实验1、流水灯控制实验
单片机流水灯实验原理
单片机流水灯实验原理
单片机流水灯实验原理:
流水灯是一种基本的电子实验,通过使用单片机控制多个
LED 灯的亮灭来实现灯光在各个灯珠之间流动的效果。
流水
灯实验原理如下:
1. 硬件连接:将多个 LED 灯和适当的电流限制电阻连接到单
片机的不同输出引脚上。
每个 LED 灯的阴极与电流限制电阻
连接到负极(GND),而阳极连接到单片机的 IO 引脚。
需要
注意的是,单片机的 IO 引脚的输出电压应该能够点亮 LED 灯。
2. 软件设计:使用单片机的 GPIO(通用输入输出)功能,设
置相应的输出引脚作为流水灯的控制引脚。
通过对这些引脚进行高低电平控制,实现不同 LED 灯的点亮和熄灭。
3. 流水灯效果:为了实现流水灯的效果,我们将需要在不同的时间间隔内控制不同的 LED 灯点亮。
可以使用一个循环来实
现这种效果,循环中通过更新和改变控制引脚的电平状态来控制流水灯的亮灭顺序。
4. 控制顺序:通过改变控制引脚的电平状态的顺序,可以改变流水灯的流动顺序。
可以通过在循环中使用延迟函数来控制灯的变换速度,或者使用计数器等其他方法来实现更复杂的流水灯效果。
通过以上原理,我们可以实现单片机流水灯实验并观察到灯光在不同的 LED 灯之间流动的效果。
单片机流水灯实验报告
单片机流水灯实验报告
实验目的:
通过编程实现单片机控制的流水灯电路的设计与实现,熟悉单片机的输入输出功能和简单的控制逻辑。
实验原理:
流水灯是一种常见的LED灯控制电路,通过依次点亮多个LED灯,从而形成“流水”的效果。
单片机作为控制中心,根据程序设计的指令,通过I/0口控制LED灯的状态。
实验材料:
1. STM32F103C8T6 ARM Cortex-M3开发板
2. 杜邦线
3. LED灯
4. 220 Ω电阻
实验步骤:
1. 将STM32F103C8T6开发板与电脑连接,打开开发板软件。
2. 将LED灯分别连接到开发板的引脚PA0-PA7。
3. 在开发板软件中新建一个工程,选择合适的模板,例如“BlinkLed”模板。
4. 在程序中编写控制流水灯的代码,控制LED灯的点亮和熄灭。
5. 通过编译、下载和运行,将程序烧录到STM32F103C8T6开发板中。
6. 接通电源,观察LED灯的闪烁情况,确认流水灯控制电路的正常工作。
实验结果与分析:
经过实验,我们成功设计和实现了单片机控制的流水灯电路。
LED灯按照预定的顺序依次点亮和熄灭,形成了流水灯的效果。
调整程序中的控制逻辑,可以改变流水的速度和方向,实现不同的灯光效果。
实验总结:
通过这次实验,我们深入了解了单片机的输入输出功能和简单的控制逻辑。
通过编写程序,实现了流水灯的控制,加深了对单片机的理解和应用。
在实验过程中,我们还学会了使用开发板软件进行工程的创建、编译、下载和调试操作,提高了工程能力和实践能力。
流水灯的实验原理及步骤
流水灯的实验原理及步骤流水灯(也称为跑马灯)是一种由多个LED灯组成的电子显示器件,常常被用于电子实验、电子产品展示等场合中。
流水灯可以通过变化发光的方式来传递信息或者装饰环境,具有简单、实用、灵活的特点。
下面将详细介绍流水灯的实验原理及步骤。
实验原理:流水灯的实现原理是通过控制每个LED灯的点亮与熄灭来形成一种连续而有序的动画效果,使得LED灯看起来像是在“流水”一样运动。
一般来说,流水灯采用的是LED的时分多路复用技术,即通过定时器控制每个LED点亮和熄灭的时刻,使得它们按照一定的顺序依次发光。
实验步骤:1. 准备材料:LED灯(数量根据需要决定)、电阻(限流电阻,选择合适的阻值)、电路板、导线、面包板或焊接工具等。
2. 连接电路:根据所需的LED数量,设计电路图,按照图上的连线方式将LED 连接到电路板上,注意保持连线的正确性。
3. 添加电阻:根据LED的工作电压和电流需求,计算每个LED对应的限流电阻的阻值,将电阻依次与LED进行串联连接。
4. 供电测试:将电路板连接到电源上,确认电源电压是否符合LED的工作电压要求。
注意检查整个电路的连线是否正确,电阻是否接在了正确位置。
5. 编写程序:使用单片机或其他控制芯片来控制LED的点亮和熄灭。
根据所采用的开发平台和编程语言,编写相应的代码,控制每个LED的状态和时间间隔。
6. 调试程序:将编写好的程序下载到控制芯片中,并连接到电路板上。
通过电脑或其他输入设备控制程序运行,观察LED的点亮和熄灭效果。
根据需要调整程序中每个LED的点亮时间和顺序,使得LED灯看起来像是在流水一样运动。
7. 完善电路:根据实际需求,可以设计并添加其他功能模块,如按键控制、调节亮度等。
总结:流水灯实验是一种常见的电子实验,通过控制LED灯的点亮和熄灭来形成一种连续的流动效果。
实验的原理是利用LED的时分多路复用技术和控制芯片的编程来实现。
