机械能-考点-典例
高中物理---机械能守恒定律-----典型例题(含答案)【经典】
第五章:机械能守恒定律第一讲:功和功率考点一:恒力功的分析与计算1.(单选)起重机以1 m/s2的加速度将质量为1 000 kg的货物由静止开始匀加速向上提升,g取10 m/s2,则在1 s内起重机对货物做的功是( ).答案D A.500 J B.4 500 J C.5 000 JD.5 500 J2.(单选)如图所示,三个固定的斜面底边长度相等,斜面倾角分别为30°、45°、60°,斜面的表面情况都一样。
完全相同的三物体(可视为质点)A、B、C分别从三斜面的顶部滑到底部,在此过程中( ) 选DA.物体A克服摩擦力做的功最多B.物体B克服摩擦力做的功最多C.物体C克服摩擦力做的功最多D.三物体克服摩擦力做的功一样多3、(多选)在水平面上运动的物体,从t=0时刻起受到一个水平力F的作用,力F和此后物体的速度v随时间t的变化图象如图所示,则( ).答案ADA.在t=0时刻之前物体所受的合外力一定做负功B.从t=0时刻开始的前3 s内,力F做的功为零C.除力F外,其他外力在第1 s内做正功D .力F 在第3 s 内做的功是第2 s 内做功的3倍 4.(单选)质量分别为2m 和m 的A 、B 两种物体分别在水平恒力F 1和F 2的作用下沿水平面运动,撤去F 1、F 2后受摩擦力的作用减速到停止,其v -t 图象如图所示,则下列说法正确的是( ).答案 CA .F 1、F 2大小相等B .F 1、F 2对A 、B 做功之比为2∶1C .A 、B 受到的摩擦力大小相等D .全过程中摩擦力对A 、B 做功之比为1∶25. (单选)一物体静止在粗糙水平地面上.现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度变为v .若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v .对于上述两个过程,用W F 1、W F 2分别表示拉力F 1、F 2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( )A .W F 2>4W F 1,W f2>2W f1B .W F 2>4W F 1,W f2=2W f1C .W F 2<4W F 1,W f2=2W f1D .W F 2<4W F 1,W f2<2W f1 答案 C6.如所示,建筑工人通过滑轮装置将一质量是100 kg 的料车沿30°的斜面由底端匀速地拉到顶端,斜面长L 是4 m ,若不计滑轮的质量和各处的摩擦力,g 取10 N/kg ,求这一过程中:(1)人拉绳子的力做的功;(2)物体的重力做的功;(3)物体受到的各力对物体做的总功。
机械能知识点总结画图
机械能知识点总结画图1. 动能动能是物体由于运动而具有的能量,表示为K。
它等于物体的质量m乘以速度v的平方再除以2,即K=1/2mv²。
动能的大小与物体的质量和速度的平方成正比,与速度的一次方成正比。
可以用下面的图示形式表示:```mermaidgraph TDA(动能)-->B(速度v)A-->C(质量m)```上面的图表示了动能与速度v和质量m的关系。
从图上可以看出,动能与速度的平方成正比,与质量成正比。
2. 势能势能是物体由于位置而具有的能量,表示为U。
有弹性势能、重力势能、化学势能等不同形式。
在这里主要以重力势能为例进行讨论。
重力势能等于物体的质量m乘以重力加速度g再乘以高度h,即U=mgh。
重力势能的大小与物体的质量、重力加速度和高度成正比。
下图表示了势能与质量m、重力加速度g和高度h的关系:```mermaidgraph TDA(势能)-->B(质量m)A-->C(重力加速度g)A-->D(高度h)```从上面的图可以看到,势能与质量、重力加速度和高度成正比。
3. 机械能守恒定律机械能守恒定律指的是一个孤立系统的机械能(包括动能和势能)在运动过程中保持不变。
这意味着系统内部的动能和势能可以相互转化,但总的机械能保持不变。
机械能守恒定律也可以用下面的图示形式表示:```mermaidgraph TDA(动能K)-->B(系统运动)A-->C(势能U)A-->D(机械能守恒)```上面的图表示了系统内部动能和势能的相互转化,并且总的机械能保持不变。
4. 机械能转化在实际的物体运动过程中,机械能可以相互转化。
比如,当一个物体从高处下落时,重力势能转化为动能;当一个物体被施加外力沿直线方向做功时,外力做功转化为动能。
下图表示了机械能的转化过程:```mermaidgraph TDA(外力做功)-->B(动能K)A-->C(重力做功)A-->D(弹性势能转化为动能)```从上面图中可以看出,在外力做功的情况下,动能会增加;而重力做功和弹性势能转化为动能的情况下,动能也会增加。
高中物理:机械能知识点总结及习题练习
高中物理:机械能知识点总结及习题练习知识网络八大考点考点1.功1.功的公式:W=Fscosθ0≤θ< 90°力F对物体做正功,θ= 90°力F对物体不做功,90°<θ≤180° 力F对物体做负功。
特别注意:①公式只适用于恒力做功② F和S是对应同一个物体的;③某力做的功仅由F、S和q决定, 与其它力是否存在以及物体的运动情况都无关。
2.重力的功:WG =mgh ——只跟物体的重力及物体移动的始终位置的高度差有关,跟移动的路径无关。
3.摩擦力的功(包括静摩擦力和滑动摩擦力)摩擦力可以做负功,摩擦力可以做正功,摩擦力可以不做功,一对静摩擦力的总功一定等于0,一对滑动摩擦力的总功等于 - fΔS4.弹力的功(1)弹力对物体可以做正功可以不做功,也可以做负功。
(2)弹簧的弹力的功——W = 1/2 kx12 – 1/2 kx22(x1 、x2为弹簧的形变量)5.合力的功——有两种方法:(1)先求出合力,然后求总功,表达式为ΣW=ΣF×S ×cosθ(2)合力的功等于各分力所做功的代数和,即ΣW=W1 +W2+W3+……6.变力做功: 基本原则——过程分割与代数累积(1)一般用动能定理W合=ΔEK 求之;(2)也可用(微元法)无限分小法来求, 过程无限分小后,可认为每小段是恒力做功(3)还可用F-S图线下的“面积”计算.(4)或先寻求F对S的平均作用力7.做功意义的理解问题:解决功能问题时,把握“功是能量转化的量度”这一要点,做功意味着能量的转移与转化,做多少功,相应就有多少能量发生转移或转化考点2.功率1. 定义式:,所求出的功率是时间t内的平均功率。
