().A.余角比补角大B.余角等于补角C.余角比补角小D.不能确定3.如图,点O在直线PQ上,OA是∠QOB的平分线,OC是∠POB的平分线,,那么下列说法错误的是()A.∠AOB与∠POC互余B.∠POC与∠QOA互余C.∠POC与∠QOB互补D.∠AOP与∠AOB互补4.如下图,用“=”或“>”或“<”填空:(1)∠AOC____∠AOB+∠BOC;(2)∠AOC____∠AOB;(3)∠BOD-∠BOC____∠DOC;(4)∠AOD____∠AOC+∠BOD.5.如下图,已知OB平分∠AOC,OD平分∠COE,∠AOC=80°,∠DOE=30°.求(1)∠AOB;(2)∠COD;(3)∠BOD.【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.通过本环节的讲解与训练,让学生对角的比较、角的平分线、补(余)角有了更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理问题.【答案】1.C 2.D 3.C4.(1)=(2)> (3)=(4)<5.(1)40°(2)30°(3)70°四、师生互动,课堂小结1.怎样比较两角的大小?什么是角的平分线?怎样的两角互补,怎样的两角互余?2.通过这节课的学习,你还有哪些疑惑,大家相互交流一下.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.布置作业:从教材第149页“练习”和教材第150页“习题4.5”中选取.2.完成同步练习册中本课时的练习.本节课主要是在学生学习线段的比较和角的基础上,讲叙角的比较方法、角的平分线和补(余)角的,在教学的过程中,通过联系已学知识,得出角的比较方法和角的平分线的概念.在教学中选择激趣法、讨论法和总结法相结合.与学生建立平等融洽的互动关系,营造合作交流的学习氛围.在引导学生进行观察分析、概括、练习巩固各个环节中运用多媒体进行演示,增强几何图形的直观性,培养学生准确地运算能力,提高教学效率.本节内容是今后几何学习的重要基础.教学中从实际出发,注重学生的合作交流,从活动中积累经验和知识.。
4.5 角的比较与补(余)角例题与讲解
4.5 角的比较与补(余)角1.角的大小比较(1)叠合法:把一个角放在另一个角上,使两个角的顶点和一边分别重合,并使这两个角的另一边都放在这条边的同侧,就可以明显看见两个角的大小.如果两角的另一边重合,这两个角相等;如果两角的另一边不重合,则这两个角不等,其中一个角的另一边落在另一个角的内部,则这个角比另一个角小,其中一个角的另一边落在另一个角的外部,则这个角比另一个角大.①先让顶点O与E重合,再让OA与OC重合,并且使另一边OB,ED在OA的同侧.如果OB与ED重合,则表示这两个角相等,如图,记作∠AOB=∠CED.②先让顶点O与E重合,再让OA与OC重合,并且使另一边OB,ED在OA的同侧.如果ED落在∠AOB的外部,则表示∠AOB小于∠CED,如图,记作∠AOB<∠CED.③先让顶点O与E重合,再让OA与OC重合,并且使另一边OB,ED在OA的同侧.如果ED落在∠AOB的内部,则表示∠AOB大于∠CED,如图,记作∠AOB>∠CED.(2)度量法:用量角器量出角的度数,根据角的度数大小来判定角的大小,度数大的角大,度数小的角小,度数相等时,角相等.即角的大小和它们的度数大小一致.辨误区用叠合法比较角的大小时应注意的问题用叠合法比较角的大小时,一定要将角的另一边落在重合边的同侧.【例1-1】已知O是直线AB上一点,OC是一条射线,则∠AOC与∠BOC的关系是().A.∠AOC一定大于∠BOCB.∠AOC一定小于∠BOCC.∠AOC一定等于∠BOCD.∠AOC可能大于、等于或小于∠BOC解析:由题可知射线OC可能在O A这一侧,那么此时∠AOC就小于∠BOC,如果射线OC在OB这一侧,那么∠AOC就大于∠BOC,如果射线OC垂直直线AB,那么∠AOC =∠BOC=90°,综合所述∠AOC可能大于、等于或小于∠BOC.答案:D【例1-2】如图有两块三角板,你能比较∠BAC与∠DEF的大小吗?分析:可以用特殊值法,通过三角板的特殊值来比较大小;还可以使用叠合法来比较这两个角的大小.解:能.只要把两块三角板如图那样叠合在一起,就可以比较出∠BAC和∠DEF的大小.说方法比较两个角的大小的常用方法比较两个角的大小,常用的方法是叠合法和测量法两种.一般地,若两个角的大小差别明显,则用叠合法进行验证;若两个角的大小差别不明显,则用测量法进行验证.2.角的和差关系角的和、差有几何与代数两种意义,几何意义对于今后读图形语言有很大帮助,代数意义是今后角的运算的基础.(1)几何意义:设有两个角∠AOB和∠BOC(∠AOB>∠BOC),如图所示,把∠BOC移到∠AOB上,使它们的顶点重合,边OB重合,当∠BOC在∠AOB的外部时(如图1),它们的另两边OA与OC所成的∠AOC就是∠AOB与∠BOC的和,即∠AOC=∠AOB+∠BOC;当∠BOC在∠AOB内部时(如图2),它们的另两边OA与OC所成的∠AOC是∠AOB与∠BOC 的差,即∠AOC=∠AOB-∠BOC.(2)代数意义:已知∠A=36°,∠B=60°,那么∠A+∠B=36°+60°=96°,∠B-∠A=60°-36°=24°.