实验步骤包括准备材料、连接电路、添加限流电阻、供电测试、编写程序、调试程序和完善电路等。
流水灯实验报告
流水灯实验报告实验目的,通过搭建流水灯电路,了解流水灯的工作原理,并掌握基本的电路连接方法和元器件的使用。
实验仪器与设备,LED灯、电阻、导线、面包板、电源等。
实验原理,流水灯是一种常见的LED灯效应,通过控制LED灯的亮灭顺序,形成灯光流动的效果。
在电路连接方面,我们需要使用电阻来限制LED灯的电流,以保护LED灯不受损坏。
实验步骤:1. 将LED灯和电阻连接到面包板上,按照电路图连接好各个元器件。
2. 将面包板连接到电源上,注意接线的正确性和稳定性。
3. 打开电源,观察LED灯的亮灭顺序,确认流水灯效果是否正常。
实验结果与分析:经过实验,我们成功搭建了流水灯电路,并且观察到LED灯按照一定的顺序亮灭,形成了流水灯的效果。
这说明电路连接正确,元器件工作正常。
在实验过程中,我们发现电阻的作用是非常重要的,它可以限制LED灯的电流,防止LED灯受损。
同时,电源的稳定性也对流水灯的效果有着重要的影响,稳定的电源可以保证LED灯的正常工作。
实验总结:通过本次实验,我们对流水灯的工作原理有了更深入的了解,也掌握了搭建流水灯电路的基本方法。
在今后的学习和实践中,我们可以运用这些知识,进行更多有趣的电路搭建和实验。
实验中还需要注意安全问题,避免短路和触电等意外情况的发生。
在实验过程中,要严格按照操作规程进行,确保实验的顺利进行。
最后,希望通过这次实验,大家能够对电路连接和LED灯效应有更深入的理解,为今后的学习和科研打下坚实的基础。
结语,本次实验结束,谢谢大家的参与和配合,希望大家能够从中收获知识,不断提高自己的实验能力和动手能力。
综合实验一——按键控制流水灯实验(查询方式)
北京科技大学微型计算机原理实验报告学院:____自动化学院________________专业、年级:_自动化1101_ ______________ 姓名:__廖文骏_ ________________学号:_ 20111002124 ____________ 指导教师:___ _____王粉花____________2013年12 月综合实验一按键控制流水灯实验(查询方式)实验学时:2学时一、实验目的1.掌握ATmega16 I/O口操作相关寄存器2.掌握CodeVision AVR软件的使用3. 复习C语言,总结单片机C语言的特点二、实验内容1. 设计一个简单控制程序,功能是8个LED逐一循环发光0.5s,构成“流水灯”。
2. 用两个按键K1和K2控制流水灯(中断方式):(1)当按下K1时,流水灯从左向右流动;(2)当按下K2时,流水灯从右向左流动。
三、实验所用仪表及设备硬件:PC机一台、AVR_StudyV1.1实验板软件:CodeVision AVR集成开发软件、SLISP下载软件四、实验原理ATmega16芯片有PORTA、PORTB、PORTC、PORTD(简称PA、PB、PC、PD)4组8位,共32路通用I/O接口,分别对应于芯片上32根I/O引脚。
所有这些I/O口都是双(有的为3)功能复用的。
其中第一功能均作为数字通用I/O接口使用,而复用功能则分别用于中断、时钟/计数器、USRAT、I2C和SPI串行通信、模拟比较、捕捉等应用。
这些I/O口同外围电路的有机组合,构成各式各样的单片机嵌入式系统的前向、后向通道接口,人机交互接口和数据通信接口,形成和实现了千变万化的应用。
每组I/O口配备三个8位寄存器,它们分别是方向控制寄存器DDRx,数据寄存器PORTx,和输入引脚寄存器PINx(x=A\B\C\D)。
I/O口的工作方式和表现特征由这3个I/O口寄存器控制。
AVR通用I/O端口的引脚配置情况:I/O口引脚配置表表中的PUD为寄存器SFIOR中的一位,它的作用相当AVR全部I/O口内部上拉电阻的总开关。
流水灯的实验原理及步骤
流水灯的实验原理及步骤流水灯是一种用于电子电路实验的简单电路。
它由一组LED灯组成,灯珠逐个点亮,呈现出流水的效果。
以下是流水灯的实验原理及步骤:实验原理:流水灯的实验原理是借助555计时器和数个逻辑门实现的。
555计时器产生的方波信号通过逻辑门的组合,控制LED灯的亮灭顺序,从而实现流水的效果。
实验步骤:1.准备材料和工具:一块实验面板、555计时器、几个逻辑门(如74LS04等)、一组LED灯、几个电阻、导线等。
2.将555计时器、逻辑门、LED灯等器件按照连线图连接在实验面板上。
具体连接方式如下:- 将VCC引脚连接到正电源。
- 将GND引脚连接到地线。
- 连接一个电阻和电容来设置555计时器的频率。
电阻连接到引脚7(DISCHARGE)和引脚8(VCC)之间,电容连接到引脚6(THRESHOLD)和引脚2(TRIGGER)之间。
同时将电容的另一端连接到地线。