2. 计算式:P=Fvcos θ , 其中θ是力F与速度v间的夹角。
用该公式时,要求F为恒力。
(1)当v为即时速度时,对应的P为即时功率;(2)当v为平均速度时,对应的P为平均功率。
(3)重力的功率可表示为PG =mgv⊥,仅由重力及物体的竖直分运动的速度大小决定。
八年级机械能知识点
八年级机械能知识点机械能是物理学中的一个重要概念,指机械系统的能量总和,包括动能和势能。
在八年级的物理学习中,机械能是涉及的一个重要内容,掌握机械能的相关知识点对于学生们理解和掌握物理学的基础理论非常有帮助。
本文将详细介绍八年级机械能的知识点。
一、机械能的定义机械能是机械系统中所有物体的总的能量。
机械系统包括任何有质量的物体或物体组合和可移动的部件。
机械能可以表示为下式:机械能=动能+势能其中,动能是质点由于其运动所具有的能量,可以表示为下式:动能= (1/2) x m x v^2其中,m是物体的质量,v是物体的速度。
势能是质点由于位置而具有的能量,可以表示为下式:势能=mgh其中,m是物体的质量,g是引力加速度,h是物体离开参考面的高度。
二、机械能的守恒定律机械能守恒定律是指,在完全密闭的系统中,机械能总是保持恒定。
这意味着,机械能在系统内部各部分之间的转换可以发生,但总机械能必须保持不变。
三、功与能量转换功是一个物体由于另一个物体的运动而在运动方向上所承受的力的乘积。
功可以表示为下式:功=F x s x cosθ其中,F是作用于物体上的力,s是力所沿的路径,θ是功所形成的角度。
能量转换是指,能量可以在各种形式之间进行转换,但总能量不变。
这意味着,能量在两个时刻之间的变化量等于在此期间内的能量转化量。
四、机械能的应用机械能在日常生活中有着广泛的应用,例如:1.动能在汽车煞车时转化为热能。
2.干电池在工作时将化学能转化为电能。
3.悬挂的重物从其悬挂位置下降时会释放势能。
五、小结本文介绍了八年级物理学习中机械能的相关知识点。
我们学习了机械能的定义,机械能守恒定律,功与能量转换以及机械能在日常生活中的应用。
理解和熟悉这些知识点对于八年级学生们巩固物理学的基础知识也非常有帮助。
高中物理机械能知识点总结与典型例题
机械能第一模块:功和功率『夯实基础知识』 (一)功:1、概念:一个物体受到力.的作用,并且在这个力.的方向上发生了一段位移,就说这个力.对物体做了功。
2、做功的两个必要因素: 力和物体在力的方向上的位移3、公式:W =FScosα (α为F 与s 的夹角).功是力的空间积累效应。
4、单位:焦耳(J )5、意义:功是能转化的量度,反映力对空间的积累效果。
6、说明(1)公式只适用于恒力做功 位移是指力的作用点通过位移 (2)要分清“谁做功,对谁做功”。
即:哪个力对哪个物体做功。
(3)力和位移都是矢量:可以分解力也可以分解位移。
如:位移:沿力方向分解,与力垂直方向分解。
(4)功是标量,没有方向,但功有正、负值。
其正负表示力在做功过程中所起的作用。
正功表示动力做功(此力对物体的运动有推动作用),负功表示阻力做功.(5)功大小只与F 、s 、α这三个量有关.与物体是否还受其他力、物体运动的速度、加速度等其他因素无关 (二)功的四个基本问题。
涉及到功的概念的基本问题,往往会从如下四个方面提出。
1、做功与否的判断问题:物体受到力的作用,并在力的方向上通过一段位移,我们就说这个力对物体做了功。
由此看来,做功与否的判断,关键看功的两个必要因素,第一是力;第二是力的方向上的位移。
而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移就不是力的方向上的位移;当位移与力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。
2、会判断正功、负功或不做功。
判断方法有: (1)用力和位移的夹角θ判断; 当20πθ<≤时F 做正功,当2πθ=时F 不做功,当πθπ≤<2时F 做负功。
(2)用力和速度的夹角θ判断定;(3)用动能变化判断。
3、做功多少的计算问题:(1)按照定义求功。
即:W=Fscosθ。
公式中F 是做功的力;S 是F 所作用的物体发生的位移;而θ则是F 与S 间的夹角。
专题05 机械能 高考物理经典问题妙解通解(解析版)
考点分类:考点分类见下表考点一非质点类机械能守恒问题像“液柱”“链条”“过山车”类物体,在其运动过程中将发生形变,其重心位置相对物体也发生变化,因此这类物体不能再视为质点来处理了.考点二与生产、生活相联系的能量守恒问题在新课程改革的形势下,高考命题加大了以生产、生活、科技为背景的试题比重,其中与生产、生活相联系的能量守恒问题尤其受到高考命题者青睐.考点三运用动能定理巧解往复运动问题在有些问题中物体的运动过程具有重复性、往返性,而在这一过程中,描述运动的物理量多数是变化的,而且重复的次数又往往是无限的或者难以确定,求解这类问题时若运用牛顿运动定律及运动学公式将非常繁琐,甚至无法解出.由于动能定理只关心物体的初末状态而不计运动过程的细节,所以用动能定理分析这类问题可使解题过程简化.考点四与滑轮有关的功和功率的计算典例精析★考点一:非质点类机械能守恒问题◆典例一:(一)“液柱”类问题如图所示,粗细均匀,两端开口的U 形管内装有同种液体、开始时两边液面高度差为h ,管中液柱总长度为4h ,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度为( )A.18gh B.16gh C.14gh D.12gh 【答案】A 【解析】◆典例二:“链条”类问题如图所示,AB 为光滑的水平面,BC 是倾角为α的足够长的光滑斜面,斜面体固定不动.AB 、BC 间用一小段光滑圆弧轨道相连.一条长为L 的均匀柔软链条开始时静止的放在ABC 面上,其一端D 至B 的距离为L -a.现自由释放链条,则:(1)链条下滑过程中,系统的机械能是否守恒?简述理由; (2)链条的D 端滑到B 点时,链条的速率为多大? 【答案】(1)守恒 理由见解析 (2)gL-【解析】(1)链条在下滑过程中机械能守恒,因为斜面BC 和水平面AB 均光滑,链条下滑时只有重力做功,符合机械能守恒的条件.