上财高级微观范翠红课件七
合集下载
上财高级微观范翠红课件六
Cuihong Fan
16/45
How to collude?
Collusion: firms choose q ¯ , such that q ¯ = argmaxqj
j =1
∑ π j (q 1 , q 2 , . . . , q J ).
J
Cuihong Fan
17/45
Example
Suppose the inverse market demand is: p = a − b ∑J j =1 qj , j = 1, 2, . . . , J . Firm j ’s cost function is c (qj ) = cqj , b > 0, a > c >≥ 0. To collude, how much should each firm produce? What is the market price and the cartel’s profit?
q
foc.: MR (q ∗ ) = MC (q ∗ ) Π can also be expressed as a function of p .
Cuihong Fan
12/45
Main results
A monopolist will never produce in the inelastic range of the market demand. A monopolist charges a higher price when the demand is more inelastic.
∂π j (q ¯) ∂q j
we must have
> 0.
Cuihong Fan
19/45
Nash equilibrium
高级微观经济课件
——愈来愈深化的问题,愈来愈能启发
新问题的问题。‛
5. 关于教材
教材:范里安:《微观经济学:现代观 点》(第八版),上海三联书店、上海人
民出版社2011年1月版
6. 主要参考书: 平狄克、鲁宾费尔德:《微观经济学》(
第七版),中国人民大学出版社2009年
7. 参考文献 ①图书:《经济学方法》,复旦大学出版社 2006年版 《青年经济学家指南》,上海财经大学出版 社2001年版 《应用经济学研究方法论》,经济科学出版 社1998年版 ②报刊杂志: 中国人民大学复印报刊资料经济类各专题、 CSSCI来源期刊
经济学中常用的数学理论
经济学是选择的科学,应用数学的目的——最优 化(优化理论) 数学分析、高等代数、微分方程、概率论、实变 函数、集合论、拓扑学、泛函分析——经济学语 言 经济学帝国主义——实证研究工具 社会科学研究现实的模式,数学研究逻辑可能的 模式。 理论研究:数理经济学(逻辑演绎) 经验研究:计量经济学(统计归纳)
数学(大海)与经济学(陆地)
人总希望脚踏实地。当被带离海岸线很远 时,会因失去对陆地的知觉而产生恐惧感 ,这是就初入海者而言的。渔民和航海家 则不同,他们会如鱼得水,如果把他们留 在岸边,他们会无所事事。但毕竟大多数 人都不是渔民和航海家,他们在海中游玩 时希望时刻看到岸边,并能随时上岸。岸 上的世界七彩斑斓,海中的世界单调乏味 ,但生命的本源却来自海洋。因此,我们 要培养自己在海中的生存能力。
know-what—知其然 显性知识 know-why—知其所以然 know-how—技巧、诀窍 隐性知识 know-who( 隔行如隔山
拥有:信息<知识<智慧<素质<觉悟
解决问题:?→。发现问题:?→? 波普尔《猜想与反驳》:‚科学和 知识的增长永远始于问题,终于问题
高级微观经济学2.ppt
analyze the maximum value function.
2008-09-10
18
2.1 Unconstrained Optimization
2008-09-10
19
2008-09-10
20
2008-09-10
21
2.2 Constrained Optimization
❖ 1. The same idea applies can be applied to the maximum-value function in constrained optimization.
2008-09-10
22
2008-09-10
23
2008-09-10
24
consume given income and prices.
❖ Note that the demand of a good depends on all prices. If we plot x1 (p, y) against pi, holding y and all prices other than pi constant, we get the demand curve of good i. A change in y or some pj , j≠ i, would be represented by a shift of the demand curve.
2008-09-10
4
2008-09-10
5
5. Proof:
❖ (a) Multiplying both prices and income by the same factor leaves the budget set unchanged.