即两个角的和、差关系等于两个角的度数的和、差关系.【例2】已知一条射线OA,如果从点O再引两条射线OB和OC,使∠AOB=60°,∠BOC =20°,求∠AOC的度数.解:当OC在∠AOB的内部时,如图(1),图(1)此时∠AOC =∠AOB -∠BOC =60°-20°=40°.当OC 在∠AOB 的外部时,如图(2),图(2)此时∠AOC =∠AOB +∠BOC =60°+20°=80°.综上可知,∠AOC 的度数为40°或80°.辨误区 作图题要分类讨论根据题意画图时,要考虑到所有可能的情况进行分类讨论,防止漏解.3.角的平分线在角的内部,以角的顶点为端点的一条射线把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图,OC 是从∠AOB 的顶点O 出发的一条射线,把∠AOB 分成两个相等的角,即∠AOC =∠BOC ,则OC 叫做∠AOB 的平分线.角平分线定义的推理步骤(1)角平分线的性质的推理步骤∵OC 是∠AOB 的平分线(已知),∴∠AOC =∠BOC =12∠AOB 或∠AOB =2∠AOC =2∠BOC (角平分线的定义). (2)角平分线的判断的推理步骤∵∠AOC =∠BOC (已知),∴OC 是∠AO B 的平分线(角平分线的定义).释疑点 对角的平分线的理解角的平分线是一条射线,每个角都有且只有一条角平分线,它把这个角分成相等的两个角.【例3】 如图所示,已知∠AOB =90°,∠BOC =60°,OD 是∠AOC 的平分线,求∠BOD 的度数.分析:从图形上看,∠BOD =∠BOC +∠COD ,因为∠BOC =60°,故只要求出∠C OD的度数即可获解,因为OD 是∠AOC 的平分线,而∠AOC =∠AOB -∠BOC =30°,故∠COD 可求.解:∵∠AOC =∠AOB -∠BOC =30°,OD 是∠AOC 的平分线,∴∠COD =12∠AOC =12×30°=15°. ∵∠BOD =∠BOC +∠COD ,∴∠BOD =60°+15°=75°.说方法 如何求角的度数和求线段长一样,求一个角的度数时,我们通常将这个角拆成另外几个易求角度的角的和或者差的形式,通过求出另外几个角达到求这个角的目的.4.补角与余角的概念(1)如果两个角的和等于一个平角,那么我们就称这两个角互为补角,简称互补,其中一个角是另一个角的补角.即:若∠1+∠2=180°,则∠1与∠2互补.反之,若∠1与∠2互补,则∠1+∠2=180°.(2)如果两个角的和等于一个直角,那么我们就称这两个角互为余角,简称互余,其中一个角是另一个角的余角.即:若∠1+∠2=90°,则∠1与∠2互余.反之,若∠1与∠2互余,则∠1+∠2=90°.谈重点余角与补角的关系(1)互余和互补描述的都不是一个角,而是指具有特殊数量关系的两个角,只与两个角的大小有关,与它们的位置无关.(2)锐角A的余角表示为(90°-∠A),补角可表示成(180°-∠A).(3)两角互为邻补角,它们一定互补,但两角互补,它们不一定为邻补角.(4)一个锐角的补角比它的余角大90°.【例4-1】如图所示,AOB是一条直线,∠AOC=90°,∠DOE=90°,问图中互余的角有几对?互补的角有几对?分析:由互为余角和互为补角的定义,只需找出图中和为90°的两个角以及和为180°的两个角即可.也可令∠1=x°,则∠2=90°-x°,∠3=x°,∠4=90°-x°,∠BOD=180°-x°,∠AOE=90°+x°.从而判断出互余、互补的角.解:互余的角:∠1与∠2,∠1与∠4,∠3与∠2,∠3与∠4;互补的角:∠1与∠BOD,∠3与∠BOD,∠2与∠AOE,∠4与∠AOE.说方法表示一个角的余角或补角可任意设一个角为x°,用含x°的代数式设法表示出其他所有的角,凡是90°-x°的角都与这个角互余,凡是180°-x°的角都与这个角互补.【例4-2】一个角的补角是它的余角的3倍,那么这个角的度数是().A.60°B.45°C.30°D.15°解析:由于一个角和它的补角的和是平角,与它的余角的和是直角,如果设这个角为x°,则它的补角是180°-x°,余角是90°-x°,由题目中所给的数量关系列出方程180°-x°=3(90°-x°),所以180°-x°=270°-3x°,所以x°=45°.答案:B析规律根据互余和互补求角的度数根据互余和互补的概念求角的度数的问题,一般设出这个角的度数,用含有这个角的代数式来表示这个角的余角和补角从而得到关于这个角的方程.解方程可解决问题.5.补角与余角的性质(1)补角性质:同角(或等角)的补角相等.若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3.若∠1+∠2=180°,∠3+∠4=180°,∠1=∠3,则∠2=∠4.(2)余角性质:同角(或等角)的余角相等.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3.若∠1+∠2=90°,∠3+∠4=90°,∠1=∠3,则∠2=∠4.释疑点进一步理解余角与补角锐角的余角为锐角,锐角的补角为钝角;钝角的余角不存在,钝角的补角为锐角;如果互补的两个角相等,那么这两个角都是直角.