(2)设链条质量为m ,可以认为始、末状态的重力势能变化是由L -a 段下降引起的, 高度减少量h =⎝⎛⎭⎫a +L -a 2sinα=L +a 2sinα◆典例三:“过山车”类问题如图所示,露天娱乐场空中列车是由许多节完全相同的车厢组成,列车先沿光滑水平轨道行驶,然后滑上一固定的半径为R 的空中圆形光滑轨道,若列车全长为L(L>2πR),R 远大于一节车厢的长度和高度,那么列车在运行到圆形光滑轨道前的速度至少要多大,才能使整个列车安全通过固定的圆环轨道(车厢间的距离不计).【答案】gR ⎝⎛⎭⎫1+4πR L★考点二:与生产、生活相联系的能量守恒问题◆典例一:列车车厢间的摩擦缓冲装置如图是安装在列车车厢之间的摩擦缓冲器结构图.图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦.在车厢相互撞击使弹簧压缩的过程中( )A .缓冲器的机械能守恒B .摩擦力做功消耗机械能C .垫板的动能全部转化为内能D .弹簧的弹性势能全部转化为动能【答案】B【解析】在车厢相互撞击使弹簧压缩过程中,由于要克服摩擦力做功,且缓冲器所受合外力做功不为零,因此机械能不守恒,A项错误;克服摩擦力做功消耗机械能,B项正确;撞击以后垫板和车厢有相同的速度,因此动能并不为零,C项错误;压缩弹簧过程弹簧的弹性势能增加,并没有减小,D项错误.◆典例二:儿童乐园中的蹦床运动在儿童乐园的蹦床项目中,小孩在两根弹性绳和蹦床的协助下实现上下弹跳.如图所示,某次蹦床活动中小孩静止时处于O点,当其弹跳到最高点A后下落可将蹦床压到最低点B,小孩可看成质点,不计空气阻力,下列说法正确的是()A.从A运动到O,小孩重力势能减少量大于动能增加量B.从O运动到B,小孩动能减少量等于蹦床弹性势能增加量C.从A运动到B,小孩机械能减少量小于蹦床弹性势能增加量D.若从B返回到A,小孩机械能增加量等于蹦床弹性势能减少量【答案】A◆典例三:自动充电式电动车构建和谐型、节约型社会深得民心,节能器材遍布于生活的方方面面,自动充电式电动车就是很好的一例,电动车的前轮装有发电机,发电机与蓄电池连接.当骑车者用力蹬车或电动车自动滑行时,电动车就可以连通发电机向蓄电池充电,将其他形式的能转化成电能储存起来.现有某人骑车以5 kJ的初动能在粗糙的水平路面上滑行,第一次关闭自动充电装置,让车自由滑行,其动能随位移变化关系如图直线a所示;第二次启动自动充电装置,其动能随位移变化关系如图曲线b 所示,则第二次向蓄电池所充的电能可接近( )A .5 kJB .4 kJC .3 kJD .2 kJ【答案】D◆典例四:飞机场上运送行李的传送带飞机场上运送行李的装置为一水平放置的环形传送带,传送带的总质量为M ,其俯视图如图所示.现开启电动机,传送带达到稳定运行的速度v 后,将行李依次轻轻放到传送带上.若有n 件质量均为m 的行李需通过传送带运送给旅客.假设在转弯处行李与传送带无相对滑动,忽略皮带轮、电动机损失的能量.求从电动机开启到运送完行李需要消耗的电能为多少?【答案】12Mv 2+nmv 2【解析】设行李与传送带间的动摩擦因数为μ,则传送带与行李间由于摩擦产生的总热量 Q =nμmg Δx由运动学公式得Δx =x 传-x 行=vt -vt 2=vt2又a =μg 所以v =μgt 联立解得Q =12nmv 2由能量守恒得E =Q +12Mv 2+n ×12mv 2所以电动机开启到运送完行李需消耗的电能为E =12Mv 2+nmv 2.★考点三:斜面上圆周运动的临界问题◆典例一:往复次数可确定的情形1.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 是水平的,其距离d =0.50 m .盆边缘的高度为h =0.30 m .在A 处放一个质量为m 的小物块并让其从静止开始下滑(图中小物块未画出).已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停的地点到B 的距离为( )A .0.50 mB .0.25 mC .0.10 mD .0【答案】D◆典例二:往复次数无法确定的情形2.如图所示,斜面的倾角为θ,质量为m 的滑块距挡板P 的距离为x0,滑块以初速度v0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于重力沿斜面向下的分力.若滑块每次与挡板相碰均无机械能损失,则滑块经过的总路程是( )A.1μ⎝⎛⎭⎫v202gcosθ+x0tanθ B.1μ⎝⎛⎭⎫v202gsinθ+x0tanθ C.2μ⎝⎛⎭⎫v202gcosθ+x0tanθ D.1μ⎝⎛⎭⎫v202gcosθ+x0cotθ 【答案】A◆典例三:往复运动永不停止的情形3.如图所示,竖直固定放置的斜面DE 与一光滑的圆弧轨道ABC 相连,C 为切点,圆弧轨道的半径为R ,斜面的倾角为θ.现有一质量为m 的滑块从D 点无初速下滑,滑块可在斜面和圆弧轨道之间做往复运动,已知圆弧轨道的圆心O 与A 、D 在同一水平面上,滑块与斜面间的动摩擦因数为μ,求:(1)滑块第一次滑至左侧弧上时距A 点的最小高度差h ; (2)滑块在斜面上能通过的最大路程s. 【答案】(1)μRcosθtanθ (2)Rμ【解析】(1)滑块从D 到达左侧最高点F 经历DC 、CB 、BF 三个过程,现以DF 整个过程为研究过程,运用动能定理得:mgh -μmgcosθ·R tanθ=0,解得h =μRcosθtanθ. (2)通过分析可知,滑块最终至C 点的速度为0时对应在斜面上的总路程最大,由动能定理得:mgRcosθ-μmgcosθ·s =0, 解得:s =Rμ.★考点四 万有引力定律与几何知识的结合◆典例一:滑轮两侧细绳平行(1)不计摩擦和滑轮质量时,滑轮两侧细绳拉力大小相等. (2)通过定滑轮连接的两物体,位移大小相等.(3)通过动滑轮拉动物体时,注意物体与力的作用点的位移、速度、作用力间的大小关系.如图所示,质量为M 、长度为L 的木板放在光滑的水平地面上,在木板的右端放置质量为m 的小木块,用一根不可伸长的轻绳通过光滑的定滑轮分别与木块、木板连接,木块与木板间的动摩擦因数为μ,开始时木块和木板静止,现用水平向右的拉力F 作用在木板上,将木块拉向木板左端的过程中,拉力至少做功为( )A .2μmgL B.12μmgL C .μ(M +m)gL D .μmgL【答案】D◆典例二:滑轮两侧细绳不平行对于通过动滑轮拉物体,当拉力F 的方向与物体的位移方向不同时,拉力F 做的功可用如下两种思路求解: (1)用W =Flcosα求,其中l 为力F 作用点的位移,α为F 与l 之间的夹角. (2)用两段细绳拉力分别所做功的代数和求解.