高级微观经济学(上海财经大学 陶佶)note01
∪ i∈I Si = {x: x ∈ Si for some i ∈ I};
b) ∩ i∈I Si = {x: x ∈ Si for all i ∈ I}. DeMorgan’s Law can be generalized to indexed collections. Theorem 3. Let A be a set and {Si}i∈I be an indexed collection of sets, then a) A \ ∪ i∈I Si = ∩ i∈I (A \ Si); b) A \ ∩ i∈I Si = ∪ i∈I (A \ Si). Problem 2. Prove Theorem 3. Definition 4. Given any set A, the power set (幂集) of A, written P(A) is the set consisting of all subsets of A; i.e., P(A) = {B: B ⊂ A}. Problem 3. If a set S has n elements, how many elements are there in P(S)? Definition 5. The Cartesian product (笛卡尔乘集) of two sets A and B (also called the product set or cross product) is defined to be the set of all points (a, b) where a ∈ A and b ∈ B. It is denoted
, S,
, Z . A set can consist of any type of element. Even sets can be
微观经济学完整版(获奖课件)
为什么劳动力供给曲线是向后弯曲的三影响供给量的因素与供给函数一影响供给量的因素影响因素产品价格相关产品的价格生产要素的价格税收预期技术进步自然条件社会条件和政治气候二供给量的变动当影响供给的其它因素不变时商品本身价格的变动所引起的供给量的变动是在同一条供给曲线上供给量的变动三供给的变动当商品本身的价格不变时其它因素相关产品的价格生产要素的价格技术进步预期税收自然条件社会条件和政治气候的变动所引起的供给量的变动是整个供给曲线的移动
回想一下历史上一些著名的战争策略,如:破釜沉舟,置之死 地而后生等,也就是将机会成本降到零。 还有陈胜、吴广起义,豪言壮语“王侯将相宁有种乎?”至今还 为人们传诵。陈胜、吴广为什么要起义?不起义是死,起义有可能死, 但死的轰轰烈烈,还有可能成功,做王侯将相。那么不起义的机会成 本就是负的,于是只能起义。 再看看我们的身边。有些同学在大学时就是非常优秀的学生, 也是老师们比较看好的学生,可到不惑之年还是一事无成;而有些表 现一般的同学,最后却能取得成功。这也是一个机会成本的问题,大 家都看好的,各方面条件都不错的人,他的选择就多,所以东闯闯, 西打打,最终什么也不精。而那些大学时不怎么样的学生,由于自身 条件一般,好不容易谋到个岗,格外珍惜,努力上进,若干年之后, 老同志退了,自然就轮到他了,加上长期潜心钻研,业务很精,难免 不成为一个单位或行业的专家。正如《士兵突击》里的那个许三多, 他一辈子就只有一条路可走,没有那么多选择,机会成本机会为零, 所以,他最后取得成功。
导
论
引言:生活中的经济学 ——由考博的成败说起 第一节 经济学的概念 第二节
第三节 第四节 第五节
经济学的分类
经济学研究的主要问题 经济学研究的基本方法 市场经济与政府职能
引言:生活中的经济学 ——由考博的成败说起
