全等三角形小结与复习

合集下载

全等三角形的小结与复习优秀教学案例20人教版八年级数学上册

全等三角形的小结与复习优秀教学案例20人教版八年级数学上册
全等三角形的小结与复习优秀教学案例20人教版八年级数学上册
一、案例背景
本案例背景为20人教版八年级数学上册全等三角形的小结与复习。在经过一段时间的全等三角形的学习后,学生已掌握了全等三角形的判定定理(SSS、SAS、ASA、AAS)及性质,但部分学生在实际运用中仍存在混淆,对概念理解不透彻,不能灵活运用所学知识解决实际问题。
二、教学目标
(一)知识与技能
1.能准确熟练地运用全等三角形的判定定理(SSS、SAS、ASA、AAS)及性质证明两个三角形全等。
2.能理解并掌握全等三角形的性质,如对应边相等、对应角相等。
3.能将全等三角形知识应用于实际问题中,解决几何问题。
4.能通过复习,总结全等三角形的学习方法,提高自主学习能力和复习能力。
3.小组合作:本案例合理划分学习小组,明确小组合作学习的目标和任务,创设宽松和谐的合作氛围。教师加强对小组合作的指导,及时发现并解决小组合作过程中出现的问题。这种教学方式有助于培养学生的团队协作能力和沟通能力,提高学生的社会适应能力。
4.反思与评价:本案例教师引导学生对所学知识进行总结,帮助学生形成知识体系。组织学生进行自我评价、同伴评价,让学生了解自己的优点和不足,激发学生的学习动力。这种教学策略有利于培养学生的自主学习能力,提高学生的学习效果。
5.结合学生的学习情况,调整教学策略,提高教学效果。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中的全等三角形实例,如建筑物的设计、家具的组装等,引导学生关注全等三角形在实际生活中的应用。
2.提出问题:“你们认为全等三角形的判定与性质有哪些重要作用?”让学生思考并回答,激发学生的学习兴趣。
4.教师对各小组的表现进行评价,给予肯定和鼓励,提高学生的自信心。

最新人教版初中八年级上册数学第十二章《全等三角形(小结复习课)》精品教案

最新人教版初中八年级上册数学第十二章《全等三角形(小结复习课)》精品教案

Q
P
B
C
本题源自《教材帮》
深化练习 3
如图,已知△ABC中,AB=AC=10,BC=8,点D为AB的中点,点P在线段BC上以每秒
3个单位长度的速度由点B向点C运动,同时点Q在线段CA上由点C向点A以每秒a个单
位长度的速度运动,设运动时间为t秒.
A
解:(1)由题意得:BP=3t.
∵BC=8,
∴CP=BC-BP=8-3t.
A
∠ACN=∠M+∠N =80° ,∠BCN=∠ACB-∠ACN=20° .
M
C
本题源自《教材帮》
重点解析 6
动脑想一想,动手练一练
6、如图,沿着AM折叠,使得点D落在BC的N点处,如果AD=7cm,DM=5cm,
∠DAM=30°,则AN、NM的长度以及∠NAM的度数分别是多少?
A
D
解:∵△ADM沿着AM折叠得到△ANM,
∴△BCD的面积和△ACE的面积相等.
∴四边形AECD的面积
=△ACD的面积+△ACE的面积
=△ACD的面积+△BCD的面积 =△ABC的面积= 1 ×4×4=8cm2.
2
D
C
B
本题源自《教材帮》
深化练习 1
如图,已知△ABD≌△ACE,点B、D、E、C在同一条直线上.
(1)∠BAE和∠CAD有什么关系?说明理由; A
位长度的速度运动,设运动时间为t秒.
A
(1)求CP的长(用含有t的式子表示); (2)若以点C、P、Q为顶点的三角形和以点B、D、P 为顶点的三角形全等,且∠B和∠C是对应角,求a和t 的值.
D
Q
P
B
C
本题源自《教材帮》