一木块前端有一滑轮,绳的一端系在右方固定处,水平穿过滑轮,另一端用恒力F 拉住,保持两股绳之间的夹角θ不变,如图所示,当用力F 拉绳使木块前进s 时,力F 对木块做的功(不计绳重和滑轮摩擦)是( )A.Fscosθ B.Fs(1+cosθ)C.2Fscosθ D.2Fs【答案】B【解析】1.(2018·南安高三检测)如图甲所示,滑轮质量、摩擦均不计,质量为2 kg的物体在拉力F作用下由静止开始向上做匀加速运动,其速度随时间的变化关系如图乙所示,由此可知()A.物体加速度大小为2 m/s2B.F的大小为21 NC .4 s 末F 的功率为42 WD .4 s 内F 的平均功率为42 W 【答案】C【解析】由题图乙可知,v-t 图象的斜率表示物体加速度的大小,即a =0.5 m/s2,由2F -mg =ma 可得:F =10.5 N ,A 、B 均错误;4 s 末F 的作用点的速度大小为vF =2v 物=4 m/s ,故4 s 末F 的功率为P =FvF =42 W ,C 正确;4 s 内物体上升的高度h =4 m ,力F 的作用点的位移l =2h =8 m ,拉力F 所做的功W =Fl =84 J ,故平均功率P =Wt=21 W ,D 错误.2.(2017·天津卷)“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一。
九年级物理机械能知识点归纳
九年级物理机械能知识点归纳
以下是九年级物理机械能的知识点归纳:
1. 机械能的定义:机械能是指物体因其运动状态而具有的能力,包括动能和势能两个方面。
动能是物体由于运动而具有的能力,势能是物体由于位置而具有的能力。
2. 动能的计算:动能的大小与物体的质量和速度有关,可以使用公式K = 1/2mv²来计算,其中K表示动能,m表示质量,v表示速度。
3. 势能的计算:势能的大小与物体的质量、重力加速度和高度有关,可以使用公式PE = mgh来计算,其中PE表示势能,m表示质量,g表示重力加速度,h表示高度。
4. 机械能守恒定律:机械能守恒定律指的是在没有外力做功和摩擦损失的情况下,一个系统的机械能总量保持不变。
这意味着系统中的动能和势能可以相互转换但总量不变。
5. 机械能转化:机械能可以通过力做功来进行转化。
当力做正功时,物体的机械能增加;当力做负功时,物体的机械能减少。
6. 机械能和功率的关系:功率是指单位时间内做功的能力,可以使用公式P = W/t来计算,其中P表示功率,W表示做的功,t表示时间。
机械能与功率之间有关系,可以使用公式P = ΔE/Δt来计算,其中P表示功率,ΔE表示机械能的变化量,Δt表示时间。
7. 机械能的应用:机械能的概念和计算方法在许多物理现象和工程中有广泛的应用,如弹簧的弹性势能、滑雪过程中的动能和势能转化、机械振动的能量交换等。
这些是九年级物理机械能的主要知识点,希望能帮助到你!。
机械能的知识点总结
机械能的知识点总结
嘿,朋友们!今天咱来唠唠机械能的知识点总结哈。
先来说说动能,这就好比一个活力满满的小朋友在奔跑!比如说,一辆飞速行驶的汽车,那速度越快,它的动能就越大呀!你想想,要是两辆汽车,一辆慢悠悠的,一辆风驰电掣的,哪个动能大?肯定是快的那个嘛!
再讲讲重力势能呀,就像一个东西被高高举起来一样。
比如说把一个球举得高高的,这时候它的重力势能就增加了呀。
你想想你爬山的时候,到了山顶是不是觉得自己好像储存了好多能量呢?对咯,那就是重力势能!
还有弹性势能呢,这就像一根被压缩或拉伸的弹簧。
举个例子,你玩过的弹弓,把皮筋拉开,这里面就有弹性势能呢!是不是很神奇呀!
动能和势能之间可是会相互转化的哟!就像一个会变魔法的小精灵。
比如钟摆,从高处摆下来的时候,重力势能减少,动能增加,摆到最低处时动能最大。
然后再摆回去,动能又逐渐转化为重力势能。
有趣吧!
机械能可是在我们生活中无处不在呀!骑自行车的时候,就是机械能在帮忙。
工厂里的机器运转,也是机械能在发挥作用呢!机械能就像我们的好朋友,一直陪着我们。
哎呀,机械能就是这么酷炫,这么重要!大家一定要好好记住这些知识点呀,会给你们打开新世界的大门呢!我的观点就是,机械能真的太有意思啦,我们要好好利用它,也好好理解它,让它为我们的生活带来更多的便利和乐趣!。
初中物理专题复习18机械能(解析版)
C. 运动员在bc段重力势能减小,动能减小;
D. 运动员在bc段重力势能增大,动能增大
【答案】A。
【解析】AB.由图可知,运动员在ab段上升时,高度变大,速度减小,说明运动员重力势能增大,动能减小,故A正确,B错误。
CD.运动员在bc段下落时,高度变小,速度变大,明运动员重力势能减小,动能增大,故CD错误。故选A。
D. 实心球从A→B过程中,说明力可以改变物体的形状
【答案】A。
【解析】A.实心球从B→C过程中,位置越来越高,速度越来越小,动能转化为重力势能,动能减小,故A正确;
B.实心球做的是弧线运动,到达最高点C时,仍具有向右的速度,并没有处于静止状态,故B错误;
C.实心球从B→C→D过程中,高度不断变化,重力对它做了功,故C错误;
专题18机械能
【考点预览】
考点1机械能
考点2动能和势能的转化
考点3机械能和其他能的转化
考点
【经典真题】
(2022·四川自贡)在2022年北京冬奥会自由式滑雪比赛中,我国运动员谷爱凌获得冠军,她在雪道上自由下滑的过程中,如果不计雪道阻力和空气阻力,下列说法中正确的是( )。
A. 动能不变,重力势能不变,机械能不变;
A. 飞机在升空过程中,飞行员的重力势能逐渐增大;
B. 飞机从起飞到安全降落的整个过程中,飞行员的动能一直保持不变;
C. 飞机从起飞到安全降落的整个过程中,飞机的机械能一直保持不变;
D. 飞机降落后,在水平道上滑行过程中,飞机的动能转化为重力势能
【答】A。
【解析】A.飞机在升空过程中,高度增大,质量不变,所以飞行员的重力势能逐渐增大,故A正确;
5.(2022·山东泰安)如图所示,物理项目化学习小组在空旷的室外测试某型号无人机负重飞行能力。测试时将重 的物体 固定在无人机上,并控制无人机完成以 的速度匀速上升、在空中悬停、以 的速度匀速下降三个阶段的测试项目,同时利用系统软件记录多次测量的相关信息,并做出测评报告。下列说法中( )。
机械能知识点梳理
第十章机械能、内能及其转化一、机械能知识点梳理(一)、能1.物体能对外做功,我们就说这个物体具有能。
