磁共振模拟(MRSIM)_肿瘤放疗模拟技术新前沿

磁共振模拟(MRSIM)_肿瘤放疗模拟技术新前沿
磁共振模拟(MRSIM)_肿瘤放疗模拟技术新前沿

磁共振模拟——站在肿瘤放疗的最前沿 磁共振模拟 站在肿瘤放疗的最前沿
黄岁平 博士 关键词:磁共振模拟 MRSIM 据有关调查显示,目前全世界范围内的肿瘤患者,约有 70%需要接受不同程 度的放射治疗,以达到治愈肿瘤或缓解症状、改善生活质量的目的。能够最大限度 地把放射剂量集中到病变(靶区)内,杀灭肿瘤细胞,同时使其周围正常组织和器 官少受或免受不必要的照射,从而得到保护,是肿瘤放射治疗一直以来追求的目 标。 20世纪 70年代 CT的使用是放射治疗计划所取得的一个巨大进步。引入 CT 图像的模拟增加了临床医生对靶区体积的空间意识,从而较之原有的传统治疗的靶 区体积(由垂直 X线胶片确定)产生了一个质的改变-----CT扫描得到一系列断层 轴面,经过多种方式的三维重建,形成一个三维计划,这使得适形放射治疗 (CRT)的概念得以实现。但 CT却有一些先天的局限性----它只对具有不同的电 子密度或 X线吸收特征的组织结构具有较好的分辨率(如空气对骨或对水或软组 织),但如果没有明显的脂肪或空气界面,则对具有包括肿瘤在内的相似电子密度 的不同软组织结构区分较差。相比之下,磁共振最大的优点就是对具有相似电子密 度的软组织有较强的显示能力并且能区分其特征。在这种情况下,磁共振能够更好 的提供靶区的轮廓,不但包括肿瘤的范围,而且还包括临近的重要软组织器官。通 过更准确地定位肿瘤靶区、避免危及临近的组织器官、以及提高局部控制率等。
一.磁共振模拟独特的优越性。
事实上,临床医生早已意识到诊断性的 MRI扫描对肿瘤体积的确定具有相当 重要的信息补充,引入 MR图像作定位由来已久。最早通常是由医生用肉眼在 MRI上观察疾病的范围,然后手工将数据转移至模拟胶片或 CT扫描片上,这种方 法极易产生解释和转译错误。第二种方式是通过使用一种放大投影系统将 MRI图 像叠加到模拟胶片或 CT图像上进行融合处理的 MR辅助的模拟。第三种更加定量 的方式是将 MRI图像与 CT图像进行融合,那样就可以将 MRI上具有较高分辨率 的肿瘤图像与几何精确的 CT图像中电子密度信息结合起来。但以上任意一种融合 方式都是在放疗过程中增加了一个步骤,也就是说,延长了整个放疗过程花费的时 间,加重了医生的工作任务,加大了病人的经济负担,也增加了误差的可能性及偏 离度。现在我们已经很明确对于中枢神经系统部位如颅底和脊髓部位的肿瘤,以及 软组织肉瘤和盆腔肿瘤,MRI成像已远优于 CT成像。这些情况下,就可以单纯借 助 MR图像完成模拟工作,因为 MRI有许多优于 CT方面的特点, 直接利用 MR 图像进行模拟定位有着不可替代的优越性:

I.我们知道,靶区勾画的不准确是整个放疗计划产生误差的首要因素。因此, MR 可以帮助我们更准确地定位。根据统计,大约有 40%肿瘤病人罹患的是软组织 癌症或肉瘤,集中在大脑、头颈部、脊柱、前列腺和肢体。若用 X光机或 CT机模 拟定位上述部位/组织,得到的图像往往不尽人 意,特别是肿瘤组织边界的勾画会 影响临床的诊断和治疗临床显示,而 MR 恰恰为脑部、盆腔部位提供了高质量的 解剖学分辨率,以便清晰地辨别肿瘤的边界及一些危及器官的范围。如图(一)a 所示,在 CT 图像上,前列腺与膀胱电子密度相似,不做膀胱造影,则难以确定前 列腺边界, 而同样在 MR图像上,却可以得到非常好的软组织分辩率。b图中,每 个点代表在某个断层勾画的范围,连接成线显示出整个靶区的范围。由于 CT 所提 供信息的不确定性,造成在 CT上勾画的靶区通常要比在 MR上大 30%-40%,直接 对后期的剂量分布、计算造成影响。
MRI
图(一)a
CT
CT 定位
图(一)b
MRI定位
同样,图(二)是一个听神经瘤(Acoustic Neuroma)的病例。在 CT图上,医生 大致清楚肿瘤的范围在黄线所框区域内,但却无法勾画病灶。而在 MR图像上, 甚至不需勾画,我们就可以得到清晰的 GTV边缘。
图(二) a 听神经瘤的 CT MPR和 DRR图像
图(二) b 听神经瘤的 MR MPR和 DRR图像

类似的病例,我们就应该考虑直接借助 MR图像确定靶区而不再仅是利用 MR作 图像融合。因为融合这个多步骤的操作过程,除了不可避免地引入了误差,还需要 搬运病人固定装置,以精确的方式进行 MR扫描,实践证明,这一过程是困难 的,且难以控制,这就意味着病人在模拟与治疗过程中的摆位不一致,无法保证良 好有效的治疗效果,也大大拖延了模拟的过程与时间。 II.MRI的另一个特征就是能够有效抑制伪影产生。骨骼不会产生多少 MR信号, 因而表现为低密度信号。这是因为骨质含有钙,因而几乎没有多少氢原子核能够提 供 MR信号。与 CT相比,MR的图像不会被较厚的骨组织区域影响,因为这些区 域骨组织会吸收 X线,降低软组织成像的质量,在 CT图像上产生伪影。因此, MRI能够对骨组织区域附近的病变如头颅基底部或包裹在骨组织内的脊髓有较高 的分辨率。另外,对于人体内一些人工移植的金属器官,其金属不敏感性使产生无 伪影的优异图像成为可能。见图(三)。
MRI
CT
图(三)人造金属髋关节可对成像和勾画产生影响
III.MR 高场潜在的功能成像优势也是 CT 所无法比拟的。我们可直接将这一特点 应用于放射治疗中。在 MR 图像中,除了可以获得组织在解剖结构上的病变信 息,还可获得功能形态上的信息,这就使得医生在勾画靶区的同时,能够地避 开要害器官及正常组织,准确勾画肿瘤范围,避免关键正常组织受到照射而损 坏。这些可用于临床的放射治疗计划,选择性地避免损伤病人的重要的脑部功 能区(尤其是儿童),如大脑的运动皮层中控制手运动的区域等。如图(四) a 所示,左下角为初始的计划靶区(PTV),经 f-MRI 脑功能测定后,发现射 线照射将伤及右手触觉的功能信号区,因此重新修改,得到右下角优化的剂量 分布设计,使适形放疗计划真正提高治疗效果----提高了局控率,改善了病人今 后的生活质量。