人教版八年级上册第十二章全等三角形知识点总结及复习

人教版八年级上册第十二章全等三角形知识点总结及复习

全等三角形知识点总结及复习一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

全等三角形定义 :能够完全重合的两个三角形称为全等三角形。

(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

由此,可以得出:全等三角形的对应边相等,对应角相等。

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

第十一章 全等三角形小结与复习教案 新人教版

第十一章 全等三角形小结与复习教案 新人教版

第十一章 全等三角形 全等三角形小结与复习考点呈现考点一 全等三角形的概念和性质例1 下列命题:①形状相同的三角形是全等三角形;②面积相等的三角形是全等三角形;③全等三角形的对应边相等,对应角相等;④经过平移得到的三角形与原图形是全等形.其中正确的命题有 ( ) A. 1个 B. 2个 C. 3个 D. 4个解析:全等三角形是指两个完全重合的三角形,不仅形状相同,大小也相同,两者缺一不可.互相重合的边叫做对应边,互相重合的角叫做对应角,平移、翻折、旋转不改变图形的大小与形状,所以③④正确.故选B.点评:本题主要考查了全等三角形的概念和性质,注意把一个图形平移、旋转、折叠后得到的图形与原来的图形全等.例2 如图1,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若︒=∠64CDE ,则ADP ∠等于 ( )A .42°B .48°C .52°D .58°解析:由题意知△C DE ≌△PDE ,所以︒=∠=∠64CDE PDE ,则︒=︒-︒-︒=∠-∠︒=∠526464180-180PDE CDE ADP .故选C.点评:本题以折叠为背景,主要考查全等三角形的性质,运用全等三角形的对应角相等结合平角的概念解决问题.考点二 三角形全等的判定例3 (2010年四川巴中)如图2,AB = AC ,要说明△ADC ≌△AEB ,需添加的条件 不能是 ( )A .∠B =∠C B. AD = AE C .∠ADC =∠AEB D. DC = BE解析:已知AB =AC ,还有一个公共角∠A ,具备了一边一角的条件,可根据“SAS ”添加AD =AE ;可根据“ASA ”添加∠B =∠C ;可根据“AAS ”添加∠ADC =∠AEB ;若添加DC =BE ,则是 “SSA”不能判定两个三角形全等.故选D. 点评:本题目是一道条件开放型问题,判定三角形全等的方法有“SSS 、SAS 、AAS 、ASA ”,要根据已知条件添加一条边或一个角满足以上四个判定方法即可,但是需注意添加边时,不能构成“SSA ”的形式. 例4 (2010年四川凉山州)如图3,已知∠E =∠F =90°,∠B = ∠C ,AE =AF .有下列结论:①EM =FN ;②CD =DN ;③∠FAN = ∠EAM ;④△ACN ≌△ABM .其中正确的有 ( ) A.1个 B.2个 C.3个 D.4个解析:因为∠E =∠F =90°,∠B =∠C ,AE =AF ,所以△AEB ≌△AFC .所以AC =AB, ∠EAB =∠FAC .在△ACN 和△ABM 中,∠C =∠B ,AC =AB ,∠CAB =∠BAC ,所以△ACN ≌△ABM ,④正确;因为∠EAB =∠FAC ,所以∠EAB -∠CAB =∠FAC -∠CAB ,即∠EAM =∠FAN ,③正确;在△EAM 和△FAN 中,∠EAM =∠FAN ,AE =AF ,∠E =∠F =90°,所以△EAM ≌△FAN . 所以A EF B CD M NEM =FN ,①正确;由已知条件不能判断出CD =DN .故正确的有3个,应选C.点评:本题主要考查三角形全等的判定,求解时应同时从题设条件和图形出发,寻求三角形全等的条件,准确判定.考点三 运用三角形全等证明线段(或角)相等例5 (2010年呼和浩特)如图4,点A ,E ,F ,C 在同一条直线上,AD ∥BC ,AD =CB ,AE =CF .求证BE =DF .分析:要证明的两条线段BE 和 DF 分别为△CBE 和△ADF 中的边,可以考虑通过证明△ADF ≌△CBE 来解决.证明:∵ AD ∥BC ,∴ ∠A =∠C .∵ AE =FC , ∴ AF =CE .在△ADF 和△CBE 中,AD =CB ,∠A =∠C , AF =CE , ∴ △ADF ≌△CBE . ∴ BE =DF . 点评:如果要证明的两条线段分别是两个三角形的边时,通常可以尝试通过三角形全等进行证明.例6 (2010年北京,改编)如图5,点A ,B ,C ,D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,EC =BF ,AB =DC .求证∠ACE =∠DBF .分析:要使∠ACE =∠DBF ,只要Rt △EAC ≌Rt △FDB 即可,两个三角形显然满足“HL ”.证明:∵ AB =DC , ∴ AC =DB .∵ EA ⊥AD ,FD ⊥AD , ∴ ∠A=∠D=90°.在Rt △EAC 和Rt △FDB 中,EC =FB ,AC =DB , ∴ Rt △EAC ≌Rt △FDB . ∴ ∠ACE =∠DBF .点评:注意“HL ”只适用于直角三角形,而“SSS 、SAS 、ASA 、AAS ”适用于所有的三角形.考点四 三角形全等的实际应用例7 (2010年广安)某学校花台上有一块形如图6所示的三角形ABC 地砖,现已破损.管理员要对此地砖测量后再去市场加工一块形状和大小与此完全相同的地砖来换,现只有尺子和量角器,请你帮他设计一个测量方案,使其加工的地砖能符合要求,并说明理由.解析:本题是要利用尺子和量角器测量得到的数据作一个三角形与△ABC 全等,根据全等三角形的判定可以有多种测量方案. 如:⑴用量角器分别量出∠A 、∠B 的大小;⑵用尺子量出AB 的长,根据这三个数据,按照原来的位置关系加工地砖.DOBA 点评:本题是一道方案设计问题,主要考查运用三角形全等解决实际问题的能力,具有一定的开放性,主要依据“SAS 、ASA 、AAS 、SSS ”设计测量方案.考点五 角的平分线的性质例8 有下列说法:①角的平分线上任意一点到这个角两边的距离相等;②到一个角两边距离相等的点在这个角的平分线上;③三角形三条角平分线的交点到三个顶点的距离相等;④三角形三条角平分线的交点到三边的距离相等.其中正确的有 ( )A. 1个B. 2个C. 3个D. 4个解析:由角的平分线的性质可知①②④正确.故选C.点评:解题时要注意用角的平分线的性质,不要总是用全等去证明.例9 (2010年曲靖)如图7,在Rt△ABC 中, ∠C =90°,若BC =10,AD 平分∠BAC 交BC 于点D ,且BD ︰CD =3︰2,则点D 到线段AB 的距离为_________. 解析:要求点D 到AB 的距离,过点D 作DE ⊥AB 于点E ,线段DE 长度即为所求. 因为AD 平分∠BAC ,所以DE =CD . 因为BD ︰CD =3︰2,所以4105252=⨯==BC CD .故DE =CD =4. 点评:解决本题的而关键是运用角的平分线的性质把求点D 到线段AB 的距离转化为求线段CD 的长度.误区点拨误区一 对“对应”二字理解不深、不透例1 已知两个直角三角形中,有一锐角相等,又有一边相等,说明这两个三角形是否全等.错解:这两个三角形全等.剖析:对全等三角形判定定理中的“对应边相等”没有理解,错把边相等当成对应边相等.正解:这两个三角形不一定全等,如图1,在Rt △ABC 与Rt △EDC 中,CD =AB ,∠1=∠2,∠C =∠C =90°,显然△ABC 与△EDC 不全等.误区二 臆造全等的判定方法例2 如图2,AC 和BD 相交点于O ,且C D ∠=∠, BC AD =.求证△DAB ≌△CBA . 错解:在△DAB 和△CBA 中,AD =BC ,AB =BA ,∠D =∠C ,所以△DAB ≌△CBA .剖析:“SSA ”不能判定三角形全等,属于臆造三角形全等的判定方法导致错误. 正解:在△ODA 和△OCB 中,∠D =∠C ,∠AOD =∠BOC ,AD =BC ,所以△ODA ≌△OCB . 所以OD =OC ,OA =OB .所以OD +OB =OC +OA ,即BD =AC .在△DAB 和△CBA 中,AD =BC ,∠D =∠C ,BD =AC ,所以△DAB ≌△CBA . 误区三 忽视图形的多种情况例3 已知△ABC 和△A ′B ′C ′中,AB =A ′B ′,AC =A ′C ′,若AD ,A ′D ′分别是BC ,B ′C ′边上的高,且AD =A ′D ′.问△ABC 与△A ′B ′C ′是否全等?如果全等,给出证明;如果不全等,请举出反例.错解:这两个三角形全等.证明如下:如图3,在Rt △ABD 和Rt △A ′B ′D ′中,因为E DCBAB DAB =A ′B ′,AD =A ′D ′,所以Rt △ABD ≌Rt △A ′B ′D ′. 所以BD =B ′D ′. 同理可得DC =D ′C ′,所以BC =B ′C ′.在△ABC 和△A ′B ′C ′中,因为AB =A ′B ′,AC =A ′C ′,BC =B ′C ′,所以△ABC ≌△A ′B ′C ′.剖析:这两个三角形不一定全等.当这两个三角形均为钝角(或锐角)三角形时全等;若一个是锐角三角形,一个是钝角三角形时就不可能全等.正解:这两个三角形不一定全等.如图4,虽有BD =B ′D ′,DC =D ′C ′,但BC ≠B ′C ′,因此这两个三角形不全等.跟踪训练1.如果NMQ ∆∆≌MNP ,且8cm MN =,7cm PN =,6cm PM =,则MQ 的长为 ( )A .cm 8B .cm 7C .cm 6D .cm 52.如图1,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△ 的是 ( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠3.如图2,BOP CPO ∠=∠,PC ∥OA ,4=PD ,则点P 到OB的距离是 ( )A .2B .3C .4D .5A B CD图1PODCB AA ′B ′C ′D ′ABC D图3A BC D图4A ′B ′D ′4.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是 ( )A .SASB .ASAC .AASD .SSS5.如果△ABC ≌△DEF ,△DEF 周长是32 cm ,DE=9cm ,EF=13 cm ,∠E=∠B , 则AC=____ cm.6.如图3,已知AD AB =,DAC BAE ∠=∠,要使ABC △≌ADE △,可补充的条件是 .(写出一个即可)7.如图4,ABE △和ACD △是ABC △分别沿着150BAC ∠=,则θ∠的度数是 .8.如图5,在Rt△ABC 和Rt △BAD 中,AB 为斜边,AC =BD ,BC ,AD 相交于点E .求证A D=BC .9. 如图6,在ABC ∆中,︒=∠90ACB ,BC AC =,CE BE ⊥,CE AD ⊥,垂足分别为E ,D ,且cm AD 5=,cm DE 3=,求BE 的长度.10. 如图7,正方形网格中有一个ABC △,请你在方格内画出满足条件1111A B AB BC BC ==,,1A A ∠=∠的所有的111A B C △,(形状相同算一个),并判断111A B C △与ABC △是否一定全等?你能够得到什么结ACE B D 图3CDA EBθ图4BA C图7论?跟踪训练参考答案1.B2.C3.C4.D5. 106.答案不唯一,如AC AE =或D B ∠=∠等 7.︒60 8.证明:在Rt △ABC 和Rt △BAD 中,AB =BA ,AC =BD , ∴ Rt △ABC ≌Rt △BAD . ∴ A D=BC .9.解:∵ ︒=∠90ACB , ∴ ︒=∠+∠90BCE ACD . ∵ CE BE ⊥,CE AD ⊥,∴ ︒=∠=∠90CEB ADC ,︒=∠+∠90CAD ACD . ∴ ∠CAD =∠BCE . ∵ BC AC =,∴ ACD ∆≌CBE ∆.∴ cm CE AD 5==,BE CD =. ∵ )(235cm DE CE CD =-=-=. ∴ cm BE 2=. 10.解:如图所示:ABC △与111A B C △不一定全等.结论:由两边及其中一边的对角对应相等的两个三角形不一定全等.BACB 1A 1C 1C 1B 1A 1。