回想一下历史上一些著名的战争策略,如:破釜沉舟,置之死 地而后生等,也就是将机会成本降到零。 还有陈胜、吴广起义,豪言壮语“王侯将相宁有种乎?”至今还 为人们传诵。陈胜、吴广为什么要起义?不起义是死,起义有可能死, 但死的轰轰烈烈,还有可能成功,做王侯将相。那么不起义的机会成 本就是负的,于是只能起义。 再看看我们的身边。有些同学在大学时就是非常优秀的学生, 也是老师们比较看好的学生,可到不惑之年还是一事无成;而有些表 现一般的同学,最后却能取得成功。这也是一个机会成本的问题,大 家都看好的,各方面条件都不错的人,他的选择就多,所以东闯闯, 西打打,最终什么也不精。而那些大学时不怎么样的学生,由于自身 条件一般,好不容易谋到个岗,格外珍惜,努力上进,若干年之后, 老同志退了,自然就轮到他了,加上长期潜心钻研,业务很精,难免 不成为一个单位或行业的专家。正如《士兵突击》里的那个许三多, 他一辈子就只有一条路可走,没有那么多选择,机会成本机会为零, 所以,他最后取得成功。
导
论
引言:生活中的经济学 ——由考博的成败说起 第一节 经济学的概念 第二节
第三节 第四节 第五节
经济学的分类
经济学研究的主要问题 经济学研究的基本方法 市场经济与政府职能
引言:生活中的经济学 ——由考博的成败说起
《高级微观经济学》课件
考试安排
课程结束后将进行一次期末考试,考察学生对微观经济学理论和实践的理解和运用能力。
结语
通过学习高级微观经济学,您将拥有深入洞察经济问题的能力,成为经济学 的专家,并能运用所学知识解决实际经济问题。
研究消费者的偏好和选择行为,分析消费者 的需求曲线和边际效用。
市场结构和竞争
了解不同市场结构的特点,包括完全竞争、 垄断、寡头垄断和垄断竞争。
学习方法
1
课堂学习
通过听课和参与讨论,加深对微观经济学的理解和思考。
2
案例分析
通过分析实际经济问题和案例,将理论知识应用到实际情境中。
3
小组讨论
与同学一起合作讨论,分享思考和观点,促进深度学习和交流。
《高级微观经济学》 课件
让我们一起探索高级微观经济学的奥秘吧!本课程将帮助您深入了解微观经 济学的核心概念和分析方法,让您成为经济学的专家。
课程简介
通过本课程,您将了解微观经济学的基本原理和理论框架,掌握市场经济中个体和企业的行为分析方法, 以及了解市场失灵和政府干预等相关问题。
教材介绍
我们将使用《高级微观经济学》教材,该教材包含了丰富的案例研究和实际 问题分析,帮助学生将理论知识应用到实际经济问题中。
课程目标
本课程的目标是帮助学生深入理解微观经济学的核心概念,掌握经济学的思维方式和分析工具,以及培 养学生独立思考和问题解决的能力。
主要内容
供求关系分析
通过供求关系曲线的分析,了解市场价格和 数量的决定因素。
生产者行为分析
研究生产者的成本和利润最大化行为,分析 生产者的供给曲线和边际成本。
消费者行为分析
上财高级微观范翠红科课件一
Cuihong Fan
Chapter 1 Consumer Theory
15/21
Definition (2)
The preference relation on X is continuous if for all x ∈ X , the upper contour set {y ∈ X : y x } and the lower contour set y ∈ X : x y are both closed in X .
Cuihong Fan
Chapter 1 Consumer Theory
16/21
II. Utility function
1. Definition
Definition (Utility function)
A real-valued function u : X → R is called a utility function representing the preference if for any consumption bundles x, y ∈ X , x y ⇐⇒ u (x ) ≥ u (y ).
y if either x1 > y1 or
Example
1 Consider the sequences of bundles x n = ( n , 0) and y n = (0, 1), show that the lexicographic preferences are not continuous.