- 将555计时器的引脚3(OUTPUT)连接到逻辑门1的一个输入端,再将逻辑门1的输出端连接到一个电阻,电阻的另一端连接到LED灯1的正极。
LED 灯1的负极连接到地线。
- 将LED灯1的负极连接到逻辑门2的一个输入端,再将逻辑门2的输出端连接到一个电阻,电阻的另一端连接到LED灯2的正极。
LED灯2的负极连接到地线。
- 依此类推,将其他LED灯也连接起来,形成流水灯的效果。
3.检查连接是否正确,确保没有短路或接触不良的地方。
4.将正电源接入电路,调整电阻和电容的值,以控制流水灯的速度和亮度。
5.观察LED灯的亮灭顺序,若亮灯顺序与预期不符,可能需要调整逻辑门的输入连接方式。
6.实验完成后,断开电源,注意安全。
以上是流水灯的实验原理及步骤,希望对你有帮助。
流水灯实验报告
while(1) { ucha r i; P0=P1=P3=0xff;
fo;)//逐个点亮 { P0=table1[i]; delayms(500); } for(i=0;i<8;i++) { P1=table[i]; delayms(500); } for(i=0;i<8;i++)
并 行
P1 接口的 8 个 led
串
灯
口
P2 接口的 8 个 led 灯
第1页共5页
五、硬件电路设计 根据设计任务,首先进行系统硬件的设计。其硬件原理图由 LED 显示电路和单片机最 小系统组成,如图所示,其中包括时钟电路采用内部时钟方式,复位电路采用上电自 动复位。由于单片机的 I/O 口的高电平驱动能力只有微安级,而灌电流可以达到 3 毫 安以上,因此采用低电平驱动。P1、P2、P3 分别控制 8 个 led 灯。
第3页共5页
{ P3=table1[i]; delayms(500); }
shan();//全部闪烁
for(i=0;i<8;i++)//逐个熄灭 { P3=table2[i]; delayms(500); } for(i=0;i<8;i++) { P1=table3[i]; delayms(500); } for(i=0;i<8;i++) { P0=table2[i]; delayms(500); }
二、实验主要仪器设备和材料
Keil 软件;Proteus 软件
三、任务设计要求
采用 STC89C52 单片机构建最小系统,在 P0-2 口外接 24 只发光二极管,编程实现 24 只灯的 花样显示控制。
实验一51单片机流水灯实验实验报告
实验一 51单片机流水灯实验实验报告
“流水灯”实验报告 一、实验目的 1.了解单片机I/O口的工作原理。 2.掌握51单片机的汇编指令。 3.熟悉汇编程序开发,调试以及仿真环境。 二、实验内容 通过汇编指令对单片机I/O进行编程(本实验使用P0口),以控制八个发光二极管以一定顺序亮灭。(即流水灯效果) 三、实验原理 通过更改P0口8位的高低电平,分别控制8个发光二极管的亮灭。具体的亮灭情况如下表:
要实现“流水灯”效果,也就是需要将P0口的输出值发生以下变化: FE→FD→FB→F7→EF→DF→BF→7F→BF→DF→EF→F7→FB→FD→FE→...... 可以使用一个循环,不断对数据进行移位运算实现。这里的移位指令采用RL和RR,即不带进位的位移运算指令。如果使用带 进位的位移运算指令(RLC和RRC),则需要定期把CY置0,否则会出现同时亮起两个发光二极管的情况。 四、实验过程 1.在仿真系统中绘制RG 0000H Delay: MOV R0, #0FFH SJMP Start Delay1: MOV R1, #0FFH Start: MOV A, #0FEH Delay2: NOP MOV P0, A DJNZ R1, Delay2 CLR P2.7 DJNZ R0, Delay1 CLR P3.7 RET Move: MOV R2, #7H END MOV R3, #7H RMove: RL A MOV P0, A CALL Delay DJNZ R2, RMove LMove: RR A MOV P0, A CALL Delay DJNZ R3, LMove SJMP Move 五、实验结果 为了便于实验结果的描述,下面分别把P0.0, P0.1…, P0.7对应的发光二极管编号为1, 2, …, 8号二极管。 在仿真系统中,先从1号二极管下面是在仿真系统中的实验结果:
PLC综合实训报告
燕山大学专业综合训练报告学院(系):电气工程学院年级专业:学号:学生姓名:目录摘要PLC的功能强大,在生产生活中的应用广泛,其中西门子S7—200PLC在实际生产中最为常见。
本次专业综合实训主要是针对西门子S7—200PLC挂屏集成模块进行的。
本次专业综合实训主要内容有:PLC挂屏集成模块的插线,电气原理图的绘制,流水灯、交通信号灯、运动小车的多段速控制、A/D数模转换的程序编写与调试、相应的触摸屏程序的编写以及变频器参数的设置等。