最新人教版八年级数学上册第十二章《全等三角形(小结复习课)》精品教案 (2)

最新人教版八年级数学上册第十二章《全等三角形(小结复习课)》精品教案 (2)

重点解析 4
如图,在△ABC中,AD是它的角平分线.求证:S△ABD:S△ACD=AB:AC.
证明:过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
∵AD是△ABC的角平分线,
∴DE=DF.
又∵S△ABD= 1 AB∙DE,S△ACD= 1 AC∙DF,
2
2
B
∴S△ABD:S△ACD=AB:AC.
本题源自《教材帮》
深化练习 3
如图,点C在线段AB上,AD//EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF和 DE的位置关系,并说明理由.
解:CF⊥DE,证明如下: ∵AD//EB, ∴∠A=∠B. 在△ACD和△BEC中, AD=BC, ∠A=∠B, AC=BE,
∴△ACD≌△BEC(SAS). ∴CD=EC.
E
本题源自《教材帮》
深化练习 1
(2)解:DM⊥AM,理由如下:
如图,过点M作ME⊥AD,垂足为E.
∵AB//CD, ∴∠CDA+∠BAD=180°.
又∵∠EDM=∠CDM= 1 ∠CDA,
∠EAM=∠BAM=
1
2 ∠BAD,
2 ∴∠MDA+∠MAD=
1(∠CDA+∠BAD)=90°.
2
∴∠DMA=90°.
常言道:人生就是一场修行,生活只是一个状态,学习也只是一个习惯,只 要你我保持积极向上、乐观好学、求实奋进的状态,相信不久的将来我们一定会 取得更大的进步。
最后祝:您生活愉快,事习 3
如图,点C在线段AB上,AD//EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF和 DE的位置关系,并说明理由.
D
(1)证明两条线段的位置关系,一般是平行、垂 直,常用全等三角形的性质或者角的平分线的性质; (2)证明两条线段的大小关系,一般是相等,常 用全等三角形的性质或者等量代换.

新华师大数学八年级上册:第13章全等三角形小结与复习

新华师大数学八年级上册:第13章全等三角形小结与复习

考点讲练
考点一 判断命题真假
例1 下列命题中是假命题的是( C ) A.三角形的内角和是180° B.多边形的外角和都等于360° C.五边形的内角和是900° D.三角形的一个外角等于和它不相邻的两个内角的和 【解析】要说明一个命题是真命题,需要经过证明它是正确 的.对于A、B、D来说,都是经过证明,被认为是正确的,而 五边形的内角和是540°,所以C不正确,故选C.
6.证全等三角形的思路
找夹角S.A.S. 已知两边找直角H.L.

找另一边S.S.S.
边为角的对边 找任一角A.A.S.
已知一 边一角
边为角 找夹角的另一边S.A.S. 的邻边找 找夹 边边 的的 对另 角一 A角.A.SA..S.A.
逆 定理. [注意] 每个命题都有逆命题,但一个定理不一定有逆定 理.如“对顶角相等”就没有逆定理.
15.垂直平分线 到线段两端点的距离相等的点在这条线段的垂直平分线上. 它的逆定理是: 线段垂直平分线上的点到 线段两端点的距离相等 . [注意] 前面是线段垂直平分线的判定,后面是线段垂直平 分线的性质. 16.角的平分线 角的平分线上的点到角的两边的距离相等. 它的逆定理是: 到角的两边距离相等的点在 角的平分线上 . [注意] 前面是角平分线的性质,后面是角平分线的判定.
3.命题的真假 命题有真有假,其中正确的命题叫做 真命题 ;错误的命题叫 做 假命题 . 事实上,要说明一个命题是假命题,通常可以举出一个例子, 使之具有命题的条件,而不具有命题的结论,这种例子称为反 例.要说明一个命题是真命题需根据基本事实和定理证明. 4.基本事实与定理 经过长期的实践总结出来,并把它们作为判断其他的命题真假 的原始依据,这样的真命题叫做 基本事实 . 从基本事实或其他真命题出发,用逻辑推理的方法判断它们是 正确的,并可以作为进一步判断其他命题真假的依据,这样的 真命题叫做 定理 .

人教版八年级数学上册第12章 全等三角形 小结与复习

人教版八年级数学上册第12章  全等三角形 小结与复习

∠A =∠D,∠B =∠E,∠C =∠F
( 全等三角形的对应角相等).
二、三角形全等的判定方法
1. 三边分别相等的两个三角形全等 (可以简写为
“边边边”或“SSS”).
A
用符号语言表示为:
在△ABC 和△ DEF 中,
AB = DE, BC = EF,
B
C
D
CA = FD,
∴△ABC≌△DEF (SSS).
∠PEA =∠PFC = 90°,
∠EAP =∠FCP,
PE = PF, ∴△APE≌△CPF (AAS). ∴ AP = CP.
E
A 1
N P
2
B
FC
证法2 思路分析:由角是轴对称图形,其对称轴是角
平分线所在的直线,所以可想到构造轴对称图形. 方法
是在 BC 上截取 BD = BA,连接 PD (如图).
1 2
N P
FC
∴∠EAP =∠FCP =∠PCB. ∵∠BAP +∠EAP = 180°, ∴∠PCB +∠BAP = 180°.
E
N
A 1 2
B
P FC
想一想:本题如果不给图,条件不变,请问∠PCB 与∠PAB 有怎样的数量关系呢?
性质
全等 三角形
判定
作用 角的平分线 的性质定理 角的平分线 的判定定理
构造角平分线模型.
1 2
N P
B
FC
证明:过点 P 作 PE⊥BA,PF⊥BC,垂足分别为 E,F.
又∵∠1 =∠2,∴ PE = PF,∠PEA =∠PFC = 90°.
∵∠PCB + ∠BAP = 180°,∠BAP +∠EAP = 180°,