图(四) a
f-MRI 对剂量分布的影响
TSI: tumour growth ?
TSI and SVS: tumor treatment(comparison)
Cho NAA
Cho
3
4 12
5
Cho Cr NAA Cr Lactate NAA
1-2
Cr NAA
3-4
Cho Cr
NAA
5-6
Cho
Before treatment
4 3 2
Lactate
After radiotherapy
1
Cr
Choline Choline
3 4 12
1
4
3
2
5 6
Choline Choline
Choline Choline
43 21
43 21 Chemical shift (ppm)
43 21
Scan time: 4.16 min (35cc)
Courtesy: Dept. of Radiology, University of Bonn, Germany Courtesy: Dept. of Radiology, University of Bonn, Germany
42 H.Shukla, 2002 ASTRO 43
MRS is helpful in CTV Definition
H.Shukla, 2002 ASTRO
图(四) b
Courtesy: Dept. of Radiology, University of Bonn, Germany Courtesy: Dept. of Radiology, University of Bonn, Germany
频谱分析图 f-MRI还可根据正常组织和肿瘤组织在血流灌注和血氧水平依赖性(BOLD) 上的较大差别,对 BOLD的测定结果有可能将其正常和非正常值的边界显示出 来,从而准确地确定亚临床病灶。另一个运用在高场的强大工具是频谱分析,见图 (四)b,它的使用可帮助医生在治疗前准确勾画亚临床病灶, 掌握治疗前后病人胆 碱、乳酸等物质的变化规律及程度,得到治疗效果在生物学方面的反映。除此之 外,MR的血管造影能够显示脑血管的分布情况,为脑血管畸形或血管瘤提供了一 种无创的立体定位放射治疗方法。MRI还能够记录胶体仿真模型的空间 T1加权变 化,并记录诸如调强适形放射治疗和近距离放射治疗等复杂放射治疗剂量的分布情 况。
二.根据 MR 图像建立放疗计划必须解决的问题。
上述 MR优于 CT的特性已使越来越多的临床医生意识到 MR具有直接应用到放 射治疗计划制订上的潜力。但在目前的医院, 单独应用 MR并没有真正对 CT图像所 确定的放疗计划产生挑战。原因是应用 MR图像必然存在下列一些问题: 1.MR 存在图像变形失真。 放射治疗计划的制订至关重要的一点是要求准确的几何图像数据资料,而 MRI图像存在的几何空间失真现象是限制 MRI图像利用的一个主要障碍。MRI图 像失真的来源于系统相关的失真和由客观因素(如与病人相关的因素:幽闭恐惧或 不适)引起的失真。 这里主要解释一下与系统相关的原因。 A.理想情况下,我们希望拥有高度均匀的磁场和完全线性正交的磁场梯度,而在 临床实践中磁场往往不均一,且在成像过程中打开或关闭梯度,会产生涡流效应, 该磁场非线性的正交梯度和涡流效应会导致系统相关的失真。 B.静电磁场的均匀性随着离磁孔距离的增加而逐渐减弱,因而在一个较大的视野 中,会导致失真的程度增大,特别在该视野的边缘更加显著。 在大视野中心的失

真量级是在成像系统的像素分辨率范围之内,通常不需要进行修正。然而,大视野 边缘的失真效应则不能不考虑在内。 C.磁场内进入物体时会产生由磁场敏感性或化学偏移效应(场内物体引起的效 应)引起的几何形态和信号强度失真。 2.基于 MR 图像的剂量计算。 这是将 MR直接应用于放疗计划所遇到另外一个重要的难题。MR图像的像素 强度是质子的密度和组织弛缓时间的函数, 因此无法如 CT计划中直接根据电子密 度来计算考虑了组织不均匀性的剂量分布。 3.如何在 MR 上产生“DRR”图像。 我们对 CT模拟过程中在 DRR/DCR图像上定等中心、画靶区、设野已经相当 熟悉,但在 MR上这些过程如何进行呢?怎样产生和验证片做比对的 DR”R”?
三.MR 模拟现存主要问题的解决方案。
2002 年 ASTRO 会议上飞利浦公司正式独家研制推出了 AcQsim-MR 磁共振模 拟机,见图(五),并已在美国费城 Fox Chase 肿瘤中心得到超过两年的临床使用 与验证。在 2001 年美国盐湖城召开的全球放射治疗年会(AAPM)上,该技术得到 了全球放疗界的密切关注和充分肯定,因为 MR 模拟存在的上述主要问题业已得 到了较好的解决,代表着放射治疗模拟定位技术进入了一个崭新的、前所未有的领 域。
图(五)飞利浦 AcQsim-MR 磁共振模拟机 1. 梯度失真及图像变形的解决。 飞利浦高场 MR具有业内最优异的磁场均匀度和梯度线性,无需校正;针对低场 的几何变形,飞利浦公司已专门开发出了 GDC(Gradient Distortion Correction) 梯度失真校正软件,从各个层面、方向上避免图像边缘的扭曲变形,提供真实准确 的 MR图像用来直接进行模拟,保证靶区勾画的准确性,从而提高病人的治疗效 果,见图(六)。飞利浦新一代的 MR扫描机使用屏蔽和梯度补偿,能够使涡流效 应最小化,进而减少图像的失真。对于磁场敏感性或化学偏移效应(场内物体引起

的效应)引起的几何形态和信号强度失真,则使用高梯度的大宽带序列以减少水与 脂肪组织之间的化学偏移效应,从而减少 MR的失真。 横断位 矢状位 冠状位

无 GDC
有 GDC
图(六)GDC软件对各个方位图像的校正 2.MR 剂量计算的处理。 基于 MR图像的剂量计算,是完成 MR模拟的最后一步,否则又回到了从前 的方法(基于 CT图像或 CT、MR融合的方法)。目前通过 FDA的两种方法,一 种是将 MR图像视为均匀密度(水)图像进行计算。另一种是通过勾画法将密度 对比较大区域(如鼻咽部、骨骼和空腔部分)先进行勾画,然后分配给该区域一个 指定密度(Bulk Density)。所幸特别适合 MR模拟的区域主要在头颈部和下腹部 及四肢,这些区域组织对高能射线而言,基本可当成均匀密度物质。肺部 MR图 像较差,一般不适合做 MR模拟,所以不必考虑密度不均匀性问题。采用以上方 法对 MR计算所产生的剂量分布与对 CT图像计算的差别在 FDA所允许的范围之 内。图(七)

图(七)基于 MR图像的剂量分布
基于 CT图像的剂量分布
3.MR-DR“R”图像的运用。 尽管 MR的骨骼成像远不如 CT,经过 DCR算法处理之后的 MR DR“R”仍 能达到临床所需要的标准。医生可直接在此DR“R”上定等中心、画轮廓线,直至 最后算出剂量,在DVH图上进行优化、评估。见图(八)。
图(八)盆腔正位 MR DR“R”
盆腔侧位 MR DR“R”
综上所述,MRI 图像能够提供较高的软组织分辨率,并能够反映血管和功能的 有关信息等特点均优于 CT 图像,有助于三维放射治疗计划的制订。AcQsim-MR 首次将优异的 MR 图像直接应用于整个定位、模拟、治疗的过程, 磁共振模拟机 直接省去了病人做 CT 模拟的步骤,也无需 CT、MRI 图像融合,减少了误差,提 高了效率,节省了开支,成为 CT 模拟有效而强大的补充,对于肿瘤放射模拟和治 疗具有划时代意义,为放疗模拟的发展开辟出新的领域。随着它所带来的临床效益 的进一步体现,MR 模拟定位将成为放疗领域内与 CT 模拟一样普及的设备。正如 美国费城 Fox Chase 肿瘤中心的 Freedman 博士所说:“一旦你常规地在每个适用 病人身上使用 MR模拟定位,你就不会再走回头路了(使用原来的方法)。”

鞍区常见肿瘤的MRI诊断(一)