实训一流水灯控制实验一、实训目的:设计流水灯控制系统。
二、实训要求:要求实现流水灯的依此循环亮,时间间隔为1s。
能够实现随时启动随时停止。
三、实训内容:利用外部按钮和编辑触摸屏界面,分别实现流水灯的启动和停止。
四、实验设备1、安装了STEP7-Micro/WIN4.0编程软件的计算机一台。
2、PC/PPI编程电缆一根。
3、锁紧导线若干。
4、24V直流电源一个。
5、24V信号灯4个。
6、外部按钮2个。
7、安装工具一套。
8、万用表一个。
五、实现方法:根据实训课题要求,编程思路如下:1、首先用触点M1.3和M1.4分别控制中间继电器M0.2的得电和失电,按动M1.3,M0.2和Q0.6得电,触点M0.2和Q0.6动作,第一个灯亮,并将输出Q0.6自锁,同时启动定时器T33;2、1S后触点T33闭合,点亮第二个灯并启动定时器T34,触点Q0.7动作,将输出Q0.7自锁并使Q0.6失电,第一个灯灭,触点Q0.6和T33断开;3、1S后触点T34闭合,点亮第三个灯并启动定时器T35,触点Q1.0动作,将输出Q1.0自锁并使Q0.7失电,第二个灯灭,触点Q0.7和T34断开;4、1S后触点T35闭合,重新点亮第一个灯并启动定时器T33,触点Q0.6动作,将输出Q0.6自锁并使Q1.0失电,第三个灯灭,触点Q1.0和T35断开,如此循环下去;5、当按动M1.4,输出M0.2失电,M0.2断开,输出全部失电,灯熄灭,定时器清零。
单片机流水灯实验总结
单片机流水灯实验总结单片机流水灯实验是学习单片机编程的基础实验之一,通过这个实验可以了解单片机的基本输入输出功能,掌握单片机的编程和控制方法。
下面我将对单片机流水灯实验进行总结,包括实验原理、实验步骤、实验结果以及实验中遇到的问题和解决方法。
实验原理。
单片机流水灯实验是利用单片机的GPIO口控制LED灯的亮灭,通过不同的控制方式实现LED灯的流水效果。
在单片机中,通过将相应的GPIO口输出高电平或低电平来控制LED的亮灭,从而实现流水灯的效果。
实验步骤。
1. 硬件连接,将单片机和LED灯按照电路图连接好,确保连接正确无误。
2. 编写程序,利用单片机编程软件编写流水灯控制程序,设置相应的GPIO口输出高低电平的时间间隔和顺序。
3. 烧录程序,将编写好的程序通过编程器烧录到单片机中。
4. 调试程序,连接好电路后,通过上电测试程序,观察LED灯的流水效果是否符合预期。
实验结果。
经过以上步骤,我们成功实现了单片机流水灯的效果。
LED灯按照设定的顺序依次亮起和熄灭,形成了流水灯的效果。
实验结果符合预期,证明了程序编写和硬件连接的正确性。
实验中遇到的问题和解决方法。
在实验过程中,我们遇到了一些问题,例如LED灯未按照预期顺序亮起、熄灭或者有闪烁现象。
经过检查和调试,发现是程序编写中的逻辑错误或者硬件连接接触不良导致的。
通过仔细排查和调试,我们成功解决了这些问题,确保了实验的顺利进行和结果的准确性。
总结。
通过本次单片机流水灯实验,我们深入了解了单片机的GPIO口控制LED灯的方法,掌握了单片机编程和控制的基本技能。
同时,实验过程中遇到的问题也让我们学到了很多调试和排查的方法,提高了我们的实际操作能力和解决问题的能力。
希望通过这次实验,能够为我们今后的学习和实践打下坚实的基础。
结语。
单片机流水灯实验是单片机编程学习的重要实验之一,通过这个实验可以加深对单片机控制方法的理解,提高实际操作能力。
希望大家能够认真对待这个实验,通过自己的努力和实践,掌握单片机编程的基本技能,为今后的学习和工作打下坚实的基础。
单片机流水灯实验报告
单片机流水灯实验报告:实验一:用C51实现流水灯实验实验要求:完成亮流水,即LED从低位流向高位流动,每次流动一位,且每次只亮一个LED灯,其它LED灭。
实验原理:单片机流水的实质是单片机各引脚在规定的时间逐个上电,使LED灯能逐个亮起来但过了该引脚通电的时间后便灭灯的过程,实验中使用了单片机的P2端口,对8个LED灯进行控制,要实现逐个亮灯即将P2的各端口逐一置零,中间使用时间间隔隔开各灯的亮灭。
使用r1或rr a实现位的转换。
实验内容:通过仿真来实现实验电路图代码如下;for(x=0;x<8;x++){P0=num[x];delay();}for(x=6;x>0;x--){P0=num[x];delay();}P0=0xfe;实验结果:实验程序:#include<REG51.H>void delay();//延时函数声明void main()//主函数{unsigned charx,num[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};while(1){for(x=0;x<8;x++){P0=num[x];delay();}for(x=6;x>0;x--){P0=num[x];delay();}P0=0xfe;}}void delay()//延时函数,无符号字符型变量i为形式参数{unsigned int j,k;//定义无符号字符型变量j和kfor(k=0;k<500;k++)//双重for循环语句实现软件延时for(j=0;j<100;j++);}实验总结:这次试验通过仿真实验软件实现流水灯实验,充分学会了keil 软件和Proteus电路仿真的联合调试,为后期的实验做足了功课。