新编:人教版八年级上册数学第12章《全等三角形小结与复习》

新编:人教版八年级上册数学第12章《全等三角形小结与复习》

图7
达标测试
1.如图8,点M是AB的中点,∠1=∠2,∠C=∠D,判定 △AMC≌△BMD的方法是(
D)
图8
A.SAS
C. SSS
B. ASA
D. AAS
2.下列方法中,不能判定两个三角形全等的是( D ) A. SAS B. ASA C. SSS D. SSA
3、如图,已知AD∥BC,AE=CF,根据所给条件能否证明
课堂练习 1.如图1,△AOC≌△BOD,则
∠A和∠B, ∠C和∠D,∠AOC和∠BOD , 对应角是__________________________________________
AO和BO,OC和OD,AC和BD 对应边是__________________________________________ 。
C O A
B
B
图1
D
图2
A
3.如图3所示,图中两个三角形能完全重合,下列写法正确的 是(
B)
B.△ABE≌△ABF D.△ABE≌△FAB B
F
A E
A.△ABE≌△AFB C.△ABE≌△FBA
基础知识
(二)全等三角形的性质
1.全等三角形的对应边相等 ;
2.全等三角形的对应角 相等 ;
3.全等三角形的对应中线.对应角平分线.
课堂练习
1. 下列条件不能判定两个三角形全等的是(C ) A. 有两边和夹角对应相等; B. 有三边分别对应相等;
C. 有两边和一角对应相等;
D. 有两角和一边对应相等。
2. 下列条件能判定两个三角形全等的是( )
D
A. 有三个角相等;
C. 有一条边和一个角相等;
B. 有一条边和一个角相等;

人教版初中八年级数学上册第十二章《全等三角形(小结复习课)》精品教案

人教版初中八年级数学上册第十二章《全等三角形(小结复习课)》精品教案

证明:(2)结论仍然成立,理由如下: ∵△DCE只是经过了平移, ∴△ABF≌△CDE. ∴BF=DE. 同理可证:△BGF≌△DGE, ∴FG=EG.
本题源自《教材帮》
深化练习 3
图形变换(平移、翻折、旋转)问题: (1)在图形变换前后,明确哪些关系发生了变化, 哪些保持不变,原来的等角、等线段是否还存在; (2)变换后的解题思路可以借鉴变换前的过程与 结论,变换后结论有时候变化,有时候不变.
全等三角形
小结
知识梳理-重点解析-深化练习 人教版-数学-八年级上册
知识梳理
三 角 形 全 等 的 判 定
“SSS” “SAS” “ASA” “AAS” “HL”
三边对应相等 两边及其夹角对应相等 两角及其夹边对应相等 两角及其中一角的对边对应相等 斜边和一条直角边对应相等
知识梳理
三角形全等的判定 1、三边分别相等的两个三角形全等(可以简写成“边边边”或者“SSS”).
本题源自《教材帮》
深化练习 3
(1)如图,点A,E,F,C在同一条直线上,AE=CF,过点E、F分别作DE⊥AC,
BF⊥AC,若AB//CD,连接BD交EF于点G,试问EG与FG相等吗?请说明理由.
解:(1)EG与FG相等的,理由如下:
∵DE⊥AC,BF⊥AC, ∴∠AFB=∠CED=90°.
∵AE=CF, ∴AE+EF=CF+EF,即AF=CE.
O B
又∵AB=AC,
∴ AB-AD=AC-AE,即BD=CE.
E C
重点解析 4
如图,已知∠1=∠2,∠C=∠D.求证:AC=AD.
C 证明:∵∠1=∠2,
∴∠ABC=∠ABD (平角之和等于180°).