【例5】如图,∠AOB=∠COD=90°,试说明∠AOC=∠BOD.解:∵∠AOB=90°(已知),∴∠AOC+∠BOC=∠AOB=90°(角的和差).∵∠COD=90°(已知),∴∠BOD+∠BOC=∠COD=90°(角的和差).∴∠AOC=∠BOD(同角的余角相等).析规律根据互余、互补判断两角的相等关系当题目中的角有互补互余的关系时,判断两个角的相等关系通常运用等角的余角相等;等角的补角相等来解决.6.角的计算与证明角的和、差关系,角平分线及性质,余角、补角及其性质是进行角的计算与证明的基础,熟练掌握这些知识及其推理的基本步骤是关键.在解决具体问题时要结合图形,观察角与角之间的关系,并运用这些关系与性质来解决问题.析规律根据角平分线的性质进行角的运算结合图形和角的平分线的性质判定角的和、差、倍、分的关系,并运用这一关系解决问题,体现了数形结合思想及方程思想.【例6】如图所示,一副三角尺的两个直角顶点O重叠在一起.(1)比较∠AOC与∠BOD的大小,并说明理由.(2)∠AOD与∠BOC的和是多少度?解:(1)∠AOC与∠BOD相等,理由:∵∠AOB=∠COD=90°,∴∠AOB-∠COB=∠COD-∠COB,∴∠AOC=∠BOD.(2)∵∠AOD=∠AOB+∠BOD,∴∠AOD+∠BOC=∠AOB+∠BOD+∠BOC=∠AOB+∠COD=90°+90°=180°.7.角平分线的性质的综合运用折叠问题是几何中常见的问题,折叠过程中,角的大小不变.解决这类问题时,常与角的平分线,平角、周角的大小的关系,角的和差关系结合起来探求解决问题的思路.析规律折叠问题的解法结合折叠问题画出图形,结合图形,并根据角的和、差、倍、分的关系来寻找未知角与已知角之间的关系,并通过正确的推理求出未知角.【例7】如图,将书页斜折过去,使角的顶点A落在F处,BC为折痕,BD为∠EBF 的平分线,求∠CBD的度数.解:由折叠的性质可知,∠CBF=∠CBA.由角平分线的性质可知,∠DBF=∠DBE.∵∠D BF+∠DBE+∠CBF+∠CBA=180°,∴2∠CBF+2∠FBD=180°.∴∠CBD=90°.8.角的比较与测量的应用比较角的大小有两种常用的方法:一是叠合法;二是度量法.叠合法简单易行,方便操作;度量法需要测量工具,虽然比较精确,但会与标准有差距.角的比较与测量的实际应用比较广泛,主要应用于产品尺寸的质检和测绘等方面,解决这类问题要结合实际问题中的要求采用合适的方法来解决.说方法估测角的大小对要求不高的或精确度不高的也可用估测法:直接通过观察的方法,比较角的大小较为直观,但不够准确,适用于角度差别较大或要求不高的角的大小的比较.利用余角和补角的定义解决实际问题.【例8】在某工厂生产流水线上生产如图所示的零件,其中∠α称为工件的中心角,生产要求∠α的标准角度为30°±1°,一名质检员在检验时,手拿一量角器逐一测量∠α的度数.请你运用你所学的知识分析一下,该名质检员采用的哪种比较方法?你还能给该质检员设计较好的质检方法吗?请说说你的方法.分析:角的比较方法有两种,测量法和叠合法,测量具体,而叠合更直观,在检验中,采用叠合的方法比较快捷.解:该质检员采用的是测量法.还可以使用叠合法,即在工作中找一个角度为31°和一个角度为29°的两个工件,然后可把几个工件夹在这两个工件中间,使顶点和一边重合,观察另一边的情况.。
沪科版数学七年级上册《4.5角的比较与补(余)角》教学设计4
沪科版数学七年级上册《4.5 角的比较与补(余)角》教学设计4一. 教材分析《4.5 角的比较与补(余)角》是沪科版数学七年级上册的一个重要内容。
这部分内容主要介绍了角的概念的进一步理解,角的分类,以及补角和余角的概念。
在教材中,通过丰富的实例和练习,引导学生理解和掌握角的概念,进一步培养学生的观察能力和思维能力。
二. 学情分析学生在学习这部分内容之前,已经掌握了角的基本概念,对图形的认识也有一定的基础。
但是,学生对于角的分类和补角、余角的概念可能还不是很清楚,需要通过实例和练习来进一步理解和掌握。
三. 说教学目标1.知识与技能:理解角的概念,掌握角的分类,理解补角和余角的概念,能够判断和计算补角和余角。
2.过程与方法:通过观察实例,培养学生的观察能力;通过练习,培养学生的思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.重点:理解角的概念,掌握角的分类,理解补角和余角的概念。
2.难点:能够判断和计算补角和余角。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生观察实例,发现规律,总结概念;采用练习法,让学生在实践中理解和掌握知识。
2.教学手段:利用多媒体课件,展示实例和练习,引导学生观察和思考;利用黑板,进行板书和演示。
六. 说教学过程1.引入:通过展示一些图片,如钟面、太阳帽等,引导学生观察其中的角,激发学生的兴趣。
2.讲解:讲解角的概念,角的分类,补角和余角的概念,通过实例和练习,让学生理解和掌握。
3.练习:设计一些练习题,让学生在实践中理解和掌握知识。
4.总结:对本节课的内容进行总结,强调重点和难点。