鞍区常见肿瘤的MRI诊断(一) 【摘要】目的:探讨鞍区肿瘤的MRI表现特征,提高对鞍区肿瘤的诊断准确性。方法:回顾性分析经手术病理确诊的26例鞍区肿瘤的MRI表现。结果:垂体瘤17例,颅咽管瘤6例,脑膜瘤3例,MRI具有特征性,术前诊断准确率较高。结论:MRI对鞍区肿瘤的诊断与鉴别诊断具有重要临床价值。 【关键词】垂体肿瘤;颅咽管瘤;脑膜瘤;磁共振成像 【ABSTRACT】Objective:ToexploreMRIcharacteristicsoftumorsinsellaregiongaandimproveitsdiagnosticaccuracy. elyanalyzed.Results:Rpituitaryadenoma(n=17),craniopharyngioma(n=6)andmeningioma(n=3)had characteristicsignsandmostofthemwereconfirmedbyMRI.Conclusion:MRIhasgreatvalueinthediffer entialdiagnosisforthesellarregionaltumor. 【KEYWORDS】PituitaryNeoplasms,Craniopharyngjoma,Meningioma,MagneticResonanceImaging 鞍区是颅内肿瘤好发部位之一,且肿瘤类型较多,多数病例根据其MRI表现可以定性,少数有一定困难。现对我院2003—2009年收治的26例病例作回顾性分析,对鞍区常见肿瘤MRI表现进行探讨。 1资料与方法 2009年6月许敏等:鞍区常见肿瘤的MRI诊断第3期2009年6月河北北方学院学报(医学版)第3期1.1一般资料本组26例患者,男15例,女11例;年龄7~80岁;垂体瘤17例,颅咽管瘤6例,脑膜瘤3例。临床主要表现:头痛、呕吐,视觉障碍,闭经泌乳和肢端肥大等症状。 1.2方法MRI检查采用宁波鑫高益磁共振扫描装置。使用头部线圈,常规进行横断面、矢状面和冠状面T1WI、T2WI扫描,扫描参数为T1WI:TR/TE:350/16ms,T2WI:TR/TE:4000/130ms。其中13例平扫后应用对比剂钆喷替酸葡甲胺()行增强扫描,剂量为0.1mmol/kg,经肘静脉注入后行横断面、矢状面和冠状面T1WI扫描,扫描参数同平扫。 2结果 2.1垂体瘤17例垂体腺瘤13例,垂体微腺瘤4例。垂体腺瘤MRI平扫,呈圆形或类圆形,见分叶,T1WI呈中等偏低信号,T2WI呈中等偏高信号;4例瘤内发生坏死囊变,囊变部分T1WI呈低信号,T2WI呈高信号;3例瘤内出血(亚急性期),T1WI及T2WI呈均呈高信号。10例肿瘤较大,突破鞍隔向上生长压迫视交叉,且包绕两侧的颈内动脉和海绵窦,形成较典型的“腰身征”(图1)。9例增强扫描肿瘤实性成分明显均匀强化(图2)。 4例垂体微腺瘤,MRI平扫表现为垂体不对称增大,增大垂体上缘局限性上突,垂体柄向对侧移位,平扫T1WI呈稍低信号,T2WI呈稍高信号。 2.2颅咽管瘤6例呈类圆形或不规则形。均位于鞍上,突向鞍上池。囊实性4例,实性1例,囊性1例。囊性成分在T1WI呈低或稍高信号,T2WI呈高信号;实性部分T1WI呈等信号,T2WI呈高信号,信号欠均匀(图3)。增强扫描3例,肿瘤囊壁及实性部分明显强化,囊性部分无强化(图4)。 2.3脑膜瘤3例呈类圆形,形态较规则,边缘清晰。平扫T1WI呈等或稍低信号,T2WI呈等信号或稍高信号(图5,6)。1例增强扫描肿瘤明显较均匀强化,见相邻脑膜明显增厚强化,即“脑膜尾征”。 3讨论 鞍区解剖结构较复杂,鞍内为垂体,鞍上是视交叉,鞍前下为蝶窦,鞍后为斜坡,两侧为海绵窦。鞍区肿瘤种类较多。MRI具有良好的软组织对比度,多序列、多方位成像,不但容易

磁共振模拟(MRSIM)_肿瘤放疗模拟技术新前沿

磁共振模拟——站在肿瘤放疗的最前沿 磁共振模拟 站在肿瘤放疗的最前沿
黄岁平 博士 关键词:磁共振模拟 MRSIM 据有关调查显示,目前全世界范围内的肿瘤患者,约有 70%需要接受不同程 度的放射治疗,以达到治愈肿瘤或缓解症状、改善生活质量的目的。能够最大限度 地把放射剂量集中到病变(靶区)内,杀灭肿瘤细胞,同时使其周围正常组织和器 官少受或免受不必要的照射,从而得到保护,是肿瘤放射治疗一直以来追求的目 标。 20世纪 70年代 CT的使用是放射治疗计划所取得的一个巨大进步。引入 CT 图像的模拟增加了临床医生对靶区体积的空间意识,从而较之原有的传统治疗的靶 区体积(由垂直 X线胶片确定)产生了一个质的改变-----CT扫描得到一系列断层 轴面,经过多种方式的三维重建,形成一个三维计划,这使得适形放射治疗 (CRT)的概念得以实现。但 CT却有一些先天的局限性----它只对具有不同的电 子密度或 X线吸收特征的组织结构具有较好的分辨率(如空气对骨或对水或软组 织),但如果没有明显的脂肪或空气界面,则对具有包括肿瘤在内的相似电子密度 的不同软组织结构区分较差。相比之下,磁共振最大的优点就是对具有相似电子密 度的软组织有较强的显示能力并且能区分其特征。在这种情况下,磁共振能够更好 的提供靶区的轮廓,不但包括肿瘤的范围,而且还包括临近的重要软组织器官。通 过更准确地定位肿瘤靶区、避免危及临近的组织器官、以及提高局部控制率等。
一.磁共振模拟独特的优越性。
事实上,临床医生早已意识到诊断性的 MRI扫描对肿瘤体积的确定具有相当 重要的信息补充,引入 MR图像作定位由来已久。最早通常是由医生用肉眼在 MRI上观察疾病的范围,然后手工将数据转移至模拟胶片或 CT扫描片上,这种方 法极易产生解释和转译错误。第二种方式是通过使用一种放大投影系统将 MRI图 像叠加到模拟胶片或 CT图像上进行融合处理的 MR辅助的模拟。第三种更加定量 的方式是将 MRI图像与 CT图像进行融合,那样就可以将 MRI上具有较高分辨率 的肿瘤图像与几何精确的 CT图像中电子密度信息结合起来。但以上任意一种融合 方式都是在放疗过程中增加了一个步骤,也就是说,延长了整个放疗过程花费的时 间,加重了医生的工作任务,加大了病人的经济负担,也增加了误差的可能性及偏 离度。现在我们已经很明确对于中枢神经系统部位如颅底和脊髓部位的肿瘤,以及 软组织肉瘤和盆腔肿瘤,MRI成像已远优于 CT成像。这些情况下,就可以单纯借 助 MR图像完成模拟工作,因为 MRI有许多优于 CT方面的特点, 直接利用 MR 图像进行模拟定位有着不可替代的优越性:

肿瘤学基础知识-1

肿瘤学基础知识-1 (总分:100.00,做题时间:90分钟) 一、A1型题(总题数:43,分数:100.00) 1.我国目前居恶性肿瘤死亡前四位的恶性肿瘤是 (分数:3.00) A.肺癌、肝癌、胃癌、食管癌√ B.胃癌、肺癌、乳腺癌、结直肠癌 C.肝癌、肺癌、胃癌、乳腺癌 D.肺癌、肝癌、鼻咽癌、乳腺癌 E.胃癌、肺癌、乳腺癌、宫颈癌 解析:[解析] 我国20世纪70年代恶性肿瘤死亡顺序为胃癌、食管癌、肝癌、肺癌和宫颈癌;20世纪90年代的死亡顺序为胃癌、肝癌、肺癌、食管癌和结直肠癌;2000年为肺癌、肝癌、胃癌、食管癌和结直肠癌。我国正处在由发展中国家高发癌谱向发达国家高发癌谱的过渡时期,已经形成两者共存的局面,加大了恶性肿瘤的防治难度。 2.肿瘤目前成为多发病、常见病的主要原因不包括 (分数:3.00) A.以往严重威胁人类健康的感染性疾病得到了控制 B.环境致癌物愈来愈多 C.人类平均寿命延长 D.肿瘤诊断率提高 E.世界经济一体化√ 解析: 3.八种常见恶性肿瘤不包括 (分数:3.00) A.肺癌 B.乳腺癌 C.大肠癌 D.胰腺癌√ E.食管癌 解析:[解析] 八种常见恶性肿瘤是肺癌、胃癌、乳腺癌、大肠癌、口腔癌、肝癌、宫颈癌、食管癌,胰腺癌相对发病率比较低。 4.恶性肿瘤占全球人口死亡原因的 (分数:3.00) A.第一位 B.第二位 C.第三位√ D.第四位 E.第五位 解析:[解析] 根据世界卫生组织2002年的统计,恶性肿瘤已经是全球第三大死因。心脏病、卒中、癌症为全球死亡原因的前三位。 5.目前全世界发病率最高的恶性肿瘤是 (分数:3.00) A.肺癌√ B.胃癌 C.乳腺癌 D.结直肠癌 E.肝癌