全等三角形小结

全等三角形小结

§13.2.3 三角形全等的条件(三)教学目标(一)教学知识点1.三角形全等的条件:角边角、角角边.2.三角形全等条件小结.(二)能力训练要求1.经历探究全等三角形条件的过程,进一步体会操作、•归纳获得数学规律的过程. 2.掌握三角形全等的“角边角”“角角边”条件.3.能运用全等三角形的条件,解决简单的推理证明问题.(三)情感与价值观要求通过画图、探究、归纳、交流,使学生获得一些研究问题的经验和方法,发展实践能力和创新精神.教学重点已知两角一边的三角形全等探究.教学难点灵活运用三角形全等条件证明.教学方法自学疏导法.教具准备多媒体课件.教学过程Ⅰ.提出问题,创设情境1.复习:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:①定义;②SSS;③SAS.2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?Ⅱ.导入新课[师]三角形中已知两角一边有几种可能?[生]1.两角和它们的夹边.2.两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4cm,•你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”). [师]我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,•能不能作一个△A ′B ′C ′,使∠A=∠A ′、∠B=∠B ′、AB=A ′B ′呢? [生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA ”的理解. [生]①先用量角器量出∠A 与∠B 的度数,再用直尺量出AB 的边长. ②画线段A ′B ′,使A ′B ′=AB .③分别以A ′、B ′为顶点,A ′B ′为一边作∠DA ′B ′、∠EB ′A ,使∠D ′AB=∠CAB ,∠EB ′A ′=∠CBA .④射线A ′D 与B ′E 交于一点,记为C ′ 即可得到△A ′B ′C ′.将△A ′B ′C ′与△ABC 重叠,发现两三角形全等.[师]C 'A 'B 'DCAE于是我们发现规律:两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA ”). 这又是一个判定三角形全等的条件.[生]在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA ”推出“两角和其中一角的对边对应相等的两三角形全等”呢?[师]你提出的问题很好.温故而知新嘛,请同学们来验证这种想法. 出示探究问题:如图,在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?D CABFE证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°∠A=∠D ,∠B=∠E ∴∠A+∠B=∠D+∠E ∴∠C=∠F在△ABC 和△DEF 中B E BC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA ). 于是得规律:两个角和其中一角的对边对应相等的两个三角形全等(可A以简写成“角角边”或“AAS ”).[例]如下图,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C .求证:AD=AE .[师生共析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD=AE ,只需证明△ADC ≌△AEB 即可.学生写出证明过程.证明:在△ADC 和△AEB 中A A AC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩所以△ADC ≌△AEB (ASA ) 所以AD=AE . [师]到此为止,在三角形中已知三个条件探索三角形全等问题已全部结束.请同学们把三角形全等的判定方法做一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充. 有五种判定三角形全等的条件. 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.Ⅲ.随堂练习(一)课本P99练习1、2. 学生板演.1.[生甲]解:在△ABC 和△EDC 中90()ABC EDC BC DCACB ECD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩对顶角 所以△ABC ≌△EDC (ASA ) 所以AB=DE .即测得DE 的长就是AB 的长. 2.[生乙]证明:在△ABC 和△ADC 中9012B D AC AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADC (AAS ) ∴AB=AD . (二)补充练习图中的两个三角形全等吗?请说明理由.50︒50︒45︒45︒DCAB (1)29︒29︒DC A B(2)E答案:图(1)中由“ASA ”可证得△ACD ≌△ACB .图(2)由“AAS ”可证得△ACE ≌△BDC .Ⅳ.课时小结至此,我们有五种判定三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径. Ⅴ.课后作业1.课本习题13.2─5、6、11题. 2.预习课本P99~101内容. Ⅵ.活动与探究如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和△DBA ,CD 过点E ,则AB 与AC+BD•相等吗?请说明理由.过程:让学生了解要证明两条线段的和与一条线段相等时常用的两种方法.1.可在长线段上截取与两条线段中一条相等的一段,•然后证明剩余的线段与另一条线段相等.(割) 2.把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等.(补)结果:相等.34DCAB65(1)F E1234DCA65(2)EF12证法一:如图(1)在AB 上截取AF=AC ,连结EF .在△ACE 和△AFE 中D C A B E12AC AF AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△AFE (SAS )518056180CAC BD C D ∴∠=∠⎫⎪⇒∠+∠=︒⎬⎪∠+∠=︒⎭⇒∠6=∠D在△EFB 和△BDE 中634DBE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EFB ≌△EDB (AAS ) ∴FB=DB∴AC+BD=AF+FB=AB 证法二:如图(2),延长BE ,与AC 的延长线相交于点F434AC BD F ⇒∠=∠⎫⎬∠=∠⎭⇒∠F=∠3在△AEF 和△AEB 中312F AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△AEB (AAS ) ∴AB=AF ,BE=FE 在△BED 和△FEC 中564BE FE F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BED ≌△FEC (ASA ) ∴BD=FC∴AB=AF=AC+CF=AC+BD . 板书设计§13.2.3 三角形全等的条件(三)一、两角一边⎧⎨⎩两角及其夹边两角和其中一角的对边二、三角形全等的条件1.两角及其夹边对应相等的两三角形全等(ASA )2.两角和其中一角的对边对应相等的两三角形全等(AAS )例:三、随堂练习生甲: 生乙: 四、小结证明三角形全等的方法:1.定义、2.SSS 、3.SAS 、4.ASA 、5.AAS .备课资料一、补充例题[例1](补充例题)如图,已知AB=AE ,AC=AD ,AC ⊥AD ,AB ⊥AE ;(1)观察图中有没有全等三角形?(2)怎样变换△ABC 和△AED 中的一个位置,可使它们重合?(3)观察△ABC 和△AED 中对应边有怎样的位置关系?(4)试证ED ⊥BC . 分析:证明:略说明:根据本例的“已知”难于发现与结论有关的“可知”;由“未知”难于探求写题设有直接联系的“需知”,因此在实际论证教学中,应把两者有机结合起来,使学生既注重分析,又要学会综合,还要学会联合运用这两种方法去思考和论证. [例2](补充例题)如图,已知∠A=∠D ,AB=DE ,AF=CD ,BC=EF .求证:BC ∥EF .分析:由已知条件可知△FAB ≌△CDE ,所以要连结FB 、EC .要证明BC ∥EF ,就要设法找BC 、EF 被第三条直线所截得的同旁内角互补或内错角相等,故再连结EB 或FC . DCABE12D ABE F证明:略 二、参考练习1.如图,BO=OC ,AO=DO ,则△AOB 与△DOC 全等吗?小亮的思考过程如下.OB OCAOB COD OA OD =⎫⎪∠=∠⇒⎬⎪=⎭△AOB ≌△DOC答案:全等,根据“SAS ”.2.选择题 (1)已知△ABC 和△A ′B ′C ′,下列条件中,不能保证△ABC 和△A ′B ′C•′全等的是( ) A .AB=A ′B ′ AC=A ′C ′ BC=B ′C ′ B .∠A=∠A ′ ∠B=∠B ′ AC=A ′C ′ C .AB=A ′B ′ AC=A ′C ′ ∠A=∠A ′ D .AB=A ′B ′ BC=B ′C ′ ∠C=∠C ′ 答案:D(2)要说明△ABC 和△A ′B ′C ′全等,已知条件为AB=A ′B ′,∠A=∠A ′,不需要的条件为( )A .∠B=∠B ′ B .∠C=∠C ′; C .AC=A ′C ′D .BC=B ′C ′ 答案:D (3)要说明△ABC 和△A ′B ′C ′全等,已知∠A=∠A ′,∠B=∠B ′,则不需要的条件是( ) A .∠C=∠C ′ B .AB=A ′B ′; C .AC=A ′C ′ D .BC=B ′C ′ 答案:A(4)两个三角形全等,那么下列说法错误的是( )A .对应边上的三条高分别相等;B .对应边的三条中线分别相等C .两个三角形的面积相等;D .两个三角形的任何线段相等 答案:DDC ABO。

第12章《全等三角形》小结与复习

第12章《全等三角形》小结与复习

F
E
D
A
B
C
第13章题
4.已知,△ABC和△ECD都是等边三角形,
且点B,C,D在一条直线上求证:BE=AD
证明:
E
∵ △ABC和△ECD都是等边三角形
A
∴ AC=BC DC=EC
∠BCA=∠DCE=60°
B
D
∴ ∠BCA+∠ACE=∠DCE+ ∠ACE
C
即∠BCE=∠DCA 在△ACD和△BCE中
DC交BE于点G,
D
①求证:AE=DC
②求证:BF=BG
③连接FG,求证:FG//AC ④求∠AHC的度数。A
F HE G
BC
11.如图,在R△ABC中,∠ACB=45, ∠BAC=90,AB=AC,点D是AB的中点, AF⊥CD于H交BC于F,BE∥AC交AF的 延长线于E,求证:BC垂直且平分DE.
第12章全等三角形小结与复习
(共3课时)
知识点
1.全等三角形的性质: 对应边、对应角、对应线段相等,
周长、面积也相等。
2.全等三角形的判定: ①一般三角形全等的判定:
SAS、ASA、AAS、SSS
②直角三角形全等的判定:
SAS、ASA、AAS、SSS、HL
知识点
1.角平分线的性质:
角的平分线上的点到角的两边的距离相等.
课堂练习
5、已知:CD⊥AB于点D,BE⊥AC于点E,
BE、CD交于点O,且AO平分∠BAC,
求证:OB=OC
A
D
E
O
B
C
课堂练习
6、已知BD=CD,∠ABD=∠ACD,DE、DF分别
垂直于AB及AC交延长线于E、F,求证:DE=DF

最新人教版八年级上册数学第十二章全等三角形第8课时 《全等三角形》单元复习

最新人教版八年级上册数学第十二章全等三角形第8课时 《全等三角形》单元复习
返回
数学
15.【例7】如图,AD平分∠BAC,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF. (1)求证:点D为EF的中点; (2)求证:AD⊥BC.
返回
数学
证明:(1)如图,过点D作DH⊥AB于H, ∵AD平分∠BAC,DE⊥AC,DH⊥AB,∴DE=DH, ∵BF∥AC,DE⊥AC, ∴BF⊥DF, ∵BC平分∠ABF,DH⊥AB,DF⊥BF, ∴DH=DF,∴DE=DF,∴点D为EF的中点.
答案图
返回
数学
(2)∵BF∥AC,∴∠C=∠DBF,且∠CDE=∠BDF,DE=DF, ∴△DCE≌△DBF(AAS),∴CD=BD, ∵BC平分∠ABF,∴∠ABD=∠DBF,∴∠C=∠ABD, ∵AD平分∠BAC,∴∠CAD=∠DAB, 又AD=AD,∴△DCA≌△DBA, ∴∠CDA=∠BDA, ∵∠CDA+∠BDA=180°, ∴∠CDA=∠BDA=90°,∴AD⊥BC.
第十二章 全等三角形
第8课时 《全等三角形》单元复习
数学
目录
01 知识要点 02 对点训练 03 精典范例 04 变式练习
数学
知识要点
知识点一:全等三角形的性质 (1)性质1:全等三角形的对应边 相等 . 性质2:全等三角形的对应角 相等 . 说明:①全等三角形的对应边上的高、中线以及对应角的平分 线 相等 . ②全等三角形的周长相等、面积相等. ③平移、翻折、旋转前后的图形 全等 .
返回
数学
证明: (1)∵DE⊥A B,DF ⊥A C,
∴△BDE,△CDF 是直角三角形.
在 Rt△BDE 和 Rt△CDF 中, = , =
∴R t △ B DE≌R t △ CDF(H L ),∴DE =DF .