也认识到仿真实用性。
单片机(Single-Chip Microcomputer)是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。
流水灯控制的实验报告
流水灯控制的实验报告
《流水灯控制的实验报告》
实验目的:通过对流水灯控制的实验,掌握流水灯的原理和实现方法,加深对
电子电路控制的理解。
实验设备:Arduino开发板、LED灯、面包板、导线等。
实验步骤:
1. 连接电路:将LED灯连接到Arduino开发板的数字引脚上,通过面包板和导
线连接。
2. 编写代码:使用Arduino IDE编写代码,实现流水灯的控制逻辑。
代码中需
要包括LED灯的引脚定义、控制流水灯的循环逻辑等。
3. 上传程序:将编写好的代码上传到Arduino开发板上,进行实际的控制操作。
4. 测试效果:观察LED灯的亮灭情况,检验流水灯控制的效果。
实验结果:通过实验,成功实现了对流水灯的控制。
LED灯按照设定的流水灯
效果进行亮灭,实现了预期的控制效果。
实验分析:流水灯控制实验是一种常见的电子电路控制实验,通过这个实验可
以加深对Arduino开发板以及LED灯的控制原理的理解。
同时,通过编写代码
实现流水灯的控制,也可以提高对编程逻辑的理解和掌握。
实验总结:通过本次实验,我对流水灯的控制原理和实现方法有了更深入的了解,同时也加深了对电子电路控制和编程的理解。
这对我今后的学习和实践都
有很大的帮助。
结语:流水灯控制的实验报告告诉了我们,通过实际操作和实验,我们可以更
深入地理解和掌握电子电路控制的原理和方法。
这对我们的学习和实践都有着
重要的意义。
流水灯控制的实验报告
一、实验目的1. 熟悉流水灯控制电路的原理和设计方法;2. 掌握使用单片机控制LED灯流水灯的方法;3. 培养动手实践能力和创新意识。
二、实验原理流水灯是一种常见的LED灯控制方式,通过单片机对LED灯进行控制,使LED灯按照一定的规律依次点亮和熄灭,形成动态的流水效果。
本实验采用51单片机作为控制器,通过编程实现对LED灯流水灯的控制。
流水灯的控制原理如下:1. 将LED灯连接到单片机的P0口,每个LED灯对应一个P0口的引脚;2. 编写程序,使单片机依次对P0口的引脚进行赋值,从而控制LED灯的亮灭;3. 通过延时函数实现LED灯的流水效果。
三、实验器材1. 51单片机实验板;2. 8个LED灯;3. 电阻(阻值约为220Ω);4. 连接线;5. 编程器;6. 示波器(可选)。
四、实验步骤1. 将LED灯按照电路图连接到实验板上,确保每个LED灯的正极连接到单片机的P0口对应引脚,负极连接到GND;2. 编写程序,实现LED灯流水灯的控制。
程序如下:```c#include <reg51.h>void delay(unsigned int ms) {unsigned int i, j;for (i = 0; i < ms; i++)for (j = 0; j < 120; j++); }void main() {while (1) {P0 = 0x01; // 第一个LED灯亮 delay(500);P0 = 0x02; // 第二个LED灯亮 delay(500);P0 = 0x04; // 第三个LED灯亮 delay(500);P0 = 0x08; // 第四个LED灯亮 delay(500);P0 = 0x10; // 第五个LED灯亮 delay(500);P0 = 0x20; // 第六个LED灯亮 delay(500);P0 = 0x40; // 第七个LED灯亮 delay(500);P0 = 0x80; // 第八个LED灯亮delay(500);P0 = 0xFF; // 所有LED灯亮delay(500);P0 = 0x00; // 所有LED灯灭delay(500);}}```3. 将编写好的程序烧录到单片机中,并上电运行;4. 观察LED灯流水灯的效果,分析程序运行过程。
流水灯控制实验报告
流水灯控制实验报告一、引言流水灯是一种常见的电子实验和电路设计项目,它通过控制一组LED灯的亮灭顺序和时间间隔来呈现出一种流动的效果。
本实验旨在通过搭建一个流水灯电路,学习并掌握流水灯的原理和控制方法。
二、实验原理1.流水灯电路的组成本实验采用的流水灯电路是由多个LED灯组成的,LED灯的正极与电源相连,负极通过电阻连接到单片机的输出端口。