2.物体能够做的功越多,它具有的能就越大。
3.所有能量(功、能、热量)的单位都是焦耳。
(二)、动能:1.物体由于运动具有的能叫做动能。
Ek=1/2 mv2流动的空气、抛出的保龄球、飞行的子弹、行驶的汽车、跑步的运动员2.质量相同的物体,运动的速度越大,它具有的动能就越大;3.运动速度相同的物体,它的质量越大,它具有的动能就越大。
4.物体的动能与物体的质量和速度有关。
物体的质量越大,速度越大,它具有的动能就越多。
5.在探究动能大小与什么因素有关的实验中,用到了控制变量法和转换法。
(三)、重力势能:1.受到重力的物体被举高后也具有能,这种能叫作重力势能。
Ep=Gh=mgh。
高处的砖块、高处的江水、高处的重锤、高处的铁块、瀑布、流星2.质量相同的物体,高度越高,它具有的重力势能就越大;3.高度相同的物体,质量越大,它具有的重力势能就越大;4.物体的重力势能与物体的质量和高度有关。
物体质量越大,位置越高,它做功的本领就越大,物体具有的重力势能就越多。
5.在探究重力势能大小与什么因素有关的实验中,用到了控制变量法和转换法。
(四)、弹性势能:1.具有弹性的物体发生弹性形变后也具有能,这种能叫做弹性势能。
拉弯的弓、蹦床、皮筋、弹簧、篮球、撑杆、跳板2.同一弹性物体弹性形变越大,具有的弹性势能就越大。
(五)、机械能1.动能和势能〔重力势能、弹性势能〕统称为机械能。
(机械能E=动能Ek+势能Ep)。
2.物体动能和重力势能〔及弹性势能〕之间是可以发生互相转化的(六)、机械能守恒定律1.内容:物体动能和重力势能〔及弹性势能〕之间是可以发生互相转化的。
在只有动能和势能相互转化的过程中,机械能的总量保持不变,即机械能是守恒的。
2.物体初态的总机械能等于末态的总机械能。
3.物体减少的总重力势能等于物体增加的总动能。
(七)、功能关系1.当只有重力〔或弹簧弹力〕做功时,物体的机械能守恒。
机械能守恒定律的综合运用(含典型例题和变式练习及详细答案)
机械能守恒定律的综合运用(含典型例题变式练习题和答案)一.教学内容:机械能守恒定律的综合运用二.学习目标:1、掌握机械能守恒定律的表达式及应用机械能守恒定律解题的一般方法和步骤。
2、深刻掌握关于机械能守恒定律的习题类型及其相关解法。
三•考点地位:机械能守恒定律的综合应用问题是高考考查的重点和难点,题目类型通常为计算题目形式,从出题形式上常与牛顿定律、圆周运动、电磁学、热学等问题进行综合,从习题模型化的角度上来看,常与线、轻杆、弹簧等模型综合,题目灵活性很强,在高考当中常做为压轴题形式出现,2007年天津理综卷第5题,2006年全国H卷理综卷第23题、2006年广东大综合卷第34题、2006年北京理综卷第22题、2005年北京理综卷的第23题均通过大型计算题目形式考查。
知识体系:(一)机械能守恒定律的表达式:当系统满足机械能守恒的条件以后,常见的守恒表达式有以下几种:①二打f二-匕,-二,即初状态的动能与势能之和等于末状态的动能与势能之和。
②△ \ =—―耳,或△匕」 - -I-,即动能(或势能)的增加量等于势能(或动能)的减少量。
③△ - - ■二-:•,即卩A物体机械能的增加量等于B物体机械能的减少量。
(二)应用机械能守恒定律解题的步骤及方法:(1)根据题意选取研究对象(物体或系统) 。
(2)明确研究对象的运动过程,分析对象在运动过程中的受力情况,弄清各力做功的情况,判断机械能是否守恒。
(3)恰当地选取零势面,确定研究对象在运动过程中的始态和末态的机械能。
(4)根据机械能守恒定律的不同表达式列方程,并求解结果。
说明:(1)机械能守恒定律只关心运动的初、末状态,而不必考虑这两个状态之间变化过程的细节,因此,如果能恰当地选择研究对象和初、末状态,巧妙地选定势能参考平面,问题就能得到简捷、便利的解决,可避免直接应用牛顿定律可能遇到的困难,机械能守恒定律为解决力学问题提供了一条简捷的途径。
(2)如果物体运动由几个不同的物理过程组成,则应分析每个过程机械能是否守恒,还要分析过程的连接点有无能量损失,只有无机械能损失才能对整体列机械能守恒式,否则只能列出每段相应的守恒关系。
机械能守恒定律 知识点总结与典例(最新)
拉力作用时大于 g,选项 C 错误。b 的动能最大时,杆对 a、b 的作用力为零,此时 a 的机械能最小,b 只 受重力和支持力,所以 b 对地面的压力大小为 mg,选项 D 正确。正确选项为 B、D。
(2)如图所示,在倾角为 30°的光滑斜面上,一劲度系数为 k=200 N/m 的轻质弹簧一端连接固定挡板 C 上,另一端连接一质量为 m=4 kg 的物体 A,一轻细绳通过定滑轮,一端系在物体 A 上,另一端与质量也 为 m 的物体 B 相连,细绳与斜面平行,斜面足够长.用手托住物体 B 使绳子刚好没有拉力,然后由静止释 放.求:
D.2vg2
【答案】B
【解析】设小物块的质量为 m,滑到轨道上端时的速度为 v1.小物块上滑过程中,机械能守恒,有12mv2
=12mv21+2mgR
①
小物块从轨道上端水平飞出,做平拋运动,设水平位移为 x,下落时间为 t,有
2R=12gt2
②
高三物理机械能知识点归纳
高三物理机械能知识点归纳物理是自然科学的一门重要学科,而机械能则是物理学中的一个重要概念。
高三物理学习的重点之一就是机械能,它是描述物体在力学过程中所具有的能量的综合概念。
本文将对高三物理机械能的知识点进行归纳和总结,以帮助同学们更好地理解这一概念。
一、机械能的定义和分类1. 机械能的定义:机械能是指物体在力学过程中所具有的动能和势能的总和,在不考虑能量损失的情况下,机械能守恒。
2. 透过物体的形状和材料来判断机械能的分类:a. 动能:物体由于运动而具有的能量,与物体的质量和速度有关。
b. 势能:物体由于位置或形状的变化而具有的能量,包括重力势能、弹性势能和化学势能等。
二、机械能守恒定律1. 机械能守恒定律的表述:在不受非弹性碰撞和摩擦力等能量损失的情况下,一个系统的机械能总和保持不变。
2. 机械能守恒定律的应用:a. 自由落体运动:忽略空气阻力的情况下,物体在下落过程中势能减少、动能增加,但机械能保持不变。
b. 弹性碰撞:碰撞前后的动能和弹性势能之和保持不变。
c. 吊球摆动:在摆球运动中,动能和重力势能相互转化,但总机械能保持恒定。
三、机械能与功、能的关系1. 功的定义:物体受力移动时所做的功是力和物体位移的乘积。