磁共振波谱分析MRS

磁共振波谱分析MRS MRS 为目前唯一能无创性观察活体组织代谢及生化变化的技术。在相同的磁场环境下,处于不同化学环境中的同一种原子核,由于受到原子核周围不同电子云的磁屏蔽作用,而具有不同的共振频率。波谱分析就是利用化学位移研究分子结构,化学位移的程度具有磁场依赖性、环境依赖性。NAA:N-乙酰天门冬氨酸,神经元活动的标志位于: 2.02ppmCreatine:Cr肌酸,脑组织能量代谢的提示物,峰度相对稳定,常作为波谱分析时的参照物,位于: 3.05ppm Choline:Cho胆碱,细胞膜合成的标志位于:3.20ppm Lipid:脂质,细胞坏死提示物位于:0.9-1.3ppm Lactate:乳酸,无氧代谢的标志位于:1.33-1.35ppm Glutamate:Glx谷氨酰氨,脑组织缺血缺氧及肝性脑病时增加位于:2.1-2.4ppmmI:肌醇代表细胞膜稳定性,判断肿瘤级别位于:3.8ppmN-乙酰基天门冬氨酸(NAA) ·正常脑组织1H MRS中的第一大峰,位于 2.02-2.05ppm ·与蛋白质和脂肪合成,维持细胞内阳离子浓度以及钾、钠、钙等阳离子通过细胞和维持神经膜的兴奋性有关·仅存在于神经元内,而不会出现于胶质细胞,是神经元密度和生存的标志·含量多少反映神经元的功能状况,降低的程度反映了其受损的大小

肌酸(Creatine) ·正常脑组织1H MRS中的第二大峰,位于3.03ppm附近,有时在3.94ppm 处可见其附加峰(PCr)·此代谢物是脑细胞能量依赖系统的标志·能量代谢的提示物,在低代谢状态下增加,在高代谢状态下减低·峰值一般较稳定,常作为其它代谢物信号强度的参照物。 胆碱(Choline)·位于3.2 ppm附近,包括磷酸胆碱、磷酯酰胆碱和磷酸甘油胆碱·细胞膜磷脂代谢的成分之一,参与细胞膜的合成和蜕变,从而反映细胞膜的更新·Choline 峰是评价脑肿瘤的重要共振峰之一,快速的细胞分裂导致细胞膜转换和细胞增殖加快,使Cho峰增高·Cho峰在几乎所有的原发和继发性脑肿瘤中都升高·恶性程度高的肿瘤中,Cho/Cr比值显示增高· 同时Cho是髓鞘磷脂崩溃的标志,在急性脱髓鞘疾病,Cho水平显著升 乳酸(Lac)·位于1.32ppm,由两个共振峰组成·TE=144,乳酸双峰向下;TE=288,乳酸双峰向上;·正常情况下,细胞代谢以有氧代谢为主,检测不到Lac峰,或只检测到微量·此峰出现说明细胞内有氧呼吸被抑制,糖酵解过程加强·脑肿瘤中,Lac出现提示恶性程度较高,常见于多形胶质母细胞瘤中·Lac也可以积聚于无代谢的囊肿和坏死区内,脑肿瘤、脓肿及梗塞时会出现乳酸峰。 脂质(Lip)·位于1.3、0.9、1.5和6.0 ppm处,分布代表甲

磁共振波谱

磁共振波谱(MR Spectroscopy,MRS) 是医学影像学近年来发展的新的检查手段,作为一种无创伤性研究活体器官组织代谢、生化变化及化合物定量分析的方法,随着MRI、MRS装置不断改进,软件开发及临床研究的不断深入,人们通过MRS对各种疾病的生化代谢的认识将不断提高,为临床的诊断、鉴别、分期、治疗和预后提供更多有重要价值的信息。1H MRS可对神经元的丢失、神经胶质增生进行定量分析,31P磁共振波谱可对心肌梗塞能量代谢变化进行评价。MRS以分子水平了解人体生理上的变化,从而对疾病的早期诊断、预后及鉴别诊断、疗效追踪等方面,做出更明确的结论。本文从MRS波谱成像的基本原理和序列设计方面简要作一介绍。 在理想均匀的磁场中,同一种质子(如1H)理论上应具有相同的共振频率。事实上,当频率测量精度非常高时会发现,即使同一种核处在相同磁场中,它们的共振频率也不完全相同,而是在一个有限的频率范围内。这是由于原子核外的电子对原子核有磁屏蔽作用,它使作用于原子核的磁场强度小于外加磁场的强度,其屏蔽作用大小用屏蔽系数s来表示,被这种屏蔽作用削弱掉的磁场为sB,与外加磁场方向相反。外加磁场越强sB越大,原子核实际感受到的磁场强度与外加磁场强度之差越大。此外,s还与核的特性和化学环境有关。核的化学环境指核所在的分子结构,同一种核处在不同的分子中,甚至在同一分子的不同位置或不同的原子基团中,它周围的电子数和电子的分布将有所不同。因而,受到电子的磁屏蔽作用的程度不同,如图1所示。考虑到电子的磁屏蔽作用,决定共振频率的拉莫方程

应表示为:w=gBeff=gB0(1-s) 由上式可知,在相同外加磁场作用下,样品中有不同化学环境的同一种核,由于它们受磁屏蔽的程度(s的大小)不同,它们将具有不同的共振频率。如在MRS中,水、NAA(N-乙酰天门冬氨酸)、Cr(肌酸)、Cho(胆碱)、脂肪的共振峰位置不同,这种现象就称为化学位移(Chemical Shift)。即因质子所处的化学环境不同,也就是核外电子云密度不同和所受屏蔽作用的不同,而引起相同质子在磁共振波谱中吸收信号位置的不同,如图2所示。实际上,研究某种样品物质的磁共振频谱时,常选用一种物质做参考基准,以它的共振频率作为频谱图横坐标的原点。并且,将不同种原子基团中的核的共振频率相对于坐标原点的频率之差作为该基团的化学位移。显然,这种用频率之差表示的化学位移的大小与磁场强度高低有关。在正常组织中,代谢物在物质中以特定的浓度存在,当组织发生病变时,代谢物浓度会发生改变。磁共振成像主要是对水和脂肪中的氢质子共振峰进行测量和脂肪中的氢质子共振峰进行测量,在1.5T场强下水和脂肪共振频率相差220Hz (化学位移),但是在这两个峰之间还有多种浓度较低代谢物所形成的共振峰,如NAA、Cr、Cho等,这些代谢物的浓度与水和脂肪相比非常低。MRS需要通过匀场抑制水和脂肪的共振峰,才能使这些微弱的共振峰群得以显示。 下面是研究MRS谱线时常用到的参数: (1)共振峰的共振频率的中心—峰的位置V: 化学位移决定磁共振波谱中共振峰的位置。 (2)共振峰的分裂。

磁共振在脑部及脑部肿瘤中的作用

磁共振在脑部及脑部肿瘤中的作用 关键词:磁共振,脑部肿瘤,医疗器械 摘要: 本文介绍了磁共振在医学中的应用,特别是在脑部中的作用。重点介绍了磁共振的历史发展和其的优缺点,并解释了国内外市场现状和竞争情况。在国内技术有着明显劣势时,希望国内公司努力研发,早日赶上国际前列的磁共振公司。 The role of magnetic resonance in brain and brain tumors Keywords: magnetic resonance, brain tumor, medical device Summary: This paper describes the application of magnetic resonance in medicine, especially in the brain. It mainly introduces the historical development of magnetic resonance and its advantages and disadvantages, and explains the current situation and competition situation of domestic and foreign market. In the domestic technology has a significant disadvantage, the hope that domestic companies to research and development, as soon as possible to catch up with the international forefront of magnetic resonance companies. 名词示意: 磁共振指的是自旋磁共振(spin magnetic resonance)现象。其意义上较广,包含核磁共振(nuclear magnetic resonance, NMR)、电子顺磁共振(electron paramagnetic resonance, EPR)