通过控制单片机输出高低电平来控制LED灯的亮灭。
2.流水灯的工作原理流水灯电路通过单片机的输出端口控制LED灯的亮灭顺序和时间间隔,实现流动的效果。
在一个循环中,每个LED灯按顺序依次亮起,然后熄灭,接着下一个LED灯亮起,如此循环往复,形成了流水灯的效果。
三、实验器材和元件1.单片机:选用STC89C52RC型单片机;2. LED灯:选用红色5mm直径的共阳极LED灯4个;3.电阻:选用220Ω的电阻4个;4.面包板、导线等。
四、实验步骤1.连接电路将单片机、LED灯和电阻等元件按照电路图,通过面包板和导线连接起来。
2.编写程序使用C语言编写程序,在单片机上控制LED灯的亮灭顺序和时间间隔。
通过设置单片机输出端口的高低电平,控制LED灯的亮灭。
3.烧写程序将编好的程序通过编程器烧写到单片机中,使其能够执行程序。
4.测试实验将电路连接到电源,并接通电源。
观察LED灯的亮灭情况,检查流水灯效果是否符合预期。
五、实验结果分析经过反复测试,流水灯电路能够正常工作,LED灯按照预设的顺序亮灭,形成了流动的效果。
六、实验总结通过本次实验,我学习了流水灯电路的原理和控制方法,并成功搭建了一个流水灯电路。
通过编写程序,我掌握了如何通过单片机控制LED灯的亮灭。
在实验过程中,我深刻理解了流水灯电路的工作原理,培养了动手实践和问题解决的能力。
七、实验改进措施1.可以通过调整LED灯的亮灭顺序和时间间隔,改变流水灯的效果和速度;2.可以使用其他颜色的LED灯,增加流水灯的变化效果;3.可以将流水灯电路与其他电子元件结合,设计更复杂的电路和效果。
流水灯实验报告
流水灯实验报告
今天,我们进行了一个有趣的实验 - 流水灯实验。
首先,让我们来谈一谈流水灯的原理。
简单来说,流水灯是一
组LED灯,它们像水一样从一端流向另一端,每个灯的状态依次
更改。
然后,我们开始制作流水灯。
首先,我们需要一块电路板和一
些LED灯。
我们将LED灯焊接在电路板上,并使用一些导线连接它们。
然后,在一端添加一个电缆,以便将电路板连接到电源。
接下来,我们需要使用一个可编程芯片来控制LED灯的闪烁
模式。
我们使用了Atmel AVR芯片作为我们的控制器,并编写了
一些简单的程序来控制LED灯的行为。
我们将程序上传到芯片中,然后将电路板连接到电源。
最后,我们观察了流水灯的行为。
在阳光明媚的白天,我们试
图让它在室内工作。
我们发现,在光线充足的情况下,灯的亮度
有些微弱,但在较暗的照明条件下,流水灯效果比较明显。
在实验中,我们学会了如何制作和控制流水灯。
这为我们了解电子设备的原理和工作方式提供了一个很好的机会。
我们也体会到了在实验过程中需要耐心和细心的重要性。
总的来说,这是一个乐趣和收获并存的实验。
我们期待着在将来的实验中探索更多有趣和有用的东西。
单片机流水灯闪烁实训报告
一、实验目的1. 熟悉单片机基本原理和组成,掌握单片机编程的基本方法。
2. 理解单片机I/O口控制LED灯的原理,实现流水灯闪烁功能。
3. 提高单片机实际应用能力,为以后从事相关领域工作打下基础。
二、实验原理1. 单片机简介:单片机(Microcontroller Unit,MCU)是一种将中央处理器(CPU)、存储器(RAM、ROM)、输入/输出接口(I/O)、定时器/计数器、串行通信接口等集成在一个芯片上的微型计算机。
2. LED灯简介:LED(Light Emitting Diode)是一种发光二极管,具有体积小、亮度高、寿命长、响应速度快等优点,广泛应用于各种显示、照明等领域。
3. 流水灯闪烁原理:通过单片机的I/O口控制LED灯的亮与灭,实现流水灯效果。
本实验中,采用定时器中断的方式,定时改变LED灯的状态,从而实现闪烁效果。
三、实验设备1. 单片机开发板:选用STC89C52单片机开发板。
2. LED灯:8个LED灯。
3. 电阻:8个220Ω电阻。
4. 连接线:若干。
5. 仿真软件:Proteus。
四、实验步骤1. 搭建电路:将8个LED灯依次连接到单片机的P1口,每个LED灯串联一个220Ω电阻,以保护LED灯。
2. 编写程序:使用C语言编写单片机程序,实现流水灯闪烁功能。
3. 编译程序:将编写好的程序编译成机器码。
4. 仿真测试:在Proteus中加载编译好的程序,观察LED灯的闪烁效果。
5. 实际测试:将程序烧录到单片机中,观察LED灯的闪烁效果。
五、程序设计1. 初始化:设置单片机的I/O口、定时器等。
2. 定时器中断:设置定时器中断,定时改变LED灯的状态。
3. 主循环:在主循环中不断读取定时器中断标志,根据标志改变LED灯的状态。