2. 机械能与功的关系:当物体受到非保守力如摩擦力时,机械能不守恒,功将被转化成非机械能形式而耗散。
四、机械能的计算1. 动能(K)的计算公式:K = mv^2 / 2,其中m为物体的质量,v为物体的速度。
2. 重力势能(P)的计算公式:P = mgh,其中m为物体的质量,g为重力加速度,h为物体的高度。
3. 弹性势能(U)的计算公式:U = kx^2 / 2,其中k为弹性系数,x为弹簧伸缩的位移。
五、机械能应用举例1. 能量转化和能量守恒:例如,自行车骑行时,骑手通过踩踏产生动能,动能转化为机械能推动车辆前行。
2. 机械能与电能的转化:例如,水力发电厂利用水流的动能转化为发电机转子的机械能,再转化为电能进行供电。
2016年中考初中科学复习专题18 机械能和功
考点知识梳理
中考典例精析
专题训练
c 运动的最高点低于 A 点,由于小球在最高点时仍在 运动,其还具有动能,有可能与开始时的机械能相等, 所以 C 正确;小球离开轨道后,由于惯性仍具有沿轨 道方向向上运动的速度,d 轨迹错误。
答案:C
考点知识梳理
中考典例精析
专题训练
6.如图,用 F=20 N 的水平
考点知识梳理
中考典例精析
专题训练
解析:(1)若用一根细绳,小球的摆动方向会不稳 定,利用如图两根细绳悬挂小球,形成三角形稳定结 构的平面,便于控制小球 的撞击方向,碰准木块。( 2) 实验中小球一定,小球摆动的角度不同,撞击木块时 的速度不同,所以本实验探究的问题是物体的动能大 小与速度的关系。
考点知识梳理
中考典例精析
专题训练
3.做功的实质就是能量转化的过程,通过做功的 形式将一种能量转化为其他形式的能量。
4.物体做了多少功,就有多少能量发生了转化, 能与功的单位一样,都是焦耳。
考点知识梳理
中考典例精析
专题训练
考点三 功 率
1.物体在单位时间里完成的功,叫做功率,它反
映了物体做功的快慢,公式:P=
推力推着重为 40 N 的物体沿
水 平方 向做 直线 运动 ,若 推
力 F 对物体做了 40 J 的功,则在这一过程中( )
A.重力做的功一定为 40 J
B.物体一定受到 20 N 的摩擦力
C.物体一定运动了 2 m
D.物体一定运动了 4 m
考点知识梳理
中考典例精析
专题训练
【解析】物体在重力的方向没有移动距离,故重 力做的功为 0,A 错误;用 F =20 N 的水平推力推着 重为 40 N 的物体沿水平方向做直线运动,没有说是匀 速直线运动,故摩擦力不一定是 20 N,B 错误;由 W=Fs 可得,物体沿水平方向运动的距离 s=W=40 J
初中物理机械能知识点总结
初中物理机械能知识点总结一、机械能的概念与性质机械能是物体具有的可使其做功的能力,是物体运动时的一种能量。
通常来说,机械能由动能和势能两部分组成。
1.动能动能是物体由于运动而具有的能量。
动能与物体的质量和速度的平方成正比,即动能=1/2mv²。
其中m为物体的质量,v为物体的速度。
2.势能势能是物体由于在一些位置上具有的能量。
常见的势能有重力势能、弹性势能等。
(1)重力势能重力势能是物体由于处于一些高度而具有的能量。
重力势能与物体的质量、高度及重力加速度的乘积成正比,即重力势能=mgh。
其中m为物体的质量,g为重力加速度,h为物体的高度。
(2)弹性势能弹性势能是弹性体由于被压缩或拉伸而具有的能量。
弹性势能与弹性体的劲度系数和形变的平方成正比,即弹性势能=1/2kx²。
其中k为弹性体的劲度系数,x为形变的大小。
二、机械能的转化与守恒1.机械能的转化机械能可以在不同形式之间进行转化。
例如,当物体从静止开始向下滑动时,其势能逐渐转化为动能;当物体受到外力作用停止时,其动能转化为势能。
2.机械能的守恒在没有外力和能量损失的情况下,一个物体的机械能总是守恒的。
即机械能的初值等于机械能的末值。
三、机械能计算示例1.物体自由落体下滑入水池考虑一个物体自由落体下滑入水池的示例。
设物体的质量为m,初始高度为h,下滑入水池的深度为H。
根据机械能守恒,有重力势能转化为动能和水的压力能:mgh = 1/2mv² + mgh₂得到v=√(2g(h-h₂))2.弹簧振子考虑一个质量为m的弹簧振子的示例。
设弹簧的劲度系数为k,振子的振幅为A。
振子的机械能由弹性势能和动能组成。
在最高点,动能为零;而在最低点,弹性势能为零。
因此,机械能的最大值等于弹性势能和动能的和。
1/2kA² = 1/2mv²得到v=√(k/m)A四、机械能的应用1.机械能在动力学中的应用机械能在动力学中有广泛的应用。
《机械能》知识点总结
《机械能》知识点总结机械能是物体具有的由于其运动而产生的能量。
机械能可以分为动能和势能两个方面,动能是物体由于速度而具有的能量,势能是物体由于其位置而具有的能量。
一、动能的概念与计算动能是物体在运动过程中所拥有的能量,它与物体的质量和速度有关。
物体的动能计算公式为:动能(KE)=1/2×质量(m)×速度的平方(v²)动能与速度的关系:-动能随速度的增加而增加-动能随速度的减小而减小动能与质量的关系:-动能与质量的增加成正比-动能与质量的减小成反比二、势能的概念与计算势能是物体由于其位置而具有的能量。
常见的势能有重力势能和弹性势能。
1.重力势能重力势能是物体由于位置较高而具有的能量,它与物体的质量、重力加速度和高度有关。
重力势能计算公式为:重力势能(PE)=质量(m)×重力加速度(g)×高度(h)重力势能与质量的关系:-重力势能与质量成正比重力势能与高度的关系:-重力势能与高度成正比2.弹性势能弹性势能是物体由于其形变而具有的能量,常见的弹性势能包括弹簧势能和弯曲势能。
弹簧势能计算公式为:弹簧势能(PE)=1/2×弹性系数(k)×形变的平方(x²)弹簧势能与弹性系数的关系:-弹簧势能与弹性系数成正比弹簧势能与形变的关系:-弹簧势能与形变的平方成正比三、机械能守恒定律根据机械能的定义,机械能在一个封闭系统中是守恒的。
也就是说,在没有外力做功和内部能量转化的情况下,系统的机械能始终保持不变。
机械能守恒定律适用于以下情况:-只有重力做功的自由落体运动-沿着水平面上的匀速直线运动-沿着斜面上运动四、能量转化与能量损失能量转化是指一种能量形式转化为另一种能量形式的过程。
能量转化领域中常见的过程有:1.动能转化为势能:例如物体上升时,动能逐渐转化为重力势能。
2.势能转化为动能:例如物体自由下落时,重力势能逐渐转化为动能。
3.动能转化为热能:例如摩擦使物体的动能逐渐转化为热能,使物体温度升高。