肿瘤学(主治医学)基础知识部分及答案详解

基础知识 一、A型题 1.规范化癌症疼痛处理的目的 A.缓解疼痛,改善功能,延长生存时间 B.缓解疼痛,控制肿瘤生长,延长生存时间 C.缓解疼痛,改善功能,提高生活质量 D.缓解疼痛,规范医疗质量 E.延长生存时间,改善生活质量 正确答案:C 2.目前流行病学调查研究显示导致肺癌发生率增加的最主要因素是 A.大气污染 B.支气管炎 C.吸烟 D.哮喘 E.肺气肿 正确答案:C解题思路:世界上绝大多数国家承认85%的男性肺癌和46%的女性肺癌是由于吸烟引起的。很多发展中国家吸烟的人越来越多,肺癌患者也日益增多;发达国家由于宣传戒烟,肺癌的发生率已不再增高。目前研究显示大气污染与肺癌的发病也有一定相关性。 3.止痛药物治疗的基本原则不包括 A.按阶梯给药 B.口服给药 C.按时给药 D.个体化给药 E.不要随便调整剂量 正确答案:E 4.目前全世界发病率最高的恶性肿瘤是 A.肺癌 B.胃癌 C.乳腺癌 D.结直肠癌 E.肝癌 正确答案:A解题思路:目前,由于吸烟和工业化的发展,肺癌是全世界发病率最高的恶性肿瘤,其次为乳腺癌,第三为结直肠癌。 5.非复方吗啡口服剂量15mg q4h换算为非肠道用药的等效镇痛剂量为 A.5mg q4h B.4mg q6h C.10mg q4h D.12mg q8h E.2mg q8h 正确答案:A解题思路:全天吗啡口服药物总量的1/3为非肠道用药的剂量。 6.关于肿瘤综合治疗的定义正确的是 A.手术+放疗+化疗 B.手术+放疗+化疗+靶向治疗

C.手术+放疗+化疗+免疫治疗 D.手术+放疗+化疗+生物治疗 E.根据患者的具体情况,有计划地合理应用现有的治疗手段,以期更好地提高治愈率正确答案:E 7.下列药物中不属于麻醉药品的是 A.度冷丁 B.芬太尼 C.强痛定 D.吗啡 E.氢可酮 正确答案:C 8.环境致癌因素包括 A.生物致癌因素 B.物理致癌因素 C.化学致癌因素 D.以上均是 E.以上均不是 正确答案:D 9.关于遗传因素和肿瘤发生的关系,说法错误的是 A.有些肿瘤具有明显的家族聚集现象 B.环境因素是肿瘤发生的始动因素,而个人的遗传特征决定肿瘤的易感性 C.暴露于同一致癌物环境中的人群均会患癌 D.抑癌基因的变异或丢失可致癌 E.癌基因的激活可致癌 正确答案:C解题思路:肿瘤的发生和发展是十分复杂的,除了外界致癌因素的作用外,机体的内在因素也起着重要作用,即人的遗传特征决定肿瘤的易感性。所以即使处于相同的致癌物环境中,有些人患肿瘤,而另外一些人却能活过正常寿命期,提示个体因素如遗传特征在肿瘤的发生中也起重要作用。 10.恶性肿瘤占全球人口死亡原因的 A.第一位 B.第二位 C.第三位 D.第四位 E.第五位 正确答案:C解题思路:根据世界卫生组织2002年的统计,恶性肿瘤已经是全球第三大死因。心脏病、卒中、癌症为全球死亡原因的前三位。 11.阿片类药物最常见的不良反应是 A.呼吸抑制 B.嗜睡 C.便秘 D.眩晕 E.腹泻 正确答案:C解题思路:恶心呕吐、便秘、呼吸抑制、嗜睡、眩晕等都属于阿片类药物的不良反应,但最常见的是恶心呕吐和便秘。在给予阿片类药物控制疼痛时,要同时辅助给

磁共振波谱技术介绍

磁共振波谱(MR spectroscopy,MRS)介绍 磁共振波谱(MR spectroscopy,MRS)是目前唯一能无创伤地探测活体组织化学特性的方法。在许多疾病中,代谢改变先于病理形态改变,而MRS对这种代谢改变的潜在敏感性很高,故能提供信息以早期检测病变。磁共振波谱mRS)研究人体细胞代谢的病理生理改变,而常规MRI则是研究人体器官组织大体形态的病理生理改变,但二者的物理学基础都是核共振现象。 一、MRS的原理 磁共振信号的共振频率由两个因素决定①旋磁比r,即原子的内在特性②核所处位置的磁场强度。 核所受的磁场主要由外在主磁场(B。)来诀定,但是核所受的磁场强度也与核外电子云及邻近原子的原子云有关。电子云的作用会屏蔽主磁场的作用,使着核所受的磁场强度小于外加主磁场。这种由于电子云的作用所产生的磁场差别被称为化学位移。因此,对于给定的外磁场,不同核所处的化学环境不一样,从而产生共振频率的微小差别,导致磁共振谱峰的差别,从而识别不同代谢产物及其浓度。 MRS可检测许多重要化合物的浓度,根据这些代谢物含量的多少可以分析组织代谢的改变,1H-MRS可测定 12种脑代谢产物和神经递质的共振峰,N-乙酸门冬氨酸(NAA)、肌酸(Cr)磷酸肌酸(PCr)胆碱(cho)肌醇(MI)谷氨酸胺Gln)谷氨酸盐(Glu)乳酸(Lac)等。生物中,许多生物分子都有31P,这些化合物参与细胞的能量代谢和与生物膜有关的磷脂代谢,31P-MRS被广泛用在对脑组织能量代谢及酸碱

平衡的分析上,可以检测磷酸肌酸(PCr人无机磷酸盐(PI)α- ATP、β-ATP、γ—ATP的含量和细胞内的 PH值。 二、MRS的临床应用 1.正常人的脑MRS MR波谱变化可反映神经元生长分化,脑能量代谢和髓鞘分化瓦解过程改变。NAA是哺乳动物神经系统中普遍存在的化合物,几乎所有的NAA均存在于神经对内,目前将NAA作为反映神经元功能的内标物。正常人有很高的NAA/Cr)值,NAA下降提示神经元的缺失和破坏。Cho 和 Cr在神经元和神经胶质细胞内均被发现,但细胞研究证明,星形胶质和少突胶质细胞内Cho和Cr含量明显高于神经元,故Cho和 Cr增加提示有神经胶质增生。由于NAA减少或Cho、Cr增加,导致了 NAA/(Cho+Cr)上值降低,上值常作为反映神经元功能的指标。此外,1H-MAS发现NAA在人出生后一年内增加近两倍,肌酸信号也相应增加,NAA/Cr。及Giu-n/Cr随年龄增长而上升,MI/Cr随年龄的增长而下降,31P-MRS研究也发现,磷酸一脂(PME)的信号相对于其他代谢产物来说随年龄增加衰减,磷酸肌酸则相反,这说明,通过定量分析脑组织代谢产物的MRS,可了解脑组织的发育成熟度,同时也提示我们在观察病理性波谱时,应考虑到年龄相关性变化。 2.癫痫的MRS 1H-MAS显示癫痫灶侧近中颞叶内 NAA峰值降低,减少 22% ChO 和 Cr分别增加 25%和 15%。 NAA的减少说明癫痛灶内神经元的缺失、受损或功能活动异常。Cr和 Cho升高反映胶质细胞的增生,研究