七. 说板书设计板书设计如下:•补角:两个角的和为90度•余角:两个角的和为180度八. 说教学评价通过课堂观察,学生练习和课后反馈,评价学生对角的概念,角的分类,补角和余角的理解和掌握程度。
九. 说教学反思在教学过程中,要注意观察学生的反应,根据学生的实际情况,调整教学节奏和教学方法,确保学生能够理解和掌握知识。
角比较和补(余)角
角的比较与补(余)角初中数学1号PPT内容定位:本节课对角的认识从定性到定量,是前面所学角的知识的延伸,也是为后面学习三角形、四边形等知识作铺垫。
本节课的核心内容是角与角的关系(包括角平分线、补角、余角)。
重点是角的大小比较方法、角平分线的概念,两角互补、互余的概念及性质。
难点是从图形中观察角的数量关系。
学习目标:1、会比较角的大小,能估计角的大小,在操作中认识角的平分线。
2理解角的互余、互补的概念及性质。
3通过实际观察、操作、体会角的大小、并简单说理,培养学生的观察思维能力和合情推理能力。
4通过角的测量和折叠等,体会数、符号和图形是描述现实世界的重要手段。
学情分析:学生对角的认识是从形到数的转化。
对角平分线以及补角、余角的理解较容易,但是对几何语言的表达对学生比较困难。
这是几何符号语言的入门,所以要求不能太高。
教学思路:通过学生的实际操作理解角的大小如何比较,从折叠中找出角与角的关系,进而将角与角的数量关系表示出来。
在角与角的关系中有些关系比较特殊,引出角平分线和补(余)角的概念。
进一步观察同角(等角)的补(余)角的关系。
同时初步学习应用几何符号语言表示角与角的关系。
最后通过练习巩固所学知识并小结。
学生对角的认识还只是形的认识,所以本节课先从形的角度出发,请学生动手操作、观察思考等过度到角的量的认识上。
这样符合学生的认知规律。
教学设计:教学设计教学环节1温故知新教学环节2新知探究教学环节3新知探究教学环节4小试牛刀教学环节5例题讲解教学环节6课堂小结作业布置课程内容回顾线段的比较大小有哪些方法,为什么?类比线段的比较,角可以怎样进行比较大小呢?通过学生的操作、总结角的大小比较的几种方法。
并将角与角表示成和或差的形式。
折叠操作得出角平分线的概念。
练习同时介绍补角(余角)的概念课本例题小结本节课的内容。
课本150页第1、2、3题学习目标回顾旧知识引出新问题。
会进行角的大小的比较。
并将角的数量关系表示出来。
沪科版七年级上册数学4.5角的比较与补余角同步练习含答案解析
《4.5 角的比较与补(余)角》基础练习1. 如图①,射线OC,OD分别在∠AOB的内部,外部,下列各式错误的是().图①A.∠AOB<∠AOD B.∠BOC<∠AOBC.∠COD<∠AOD D.∠AOB<∠AOC2. 在∠AOB的内部任取一点C,作射线OC,那么有().A.∠AOC=∠BOCB.∠AOC>∠BOCC.∠BOC>∠AOBD.∠AOB>∠AOC3. 如图②,如果∠AOB=∠COD,那么().图②A.∠1>∠2 B.∠1=∠2C.∠1<∠2 D.无法确定4. 点P在∠MAN的内部,现有4个等式:①∠PAM=∠NAP;②∠PAN=∠MAN;③∠MAP=∠MAN;④∠MAN=2∠MAP,其中能表示AP是∠MAN的平分线的有().A.1个B.2个C.3个D.4个5. 如图③,若有∠BAD=∠CAD,∠BCE=∠ACE,则下列结论中错误的是().图③A.AD是∠BAC的平分线B.CE是∠ACD的平分线C.∠BCE=∠ACBD.CE是∠ABC的平分线6. 如图④,∠AOD-∠AOC=().图④A.∠AOC B.∠BOC C.∠BOD D.∠COD7.下列说法正确的有().①锐角的余角是锐角,锐角的补角是锐角;②直角没有补角;③钝角没有余角,钝角的补角是锐角;④直角的补角还是直角;⑤一个锐角的补角与它的余角的差为90°;⑥两个角相等,则它们的补角也相等.A.3个B.4个C.5个D.6个8.若∠α+∠β=90°,∠β+∠γ=90°,则∠α与∠γ的关系是().A.互余B.互补C.相等D.∠α=90°+∠γ9. 如图⑤,直线AB,CD交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2的依据是().图⑤A.同角的余角相等B.等角的余角相等C.同角的补角相等D.等角的补角相等10. 如图⑥,点O在直线AE上,OB平分∠AOC,∠BOD=90°,则∠DOE和∠COB的关系是().图⑥A.互余B.互补C.相等D.和是钝角11. 若一个角为75°,则它的余角的度数为().A.285°B.105°C.75°D.15°12. 已知∠A=70°,则∠A的补角为().A.110°B.70°C.30°D.20°13. 下列各图中,∠1与∠2互为余角的是().14. 已知∠1和∠2互为余角,且∠2与∠3互补,则下列说法错误的是().A.∠1+∠2=90°B.∠2+∠3=180°C.∠3-∠1=90°D.∠3-∠2=90°-∠115. 如图⑦,直线AB与∠COD的两边OC,OD分别相交于点E,F,若∠1+∠2=180°.找出图中与∠2相等的角,并说明理由.图⑦答案和解析【答案】1. D2. D3. B4. D5. D6. D7. B8. C9. C 10. A11. D 12. A 13. B 14. D15. ∠3,∠4,∠6.【解析】1. 