Not all rational preferences are continuous
Cuihong Fan
Chapter 1 Consumer Theory
《高级微观经济学》课件
公共支出
政府通过提供公共服务和基础 设施,弥补市场失灵,提高社 会福利。
监管和行政干预
政府对市场进行监管和行政干 预,防止垄断和不公平竞争。
市场失灵与政府干预的案例分析
环境污染案例
政府通过制定环保法规和排污标准,限制企 业排污,保护环境。
医疗保障案例
政府通过提供医疗保险和医疗救助,弥补市 场失灵,保障公民健康。
最优消费选择
在预算约束下,消费者选择能够最大化效用的商品组合。
边际替代效应
描述消费者在保持效用不变的情况下,一种商品对另一种商品的 替代程度。
消费者行为理论的扩展
风险偏好与不确定性
研究消费者在面临风险和不确定性时的消费行 为。
跨期消费选择
探讨消费者在不同时期之间的消费决策和储蓄 行为。
消费外部性
分析消费行为对其他个体或社会的影响,以及如何通过政策干预来改善消费行 为。
微观经济学的重要性
微观经济学是现代经济学的重要组成部分,它为政策制定者、企业家和消费者提供了理解和预测市场运作的基础 。通过研究微观经济学,人们可以更好地理解市场机制、价格体系和资源配置,从而做出更明智的决策。
微观经济学的基本假设和概念
基本假设
微观经济学通常基于一些基本假设, 如完全竞争、理性行为、完全信息等 。这些假设为理论分析提供了基础, 但在实际生活中可能并不完全成立。
公共选择理论与政治经济学
01
公共选择理论
研究公共物品和服务的供给和需求,以及政府决策的经济学分析。
02
政治经济学
研究政治和经济之间的相互作用,以及政治制度对经济发展的影响。
03
总结
公共选择理论和政治经济学是微观经济学的前沿领域,它们对于理解政
复旦大学 高级微观经济学课件7
7
lottery is evaluated according to the expected value of u.
1.2 Axioms on preferences over gambles
1. Completeness. 2. Transitivity. 3. Given Axioms 1 and 2, we can rank all outcomes in A. (ai can be viewed as a degenerate gamble that yields outcome 1 with probability one.) Without loss of generality, we assume a1 a2... an.
jectively defined. 3. A compound gamble is a gamble whose prizes are gambles (simple or compound). For any compound gambles, we can calculate the probability of each outcome. (I use the term “prize” to refer to what one may receive from a gamble. A prize may be another gamble or an outcome in A.) 4. Example: suppose A = {+1, −1}. g1 = (p1 ◦ 1, (1 − p1) ◦ −1) g2 = (p2 ◦ 1, (1 − p2) ◦ −1) g3 = (q ◦ g1, (1 − q ) ◦ g2)
9
to x is also better than x . 5. The Independence Axiom. For any gambles g , g , g , and α ∈ (0, 1), g g ⇔ αg + (1 − α) g αg + (1 − α) g .
lottery is evaluated according to the expected value of u.
1.2 Axioms on preferences over gambles
1. Completeness. 2. Transitivity. 3. Given Axioms 1 and 2, we can rank all outcomes in A. (ai can be viewed as a degenerate gamble that yields outcome 1 with probability one.) Without loss of generality, we assume a1 a2... an.
jectively defined. 3. A compound gamble is a gamble whose prizes are gambles (simple or compound). For any compound gambles, we can calculate the probability of each outcome. (I use the term “prize” to refer to what one may receive from a gamble. A prize may be another gamble or an outcome in A.) 4. Example: suppose A = {+1, −1}. g1 = (p1 ◦ 1, (1 − p1) ◦ −1) g2 = (p2 ◦ 1, (1 − p2) ◦ −1) g3 = (q ◦ g1, (1 − q ) ◦ g2)
9
to x is also better than x . 5. The Independence Axiom. For any gambles g , g , g , and α ∈ (0, 1), g g ⇔ αg + (1 − α) g αg + (1 − α) g .