磁共振波谱成像的基本原理

磁共振波谱成像的基本原理、序列设计与临床应用 磁共振波谱(MR Spectroscopy,MRS)是医学影像学近年来发展的新的检查手段,作为一种无创伤性研究活体器官组织代谢、生化变化及化合物定量分析的方法,随着MRI、MRS装置不断改进,软件开发及临床研究的不断深入,人们通过MRS对各种疾病的生化代谢的认识将不断提高,为临床的诊断、鉴别、分期、治疗和预后提供更多有重要价值的信息。1H MRS可对神经元的丢失、神经胶质增生进行定量分析,31P磁共振波谱可对心肌梗塞能量代谢变化进行评价。MRS以分子水平了解人体生理上的变化,从而对疾病的早期诊断、预后及鉴别诊断、疗效追踪等方面,做出更明确的结论。本文从MRS波谱成像的基本原理和序列设计方面简要作一介绍。 一磁共振波谱的基本原理 在理想均匀的磁场中,同一种质子(如1H)理论上应具有相同的共振频率。事实上,当频率测量精度非常高时会发现,即使同一种核处在相同磁场中,它们的共振频率也不完全相同,而是在一个有限的频率范围内。这是由于原子核外的电子对原子核有磁屏蔽作用,它使作用于原子核的磁场强度小于外加磁场的强度,其屏蔽作用大小用屏蔽系数s来表示,被这种屏蔽作用削弱掉的磁场为sB,与外加磁场方向相反。外加磁场越强sB越大,原子核实际感受到的磁场强度与外加磁场强度之差越大。此外,s还与核的特性和化学环境有关。核的化学环境指核所在的分子结构,同一种核处在不同的分子中,甚至在同一分子的不同位置或不同的原子基团中,它周围的电子数和电子的分布将有所不同。因而,受到电子的磁屏蔽作用的程度不同,如图1所示。考虑到电子的磁屏蔽作用,决定共振频率的拉莫方程应表示为:w=gBeff=gB0(1-s) 由上式可知,在相同外加磁场作用下,样品中有不同化学环境的同一种核,由于它们受磁屏蔽的程度(s的大小)不同,它们将具有不同的共振频率。如在MRS中,水、NAA(N-乙酰天门冬氨酸)、Cr(肌酸)、Cho(胆碱)、脂肪的共振峰位置不同,这种现象就称为化学位移(Chemical Shift)。即因质子所处的化学环境不同,也就是核外电子云密度不同和所受屏蔽作用的不同,而引起相同质子在磁共振波谱中吸收信号位置的不同,如图2所示。实际上,研究某种样品物质的磁共振频谱时,常选用一种物质做参考基准,以它的共振频率作为频谱图横坐标的原点。并且,将不同种原子基团中的核的共振频率相对于坐标原点的频率之差作为该基团的化学位移。显然,这种用频率之差表示的化学位移的大小与磁场强度高低有关。在正常组织中,代谢物在物质中以特定的浓度存在,当组织发生病变时,代谢物浓度会发生改变。磁共振成像主要是对水和脂肪中的氢质子共振峰进行测量和脂肪中的氢质子共振峰进行测量,在1.5T场强下水和脂肪共振频率相差220Hz (化学位移),但是在这两个峰之间还有多种浓度较低代谢物所形成的共振峰,如NAA、Cr、Cho等,这些代谢物的浓度与水和脂肪相比非常低。MRS 需要通过匀场抑制水和脂肪的共振峰,才能使这些微弱的共振峰群得以显示。 下面是研究MRS谱线时常用到的参数: (1)共振峰的共振频率的中心—峰的位置V: 化学位移决定磁共振波谱中共振峰的位置。 (2)共振峰的分裂。 (3)共振峰下的面积和共振峰的高度: 在磁共振波谱中,吸收峰占有的面积与产生信号的质子数目成正比。在研究波谱时,共振峰下的面积比峰的高度更有价值,因为它不受磁场均匀度的影响,对噪音相对不敏感。 (4)半高宽: 半高宽是指吸收峰高度一半时吸收峰的宽度,它代表了波谱的分辨率。 原子核自旋磁矩之间的相互作用称为自旋自旋耦合。高分辨率磁共振频谱可以观察到自旋自旋耦合引起的共振谱线的裂分,裂分的数目和幅度是相互耦合的核的自旋和核的数目的指征。在一个氢核和一个氢核发生自旋耦合的情况下,由于一个氢核的磁矩有顺磁场和逆磁场两种可能的取向,因此它对受耦合作用的氢核可能产生两个不同的附加磁场的作用,这引起受耦合的氢核的共振由一个单峰分裂为二重峰。如此类推,在两个氢核和一个氢核发生耦合的情况下,共振谱由一个分裂为三个。 磁共振波谱仪不仅可以描绘频谱,还可以描绘频谱的积分曲线,积分曲线对应共振峰的面积。峰的

-年 中南大学博士 肿瘤学基础试题及答案

2013年中南大学博士肿瘤学基础 一、简答题 1. 简述肿瘤浸润的机制 2. 简述肿瘤的遗传易感性 3. 简述细胞凋亡的生物学意义 4. 何谓癌基因、原癌基因与抑癌基因 5. 何谓肿瘤的基因治疗 基因治疗是以改变人的遗传物质为基础的生物医学治疗,是将人的正常基因或有治疗 作用的基因通过一定方式导入人体靶细胞,直接针对疾病的根源——异常的基因本身而发 挥治疗作用,从而达到治疗疾病的目的。 基因疗法综合应用分子生物学、分子遗传学、分子病毒学、细胞生物学等学科的最新 研究成果 基因疗法就是基因治疗产品进入细胞后再产生目的蛋白质或多肽,从而发挥特异的生 物治疗作用。临床实验证明,基因治疗的疗效高于单纯放、化疗疗效约 3 倍;治疗非小细胞癌,60% 的患者肿瘤完全消退或部分消退;对乳腺癌的疗效达到90% 。 基因治疗药物作为一种基因工程改造的病毒颗粒,对机体神经系统、内分泌系统和免 疫系统具有刺激作用,可综合调控机体的神经—内分泌—免疫网络,产生一系列的神经因子、激素及细胞因子,增强病人的免疫系统功能,有效促进NK 细胞、CTL 细胞对肿瘤细胞的杀灭;并能有效改善和增强病人各相关器官系统的生理功能,肿瘤病人(尤其是晚 期病人)全身情况很快好转,如精神状况好转、食欲增强等。其作用原理是:通过转录调 控多种功能不同的分子的表达,对肿瘤细胞的生存与增殖信号途径、血管生成及物质能量 代谢途径、放化疗抗性、浸润转移等多个方面的活性进行抑制,达到“此消彼长”的效果,协同正面攻势,一举导致细胞凋亡。 基因疗法是通过口服或注射基因药物来抑制肿瘤源发和扩散,使癌细胞主动性凋亡, 以达到延长生命的效果。与传统的手术及放、化疗方法相比,基因治疗基本无副作用,对 正常细胞无损伤、没用痛苦,不会像放化疗那样对人体有很多附加的损害和不良的反应。 特别对那些晚期的放、化疗都没有效果的肿瘤患者尤为有效。 把基因治疗与放疗、化疗、手术、中医中药等传统治疗方法相结合,为肿瘤治疗注入 新血液。 6. 生物反应调节剂的作用机制是什么 生物反应调节剂(biological response modifiers,BRM)又名生物调节剂,是免疫治疗剂的新术语。凡某一类物质主要通过免疫系统直接或间接增强机体的抗肿瘤效应,并对肿 瘤有治疗效果的药剂或方法,都可称为生物反应调节剂。 Michell对生物反应调节剂提出的定义: (1)直接增强宿主抗肿瘤反应,如细胞因子等;(2)减少抑制性机制,间接增强宿 主抗肿瘤反应;(3)增强宿主对细胞毒性物质的耐受能力;(4)改变肿瘤细胞膜结构增 强其免疫原性,或使肿瘤细胞对自身免疫或抗肿瘤药物更敏感;(5)预防或逆转细胞转化。 这些物质包括对机体免疫功能有增强作用、调节作用及能恢复、重建免疫功能的药物,多种细胞因子如淋巴因子、单核因子、肿瘤生长抑制因子和胸腺因子等;免疫活性细胞如 细胞毒性T淋巴细胞、淋巴因子激活的杀伤细胞(LAK细胞),细胞因子激活的肿瘤浸润 淋巴细胞(TIL细胞)等;单克隆抗体、某些非特异性刺激物质如预防结核的卡介苗、短 小棒状杆菌等;还有化学合成类药物如左旋咪唑等。此外,某些中药、多糖类(如香菇多