机械能知识点
1机械 能基本概念 和物理量功:W=F ·s cos α功率:P=t W,P=F ·vcoc α 动能:E k =221mv重力势能 :Ep=mgh (弹簧势能)基本规律动能定理:W 总=△E k ,21222121mv mv E k -=∆重力做功与重力势能的关系:W G = —△E p =mgh 起—mgh 终机械能守恒定律:条件表达式功和能的关系:W=ΔE (W 是除了重力、弹力以外的力做的总功)基本方法 基本思路总功的计算: W=F 合·scos αW=F 1·s 1cos α1 +F 2·s 2cos α2+ F 3·s 3cos α3+……滑动摩擦力的功:W F μ=—F μ·s (s 为物体的路程) 相互作用的一对滑动摩擦力的功: W=— f ·s 相变力做功的求解: W=F ·scos α(F 为力对位移的平均值)W=p ·t 能量转换法图线法机械能一、 知识地图二、知识扫描1、做功的过程就是 的转化过程。
做了多少功,就有多少 。
是能量转化的量度。
2、 等于物体动能的增量,即: 。
3、重力做功,重力势能 ; ,重力势能增加。
由于“增量”是终态量减去始态量,所以重力的功等于重力势能增量的负值,即: 。
4、 等于弹性势能增量的负值,即: 弹。
5、除系统内的重力和弹簧的弹力外,其它力做的总功等于 ,即: 。
6、滑动摩擦力做功有以下特点:①滑动摩擦力可以对物体做正功,也可以对物体做负功,还可以不做功。
②一对滑动摩擦力做功的过程中能量的转化有两种情况:一是相互摩擦的物体之间机械能的转移;二是机械能转化为内能,转化为内能的量值等于滑动摩擦力与相对位移的乘积。
③相互摩擦的系统内,一对滑动摩擦力所做功总是负值,其绝对值恰等于滑动摩擦力与相对位移的乘积,即恰等于系统损失的机械能。
三、好题精析例1、一物体获得一竖直向上的初速度从某点开始向上运动,运动过程中加速度始终竖直向下为4m/s 2,则正确的说法是( )A 、上升过程中物体的机械能不断增加重力势能增加B 、下降过程中物体的机械能不断增加,重力势能减少C 、整个过程中物体的机械能不变D 、物体下落回抛出点的机械能和抛出时的机械能相等【提示】根据物体的运动情况,分析物体在运动过程中受到的作用力仍是解决功能问题的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功和能•考点•典例一功的计算1 一物体在相同的水平恒力作用下,分别沿粗糙的水平地面和光滑的水平地面移动相同的距离。
设该恒力在两个水平面上做的功分别为W1和W2,那么下列说法中正确的是哪个?()A W1=W2B W1>W2C W1<W2D 无法确定2 某人用脚把重1ON的球以200N的力水平踢出,脚随球移动O.4m,踢出后球在地面上滚动8m才停下,在球滚动过程中,重力对球以及人对球所做的功分别为()A 0、0B 8OJ、0C 0, 80J D.80 J、80J3 用钢索吊起质量为m的物体,当物体以加速度a匀加速升高h时,钢索对重物做的功为(不计阻力)()A mghB m(g+a)hC m(g-a)hD mah4一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置P点很缓慢地移到Q点.如图所示,此时悬线与竖直方向夹角为θ,则拉力F所做的功为()A.mgL cosθB.mgL(1-cosθ)C.FL sinθD.FLθ5如图2所示,某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为:A、 0JB、20πJC 、10J D、20J.二功率与机车启动问题1 设飞机在飞行中所受空气阻力与它的速度平方成正比,当飞机以速度v水平匀速飞行时,发动机的功率为P。
若飞机以速度3v水平匀速飞行时,发动机的功率为()A 3PB 9PC 18PD 27P2 汽车的质量为m=6.0×103kg,额定功率为P e=90kW,沿水平道路行驶时,阻力恒为重力的0.05倍,g取10m/s2,问:(1)汽车沿水平道路匀速行驶的最大速度有多大?(2)汽车做匀加速运动的最大速度有多大?(3)设汽车由静止起匀加速行驶,加速度a=0.5m/s2,汽车匀加速运动可维持多长时间?3 一列车的质量是5.0×105kg ,在平直的轨道上以额定功率3000kW 加速行驶,当速度由10m/s 加速到所能达到的最大速率30m/s 时,共用了3min ,则在这段时间内列车前进的距离是多少?三 重力势能和 弹性势能1关于重力做功和物体的重力势能,下列说法正确的是( ab ) A 、当重力对物体做正功时,物体的重力势能一定减少; B 、物体克服重力做功时,物体的重力势能一定增加; C 、地球上物体一个物体的重力势能都有一个确定值; D 、重力做功的多少与参考平面的选取无关。
2如图所示,一质量为m 的小球固定于轻质弹簧的一端,弹簧的另一端固定于O 点处,将小球拉至A 处,弹簧恰好无形变,由静止释放小球,它运动到O 点正下方B 点的速度为v ,与A 点的竖直高度差为h ,则 ( AD )A .由A 到B 重力做功为mghB .由A 到B 重力势能减少12mv 2 C .由A 到B 小球克服弹力做功为mghD .小球到达位置B 时弹簧的弹性势能为⎝⎛⎭⎪⎫mgh -12mv 23 一物体在竖直弹簧的上方h 米处下落,然后又被弹起,则物体势能最大时是( )A 物体刚接触弹簧时B 物体将弹簧压缩至最短时C 物体重力与弹力相等时D 物体在最高处时4 一根弹簧的弹力一位移图线如右图所示,那么弹簧由伸长量8cm 到伸长量4cm 的过程中,弹力功和弹性势能的 变化量为( )A 3.6J ,-3.6JB -3.6J,3.6JC .1.8J ,-1.8JD -1.8J ,1.8J四 动能定理(1)动能定理理解1 两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是( )A 乙大B 甲大C 一样大D 无法比较2 一个质量为1kg 的物体被人用手由静止向上提升1m,这时物体的速度是2 m/s,则下 列说法中错误的是( )。