4. 代码示例:```c#include <reg51.h>#define LED P1void Timer0_Init(void) {TMOD = 0x01; // 设置定时器0为模式1TH0 = 0xFC; // 设置定时器0初始值TL0 = 0x66;ET0 = 1; // 开启定时器0中断EA = 1; // 开启全局中断TR0 = 1; // 启动定时器0}void main(void) {unsigned char i = 0;LED = 0xFF; // 初始化LED灯Timer0_Init(); // 初始化定时器while (1) {if (TF0) { // 定时器0溢出中断TF0 = 0; // 清除溢出标志TH0 = 0xFC; // 重新加载定时器0初始值TL0 = 0x66;for (i = 0; i < 8; i++) {LED = ~(1 << i); // 改变LED灯状态delay(1000); // 延时1秒}}}}void delay(unsigned int ms) {unsigned int i, j;for (i = 0; i < ms; i++)for (j = 0; j < 120; j++);}```六、实验结果与分析1. 实验结果:LED灯按照预设的规律闪烁,实现了流水灯效果。
流水灯实验报告
流水灯实验报告引言:流水灯实验是电子学基础课程中的一项重要实践,在学习数字电路与逻辑设计的过程中起着至关重要的作用。
通过实验可以加深对数字电路的理解,以及学会使用固定数量的电子元件来构建复杂的电路。
一、实验目的本次实验的目的是利用数字电路中的逻辑门电路和时序电路来实现一个流水灯。
通过流水灯的演示,学生们将能够理解和掌握多位二进制计数的原理以及基本的逻辑门的用途。
二、实验器材与方法1. 实验器材:- 逻辑门芯片(如与门、或门、非门)- 时钟芯片- 集成电路取线板- LED灯- 电压源2. 实验方法:a. 将逻辑门芯片、时钟芯片和LED灯插入集成电路取线板;b. 使用导线连接逻辑门的输入端和输出端;c. 调整电压源,给电路供电;d. 观察LED灯的亮灭情况,检查流水灯的效果。
三、实验过程与结果在实验过程中,我们选择了两种不同的方法来实现流水灯的效果,分别是基于与门电路和基于时钟芯片控制。
1. 基于与门电路的实现a. 首先,我们准备了四个与门芯片、一个非门芯片和一个LED灯。
b. 将四个与门芯片的输出依次与非门芯片的输入相连。
c. 通过控制与门芯片的输入,使得流水灯的效果能够正确实现。
d. 观察LED灯随着输入变化而灯亮的情况,确保实验成功。
2. 基于时钟芯片控制的实现a. 我们使用了一个时钟芯片、一个非门芯片和四个LED灯。
b. 将时钟芯片的输出连接到非门芯片的输入端。
c. 将非门芯片的输出分别连接到四个LED灯。
d. 通过控制时钟芯片的频率,我们可以实现流水灯效果。
通过以上实验,我们成功实现了基于与门电路和基于时钟芯片控制的流水灯效果。
通过这些实验我们可以得出以下结论:结论:1. 利用逻辑门芯片可以实现多位二进制计数,从而实现流水灯的效果;2. 时钟芯片的输入信号能够控制流水灯的亮灭情况,实现了流水灯的自动化效果;3. 实验过程中LED灯的亮灭情况与输入信号的变化是一一对应的,验证了实验的正确性。
嵌入式系统-流水灯、按键、定时器实验报告
嵌入式系统应用实验报告姓名:学号:学院:专业:班级:指导教师:实验1、流水灯实验编程控制实验板上LED灯轮流点亮、熄灭,中间间隔一定时间。
实验主要考察对STM32F10X系列单片机GPIO的输出操作。
参阅数据手册可知,通过软件编程,GPIO可以配置成以下几种模式:◇输入浮空◇输入上拉◇输入下拉◇模拟输入◇开漏输出◇推挽式输出◇推挽式复用功能◇开漏式复用功能根据实验要求,应该首先将GPIO配置为推挽输出模式。
由原理图可知,单片机GPIO输出信号经过74HC244缓冲器,连接LED灯。
由于74HC244的OE1和OE2都接地,为相同电平,故A端电平与Y端电平相同且LED灯共阳,所以,如果要点亮LED,GPIO应输出低电平。
反之,LED灯熄灭。
软件方面,在程序启动时,调用SystemInit()函数〔见附录1〕,对系统时钟等关键部分进行初始化,然后再对GPIO进行配置。
GPIO配置函数为SZ_STM32_LEDInit()〔见附录2〕,函数中首先使能GPIO 时钟:RCC_APB2PeriphClockCmd(GPIO_CLK[Led], ENABLE);然后配置GPIO输入输出模式:GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;再配置GPIO端口翻转速度:GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;最后将配置好的参数写入寄存器,初始化完成:GPIO_Init(GPIO_PORT[Led], &GPIO_InitStructure)。