全等三角形_小结与复习

全等三角形_小结与复习

A
D
AC=DF ∠C=∠F BC=EF
CF
B
E
∴△ABC≌△DEF(SAS)
三角形全等判定方法3
有两角和它们的夹边对应相等的两个三角 形全等. (可简写为角边角或ASA)
几何语言
在△ABC与△DEF中
A
D
∠A= ∠D
AB=DE
B
CE
F
∠B= ∠E ∴△ABC≌△DEF(ASA)
三角形全等判定方法4
C
A
D
B
面积问题 9.如图,BD平分∠ABC,DE⊥AB于E, DF⊥BC于F,S△ABC=36,AB=18, BC=12。求DE的长。
A E
D
B
FC
线段和差
11.如图,在△ABC中,AC=BC, ∠C=90°,BD平分∠ABC。 求证:AB=BC+CD。
B
C D
A
线段和差
12.如图,BD是△ABC的边AC上的中线, AE⊥BD于E, CF⊥BD交延长线 于F。 求证:BE+BF=2BD。 A
几何语言:
∵OC是∠AOB的平分线,
且PD⊥OA,PE⊥OB
O
∴PD=PE
(角的平分线上的点到角的两边距离相等)
点此播放教学视频
A D
C P
E B
到角的两边的距离相等的点 在角的平分线上。
用数学语言表示为: ∵ QD⊥OA,QE⊥OB,QD=QE. ∴点Q在∠AOB的平分线上.
找全等形
1.如图,AB∥CD, BC∥AD, AE∥CF,
F
ED
B
C
巩固
14.如图,△ABC的∠B的平分线BD与
∠C的外角的平分线CE相交于点P。

八年级数学上册 第十二章全等三角形小结与复习课件2_6-10

八年级数学上册  第十二章全等三角形小结与复习课件2_6-10

∵∠ACB=∠ECD,CB=CD,
∠ABC=∠EDC, ∴△EDC≌△ABC(ASA).
CD
∴DE=BA.
E
答:测出DE的长就是A、B之间的距离.
花瓶里的纸花与笔筒中毛笔同时被主人摆放在案桌上。之后,蚂蚁逢人便说:“当你遇到无法逾越的障碍时,不妨换一种方式。玛茨亚很机灵,不过还是被吓了一跳。 电影在线观看 /tv/29.html 它倒还能挺直身子走路。
AD=AD, AB=AC,
∴ Rt△ADB ≌ Rt△ADC(HL). ∴BD=CD.
A
B
D
C
方法总结
利用全等三角形可以测量一些不易测量的距离和长度,还可对某些 因素作出判断,一般采用以下步骤: (1)先明确实际问题;
(2)根据实际抽象出几何图形;
(3)经过分析,找出证明途径; (4)书写证明过程.
考点四 利用全等三角形解决实际问题 例4 如图,两根长均为12米的绳子一端系在旗杆上,旗杆与地面 垂直,另一端分别固定在地面上的木桩上,两根木桩离旗杆底部的 距离相等吗?
A
【分析】将本题中的实际问题转化为数学问题
就是证明BD=CD.由已知条件可知AB=AC,
AD⊥BC.
B
D
C
解:相等,理由如下:
∵AD⊥BC, ∴∠ADB=∠ADC=90°. 在Rt△ADB和Rt△ADC中,
针对训练
5.如图,有一湖的湖岸在A、B之间呈一段圆弧状,A、B间的距离不 能直接测得.你能用已学过的知识或方法设计测量方案,求出A、B间 的距离吗?
解:要测量A、B间的距离,可用如下方法:
D=BC,
再作出BF的垂线DE,使A、C、E在一条直
线上,
“现在我再来匀一匀。,

全等三角形 复习与小结

全等三角形  复习与小结

全等三角形 复习与小结一、学习目标:1.回顾本章知识要点,把握本章的知识结构2.能综合使用各种方法判定三角形全等二、重点难点:1、重点:复习本章知识要点,把握本章的知识结构2、难点:综合使用各种方法判定三角形全等三、导入:本章学习了关于全等三角形的哪些知识?全等三角形⎩⎨⎧—直角三角形的判定—全等三角形的判定全等三角形的性质 四、学习过程:(一)目标领路 自主学习认真复习本章内容,并解决下面问题。

1、 什么是全等三角形?2、 全等三角形有哪些性质?3、判定三角形全等的方法有哪些?判定直角三角形全等的方法有哪几种?4、△ABC 与△ABC 中,5、产生增根的原因是我们在方程的两边同乘了一个可能使分母为 整式。

6、判断求得的未知数的值是不是增根,只需要判断所乘的最简公分母是否 。

7、通过学习总结出解分式方程的三大步骤是:(1)去分母,将 转化为(2)解这个整式方程,求出 的值。

(3)检验,把未知数的值代入公分母,判断是否是 。

(二)、目标深化 交流探讨讨论自主学习中遇到的问题,在组内互相学习。

(三)、目标展示 反馈评价解下列分式方程(1)235-=x x (2) 43411--=--x x x (3) 114112=---+x x x 学生板演解题过程,并让其他同学对他们的解题过程实行评价。

(四)目标达成 拓展提升 若方程xx x --=+-21321有增根,则曾根为 五、课堂小结;1、什么是分式方程?2、解分式方程的步骤是什么?3、分式方程检验的方法是什么?六、作业布置:教材109页第3题。

第十二章全等三角形小结与复习课件最新版

第十二章全等三角形小结与复习课件最新版

体系建构
问题2 请同学们整理一下本章所学的主要知识, 你能发现它们之间的联系吗?你能画出一个本章的知 识结构图吗?
本章的知识结构图:
SSS、SAS、ASA、AAS、HL
判定
全等形
全等三角形
角平分线的性质
性质
对应边相等,对应角相等
体系建构
问题3 结合本章知识结构图,思考以下问题: (1)回顾本章的学习过程,全等三角形的性质和判定
八年级 上册
第十二章 小结与复习
课件说明
• 全等三角形的概念是学习本章的基础,研究全等三 角形性质和判定是对对应边之间、对应角之间的相 等关系方面进行的探究,是证明角平分线的性质和 判定的基础.全等三角形的性质和判定又是证明线 段相等和角相等的重要方法.在性质和判定的探究 过程中,渗透了研究几何图形的基本思路和方法.
课件说明
• 学习目标: 1.复习本章的重点内容,整理本章知识,形成知识 体系. 2.巩固和运用全等三角形的相关知识解决问题,进 一步发展推理能力.
• 学习重点: 复习全等三角形判定、性质及角平分线的性质和判 定,建立本章知识结构;运用全等三角形的知识解 决问题.
知识梳理
问题1 请同学们回答下列问题: (1)你能举出一些实际生活中全等形的例子吗? (2)举例说明全等三角形有什么性质? (3)从三角形的三条边对应相等、三个角对应相等中
在本章中的重要作用是如何体现的?
引导学生从知识间的内在联系及知识的推理依据来 分析,全等形、全等三角形、角平分线,角平分线的性 质和判定等,都体现了全等三角形知识的运用;同时, 全等三角形知识也是证明线段相等和角相等的重要依据.
体系建构
问题3 结合本章知识结构图,思考以下问题: (2)通过本章的学习,说一说证明线段相等和角相等