解:∠AOB与∠AOD的边OA重合,OB在∠AOD内,所以∠AOB<∠AOD,A正确;同理B、C正确;∠AOB和∠AOC的边AO重合,OC在∠AOB内,所以∠AOB>∠AOC,D错误.故选D.此题主要考查了角的大小比较,解题的关键是掌握角的大小比较方法.2. 解:在∠AOB的内部任取一点C,作射线OC,那么有∠AOB>∠AOC.故选D.此题主要考查了角的大小比较,解题的关键是掌握角的大小比较方法.3. 解:因为∠AOB=∠COD,所以∠1+∠BOD=∠2+∠BOD,所以∠1=∠2.故选B.此题考查了角的和差,掌握等量代换方法是解题的关键.4. 解:由角的平分线的几何表示可知:①∠PAM=∠NAP;②∠PAN=∠MAN;③∠MAP=∠MAN;④∠MAN=2∠MAP,都能表示AP是∠MAN的平分线,共有4个.故选D.判断一条射线是不是角的平分线,只要看这条射线是否将角分成相等的两个角.5. 解:因为∠BAD=∠CAD,所以AD是∠BAC的平分线,A正确;因为∠BCE=∠ACE,所以CE是∠ACD的平分线,∠BCE=∠ACB ,B、C正确,D错误.故选D.判断一条射线是不是角的平分线,只要看这条射线是否将角分成相等的两个角.6. 解:由图可知,∠AOD-∠AOC=∠COD,故选D.本题考查了角的和差,解题关键是掌握角的和差计算方法.7. 解:锐角的余角是锐角,锐角的补角是钝角,①错误;直角有补角,直角的补角还是直角,②错误,④正确;钝角没有余角,钝角的补角是锐角,③正确;若∠1是锐角,则它的补角为180°-∠1,它的余角为90°-∠1,那么这个锐角的补角与它的余角的差为(180°-∠1)-(90°-∠1)=180°-∠1-90°+∠1=90°,⑤正确;两个角相等,则它们的补角也相等,⑥正确,故正确的有4个,故选B.主要紧扣锐角、直角、钝角、余角、补角的特征进行判断,除①②不正确外,其他说法都正确.由于互余的两个角之和为90°,所以这两个角都为锐角;互补的两个角之和为180°,所以这两个角为一个锐角、一个钝角或两个角都为直角.8. 解:因为∠α+∠β=90°,∠β+∠γ=90°,所以∠α、∠γ是∠β的补角,根据同角(或等角)的补角相等,∠α=∠γ,故选C.此题考查的是补角的性质,根据“同角(或等角)的补角相等”进行解答即可.9. 解:因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2的依据是同角的补角相等.故选C.此题考查的是补角的性质,根据“同角的补角相等”进行解答即可.10. 解:因为∠BOD=90°,所以∠COB+∠COD=90°,又因为OB平分∠AOC,所以∠AOB=∠COB,所以∠DOE=180°-∠AOB-∠BOD=180°-∠COB-90°=90°-∠COB,所以∠DOE和∠COB的关系是互余.故选A.此题考查的是角平分线的性质和余角、补角的性质,能够根据图形正确找到角之间的和差关系,理解角平分线的性质和余角、补角的性质是解题的关键.11. 解:若一个角为75°,则它的余角的度数为90°-75°=15°,故选D.本题考查了余角的定义,如果两个角的和等于一个直角,就说这两个角互为余角,简称互余,其中一个角是另一个角的余角.12. 解:已知∠A=70°,则∠A的补角为180°-∠A=180°-70°=110°,故选A.本题考查了补角的定义,如果两个角的和等于一个平角,就说这两个角互为补角,简称互补,其中一个角是另一个角的补角.13. 解:因为三角形的内角和为180°,所以选项B中,∠1+∠2=90°,即∠1与∠2互为余角,故选B.此题考查的是余角的定义,掌握三角形内角和定理和余角的定义是解题关键.14. 解:因为∠1和∠2互为余角,所以∠1+∠2=90°,A正确;因为∠2与∠3互补,所以∠2+∠3=180°,B正确;∠3=180°-∠2,∠1=90°-∠2,所以∠3-∠1=(180°-∠2)-(90°-∠2)=180°-∠2-90°+∠2=90°,C正确;故选D.此题考查的是余角、补角的定义,根据余角、补角的定义,正确找到角之间的和差关系是解题的关键.15. 解:由图可知,∠1的补角有∠3、∠4,因为∠1+∠2=180°,所以∠2是∠1的补角,根据同角(或等角)的补角相等,得∠2=∠3=∠4,又因为∠2+∠5=180°,∠5+∠6=180°,所以∠2=∠6,所以图中与∠2相等的角有∠3,∠4,∠6.已知∠1+∠2=180°,说明∠2是∠1的补角.根据同角(或等角)的补角相等,找出图中∠1的其他补角和∠2的其他补角的补角,便可确定与∠2相等的角.“同角(或等角)的余角相等”“同角(或等角)的补角相等”的实质是等量代换,在特定的背景下使用起来更便捷.《4.5 角的比较与补(余)角》提高练习1. 如图①,将一副三角板折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB=().图①A.120°B.180°C.150°D.135°2. 如图②,点O在直线AB上,射线OC平分∠BOD,若∠COB=35°,则∠AOD等于().图②A.35°B.70°C.110°D.145°3. 借助一副三角尺,你能画出下面哪个度数的角()A.65°B.75°C.85°D.95°4.