高级微观经济学课件上海财经大学夏纪军 .ppt
由每个参与者的严格占优战略组成的战略组合 囚徒2
抵赖 坦白
囚徒1
抵赖 坦白
-1,-1 0, -9
-9, 0 -8 -8
22
合作博弈与非合作博弈
如果参与者能够达成有约束力的协议,那么该 博弈称为合作博弈 (Cooperative Game)
23
参与者2
L
M
R
U 3,0 0,-5 0,-4 参与者1 C 1,-1 3,3 -2,4
存在性、唯一性
10
信息
共同知识(Common Knowledge)
我们说知识M是共同知识,如果每个参与者知 道M,每个参与者知道“每个参与者知道 M”,……
11
信息
私人信息
在博弈中(开始博弈前或博弈中),参与者 i 的私人信息是指他知道,但不是所有参与者的 共同知识。
12
信息
不完全信息博弈
D 2,4 4,1 -1,8
24
严格劣战略 称参与者战略 sˆi 是战略 si 的严格占优战略,
如果有
ui (sˆi , si ) ui (si , si ) si Si
同时称 si 为参与者在S上的严格劣战略
25
严格劣战略 对于战略 si ,如果存在战略 sˆi,
Ch 7 Game Theory: Introduction
1
博弈论初步
博弈的描述
参与者(players) 行动(actions) 信息(information) 战略(strategies) 支付(payoff)
2
Байду номын сангаас
博弈的描述
参与者 N
决策主体,其目标是通过选择行动来最大化 自身的效用
抵赖 坦白
囚徒1
抵赖 坦白
-1,-1 0, -9
-9, 0 -8 -8
22
合作博弈与非合作博弈
如果参与者能够达成有约束力的协议,那么该 博弈称为合作博弈 (Cooperative Game)
23
参与者2
L
M
R
U 3,0 0,-5 0,-4 参与者1 C 1,-1 3,3 -2,4
存在性、唯一性
10
信息
共同知识(Common Knowledge)
我们说知识M是共同知识,如果每个参与者知 道M,每个参与者知道“每个参与者知道 M”,……
11
信息
私人信息
在博弈中(开始博弈前或博弈中),参与者 i 的私人信息是指他知道,但不是所有参与者的 共同知识。
12
信息
不完全信息博弈
D 2,4 4,1 -1,8
24
严格劣战略 称参与者战略 sˆi 是战略 si 的严格占优战略,
如果有
ui (sˆi , si ) ui (si , si ) si Si
同时称 si 为参与者在S上的严格劣战略
25
严格劣战略 对于战略 si ,如果存在战略 sˆi,
Ch 7 Game Theory: Introduction
1
博弈论初步
博弈的描述
参与者(players) 行动(actions) 信息(information) 战略(strategies) 支付(payoff)
2
Байду номын сангаас
博弈的描述
参与者 N
决策主体,其目标是通过选择行动来最大化 自身的效用
上财高级微观范翠红科课件五
Cuihong Fan
20/25
2.1 WARP and the (Slutsky) compensated law of demand
Definition (Slutsky income compensation) As prices change, how to change income to keep a consumer’s purchasing power constant. Lemma The Marshiallian demand function x (p, m ) satisfies WARP if and only if the compensated law of demand holds. That is, for any compensated price change from (p, m ) to (p , m ) = (p , p x (p, m ), we have
Suppose we have some observations on a consumer’s behavior: (p t , x t ) for t = 1, 2, . . . , T . We make some assumptions on preferences: preferences do not change while we observe the behavior. are strictly convex are strictly monotone. Q: What kind of choice behavior is consistent? A:
1. Is WARP satisfied? 2. Are preferences rational?
Cuihong Fan
上财高级微观范翠红课件七
Cui15/34
2. Rule
The players chooses their actions simultaneously. Player i chooses si , si ∈ Si . Each player obtains his utility, ui (s1 , . . . , sn ).
Pioneers: Zermelo (1913) Von Neumann and Morgenstern (1944) John Nash (1950) Reinhard Selten (1965, 1975) John Harsanyi (1967-68)
Cuihong Fan
Introduction
Cuihong Fan
Introduction
17/34
3.1.1. Iterated elimination of strictly dominated strategies (IESDS)
Def.: In G = (I ; {Si , ui }n=1 ), the strategy si ∈ Si is strictly i dominant, if for all strategies si ∈ Si , si = si , ui (si , s−i ) > ui (si , s−i ), for all s−i ∈ S−i .
Cuihong Fan
Introduction
8/34
5. Objectives of game theory
Formal description of games Solution concepts
Cuihong Fan
Introduction
9/34
上财高级微观范翠红科课件二
Industrial organization, auctions and incentives” by Elmar Wolfstetter.