全等三角形知识点总结及复习

全等三角形知识点总结及复习

全等三角形知识点总结及复习一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

全等三角形定义 :能够完全重合的两个三角形称为全等三角形。

(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

由此,可以得出:全等三角形的对应边相等,对应角相等。

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边;(4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角;2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

全等三角形—小结与复习-完整版课件

全等三角形—小结与复习-完整版课件
变式:以上条件不变,将△ABC绕点C旋转一定角 度(大于零度而小于六十度),以上的结论还成 立吗?
谈谈你的收获
1.梳理本章知识,建立知识结构图
2.数学思想和方法: (1)数形结合思想
(2)一题多变
作业:P55 5、10
1.如图:在△ABC中,∠C =900,AD平分∠ BAC ,DE⊥AB交AB于E,BC=30,BD:CD=3:2,则DE= 。
2.如图,在△ABC中,AC⊥BC,DE⊥AB,DE=CD ∠CAD=310,则∠B =__________
c
D
A
E
B
A E
C D
B
典例讲解 四、全等三角形性质和判定的综合应用 已知,△ABC和△ECD都是等边三角形,且点B,C, D在一条直线上.求证:BE=AD.
第十二章 全等三角形 —小结与复习
本章的知识结构图: SSS、SAS、ASA、AAS、HL
判定
全等形
全等三角形 角平分线的性质
性质
对应边相等,对应角相等
典例讲解 一、全等三角形性质应用
1.如图1,△AOB≌△COD,AB=5,∠C=62°则
CD=
,∠A=
.
2.如图,△ABC≌△DEF,△ABC的周长13,DE=3,
DF=4,则EF的长是( )
A.3 B.4 C.5 D.6 D
B
C
O
A
E
F
A
D
第1题
B
C
第2题
典例讲解
二.全等三角形的判定:
1、如图1,已知△ABC和△DCB中,AB=DC,请补
充一个条件
,使△ABC≌ △DCB。
2、如图2,已知∠1= ∠2,要识别△ABC≌△CDA
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形复习考点呈现考点一 全等三角形的概念和性质例1 下列命题:①形状相同的三角形是全等三角形;②面积相等的三角形是全等三角形;③全等三角形的对应边相等,对应角相等;④经过平移得到的三角形与原图形是全等形.其中正确的命题有 ( ) A. 1个 B. 2个 C. 3个 D. 4个解析:全等三角形是指两个完全重合的三角形,不仅形状相同,大小也相同,两者缺一不可.互相重合的边叫做对应边,互相重合的角叫做对应角,平移、翻折、旋转不改变图形的大小与形状,所以③④正确.故选B.点评:本题主要考查了全等三角形的概念和性质,注意把一个图形平移、旋转、折叠后得到的图形与原来的图形全等.例2 如图1,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若︒=∠64CDE ,则ADP ∠等于 ( )A .42°B .48°C .52°D .58° 解析:由题意知△CDE ≌△PDE ,所以︒=∠=∠64CDE PDE ,则︒=︒-︒-︒=∠-∠︒=∠526464180-180PDE CDE ADP .故选C.点评:本题以折叠为背景,主要考查全等三角形的性质,运用全等三角形的对应角相等结合平角的概念解决问题.考点二 三角形全等的判定例3 (2010年四川巴中)如图2,AB = AC ,要说明△ADC ≌△AEB ,需添加的条件 不能是 ( )A .∠B =∠C B. AD = AE C .∠ADC =∠AEB D. DC = BE解析:已知AB =AC ,还有一个公共角∠A ,具备了一边一角的条件,可根据“SAS ”添加AD =AE ;可根据“ASA ”添加∠B =∠C ;可根据“AAS ”添加∠ADC =∠AEB ;若添加DC =BE ,则是“SSA”不能判定两个三角形全等.故选D. 点评:本题目是一道条件开放型问题,判定三角形全等的方法有“SSS 、SAS 、AAS 、ASA ”,要根据已知条件添加一条边或一个角满足以上四个判定方法即可,但是需注意添加边时,不能构成“SSA ”的形式. 例4 (2010年四川凉山州)如图3,已知∠E =∠F =90°,∠B = ∠C ,AE =AF .有下列结论:①EM =FN ;②CD =DN ;③∠F AN = ∠EAM ;④△ACN ≌△ABM .其中正确的有 ( ) A.1个 B.2个 C.3个 D.4个 解析:因为∠E =∠F =90°,∠B =∠C ,AE =AF ,所以△AEB ≌△AFC .所以AC =AB, ∠EAB =∠F AC .在△ACN 和△ABM 中,∠C =∠B ,AC =AB ,∠CAB =∠BAC ,所以△ACN ≌△ABM ,④正确;因为∠EAB =∠F AC ,所以∠EAB -∠CAB =∠F AC -∠CAB ,即∠EAM =∠F AN ,③正确;在△EAM 和△F AN 中,∠EAM =∠F AN ,AE =AF ,∠E =∠F =A EFB CD M N90°,所以△EAM ≌△F AN . 所以EM =FN ,①正确;由已知条件不能判断出CD =DN .故正确的有3个,应选C.点评:本题主要考查三角形全等的判定,求解时应同时从题设条件和图形出发,寻求三角形全等的条件,准确判定.考点三 运用三角形全等证明线段(或角)相等例5 (2010年呼和浩特)如图4,点A ,E ,F ,C 在同一条直线上,AD ∥BC ,AD =CB ,AE =CF .求证BE =DF .分析:要证明的两条线段BE 和 DF 分别为△CBE 和△ADF 中的边,可以考虑通过证明△ADF ≌△CBE 来解决.证明:∵ AD ∥BC ,∴ ∠A =∠C .∵ AE =FC , ∴ AF =CE .在△ADF 和△CBE 中,AD =CB ,∠A =∠C , AF =CE , ∴ △ADF ≌△CBE . ∴ BE =DF . 点评:如果要证明的两条线段分别是两个三角形的边时,通常可以尝试通过三角形全等进行证明.例6 (2010年北京,改编)如图5,点A ,B ,C ,D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,EC =BF ,AB =DC .求证∠ACE =∠DBF .分析:要使∠ACE =∠DBF ,只要Rt △EAC ≌Rt △FDB 即可,两个三角形显然满足“HL ”.证明:∵ AB =DC , ∴ AC =DB .∵ EA ⊥AD ,FD ⊥AD , ∴ ∠A=∠D=90°.在Rt △EAC 和Rt △FDB 中,EC =FB ,AC =DB , ∴ Rt △EAC ≌Rt △FDB . ∴ ∠ACE =∠DBF .点评:注意“HL ”只适用于直角三角形,而“SSS 、SAS 、ASA 、AAS ”适用于所有的三角形.