如图③,OC平分平角∠AOB,∠AOD=∠BOE=20°,图中互余的角共有().A.1对B.2对C.3对D.4对图③5. 已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为(). A.28°B.112°C.28°或112°D.68°6. 如图④,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是( ).图④A.125°B.135°C.145°D.155°7.如图⑤,已知直线AB,CD相交于点O,OE平分∠COB,若∠EOB=55°,则∠BOD的度数是( ).图⑤A.35°B.55°C.70°D.110°8. 如图⑥所示,已知AB为一条直线,O是AB上一点,OC平分∠AOD,OE在∠BOD内,∠DOE =∠BOD,∠COE=75°,求∠EOB的度数.图⑥9. 已知∠A与∠B互余,且∠A的度数比∠B度数的3倍还多30°,求∠B的度数.10. 如图⑦,∠AOB=120°,OD平分∠BOC,OE平分∠AOC.(1)求∠EOD的度数;(2)若∠BOC=90°,求∠AOE的度数.图⑦答案和解析【答案】1. B2. C3. B4. D5. C6. B7. C8. 9 ∠BCM或∠DCO9. 15°10. (1)60°;(2)15°.【解析】1. 解:由图可得∠AOC+∠DOB=∠AOB+∠COD=90°+90°=180°.故选B.此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.2. 解:因为射线OC平分∠BOD,∠COB=35°,所以∠BOD=2∠COB=70°,所以∠AOD=180°-∠BOD=180°-70°=110°,故选C.根据角平分线的性质可知,∠BOD=2∠COB=70°,由图可知,∠AOD与∠BOD互补,进而可以求出∠AOD的度数.本题主要考查了角的判定,可以根据图形依次数出角的个数.3. 解:一副三角尺的角有45°、45°、90°;30°、60°、90°.故借助一副三角尺,可以画出45°+30°=75°的角.故选B.本题考查了三角尺相关的知识,掌握三角尺的各个角的度数是解题关键.4. 解:因为OC平分平角∠AOB,所以∠AOC=∠BOC=∠AOB=90°,所以∠AOD与∠COD互余,∠BOE与∠COE互余,又因为∠AOD=∠BOE=20°,所以∠BOE与∠COD互余,∠AOD与∠COE互余,故图中互余的角共有4对.故选D.此题考查的是角平分线的性质和余角的性质,能够根据图形正确找到角之间的和差关系,理解角平分线的性质和余角的性质是解题的关键.5. 解:如图⑧,当点C与点重合时,∠BOC=∠AOB-∠AOC=70°-42°=28°;当点C与点重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.图⑧故选C.此题考查的是角的和差,本题要分两种情况进行讨论:(1) 当点C与点重合时;(2)当点C与点重合时,进而根据图形正确找到角之间的和差关系进行解答即可.6. 解:因为OE⊥AB,所以∠AOE=∠BOE=90°,又因为∠BOD=45°,所以∠EOD=∠BOE-∠BOD=90°-45°=45°,所以∠COE=180°-∠EOD=180°-45°=135°.故选B.此题考查的是余角、补角的定义,能够根据图形正确找到角之间的和差关系,理解余角、补角的定义是解题的关键.7. 解:因为OE平分∠COB,所以∠COE=∠EOB,因为∠EOB=55°,所以∠COE=55°,所以∠BOD=180°-∠COE-∠EOB=180°-55°-55°=70°.故选C.此题考查的是角平分线的性质和补角的定义,能够根据图形正确找到角之间的和差关系,理解角平分线的性质和补角的定义是解题的关键.8.解:设∠AOD的度数为x°,则∠BOD=(180-x)°.因为OC平分∠AOD,∠DOE=∠BOD,所以∠COD=∠AOD=,∠DOE=∠BOD=(180-x)°.由于∠COE=∠COD+∠DOE=75°,因此,+(180-x)=75,解得x=90.所以∠BOD=180°-∠AOD=180°-90°=90°,∠EOB=∠BOD=60°.(1)几何题中包含多个已知量,条件包含多个数量关系,我们可选一个恰当的量为x,再用这个x来表示其他未知量;(2)利用方程思想进行计算,往往能达到意想不到的效果.本题中用到角的平分线及角的和、差、倍、分关系,涉及的角较多,应注意利用这些数量关系将未知角用已知角表示出来.9. 解:因为∠A与∠B互余,所以∠A+∠B=90°.又因为∠A的度数比∠B度数的3倍还多30°,所以∠A=3∠B+30°,所以3∠B+30°+∠B=90°,解得∠B=15°.故∠B的度数为15°.根据∠A与∠B互余,得出∠A+∠B=90°,再由∠A的度数比∠B度数的3倍还多30°,从而得到∠A=3∠B+30°,再把两个算式联立即可求出∠B的值.此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程组来解决.10. 