初始化完成后,程序循环点亮一个LED并熄灭其他LED,中间通过Delay()函数进行延时,到达流水灯的效果〔程序完整代码见附录3〕。
实验程序流程图如下:硬件方面,根据实验指南,将实验板做如下连接:实验二、按键实验利用STM32读取外部按键状态,按键按下一次产生一次外部中断在中断处理函数中使按键所对应的灯亮起。
EDA实验流水灯控制
彩灯控制器一、设计内容及要求:设计一个彩灯控制器,要求:1.四路彩灯从左向右逐次渐亮,间隔为1秒。
2.四路彩灯从右向左逐次渐灭,间隔为1秒。
3.四路彩灯同时点亮,时间间隔为1秒,然后同时变暗,时间为1秒,反复4次。
二、总体框图图(1)总体框图根据设计要求,电路设计大体思路如下:由脉冲发生器发出频率脉冲信号,利用计数器加法计数功能输出0000~1111的脉冲信号,经过数据选择器分别在0000~0011,0100~0111,1000~1111三个时段输出不同的高低电平,控制移位寄存器实现右移→左移→置数功能,从而控制彩灯按照设计要求实现亮灭。
三、选择器件本次课程设计所用器件如表一:表一本次课程设计所用器件1.同步二进制计数器74LS163表二7-3 74LS163功能表根据逻辑图、波形图、功能表分析,74LS163具有如下功能:管脚图逻辑符号1)1是同步4位二进制加法计数器,M=16,CP上升沿触发2)2既可同步清除,也可异步清除。
同步清除时,清除信号的低电平将在下一个CP上升沿配合下把四个触发器的输出置为低电平。
异步清除时,直接用清除信号的低电平把四个触发器的输出置为低电平。
3)3同步预置方式:当LD = 0时,在CP作用下,计数器可并行打入预置数据.当LD = 1时,使能输入PT同时为高电平,在CP作用下,进行正常计数。
4)PT任一为低时,计数器处于保持状态。
5) 5 CO为进位输出,可用来级联成n位同步计数器。
2.四位双向移位寄存器74LS19474LS194内部原理图74LS194四位双向移位寄存器具有左移、右移、并行数据输入、保持、清除功能。
1)从图1中74LS194的图形符号和引脚图分析。
SRG4是4位移位寄存器符号,D0~D3并行数据输入端、D SL左移串行数据输入端、D SR右移串行数据输入端、S A(M0)和S B (M1)(即9脚和10脚)工作方式控制端分别接电平开关,置1或置0,CP 时钟输入端接正向单次脉冲,清零端接负向单次脉冲,Q0~Q3输出端。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1、GPIO控制流水灯实验
【实验目的】
1、学习LPC系列处理器GPIO口的使用方法;
2、学习用Keil软件开发ARM程序方法和步骤。
3、理解基于ARM内核的LPC2368实验开发平台的管脚链接及原理。
(实验原理图见文件夹下PROTEL文件夹)
4、掌握使用J——LINK下载程序的方法。
(驱动程序和使用手册见J—LINK仿真器文件夹)
【实验要求】
1、了解LPC系列处理器GPIO口的功能原理;
2、在Keil中设计ARM程序,实现对流水灯的控制;
3、下载到实验平台,并成功运行。
4、附加要求:修改源程序,实现LED的各种不同移动、闪烁效果
【实验原理】
1、LPC系列处理器GPIO口的原理
PINSEL(x) 管脚功能选择寄存器
IOPIN(x)GPIO引脚值寄存器
IOSET(x)GPIO输出置位寄存器
IODIR(x)GPIO方向控制寄存器
IOCLR(x)GPIO输出清零寄存器
2、实验电路原理图
实验电路的连接如下图,4个LED是利用LPC1368的GPIO口的P1.14到P1.17来控制的。
引脚输出高电平则LED点亮,输出低电平则LED熄灭(因为LED的另一端接地)。
对管脚的操作实际上就是对控制管脚寄存器的操作,所以可以通过对管脚寄存器的操作,实现管脚的不同输出(即高低电平),从而控制LED的状态(亮、灭)。
#include<LPC23xx.h>
#define p14_17 (0x0f<<14) //指定P1.14到p1.17口
const unsigned char LED[]={0x0e,0x0d,0x0b,0x07,0x0b,0x0d}; //流水灯控制数组
void Delay(unsigned long t) //延时函数
{
while(t--);
}
int main()
{
int i;
IODIR1|=p14_17; //选择p14_17的方向为输出
IOCLR1|=p14_17; //p14_17输出低电平,使所有的灯都灭
while(1)
{
for( i=0;i<6;i++)
{
IOCLR1|=p14_17; //每次给p14_17赋值都要将管脚先清零,保证写入正确
IOSET1=(LED[i]<<14);//将数组内容左移14位到p14_17口
Delay(10000000); //延时保证灯的状态停留一段时间,否则无闪烁效果
}
}
}。