核磁共振波谱分析

核磁共振波谱分析 1.基本原理 核磁共振是在电磁波的作用下,原子核在外磁场中的磁能级之间的共振跃迁现象。因此,要产生核磁共振,首先原子核必须具有磁性。自旋量子数I=0的原子核没有磁性,自旋量子数I≠0的原子核具有磁性。 I=1/2:1H,13C,15N,19F,31P,77Se,113Cd,119Sn,195Pt. I=3/2:7Li,9Be,11B,23Na,33S,35Cl,37Cl,39K,63Cu,79Br 此外还有I=5/2,7/2,9/2,1,2,3等。 I=1/2的原子核,电荷均匀分布在原子核表面,核磁共振的谱线窄,最适合核磁共振检测。1H,13C原子核是最为常见,其次是15N,19F,31P核。 除了原子核具有磁性外,要产生核磁共振,还必须外加一静磁场和一交变磁场。在磁场中,通电线圈产生磁距,与外磁场之间的相互作用使线圈受到力矩的作用而发生偏转。同样在磁场中,自旋核的赤道平面也受到力矩作用而发生偏转,其结果是核磁距围绕磁场方向转动,这就是拉莫尔进动。

其进动频率与外加磁场成正比,即:v=(?/2π)*H0。 V—进动频率; H0—外磁场强度; ?—旋磁比。 在相同的外磁场强度作用下,不同的原子核以不同的频率进动。如果在垂直于外磁场方向加一交变磁场H1,其频率v1等于原子核的进动频率v。此时,就产生共振吸收现象。即 使原子核在外磁场中的磁能级之间产生共振跃迁现象,也即核磁共振。 2.核磁共振波普在化学中的应用 2.1 基本原则 从核磁共振波谱得到的信息主要有化学位移、偶合常数、峰面积、弛豫时间等。 化学位移在有机化合物中,各种氢核周围的电子云密度不同(结构中不同位置)共振频率有差异,即引起共振吸收峰的位移,这种现象称为化学位移。化学位移的标准:相对标准TMS(四甲基硅烷)位移常数δ =0。与裸露的氢核相比,TMS的化学位移最大,但规定 TMS TMS=0,其他种类氢核的位移为负值,负号不加。采用此标准的原因:(1)12个氢处于完全相同的化学环境,只产生一个尖峰;(2)屏蔽强烈,位移最大;只在图谱中远离其他大多数待研究峰的高磁场区有一个尖峰;(3)易溶于有机溶剂,沸点低,易回收。影响因素:(1)诱导效应:吸电子,电子云降低,屏蔽下降,低场出现,图左侧;(2)共轭效应;(3)磁各相异性效应;(4)范得华效应;(5)氢键去屏蔽效应:电子云密度降低,产生去屏蔽作用,化学位移向低场;(6)溶剂效应。 弛豫过程:大量(而不是单个)原子核的运动规律。高能态原子核通过非辐射形式放出能量而回到低能态的过程叫弛豫过程。 屏蔽效应:核受周围不断运动着的电子影响,使氢核实际受到的外磁场作用减小, 这种对抗外磁场的作用为屏蔽效应,通过屏蔽效应可分析核周围情况。δ小,屏蔽强,σ大,共振需要的磁场强度大,在高场出现,图右侧;δ大,屏蔽弱,σ小,共振需要的磁场强度小,在低场出现,图左侧。 自选耦合和自旋裂分:分峰是由于分子内部邻近氢核自旋的相互干扰引起的,这种邻近氢核自旋之间的相互干扰作用称为自旋偶合,由自旋偶合引起的谱线增多现象称为自旋裂分。 n+1规律:当某基团上的氢有n个相邻氢时,它将裂分为n+1个峰。若这些相邻氢核处于不同的化学环境中,如一种环境为n个,另一种为n’个,则将裂分为(n+1)(n’+1)个峰。

核磁共振波谱分析报告

核磁共振波谱分析 1946年美国科学家布洛赫(Bloch)和珀塞尔(Purcell)两位物理学家分别发现在射频*(无线电波*0.1~100MHZ,106~109μm)的电磁波能与暴露在强磁场中的磁性原子核相互作用,引起磁性原子核在外磁场中发生磁能级的共振跃迁,从而产生吸收信号,他们把这种原子对射频辐射的吸收称为核磁共振(NMR)。NMR 和红外光谱,可见—紫外光谱相同之处是微观粒子吸收电磁波后在不同能级上跃迁。引起核磁共振的电磁波能量很低,不会引起振动或转动能级跃迁,更不会引起电子能级跃迁。.根据核磁共振图谱上吸收峰位置、强度和精细结构可以研究分子的结构。化学家们发现分子的环境会影响磁场中核的吸收,而且此效应与分子 结构密切相关。1950年应用于化学领域,发现CH 3CH 2 OH中三个基团H吸收不同。 从此核磁共振光谱作为一种对物质结构(特别是有机物结构)分析的确良非常有效的手段得到了迅速发展。1966年出现了高分辨核共振仪,七十年代发明了脉冲傅立叶变换核磁共振仪,以及后来的二维核磁共振光谱(2D-NMR),从测量1H 到13C、31P、15N,从常温的1~2.37到超导的5T以上,新技术和这些性能优异的新仪器都核磁共振应用范围大大扩展,从有机物结构分析到化学反应动力学,高分子化学到医学、药学、生物学等都有重要的应用价值。 §4-1核磁共振原理 一、原子核自旋现象 我们知道原子核是由带正电荷的原子和中子组成,它有自旋现象原子核大都围绕着某个轴作旋转运动,各种不同的原子核,自旋情况不同。原子核的自旋情况在量子力学上用自旋量子数I表示,有三种情况: ①I=0,这种原子核没有自旋现象,不产生共振吸收(质量数为偶数(M),电子数,原子数为偶数(z)为12G,16O,32S) ②I=1、2、3、…、n,有核自旋现象,但共振吸收复杂,不便于研究。 ③I=n/2(n=1、2、3、5、…)有自旋现象,n〉1时,情况复杂,n=1时,I=1/2,

脑磁共振波谱分析的临床应用

脑磁共振波谱分析的临床应用 苏州大学附属一院影像中心丁乙 磁共振波谱(MR spectroscopy,MRS)是目前唯一能无创伤地探测活体组织化学特性的方法。在许多疾病中,代谢改变先于病理形态改变,而MRS对这种代谢改变的潜在敏感性很高,故能提供信息以早期检测病变。磁共振波谱mRS)研究人体细胞代谢的病理生理改变,而常规MRI则是研究人体器官组织大体形态的病理生理改变,但二者的物理学基础都是核共振现象。 一、MRS的原理 磁共振信号的共振频率由两个因素决定①旋磁比r,即原子的内在特性②核所处位置的磁场强度。 核所受的磁场主要由外在主磁场(B。)来诀定,但是核所受的磁场强度也与核外电子云及邻近原子的原子云有关。电子云的作用会屏蔽主磁场的作用,使着核所受的磁场强度小于外加主磁场。这种由于电子云的作用所产生的磁场差别被称为化学位移。因此,对于给定的外磁场,不同核所处的化学环境不一样,从而产生共振频率的微小差别,导致磁共振谱峰的差别,从而识别不同代谢产物及其浓度。 MRS可检测许多重要化合物的浓度,根据这些代谢物含量的多少可以分析组织代谢的改变,1H-MRS可测定12种脑代谢产物和神经递质的共振峰,N-乙酸门冬氨酸(NAA)、肌酸(Cr)磷酸肌酸(PCr)胆碱(cho)肌醇(MI)谷氨酸胺Gln)谷氨酸盐(Glu)乳酸(Lac)等。生物中,许多生物分子都有31P,这些化合物参与细胞的能量代谢和与生物膜有关的磷脂代谢,31P-MRS被广泛用在对脑组织能量代谢及酸碱平衡的分析上,可以检测磷酸肌酸(PCr人无机磷酸盐(PI)α- A TP、β-A TP、γ—ATP的含量和细胞内的PH 值。 二、MRS的临床应用 1.正常人的脑MRS MR波谱变化可反映神经元生长分化,脑能量代谢和髓鞘分化瓦解过程改变。NAA是哺乳动物神经系统中普遍存在的化合物,几乎所有的NAA均存在于神经对内,目前将NAA作为反映神经元功能的内标物。正常人有很高的NAA/Cr)值,NAA下降提示神经元的缺失和破坏。Cho和Cr在神经元和神经胶质细胞内均被发现,但细胞研究证明,星形胶质和少突胶质细胞内Cho和Cr含量明显高于神经 元,故Cho和Cr增加提示有神经胶质增生。由于NAA减少或Cho、Cr增加,导致了NAA/(Cho+Cr)上值降低,上值常作为反映神经元功能的指标。此外,1H-MAS发现NAA在人出生后一年内增加近两倍,肌酸信号也相应增加,NAA/Cr。及Giu-n/Cr随年龄增长而上升,MI/Cr随年龄的增长而下降,31P-MRS 研究也发现,磷酸一脂(PME)的信号相对于其他代谢产物来说随年龄增加衰减,磷酸肌酸则相反,这说明,通过定量分析脑组织代谢产物的MRS,可了解脑组织的发育成熟度,同时也提示我们在观察病理性波谱时,应考虑到年龄相关性变化。 2.癫痫的MRS 1H-MAS显示癫痫灶侧近中颞叶内NAA峰值降低,减少22% ChO和Cr分别增加25%和15%。NAA 的减少说明癫痛灶内神经元的缺失、受损或功能活动异常。Cr和Cho升高反映胶质细胞的增生,研究倾向于把NAA/Cho+Cr作为定侧或判定异常的标志。正常人NAA/ChO+Cr值的低限为0.72,两侧差值超过0.05或双侧较正常对照组明显降低均为异常。比值降低说明海马硬化。NAA/Cho+Cr的定侧敏感性为87%,准确率为96%此外1H-MAS还可用于测定与癫痫活动有关的神经递质,r一氨基丁酸(GABA)谷氨酸(Gln)和谷氨酸盐(GLn). 3.脑肿瘤的MRS 1H-MAS是研究脑肿瘤物质和能量代谢的有效方法,有助于脑肿瘤的诊断和鉴别诊断,能提供其组织分级、术后复发和疗效评价等信息。 肿瘤组织的1H-MAS与正常脑组织有显著差异,其中ChO峰值升高提示膜代谢增加,NAA峰值降低提示神经元受压移位。脑膜瘤、转移瘤的1H-MAS显示NAA信号缺乏,肌酸峰值降低。另外,脑膜瘤的1H-MAS 还常见异常丙氨酸信号。转移瘤可见特征性的成对共振峰,系可流动脂质产生。低度恶性胶质瘤肌酸信号