Cuihong Fan
5/31
6. Marginal rate of substitution
The marginal rate of substitution (MRS) is defined as the amount of good 2 a consumer is willing to give up for an extra unit of good 1. MRS ≡ − dx2 . dx1
Cuihong Fan
8/31
2. Budget set
Definition
Budget Set is the set of all feasible consumption plans for the consumer who faces market prices p = (p1 , p2 , . . . , pn ) and has income m. B = {x | x ∈ X , Budget set is compact. Budget set is convex. px ≤ m }.
How to calculate the slope of indifference curves?
Cuihong Fan
6/31
III. Consumer’s utility–maximization problem
Main points: 1. 2. 3. 4. 5. Assumptions Budget set Consumer’s problem The optimization problem Examples
Cuihong Fan
5/31
6. Marginal rate of substitution
The marginal rate of substitution (MRS) is defined as the amount of good 2 a consumer is willing to give up for an extra unit of good 1. MRS ≡ − dx2 . dx1
Cuihong Fan
8/31
2. Budget set
Definition
Budget Set is the set of all feasible consumption plans for the consumer who faces market prices p = (p1 , p2 , . . . , pn ) and has income m. B = {x | x ∈ X , Budget set is compact. Budget set is convex. px ≤ m }.
How to calculate the slope of indifference curves?
Cuihong Fan
6/31
III. Consumer’s utility–maximization problem
Main points: 1. 2. 3. 4. 5. Assumptions Budget set Consumer’s problem The optimization problem Examples
高级微观经济学上财经济学院课件(1)
2. Utility function is a convenient way to describe a preference relation. For example, if I tell you that my preferences over apples and bananas is u (a, b) = a0.5 + b, then you would know how I would choose between any combinations of apples and bananas. 3. Theorem. A preference relation can be represented by a utility function only if it
∀x, y ∈ X, y ≫ x =⇒ y (b) Strict monotonicity: The prtone if x
∀x, y ∈ X, y ≥ x =⇒ y while y ≫ x =⇒ y ≻ x. (c) Strong monotonicity: The preference
notation ∼ to represent the indifference relation. If x
strictly prefers x to x′ . We use ≻ to represent the strict preference relation. 5. The transitivity of implies the transitivity of ∼ and the transitivity of ≻, and vice
1.2
Utility function
1. A utility function defined over X assigns a real number to each member of X . We say a utility function u : Rn → R represents a preference relation and x′ , x x′ iff u(x) ≥ u(x′ ). if for any objects x
上财高级微观范翠红课件八
Theorem (Indifference Rule)
Suppose m is a mixed strategy NE, j and k are ˆ arbitrary pure strategies of player i, i.e. j, k ∈ Si and mi (j ) > 0, mi (k ) > 0, then ui (j, m−i ) = ui (k, m−i ). ˆ ˆ For ease of exposition, consider player 1. We need to prove that u1 (j, m−1 ) = u1 (k, m−1 ), ∀j, k ∈ S1 . ˆ ˆ
3.2 Nash Equilibrium
3.2.1 3.2.2 3.2.3 3.2.4
Nash equilibrium in pure strategies Nash equilibrium in mixed strategies Existence of NE Refinement of NE
Cuihong Fan
ui ( m ) =
∑ pij ui (sij , m−i ),
j =i
J
where ui (sij , m−i ) is player i’s expected utility from playing the pure strategy sij .
Cuihong Fan
11/27
Calculation of NE in mixed Strategies
Theorem (Nash’s Theorem)
Every finite strategic form game has at least one Nash equilibrium.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
History of game theory Definition of game theory Classification of games Description of games Objectives of game theory
Cuihong Fan
Introduction
2/34
1. History
How to find a dominant strategy? What is an equilibrium in dominant strategies?
Cuihong Fan
Introduction
20/34
Strictly dominated strategies
In G = (I ; {Si , ui }n=1 ), the strategy si ∈ Si of player i is i strictly dominated, if there is another strategy si ∈ Si , such that for all s−i ∈ S−i , ui (si , s−i ) > ui (si , s−i ).