解:(1)因为∠AOB=120°,OD平分∠BOC,OE平分∠AOC,所以∠EOD=∠DOC+∠EOC=(∠BOC+∠AOC)=∠AOB=×120°=60°;(2)因为∠AOB=120°,∠BOC=90°,所以∠AOC=120°-90°=30°,因为OE平分∠AOC,所以∠AOE=∠AOC=×30°=15°.(1)根据OD平分∠BOC,OE平分∠AOC,可知∠DOE=∠DOC+∠EOC=(∠BOC+∠AOC)=∠AOB,由此即可得出结论;(2)先根据∠BOC=90°求出∠AOC的度数,再根据角平分线的定义即可得出结论.能够根据图形正确找到角之间的和差关系,理解角平分线的概念是解题的关键.《4.5 角的比较与补(余)角》培优练习1. 如图①,∠1=∠2,∠3=∠4,则下列结论:①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AF平分∠BAC;⑤AE平分∠BAC中,正确的有().图①A.4个B.3个C.2个D.1个2. 如图②,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置,若∠DEF=75°,则∠AED′等于().图②A. 75°B. 65°C. 30°D. 25°3. 如果∠α和∠β互补,且∠α>∠β,则下列表示角的式子中:①90°-∠β;②∠α-90°;③(∠α+∠β);④(∠α-∠β).不能表示∠β的余角的是().A. ①B. ②C. ③D. ④4. 如图③,OC是∠AOD的平分线,OE是∠BOD的平分线.(1)如果∠AOB=130°,那么∠COE是多少度?(2)在(1)的条件下,如果∠DOC=20°,那么∠BOE是多少度?图③5. 如图④,已知∠AOB在∠AOC内部,∠BOC=90°,OM,ON分别是∠AOB,∠AOC的平分线,∠AOB与∠COM互补,求∠BON的度数.图④答案和解析【答案】1. C2. C3. C4. (1)65°;(2)45°.5. 15°【解析】1. 解:因为∠1=∠2,所以AE平分∠DAF,③正确;又因为∠3=∠4,所以∠1+∠3=∠2+∠4,即∠BAE=∠CAE,所以AE平分∠BAC,⑤正确. 故正确的有2个.故选C.由角的平分线的几何表示可知:当∠1=∠2时,AE平分∠DAF;再由∠3=∠4可得∠1+∠3=∠2+∠4,即∠BAE=∠CAE,因此AE平分∠BAC.判断一条射线是不是角的平分线,只要看这条射线是否将角分成相等的两个角.2. 解:由折叠的性质可知,∠D′EF=∠DEF,因为∠DEF=75°,所以∠D′EF=75°,所以∠AED′=180°-∠D′EF-∠DEF=180°-75°-75°=30°.故选C.由于∠AED′=180°-∠D′EF-∠DEF,∠DEF为已知角,而∠D′EF=∠DEF,易求得∠AED′的度数.折叠问题中的折痕平分被折边与原边的夹角.3. 解:由定义知∠β的余角为90°-∠β,故①正确;因为∠α和∠β互补,且∠α>∠β,所以∠α+∠β=180°,∠α>90°,所以∠β=180°-∠α,所以∠β的余角为90°-(180°-∠α)=∠α-90°,故②正确;因为∠α+∠β=180°,所以(∠α+∠β)=90°,所以∠β的余角为90°-∠β=(∠α+∠β)-∠β=(∠α-∠β),故④正确,而③错误.故选C.此题考查的是余角、补角的定义,能够正确找到角之间的和差关系,理解余角、补角的定义是解题的关键.4. 解:(1)因为OC平分∠AOD,所以∠DOC=∠AOD.因为OE平分∠BOD,所以∠DOE=∠BOD.所以∠COE=∠DOC+∠DOE=(∠AOD+∠BOD)=∠AOB=×130°=65°.(2)由(1)可知∠COE=65°,因为∠DOC=20°, 所以∠DOE=∠COE-∠DOC=45°.因为OE平分∠BOD,所以∠BOE=∠DOE=45°.(1)由已知可知∠DOC=∠AOD,∠DOE=∠BOD.由于∠COE=∠DOC+∠DOE,因此,∠COE =∠AOD+∠BOD=∠AOB.(2)结合(1)的结论可求出∠DOE的度数,从而求出∠BOE的度数.利用角平分线进行计算时,要灵活运用角平分线的几种不同表达方式.在计算角的大小时,常常要用到等量代换,用已知角代替与它相等的未知角.5. 解:由∠AOB与∠COM互补,得∠AOB+∠COM=180°.由角的和差,得∠AOB+∠BOM+∠COB=180°,∠AOB+∠BOM=90°.由OM是∠AOB的平分线,得∠BOM=∠AOB,即∠AOB+∠AOB=90°.解得∠AOB=60°.由角的和差,得∠AOC=∠BOC+∠AOB=90°+60°=150°.由ON平分∠AOC,得∠AON=∠AOC=×150°=75°.由角的和差,得∠BON=∠AON-∠AOB=75°-60°=15°.根据补角的性质,可得∠AOB+∠COM=180°,根据角的和差,可得∠AOB+∠BOM=90°,根据角平分线的性质,可得∠BOM=∠AOB,根据解方程,可得∠AOB的度数,根据角的和差,可得答案.本题考查了余角与补角及角平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
观察,你发现了什么
如上图,∠α+∠β=90°,∠α叫做∠β的余角,∠β也叫做∠α的余角,∠α与∠β互余。
【例】如下图,∠1 =∠3,∠1与∠2互补,∠3与∠4互补,那么∠2与∠4有什么关系?