肿瘤学基础知识-1

肿瘤学基础知识-1 (总分:100分,做题时间:90分钟) 一、A1型题(总题数:43,score:100分) 1.我国目前居恶性肿瘤死亡前四位的恶性肿瘤是【score:3分】 【A】肺癌、肝癌、胃癌、食管癌【此项为本题正确答案】 【B】胃癌、肺癌、乳腺癌、结直肠癌 【C】肝癌、肺癌、胃癌、乳腺癌 【D】肺癌、肝癌、鼻咽癌、乳腺癌 【E】胃癌、肺癌、乳腺癌、宫颈癌 本题思路:[解析] 我国20世纪70年代恶性肿瘤死亡顺序为胃癌、食管癌、肝癌、肺癌和宫颈癌;20世纪90年代的死亡顺序为胃癌、肝癌、肺癌、食管癌和结直肠癌;2000年为肺癌、肝癌、胃癌、食管癌和结直肠癌。我国正处在由发展中国家高发癌谱向发达国家高发癌谱的过渡时期,已经形成两者共存的局面,加大了恶性肿瘤的防治难度。 2.肿瘤目前成为多发病、常见病的主要原因不包括【score:3分】

【A】以往严重威胁人类健康的感染性疾病得到了控制 【B】环境致癌物愈来愈多 【C】人类平均寿命延长 【D】肿瘤诊断率提高 【E】世界经济一体化【此项为本题正确答案】本题思路: 3.八种常见恶性肿瘤不包括 【score:3分】 【A】肺癌 【B】乳腺癌 【C】大肠癌 【D】胰腺癌【此项为本题正确答案】 【E】食管癌 本题思路:[解析] 八种常见恶性肿瘤是肺癌、胃癌、乳腺癌、大肠癌、口腔癌、肝癌、宫颈癌、食管癌,胰腺癌相对发病率比较低。 4.恶性肿瘤占全球人口死亡原因的 【score:3分】 【A】第一位

【B】第二位 【C】第三位【此项为本题正确答案】 【D】第四位 【E】第五位 本题思路:[解析] 根据世界卫生组织2002年的统计,恶性肿瘤已经是全球第三大死因。心脏病、卒中、癌症为全球死亡原因的前三位。 5.目前全世界发病率最高的恶性肿瘤是 【score:3分】 【A】肺癌【此项为本题正确答案】 【B】胃癌 【C】乳腺癌 【D】结直肠癌 【E】肝癌 本题思路:[解析] 目前,由于吸烟和工业化的发展,肺癌是全世界发病率最高的恶性肿瘤,其次为乳腺癌,第三为结直肠癌。 6.环境致癌因素包括 【score:3分】 【A】生物致癌因素

肿瘤学 基础知识总结

1.肿瘤的概念,肿瘤细胞的形态学特点。 肿瘤(tumor)是机体在各种内在和外界的致瘤因子长期作用下,引起局部组织细胞遗传物质改变,伴随基因表达失常,呈现“自律性”过度生长,并以遗传性方式产生子代细胞形成的新生物(neoplasm )。 可以归结为:肿瘤是以分化障碍为特征的遗传性细胞过渡、自律性增生。 良性肿瘤细胞的异型性小,一般与其发源的正常细胞相似。 恶性肿瘤细胞常有明显异型性: 1)瘤细胞多形性 瘤细胞大,且大小不一,形态不规则,有时出现瘤巨细胞。 2)瘤细胞核的多形性 核大,核浆比例增大,核大小、形状不一,出现巨核、双核、多核或奇异形核,核染色质分布不均,核膜厚,核仁肥大,数目多,核分裂像增多,出现病理性核分裂。 3)瘤细胞浆的改变 核蛋白体增多,常呈嗜碱性。细胞骨架(微丝、微管、中间丝等)的变化。 2.何谓肿瘤异质性?良恶性肿瘤的主要区别? 肿瘤中的肿瘤细胞并非均一群体,细胞的分化程度和增殖潜能存在差异,形成不同的肿瘤细胞亚群,称为异质性(heterogeneity), 异质性:肿瘤细胞在遗传学上是不稳定的,在其生长过程中,细胞之间不断进行着异质化,即细胞的遗传性、结构与功能上的差异变化,一些瘤细胞获得了更强的生存能力,一些则导致死亡或凋亡。 良性肿瘤与恶性肿瘤的区别 良性肿瘤 恶性肿瘤 分化程度 分化好,异型性小 分化不好,异型性大 核分裂像 无或稀少,无病理核分裂像 多见,并可见病理核分裂像 生长速度 慢 快 生长方式 膨胀性或外生性生长,前者常有包膜形成,与周围组织一般分界清楚,故通常可推动 浸润性或外生性生长,前者无包膜,一般 与周围组织分界不清楚,通常不能推动;后者每伴有浸润性生长 继发改变 很少发生坏死、出血 常发生坏死、出血、溃疡等 转移 不转移 常有转移 复发 手术切除后,很少复发 手术切除等治疗后,常有复发 对机体影响 较小,主要为局部压迫或阻塞。如发生在重要器官也可引起严重后果 较大,压迫、阻塞外,还可以破坏原发处 和转移处的组织,引起坏死、出血、合并 感染,甚至造成恶病质。 3.何谓非典型增生、间变、化生、分化、癌前病变、原位癌? 非典型增生:增生上皮细胞的形态呈现一定程度的异型性,但不足以诊断为癌,是一种细胞生物学中出现的不稳定现象,以细胞学异常和结构异常为特征的癌前病变。 指上皮细胞超于常态的增生,表现为增生的细胞大小不一,形态多样,核大而浓染,核质比例增大,核分裂可增多但多呈正常核分裂像。细胞排列紊乱,极像消失。根据异型性程度和累及范围可分为轻、中、重度。轻度:累及上皮层的下1/3;中度:累及上皮层的 2/3;重度:累及上皮层的2/3 以上,但未达全层

相关文档
最新文档