Cuihong Fan
Introduction
7/34
4. Description of games
Strategic (normal-form) games Definition (strategic form games) Players choose simultaneously their strategies; the combination of strategies chosen by all players determines a payoff for each player. Extensive form games Definition An extensive form game specifies the orders of play, what players can do at each of their opportunities to move, and what players know when they move.
1. Strategic form representation 2. Rule 3. Solution concepts:
3.1 Iterated elimination of dominated strategies (IEDS). 3.2 Nash Equilibrium (NE)
3.2.1 3.2.2 3.2.3 3.2.4 pure strategy NE mixed strategy NE Existence of NE Refinements of NE
Cuihong Fan
Introduction
21/34
Iterated Elimination of strictly dominated strategies
Assumption: This solution concept assumes that rationality is common knowledge Everybody is rational. Everybody knows that everybody is rational.
Cuihong Fan
Introduction
17/34
3.1.1. Iterated elimination of strictly dominated strategies (IESDS)
Def.: In G = (I ; {Si , ui }n=1 ), the strategy si ∈ Si is strictly i dominant, if for all strategies si ∈ Si , si = si , ui (si , s−i ) > ui (si , s−i ), for all s−i ∈ S−i .
Cuihong Fan
Introduction
10/34
1. Strategic form representation
A strategic form game consists of 3 components: (1). a finite set of players: I = {1, . . . , n } (2). a set of strategies (actions): S1 , . . . , Sn (3). payoff function (utility function): ui (s1 , . . . , sn ). G = (I ; {Si , ui }n=1 ) i
Cuihong Fan
Introduction
15/34
2. Rule
The players chooses their actions simultaneously. Player i chooses si , si ∈ Si . Each player obtains his utility, ui (s1 , . . . , sn ).
Cuihong Fan
Introduction
5/34
Basic definitions
Definition (complete information) Each player’s payoff function is common knowledge among all the players. Definition (common knowledge) A fact is common knowledge among players if each player knows the fact, and each player knows everyone else knows, and each knows everyone else knows everyone else knows, and so on.
Cuihong Fan
Introduction
12/34
Zero-sum game
Example: Matching Pennies Head Tail Head 1,-1 -1,1 Tail -1,1 1,-1
Strategic form representation: Properties of zero-sum game:
Cuihong Fan
Introduction
11/34
Notations
si : pure strategy of player i mi : mixed strategy of player i Si : the set of pure strategies of player i, si ∈ Si Mi : the set of mixed strategies of player i, mi ∈ Mi S = ×n=1 Si i s = ( s1 , . . . , sn ) ∈ S M = ×n=1 Mi i −i = j ∈ I \{i } ui : S → R:
Pioneers: Zermelo (1913) Von Neumann and Morgenstern (1944) John Nash (1950) Reinhard Selten (1965, 1975) John Harsanyi (1967-68)
Cuihong Fan
Introduction
Cuihong Fan
Introduction
8/34
5. Objectives of game theory
Formal description of games Solution concepts
Cuihong Fan
Introduction
9/34
I. Static games of complete information
3/34
2. Definition of “game theory”
Definition (Game theory) Game theory is the systematic study of how rational agents behave in strategic situations. Rationality: Nonstrategic and strategic decisions:
Cuihong Fan
Introduction
6/34
Definition (Static games) All players choose simultaneously their actions (without knowing decisions of other players). Definition (dynamic games) Players make their decisions sequentially and more than once. Definition (incomplete information)
Cuihong Fan
Introduction
13/34
Non-zero sum game
Tobacco advisement: A A 27 ,27 NA 20,60 Strategic form representation: Properties of non-zero sum game: NA 60,20 50,50
Cuihong Fan
Introduction
4/34
3. Four groups of game theoretical models
(1) (2) (3) (4)
Static games of complete information Dynamic games of complete information Static games of incomplete information Dynamic games of incomplete information