考点四 三角形全等的实际应用例7 (2010年广安)某学校花台上有一块形如图6所示的三角形ABC 地砖,现已破损.管理员要对此地砖测量后再去市场加工一块形状和大小与此完全相同的地砖来换,现只有尺子和量角器,请你帮他设计一个测量方案,使其加工的地砖能符合要求,并说明理由.解析:本题是要利用尺子和量角器测量得到的数据作一个三角形与△ABC 全等,根据全等三角形的判定可以有多种测量方案. 如:⑴用量角器分别量出∠A 、∠B 的大小;⑵用尺子量出AB 的长,根据这三个数据,按照原来的位置关系加工地砖.点评:本题是一道方案设计问题,主要考查运用三角形全等解决实际问题的能力,具有一定的开放性,主要依据“SAS 、ASA 、AAS 、SSS ”设计测量方案.考点五 角的平分线的性质DOBA 例8 有下列说法:①角的平分线上任意一点到这个角两边的距离相等;②到一个角两边距离相等的点在这个角的平分线上;③三角形三条角平分线的交点到三个顶点的距离相等;④三角形三条角平分线的交点到三边的距离相等.其中正确的有 ( )A. 1个B. 2个C. 3个D. 4个解析:由角的平分线的性质可知①②④正确.故选C.点评:解题时要注意用角的平分线的性质,不要总是用全等去证明. 例9 (2010年曲靖)如图7,在Rt △ABC 中, ∠C =90°,若BC =10,AD 平分∠BAC 交BC 于点D ,且BD ︰CD =3︰2,则点D 到线段AB 的距离为_________.解析:要求点D 到AB 的距离,过点D 作DE ⊥AB 于点E ,线段DE 长度即为所求. 因为AD 平分∠BAC ,所以DE =CD . 因为BD ︰CD =3︰2,所以4105252=⨯==BC CD .故DE =CD =4.点评:解决本题的而关键是运用角的平分线的性质把求点D 到线段AB 的距离转化为求线段CD 的长度.误区点拨误区一 对“对应”二字理解不深、不透例1 已知两个直角三角形中,有一锐角相等,又有一边相等,说明这两个三角形是否全等.错解:这两个三角形全等.剖析:对全等三角形判定定理中的“对应边相等”没有理解,错把边相等当成对应边相等.正解:这两个三角形不一定全等,如图1,在Rt △ABC 与Rt △EDC 中,CD =AB ,∠1=∠2,∠C =∠C =90°,显然△ABC 与△EDC 不全等.误区二 臆造全等的判定方法例2 如图2,AC 和BD 相交点于O ,且C D ∠=∠, BC AD =.求证△DAB ≌△CBA . 错解:在△DAB 和△CBA 中,AD =BC ,AB =BA ,∠D =∠C ,所以△DAB ≌△CBA .剖析:“SSA ”不能判定三角形全等,属于臆造三角形全等的判定方法导致错误. 正解:在△ODA 和△OCB 中,∠D =∠C ,∠AOD =∠BOC ,AD =BC ,所以△ODA ≌△OCB . 所以OD =OC ,OA =OB .所以OD +OB =OC +OA ,即BD =AC .在△DAB 和△CBA 中,AD =BC ,∠D =∠C ,BD =AC ,所以△DAB ≌△CBA . 误区三 忽视图形的多种情况例3 已知△ABC 和△A ′B ′C ′中,AB =A ′B ′,AC =A ′C ′,若AD ,A ′D ′分别是BC ,B ′C ′边上的高,且AD =A ′D ′.问△ABC 与△A ′B ′C ′是否全等?如果全等,给出证明;如果不全等,请举出反例.错解:这两个三角形全等.证明如下:如图3,在Rt △ABD 和Rt △A ′B ′D ′中,因为AB =A ′B ′,AD =A ′D ′,所以Rt △ABD ≌Rt △A ′B ′D ′. 所以BD =B ′D ′. 同理可得DC =D ′C ′,所以BC =B ′C ′.在△ABC 和△A ′B ′C ′中,因为AB =A ′B ′,AC =A ′C ′,BC =B ′C ′,所以△ABC ≌△A ′B ′C ′.EDCBAB D剖析:这两个三角形不一定全等.当这两个三角形均为钝角(或锐角)三角形时全等;若一个是锐角三角形,一个是钝角三角形时就不可能全等.正解:这两个三角形不一定全等.如图4,虽有BD =B ′D ′,DC =D ′C ′,但BC ≠B ′C ′,因此这两个三角形不全等.跟踪训练1.如果NMQ ∆∆≌MNP ,且8cm MN =,7cm PN =,6cm PM =,则MQ 的长为 ( )A .cm 8B .cm 7C .cm 6D .cm 52.如图1,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△ 的是 ( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠3.如图2,BOP CPO ∠=∠,PC ∥OA ,4=PD ,则点P 到OB的距离是 ( )A .2B .3C .4D .54.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OBA B CD图1PODCB AA ′B ′C ′D ′A BC D图3AB C D图4A ′B ′ D ′于C ,D ,再分别以点C ,D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是 ( )A .SASB .ASAC .AASD .SSS5.如果△ABC ≌△DEF ,△DEF 周长是32 cm ,DE=9cm ,EF=13 cm ,∠E=∠B , 则AC=____ cm.6.如图3,已知AD AB =,DAC BAE ∠=∠,要使ABC △≌ADE △,可补充的条件是 .(写出一个即可)7.如图4,ABE △和ACD △是ABC △分别沿着150BAC ∠=,则θ∠的度数是.8.如图5,在Rt △ABC 和Rt △BAD 中,AB 为斜边, AC =BD ,BC ,AD 相交于点E .求证A D=BC .9. 如图6,在ABC ∆中,︒=∠90ACB ,BC AC =,CE BE ⊥,CE AD ⊥,垂足分别为E ,D ,且cm AD 5=,cm DE 3=,求BE 的长度.10. 如图7,正方形网格中有一个ABC △,请你在方格内画出满足条件1111A B AB BC BC ==,,1A A ∠=∠的所有的111A B C △,(形状相同算一个),并判断111A B C △与ABC △是否一定全等?你能够得到什么结论?ACE B D 图3CDA EBθ图4BA C图7跟踪训练参考答案1.B2.C3.C4.D5. 106.答案不唯一,如AC AE=或D B ∠=∠等 7.︒608.证明:在Rt △ABC 和Rt △BAD 中,AB =BA ,AC =BD ,∴ Rt △ABC ≌Rt △BAD . ∴ A D=BC .9.解:∵ ︒=∠90ACB , ∴ ︒=∠+∠90BCE ACD . ∵ CE BE ⊥,CE AD ⊥,∴ ︒=∠=∠90CEB ADC ,︒=∠+∠90CAD ACD .∴ ∠CAD =∠BCE . ∵ BC AC =,∴ ACD ∆≌CBE ∆.∴ cm CE AD 5==,BE CD =. ∵ )(235cm DE CE CD =-=-=. ∴ cm BE 2=.10.解:如图所示:ABC △与111A B C △不一定全等.结论:由两边及其中一边的对角对应相等的两个三角形不一定全等.BACB 1A 1C 1C 1B 1 A 1。

相关文档
最新文档