解:因为∠1与∠2互补,所以∠2 = 180°-∠1_.
因为∠3与∠4互补,所以∠4 = 180°-∠3 .
又因为∠1=∠3,所以__∠2__=_∠4___.
【总结归纳】
1.补角的性质:
同角的补角相等,即:若∠A+∠B=180°,∠A+∠C=180°,则∠B=∠C.
等角的补角相等,即:若∠A+∠B=180°,∠D+∠C=180°,∠A=∠D,则∠B=∠C.
过程与方法:会估计一个角的大小;会用叠合法和度量法进行角的大小比较;会区别直角、锐角和钝角;会运用角平分线的性质解决一些角的计算问题。
情感态度与价值观:培养学生分析问题和解决问题的能力,以及运算能力。
重点
余角和补角的概念及其性质
难点
互余、互补角的正确判断,会用代数方法计算角的度数
教学过程
教学环节
教师活动
【思考】余角有无
同角的余角相等,即:若∠A+∠B=90°,∠A+∠C=90°,则∠B=∠C.
等角的余角相等,即:若∠A+∠B=90°,∠D+∠C=90°,∠A=∠D,则∠B=∠C.
学生思考,小组探究、交流,然后回答问题,上黑板演示;教师巡视,适当点拔。
教师提出问题,学生思考后回答,教师检查学生能否用文字语言。
∠AOC是∠AOB与∠BOC的和,记作∠AOC=∠AOB+∠BOC,
∠AOB是∠AOC与∠COB的差,记作∠AOB=∠AOC-∠COB.
类似地,∠AOC-∠AOB=∠COB.
【例】如图所示,求解下列问题:
(1)比较∠AOC与∠BOC,∠BOD与∠COD的大小;
(2)将∠AOC写成两个角的和与两个角的差的形式.
【想一想】∠AOC与∠AOC和∠BOC有什么关系?这个关系怎样用式子来表示?射线OB叫做什么?
在角的内部,以角的顶点为端点的一条射线把这个角分成两个相等的角,这条射线叫做这个角的平分线
应用格式:
∵OC是∠AOB的角平分线,
∴∠AOC=∠BOC= ∠AOB
∠AOB=2∠BOC=2∠AOC
观察,你发现了什么
学情分析
七年级是学生抽象逻辑思维发展的关键阶段,从学生的认知特点来看,他们已经能区分具体图形和几何图形,并且能理解点、直线和角这些基本的几何元素。事实上,在小学阶段学生已经接触过角的比较和计算等方面的内容,但尚停留在初步的认识阶段,不能用标准的几何语言进行描述。
学习
目标
知识与技能:理解角的大小比较意义;掌握角平分线的概念
叠合∠DEF与∠ABC,如上图,把∠DEF移动,使它的顶点E移到和∠ABC的顶点B重合,一边ED和BA重合,另一边EF和BC落在BA的同旁.
如果EF和BC重合,那么∠DEF=∠ABC
如果EF落在∠ABC的内部,那么∠DEF<∠ABC
如果EF落在∠ABC的外部,那么∠DEF>∠ABC
【思考】图中有几个角?它们之间有什么关系?
学生在学习新知识的基础上做例题。
学生动手操作。
在教师的引导下总结归纳。
引导学生观察两个角的关系。
通过所学知识做例题。
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。知道“是这样”,就是讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。
解:(1)由图可以看出:
∠AOC>∠BOC,(OB在∠AOC内)
∠BOD>∠COD.(OC在∠BOD内)
(2)∠AOC=∠AOB+∠BOC,
∠AOC=∠AOD-∠DOC.
【做一做】在透明纸上画一个角,沿着顶点对折,使角的两边重合.
【思考】∠AOC被折痕OB分成的两个角有什么关系?
在图中,射线OB把∠AOC分成相等的两个角,即∠AOB=∠BOC
学生活动
设计意图
导入新课
回顾线段长短的比较方法.比较图中线段AB、BC、CD的长短.
AB>AC>BC
想一想怎样比较图中∠A、∠B、∠C的大小?
学生回忆线段的比较方法。
通过复习学过知识,加深学生印象,为后面的学习做铺垫。
讲授新课
度量法
用量角器度量角的大小得∠C>∠B>∠A.
类比线段长短的比较方法,想一想怎样比较角的大小?
在教师的引导下总结归纳。
培养学生发现问题、解决问题的能力;通过上黑板演示,更能清楚、直观,体现出了电子白板良好的交互性功能,同时也培养了学生的动手能力。
通过观察图形,分析角的和、差关系,并用符号语言表示它们的关系,建立图形语言、文字语言与符号语言的关系,在建立多元联系表示的同时,发展符号感和空间观念,进一步体会数形结合思想。
沪科版七上4.5角的比较与补(余)角教学设计
课题
4.5角的比较与补(余)角
单元
第四单元
学科
数学
年级
七
教材分析
角的比较、角的和差与角平分线是中学阶段平面几何内容中关于角的知识的基础,学生在4.4节已经学习了角的定义和角的和差的代数运算,但尚未学习这一运算的在图形上的表现。在学习完本课时的内容后,连同4.3线段加减的几何意义,学生能够初步体会代数运算与几何图形的结合这一重要数学思想,进一步发展数学思维,为日后的学习做好准备。