(g 取10 m/s 2) A 手对物体做功12J B 合外力对物体做功12J C 合外力对物体做功2J D 物体克服重力做功10J3 水平恒力F 作用在物体上,物体在光滑水平面上沿力的方向移动s 距离,恒力做功为 W 1,物体获得的动能为E k1,若该恒力作用在同一物体上,物体在粗糙水平面上移动 相同距离,恒力做功为矶W 2,物体获得的动能为E k2,则( ) A W 1>W 2, E k1> E k2 B W 1>W 2, E k1=E k2 C W 1=W 2, E k1> E k2 D W 1=W 2, E k1= E k2 (2)动能定理求做功1.一人用力踢质量为1 kg 的皮球,使球由静止以10 m /s 的速度飞出,假定人踢球瞬间对球的平均作用力是200 N ,球在水平方向运动了20 m 停止,那么人对球所做的功为( )A .500 JB .50 JC .4 000 JD .无法确定2从地面竖直上抛一质量为0.4kg 的球,若不计空气阻力,球经4s 落回地面,则抛出时人对球做的功为( ) A 80 J B 160 J C 40 J D 120J3 如图所示,质量为m 的物块与转台之间能出现的最大静摩擦力为物块重力的k 倍.它与转轴OO′相距R,物块随转台由静止开始转动,当转速增加到一定值时,物块即将在转台上滑动,在物块由静止到开始滑动前的这一过程中,转台对物块做的功为( ) A.21kmgR B. 0 C .2πkmgR D. 2kmgR4 在距地面12m 高处以12m/s 的速度抛出一个质量为2kg 的物体,物体落到地面时的速度是19m/s ,那么人在抛物的过程中对物体做的功是____ J ,物体下落过程中克服阻力做的功是____ J .144,235 如图3所示,AB 为1/4圆弧轨道,半径为0.8m ,BC 是水平轨道,长L=3m ,BC 处的摩擦系数为1/15,今有质量m=1kg 的物体,自A 点从静止起下滑到C 点刚好停止。
求物体在轨道AB 段所受的阻力对物体做的功。
(3)动能定理求力1、甲、乙、丙三个物体具有相同的动能,甲的质量最大,丙的最小,要使它们在相同的距离内停止,若作用在物体上的合力为恒力,则合力(C ) A .甲的最大 B .丙的最大 C .都一样大 D .取决于它们的速度2 竖直初速度u 0抛出一个质量为m 的小球,当小球返回出发点时的速度大小为43u 0,求小球在运动过程中受的平均阻力f 和小球能上升的最大高度。
11.(10分)如图5-2-15所示,某人乘雪橇从雪坡经A 点滑至B 点,接着沿水平路面滑至C 点停止.人与雪橇的总质量为70 kg .表中记录了沿坡滑下过程中的有关数据.请根据图表中的数据解决下列问题:图5-2-15位置 A B C 速度(m /s ) 2.0 12.0 0 时刻(s )410(1)人与雪橇从A 到B 的过程中,克服阻力做的功为多少? (2)设人与雪橇在BC 段所受阻力恒定,求阻力大小.(g =10 m /s 2)(4)动能定理求位移或路程1 速度为v 的子弹,恰可穿透一固定着的木板,如果子弹速度为2v ,子弹穿透木板的阻力视为不变,则可穿透同样的木板(C )A 、2块B 、3块C 、4块D 、1块2 两辆汽车在同一平直路面上行驶,它们的质量之比m 1:m 2=1:2,速度之比v 1:v 2=2:1.当两车急刹车后,甲车滑行的最大距离为s 1,乙车滑行的最大距离为s 2.设两车与路面的动摩擦因数相等,不计空气的阻力,则(D ) A 、s 1:s 2=1:2 B 、s 1:s 2=1:1 C 、s 1:s 2=2:1 D 、s 1:s 2=4:1AFB (5)动能定理求速度1 a 、b 、c 三球自同一高度以相同速率抛出,a 球竖直上抛,b 球水平抛出,c 球竖直下抛.设三球落地时的速率分别为v a 、v b 、v c ,则(D )A .v a >v b >v cB .v a =v b >v cC . v a <v b <v cD . v a =v b =v c五 机械能守恒定律1在下列实例中,不计空气阻力,机械能守恒的是 ( )A .作自由落体运动的物体.B .小球落在弹簧上,把弹簧压缩后又被弹起.C .沿光滑曲面自由下滑的物体.D .起重机将重物匀速吊起.2下列说法中,正确的是 ( )A .机械能守恒时,物体一定不受阻力.B .机械能守恒时,物体一定只受重力和弹力作用.C .物体处于平衡状态时,机械能必守恒.D .物体所受的外力不等于零,其机械能也可以守恒.3 物体以12m/s 2的加速度匀加速向地面运动,则在运动中物体的机械能变化是( )A .减小.B .增大.C .不变.D .已知条件不足,不能判定.4 质量为m 的物体以速度v0从地面竖直上抛,当它抛到离地面h 高处时,它的动能和势能正好相等,这个高度是 ( )A 、gv 2B 、g v 220C 、g v 420D 、g v 2025如右图所示,从高H 的平台上,以初速度v0抛出一个质量为m 的小球,当它落到抛出点下方h 处时的动能为( )A 、mgH mv +2021 B 、mgh mv +2021 C 、mgh mgH - D 、)(2120h H mg mv -+6 以10m/s 的速度将质量为m 的物体竖直向上抛出,若空气阻力忽略不计,g =10m/s 2,则:⑴物体上升的最大高度是多少?⑵上升过程在何处重力势能和动能相等?7如图所示,A 为一放在竖直轻弹簧上的小球,在竖直向下恒力F 的作用下,在弹簧弹性限度内,弹簧被压缩到B 点,现突然撒去力F ,小球将向上弹起直至速度为零,不计空气阻力,则小球在上升过程中( ) A.小球向上做匀变速直线运动B.当弹簧恢复到原长时,小球速度恰减为零C.小球机械能逐渐增大D.小球动能先增大后减小8如右图,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b.a球质量为m,静置于地面;b球质量为3m,用手托往,高度为h,此时轻绳刚好拉紧.从静止开始释放b后,a可能达到的最大高度为 ( )A.hB.1.5hC.2hD.2.5h六功能关系1如图小物块位于光滑斜面上,斜面位于光滑水平地面上,在小物块沿斜面下滑的过程中,斜面对小物块的作用力()A.垂直于接触面,做功为零 B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零 D.不垂直于接触面,做功不为零2行驶中的汽车制动后滑行一段距离,最后停下;流星在夜空中坠落并发出明亮的光焰;降落伞在空中匀速下降;条形磁铁在下落过程中穿过闭合线圈,线圈中产生电流.上述不同现象中所包含的相同的物理过程是:A.物体克服阻力微功B.物体的动能转化为其他形式的能量C.物体的势能转化为其他形式的能量D.物体的机械能转化为其他形式的能量。